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ABSTRACT
This paper describes the INEX 2004 participation of the Informat-
ics Institute of the University of Amsterdam. We completely re-
vamped our XML retrieval system, now implemented as a mix-
ture language model on top of a standard search engine. To speed
up structural reasoning, we indexed the collection’s structure in
a separate database. We address three research questions. First,
we investigate the effectiveness of blind feedback based on top-
ranking XML-elements. Second, we analyze the impact of remov-
ing overlapping elements in the result set. Third, for the content-
and-structure topics, we want to compare the relative effectiveness
of approaches that interpret the topic strict, or ignore the structural
hints altogether. Experimental evidence is based on both of the
INEX 2004 ad hoc tasks, content-only and content-and-structure,
evaluated against a range of metrics.

1. INTRODUCTION
We follow an Information Retrieval (IR) approach to the Content-
Only (CO) and Vague-Content-And-Structure (VCAS) ad hoc tasks
at INEX. In our participation at INEX 2004 we build on top of
our element-based approach at INEX 2003 [10], and extend our
language modeling approach to XML retrieval.

Specifically, we addressed the following technological issues, main-
ly to obtain a statistically more transparent approach. For our INEX
2003 experiments we combined article and element scores outside
our language model, meaning that we created a run based on an arti-
cle index and one based on an element index, which were then com-
bined using well-known run combination techniques [6]. This year
we implemented a proper mixture language model for this combi-
nation. At INEX 2003 we estimated the language model for the
collection by looking at statistics form our overlapping element in-
dex. For our experiments at INEX 2004 we estimate this collection
model differently, by looking at statistics from our article index.
The main changes in our blind feedback approach, compared to
last year, is that this year we perform query expansion based on an
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element run, whereas last year we performed the expansion based
on an article run. All our runs were created using the ILPS exten-
sion to the Lucene search engine [7, 3].

Our main research questions for both tasks were twofold. First,
we wanted to investigate the effect of blind feedback on XML el-
ement retrieval. Second, we wanted to cast light on the problem
of overlapping results; in particular, we investigate the effect of re-
moving overlapping results top-down from a retrieval run. A third,
additional research question only concerns the VCAS task: we in-
vestigate the difference between applying a content-only approach
and a strict content-and-structure approach.

The remainder of this paper is organized as follows. In Section 2
we describe our experimental setup, and in Section 3 we provide
details on the official runs we submitted to INEX 2004. Section 4
presents the results of our experiments, and in Section 5 we discuss
our findings in the broader INEX context, and draw some initial
conclusions.

2. EXPERIMENTAL SETUP
2.1 Index
Our approach to XML retrieval is IR-based. We create our runs
using two types of inverted indexes, one for XML articles only and
another for all XML elements. Furthermore, we maintain a separate
index of the collection structure.

2.1.1 Article index
For the article index, the indexing unit is a complete XML docu-
ment containing all the terms appearing at any nesting level within
the 〈article〉 tag. Hence, this is a traditional inverted index as
used for standard document retrieval.

2.1.2 Element index
For the element index, the indexing unit can be any XML element
(including 〈article〉). For each element, all text nested inside it
is indexed. Hence, the indexing units overlap (see Figure 1). Text
appearing in a particular nested XML element is not only indexed
as part of that element, but also as part of all its ancestor elements.
The article index can be viewed as a restricted version of the el-
ement index, where only elements with tag-name〈article〉 are
indexed.

Both the article and the element index were word-based: we ap-
plied lower-casing and stop-words were removed using the stop-
word list that comes with the English version on the Snowball stem-
mer [12], but other than that words were indexed as they occur in
the text, and no stemming was applied.
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Figure 1: Simplified figure of how XML documents are split up
into overlapping indexing units.

2.1.3 Structure index
The structure of the collection is indexed using a relational database.
To index the XML trees we use pre-order and post-order informa-
tion of the nodes in the XML trees [1].

2.2 Query processing
For both the CO and the VCAS task we only use the〈title〉 part
of the topics. We remove words and phrases bounded by a minus-
sign from the queries; other than that, we do not use the plus-signs,
or phrase marking of the queries.

For the CAS topics we have a NEXI tokenizer which can decom-
pose the query into a set ofabout functions [11]. If there is a
disjunction in a location-path, we break it up into a disjunction of
about functions. That is,

about(.//(abs|kwd), xml)

becomes

about(.//abs,xml) or about(.//kwd,xml).

If there are multiple about functions with the same scope we merge
them into a single one. That is,

about(., broadband) or about(., dial-up)

becomes

about(., broadband dial-up).

