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a b s t r a c t

Hierarchical forecasting techniques allow for the creation of forecasts that are coherent
with respect to a pre-specified hierarchy of the underlying time series. This targets a
key problem in e-commerce, where we often find millions of products across many
product hierarchies, and forecasts must be made for individual products and product
aggregations. However, existing hierarchical forecasting techniques scale poorly when
the number of time series increases, which limits their applicability at a scale of millions
of products.

In this paper, we propose to learn a coherent forecast for millions of products with a
single bottom-level forecast model by using a loss function that directly optimizes the hi-
erarchical product structure. We implement our loss function using sparse linear algebra,
such that the number of operations in our loss function scales quadratically rather than
cubically with the number of products and levels in the hierarchical structure. The bene-
fit of our sparse hierarchical loss function is that it provides practitioners with a method
of producing bottom-level forecasts that are coherent to any chosen cross-sectional or
temporal hierarchy. In addition, removing the need for a post-processing step as required
in traditional hierarchical forecasting techniques reduces the computational cost of the
prediction phase in the forecasting pipeline and its deployment complexity.

In our tests on the public M5 dataset, our sparse hierarchical loss function performs
up to 10% better as measured by RMSE and MAE than the baseline loss function. Next, we
implement our sparse hierarchical loss function within a gradient boosting-based fore-
casting model at bol.com, a large European e-commerce platform. At bol.com, each day,
a forecast for the weekly demand of every product for the next twelve weeks is required.
In this setting, our sparse hierarchical loss resulted in an improved forecasting perfor-
mance as measured by RMSE of about 2% at the product level, compared to the baseline
model, and an improvement of about 10% at the product level as measured by MAE.
Finally, we found an increase in forecasting performance of about 5%–10% (both RMSE
and MAE) when evaluating the forecasting performance across the cross-sectional hier-
archies we defined. These results demonstrate the usefulness of our sparse hierarchical
loss applied to a production forecasting system at a major e-commerce platform.
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1. Introduction

In e-commerce, we are often faced with two forecast-
ng challenges. First, forecasts at the lowest granularity
usually the individual product level – are required.

till, we also need forecasts at higher granularities, for
xample, at the category, department, or regional level,
s higher-level forecasts are often required in logis-
ics and financial planning. Second, forecasts at different
ime granularities are necessary, for example, daily or
eekly forecasts. It is common that separate forecast
odels are made for each separate (temporal) granu-

arity, and as such, these forecasts may not be coher-
nt with each other. Hierarchical forecasting (Hyndman,
hmed, Athanasopoulos, & Shang, 2011) and tempo-
al hierarchical forecasting techniques (Athanasopoulos,
yndman, Kourentzes, & Petropoulos, 2017; Rangapuram
t al., 2023; Theodosiou & Kourentzes, 2021) aim to solve
he problem of creating forecasts that are coherent with
espect to a pre-specified cross-sectional and/or temporal
ierarchy of the underlying time series.

hallenges with existing cross-sectional and temporal hi-
rarchical forecasting techniques. Reconciliation methods
djust the forecasts for each level in the hierarchy by
inimizing the errors at each forecast level. These meth-
ds are applied as a post-processing step that requires
matrix inversion that scales cubically with the number
f products or product hierarchies (Athanasopoulos et al.,
017; Hyndman et al., 2011; Wickramasuriya, Athana-
opoulos, & Hyndman, 2019). In settings with millions
f products, such as e-commerce, this becomes compu-
ationally expensive at prediction time. Neural network
ethods can optimize for the hierarchy in an end-to-end
anner; however, these are either multivariate methods

hat scale poorly to millions of time series (Rangapuram
t al., 2021) or they can only optimize for the temporal
ierarchy (Rangapuram et al., 2023).

parse loss function. To overcome these scaling issues,
e design a sparse hierarchical loss (HL) function that
irectly optimizes both cross-sectional and temporal hi-
rarchical structures. Our corresponding sparsity-aware
mplementation ensures that the number of operations
n our loss function scales quadratically rather than cu-
ically with the number of products and levels in the
ierarchical structure, enabling computationally efficient
raining. The benefit of our sparse hierarchical loss func-
ion is that it provides practitioners with a method of
roducing bottom-level forecasts that are coherent to any
hosen cross-sectional and temporal hierarchy. In addi-
ion, removing the need for a post-processing step as used
n traditional hierarchical forecasting techniques reduces
he computational cost of the prediction phase in the
orecasting pipeline. Furthermore, this also reduces the
eployment complexity of the forecasting pipeline.

valuation. We evaluate our sparse HL function on a
radient-boosted forecasting system on the public M5
ataset (Makridakis, Spiliotis, & Assimakopoulos, 2022)
nd a proprietary dataset from our e-commerce partner.
or the M5 dataset, we demonstrate that our implemen-

ation provides up to 10% better forecasting performance

2

as measured by both RMSE and MAE compared with
(i) reconciliation methods and (ii) baseline bottom-level
forecasting methods that use a standard loss function.
For the proprietary dataset, we present the results of
an offline test on the product-level forecast system of
bol.com, a European e-commerce company with a cat-
alogue of millions of unique products. Our sparse HL
function improves the forecasting performance by about
2% on RMSE and 10% on MAE compared to the baseline
forecasting system. This demonstrates the usefulness of
our sparse HL function in a large-scale setting.

Contributions. In summary, the main contributions of this
paper are:

1. We design a sparse hierarchical loss function that
enables direct end-to-end training of cross-sectional
and temporal hierarchical forecasts in large-scale
settings in Section 4.

2. We empirically demonstrate that our sparse hier-
archical loss function can outperform existing hi-
erarchical forecasting reconciliation methods by up
to 10% in Section 5.1. Contrary to most end-to-end
hierarchical forecasting methods that leverage neu-
ral networks (Rangapuram et al., 2023, 2021), we
use LightGBM (Ke et al., 2017) as our base forecast-
ing model. This highly popular gradient boosting-
based forecasting method is widely used in industry
(Januschowski et al., 2022) and was used by the
majority of the top performing solutions in the M5
forecasting competition (Makridakis et al., 2022).

3. We show how our sparse hierarchical loss function
scales to large-scale settings and demonstrate a re-
duction of training and prediction time of up to an
order of magnitude compared to the best hierarchi-
cal forecasting reconciliation methods (Section 5.1).

4. We present the results of an offline test of our
method for the primary product demand forecast-
ing model at bol.com, a European e-commerce
company with a catalogue of millions of unique
products, demonstrating an improvement of 2% on
RMSE and 10% on MAE as compared to the baseline
forecasting system, in Section 5.2.

2. Related work

Forecasting for large-scale settings. Contemporary large-
scale forecasting applications require forecasting many
time series concurrently (Böse et al., 2017). In academia,
there has been a surge in the use of neural network-based
forecasting methods, which commonly learn a single fore-
cast model that can produce forecasts for many time
series. We refer the interested reader to the recent survey
of Benidis et al. (2023) for an overview of these methods.
However, tree-based methods topped the M5 forecasting
competition (Makridakis et al., 2022), which is believed to
be due to the strong implementations available of these
algorithms (Januschowski et al., 2022), such as the Light-
GBM (Ke et al., 2017) or XGBoost (Chen & Guestrin, 2016)
packages. Our own experience within bol.com confirms
this view: the ease of use, execution speed and strong de-
fault performance are key reasons a tree-based method is
often the default choice when creating a new forecasting

model.
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Hierarchical forecasting. Hierarchical forecasting
(Ben Taieb & Koo, 2019; Ben Taieb, Taylor, & Hyndman,
2017; Hyndman et al., 2011; Hyndman, Lee, & Wang,
2016; Wickramasuriya et al., 2019) and temporal hier-
archical forecasting techniques (Athanasopoulos et al.,
2017; Ben Taieb, 2017; Rangapuram et al., 2023; Theo-
dosiou & Kourentzes, 2021) aim to solve the problem of
creating forecasts that are coherent with respect to a pre-
specified cross-sectional and/or temporal hierarchy of the
underlying time series. We divide hierarchical forecasting
methods into Reconciliation methods and Other methods.

Reconciliation methods. For a detailed overview of rec-
onciliation methods, we refer the interested reader to the
recent survey of Athanasopoulos, Hyndman, Kourentzes,
and Panagiotelis (2024). Reconciliation methods solve
the hierarchical forecasting problem as a post-processing
step by reconciling the forecasts to a pre-specified cross-
sectional and/or temporal hierarchy (Ben Taieb & Koo,
2019; Ben Taieb et al., 2017; Girolimetto & Di Fonzo,
2023; Hyndman et al., 2011, 2016; Panagiotelis, Athana-
sopoulos, Gamakumara, & Hyndman, 2021; Wickrama-
suriya et al., 2019). Limitations of these approaches are
(i) they require a post-processing step, (ii) computing
the reconciliation may be computationally expensive, as
we show in Section 3.2, and (iii) approaches that are
computationally less expensive tend to perform worse, as
we show in Section 5. Recent work by Ben Taieb (2017)
and Ben Taieb and Koo (2019) has improved the forecast-
ing performance of previous reconciliation approaches
but at the expense of even higher computational costs,
as we explain in Section 3.