For some of the VCAS runs we ignore the structural constraints
and use only a collection of content query terms. That is, from the
query

//article[about(.,sorting)]//sec[about(.,heap sort)]

we collect the query terms

sorting heap sort.

We will refer to these as thefull content queries.

2.3 Retrieval model
All our runs use a multinomial language model with Jelinek-Mercer
smoothing [2]. We estimate a language model for each of the ele-
ments. The elements are then ranked according to their prior prob-
ability of being relevant and the likelihood of the query, given the

estimated language model for the element:

P(e|q) ∝ P(e) ·P(q|e). (1)

We assume that query terms are independent, and thus we rank our
elements according to:

P(e|q) ∝ P(e) ·
k

∏
i=1

P(ti |e), (2)

whereq is a query made out of the termst1, . . . , tk. To account for
data sparseness we estimate the element language model by taking
a linear interpolation of three language models: one for the element
itself, one for the article that contains the element, and a third one
for the collection. That is,P(ti |e) is calculated as

λe ·Pmle(ti |e)+λd ·Pmle(ti |d)+(1−λe−λd) ·Pmle(ti), (3)

wherePmle(·|e) is a language model for elemente; Pmle(·|d) is a
language model for documentd; andPmle(·) is a language model
of the collection. The parametersλe andλd are interpolation fac-
tors (smoothing parameters). We estimate the language models,
Pmle(·|·) and Pmle(·), using maximum likelihood estimation. For
the element model we use statistics from the element index; for the
document model we use statistics from the article index; and for
the collection model we use document frequencies from the article
index.

The language modeling framework allows us to easily model non-
content features. One of the non-content that proved to be useful
during our experiments for INEX 2003 is document length. Specif-
ically, we assign a prior probability to an elemente relative to its
length in the following manner:

P(e) =
|e|

∑e|e|
, (4)

where|e| is the size of an elemente.

2.4 Query Expansion
We have been experimenting with blind feedback in all editions
of INEX so far, focusing on query expansion for the content-only
task exclusively. Initially, we experimented with Rocchio-style
reweighting to select up to 10 terms from the top 10 documents [9].
In INEX 2002 we observed that query expansion with Rocchio on
the article index gave intuitively useful expanded queries, leading
to the kind of improvements that familiar from article retrieval [5].
However, expanding queries based on the top 10 retrieved XML
elements seemed not to work due to the short and overlapping el-
ements in the top 10 results. Hence, we decided to expand queries
on the article index, and then run the expanded queries against the
element index. This did, indeed, give us a boost for the 2002 topics,
but, alas, substantially lowered our score for the 2003 topics [11].

Our analysis of the failure of article-index based feedback in INEX
2003 was that the terms were useful, but highly unlikely to occur in
the proper element. An example is getting prominent author names
from the bibliography, which are relevant and useful retrieval cues
but generally do not appear in a paragraph (maybe in the author
field, or the bibliography).1

We decided to go back to the idea of doing blind feedback directly
on the XML element index. This has the advantage of conser-

1We have been planning to incorporate context (i.e., tags in which
term occurs) into our model, but this would requires some CAS
features for the CO runs that are non-trivial to implement.



Run-id λe λd units terms% overlap
UAms-CO-T 0.1 0.3 – – 71.96
UAms-CO-T-FBack 0.1 0.3 15 5 81.85
UAms-CO-T-FBack-NoOverl 0.1 0.3 15 5 0.00

Table 1: Overview of our official content-only runs for INEX
2004. All runs are automatic runs, that only use the T (title)
topic field.

vatism, the initially retrieved top 10 elements will keep their high
ranking, but the problem of overlap in the initial result set remains.
In pre-submission experiments, the language modeling approach to
feedback [8] proved more robust, and improved performance on the
2003 topics.

3. RUNS
In this section we describe the official runs submitted by the Uni-
versity of Amsterdam for INEX 20004.

All our runs use the language modeling framework described in the
previous section. For all runs we use a two level smoothing pro-
cedure: we smooth against both the article and the collection. Our
collection model uses the document frequencies from the article in-
dex. For computing the likelihood of a term given an element, see
Equation 3, we use the following parameter settings for all runs:
λe = 0.1 andλd = 0.3. All runs also use the same length prior
settings in Equation 4.

3.1 Content-Only task
Table 1 provides an overview of our CO runs. We now describe the
specifics of each of the CO runs.

UAms-CO-T
This run uses the mixture language model approach and parameter
settings as described above.

UAms-CO-T-FBack
This run uses the same model and parameters as the previous run.
Additionally, this run uses blind feedback to expand the queries. An
element run was used as a basis for our feedback. We considered
the top 15 elements to be relevant and chose the 5 best query terms
as described in [8].

UAms-CO-T-FBack-NoOverl
This run uses the same model, parameters and feedback approach
as the previous run. Additionally, overlapping results are filtered
away. The filtering is done in a top-down manner. That is, the
result list is processed from the most relevant to the least relevant
element. A result is removed from the result list if it overlaps with
an element that has been processed previously.

3.2 Vague Content-And-Structure task
We now describe our VCAS runs; again, we provide a table with
an overview; cf. Table 2.

UAms-CAS-T-FBack
This run uses the full-content version of the queries. The run is
identical to UAms-CO-T-FBack, except for the topics, of course.

Run-id λe λd units terms% overlap
UAms-CAS-T-FBack 0.1 0.3 15 5 77.76
UAms-CAS-T-FBack-NoOverl 0.1 0.3 15 5 0.00
UAms-CAS-T-XPath – – – – 18.77

Table 2: Overview of our official vague content-and-structure
runs for INEX 2004. All runs are automaticruns, that only use
the T (title) topic field.

UAms-CAS-T-FBack-NoOverl
This run uses the full-content version of the queries. The run is
identical to UAms-CO-T-FBack-NoOverl, except for the topics, of
course.

UAms-CAS-T-XPath
This run is created using our system for the INEX 2003 Strict Con-
tent and Structure task. It uses both content and structural con-
straints. Target constraints are interpreted as strict. We refer to [11]
for a detailed description of the retrieval approach used. The run
is identical to the run referred to as “Full propagation run” in that
paper.

4. RESULTS
In this section we will try to analyze the results of our retrieval
efforts. Result analysis for XML retrieval remains a difficult task:
there are still many open questions regarding how to evaluate XML
element retrieval. We will show our results for all the suggested
measures and try to interpret the flow of numbers.

4.1 Content-Only task
Table 3 shows the results for our CO runs, using all different met-
rics. We see that the run which uses blind feedback outperforms
the normal run on all metrics except for the measures where high
exhaustivity is rewarded. Hence, at first glance, it seems thus that
blind feedback does more for the specificity of the results than for
the exhaustiveness of the results. This seems somewhat counterin-
tuitive and we will discuss it further below. The run where overlap
was removed does not score well for any metric.

Figure 2 shows precision-recall curves for our CO runs for three
measures: strict, generalized measure, specificity oriented (so). Que-
ry expansion gives improvements on all recall levels. The normal
and non-overlapping runs have similar precision at zero, but the
non-overlapping run quickly drops. The non-overlapping run sim-
ply fails to retrieve many of the relevant elements. This comes as
no surprise since the relevant elements, themselves, are frequently
overlapping.

Run
Measure CO-T CO-T-FBack CO-T-FBack-NoOverl
aggregate 0.1030 0.1174 0.0270
strict 0.1013 0.1100 0.0332
generalized 0.0929 0.1225 0.0198
so 0.0717 0.1060 0.0149
s3 e321 0.0528 0.0877 0.0148
s3 e32 0.0668 0.0891 0.0168
e3 s321 0.1840 0.1699 0.0507
e3 s32 0.1515 0.1368 0.0387

Table 3: Average scores for our CO runs, with this best scoring
run in italics.
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Figure 2: Precision-recall curves for our CO runs. (Left): strict measure. (Center): generalized measure. (Right): specificity oriented
(so) measure.
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Figure 3: Precision-recall curves for our VCAS runs. (Left): strict measure. (Center): generalized measure. (Right): specificity
oriented (so) measure.

4.2 Vague Content-And-Structure task
Table 4 shows the results for our VCAS runs, using all the differ-
ent metrics. We see that the CO-style run clearly outperforms the
XPath-style run with respect to all metrics. Again, the run without
overlap scores the least of the three.

Figure 3 shows precision-recall curves for our VCAS runs, again
for three measures: strict, generalized measure, and specificity ori-
ented (so). The XPath-style run, tailored for a strict interpretation

Run (CAS-T-. . . )
Measure . . . FBack . . . FBack-NoOverl . . . XPath
aggregate 0.1065 0.0397 0.0619
strict 0.1260 0.0582 0.0735
generalized 0.1167 0.0330 0.0451
so 0.0912 0.0282 0.0472
s3 e321 0.0770 0.0318 0.0537
s3 e32 0.0817 0.0365 0.0781
e3 s321 0.1508 0.0495 0.0581
e3 s32 0.1020 0.0404 0.0774

Table 4: Average scores for our VCAS runs, with the best scor-
ing run in italics.

of content-and-structure topics, seems to function as a precision de-
vice. The run outperforms the CO-style run at lower recall levels.
The low scores on higher recall level can immediately be explained
by the fact that the target element is respected in the XPath-style
run, but not in the relevance judgments.

5. DISCUSSION AND CONCLUSIONS
In this paper, we documented our experiments at the INEX 2004
ad hoc retrieval track. We addressed three main research questions.
First, we investigated the effectiveness of element-based query ex-
pansion, and found that it improved retrieval effectiveness on all
but the exhaustiveness-oriented measures. We will discuss this
case below. Second, we investigated the impact of (non-)overlap
on the runs, and found that returning overlapping results results in
superior scores on all measures. Our non-overlapping runs were,
indeed, completely non-overlapping. Perhaps this is an unreal-
istically strong requirement, for it proves difficult to predict the
choices of the assessors, and many relevant elements will be re-
moved from the ranking. On a more positive note, the XPath-style
run for SCAS had only 19% overlap, and got the best score at low
recall levels. Third, our results for the VCAS task showed clear
superiority of content-oriented-based approaches over a strict in-
terpretation of the content-and-structure topics. From the vantage
point of a retrieval system, our experiments highlighted the great
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Figure 4: Length of relevant elements for strict, specificity-
oriented, and exhaustiveness oriented measures in INEX 2004.

similarity between the CO and VCAS tasks. The most notable dif-
ference, perhaps, is the fact that the XPath-style run can function
as a precision device.

Previously, we have shown that a more radical length bias is essen-
tial to achieve good results [4]. Those experiments were performed
using both the title and description fields of the topics. In the lan-
guage modeling framework, as shown in Section 2.3, the final score
of an element is the product of the prior probability of an element
and the likelihood of the query given an element. However, the
length of a query does have an effect on the number calculated
for the query-likelihood. As a result, the normal length bias has
a bigger impact on the shorter queries. Initial pre-submission ex-
periments for the title-only topics showed the normal length-prior
settings in Equation 4 in Section 2.3 to be sufficient. We did use
blind feedback to expand queries with up to 5 terms. This will re-
sult again in longer queries, and perhaps may suggest that these are
similar to the longer TD-topics. This is true in part, but there is
an important difference between the TD-topics and (expanded) T-
topics: all keywords from the title are content-bearing words spe-
cific for the query, as are supposedly the expanded terms. This may
also be a factor that lessens the need for the extreme length-priors
shown to be crucial for TD-topics [4].

We now return to the finding that query expansion does not help
on the exhaustiveness-oriented measures, i.e., e3s32 and e3s321.
One would expect that strict expansion of the query with useful
terms (witnessing the other measures), leads to improvement of
recall, and therefore would help exhaustiveness rather than speci-
ficity. In contrast, we see improvements on all measuresbut the
exhaustiveness-oriented ones. This is clearly counterintuitive. Our
best explanation to date has to do with the changing recall base
of the measures. In Figure 4 we plot the (log of) element length
against the number of relevant elements, where relevancy is de-
termined by one of three measures: strict, specificity, and exhaus-
tiveness. As can be seen from the plot, the strict and specificity
measure return different counts but a very similar distribution over
length. The exhaustiveness measure, in contrast, has a preference
for much larger elements. This is not unexpected: if we stress the
exhaustiveness dimension, we would generally expect to find larger
chunks of text containing more information. As a result, our nor-
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Figure 5: Length of relevant elements in INEX 2002–2004,
measured using the strict measure.

mal length prior is clearly insufficient to satisfy the exhaustiveness
measure. The normal length prior creates more bias for the shorter
unexpanded queries. Thus, for runs with a larger length bias may
still show improvements for the expanded queries.

Figure 5 presents the distribution of the length of relevant XML
elements over the three years of INEX CO, where relevancy is
measured using the strict measure. While one has to be careful
in making performance and test set comparisons across years, the
following observations seem legit.

First, over the three years there is an declining preference for the
larger elements such as full articles. In the first edition of INEX,
i.e., in 2002, assessors frequently judged the larger elements rele-
vant. In 2003, there was less of a preference for large elements,
and in 2004 trend seems to persist: an even smaller fraction of the
longer elements were judged relevant. With exception of the (al-
most) empty elements, the distribution of elements is qualitatively
not very different from earlier years. Second, there is an amazing
number of very small elements, ranging from empty to just one or
a few words, that is judged as relevant. This raises a number of
questions regarding the INEX relevance assessment stage. We find
it implausible that an element with no or just one or two words can
completely satisfy the information need of the topic (i.e., be judged
as highly exhaustive and highly specific).
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