Other methods. In Rangapuram et al. (2023, 2021), neu-
ral network-based end-to-end hierarchical probabilistic
forecasting methods are proposed to solve the hierarchi-
cal forecasting problem. More recently and most closely
related to our work, Han, Dasgupta, and Ghosh (2021)
introduced SHARQ, a method that reconciles probabilistic
hierarchical forecasts during training by employing a reg-
ularized loss function that aims to improve hierarchical
consistency of bottom-up forecasts through regulariza-
tion. However, the regularization does not strictly enforce
the cross-sectional hierarchy in this method.

3. Background

To understand our problem setting and the issues we
identify with existing hierarchical forecasting methods,
we introduce the hierarchical forecasting problem and
common methods of solving the hierarchical forecasting
problem.

3.1. Problem definition

Suppose we have n time series written as yt ∈ Rn,
where t denotes the time stamp. We are interested in
finding h-step ahead estimates ŷh of the time series yT+h
using past values y1, . . . , yT . In our hierarchical forecast-
ing setting, we aim to concurrently create forecasts for
many time series whilst adhering to pre-specified hier-
archical relationships between the time series. This can
3

be formalized as follows (Athanasopoulos et al., 2024;
Hyndman & Athanasopoulos, 2021):

ỹh = SGŷh , (1)

where S ∈ {0, 1}n × nb is a matrix that defines the hi-
erarchical relationship between the nb bottom-level time
series and the na = n − nb aggregations, G ∈ Rnb × n is a
matrix that encapsulates the contribution of each forecast
to the final estimate, and ỹh ∈ Rn is the vector of forecasts
adjusted for the hierarchy. We can use the matrix G to
define various forecast contribution scenarios. Note that
we can straightforwardly extend Eq. (1) to the setting of
temporal hierarchies (Athanasopoulos et al., 2017; Ranga-
puram et al., 2023) by considering forecasts of different
time granularities in our vector of base forecasts ŷh and
using an appropriate choice of S to aggregate series of
a different time granularity. We will show how cross-
sectional and temporal hierarchical forecasting can be
combined in Section 4.

The optimal solution to the problem in Eq. (1) can be
found using Reconciliation methods and Other methods.

econciliation methods. MinTShrink (Athanasopoulos et al.,
024; Wickramasuriya et al., 2019) and variants find the
ptimal G matrix by solving a minimization problem that

has the following solution (ref. Theorem 1 of Wickrama-
suriya et al., 2019):

G = (J − JWU(UTWU)−1UT ) , (2)

in which S is partitioned as ST = [CT Inb ], J = [0nb × na Inb ],
T

= [Ina − C]. In MinTShrink, W is estimated using the
hrunk empirical covariance estimate of Schäfer and Strim-
er (2005). Simpler choices for W , such as the identity
atrix, reduce the solution to the Ordinary Least Squares

OLS) solution of Hyndman et al. (2011). In ERM, Ben
aieb and Koo (2019) note than MinTShrink and vari-
nts rely on the assumption of unbiasedness of the base
orecasts. They relax this assumption by formulating the
ierarchical reconciliation problem as an Empirical Risk
inimization problem, introducing the ERM method. In
ddition, they propose two regularized variants of ERM
imed at reducing forecast variance.

ther methods. Hier-E2E (Rangapuram et al., 2021) solves
he problem of Eq. (1) by learning a neural network
odel that combines the forecasting and reconciliation
tep in a single model, resulting in an end-to-end solution
emoving the need for a post-processing step. Similarly,
OPDeepVAR (Rangapuram et al., 2023) is an end-to-end
eural network method that enforces temporal hierar-
hies; however, this is a univariate method that is not able
o implement structural hierarchies (i.e., cross-sectional
ierarchies) simultaneously, and therefore not suited to
ur task. SHARQ (Han et al., 2021) also moves the rec-
nciliation step into the training phase and achieves rec-
nciliation using a regularized loss function, where the
egularization enforces the coherency. However, this
ethod does not implement absolute coherency in the
ierarchy.

.2. Scaling issues of hierarchical forecasting methods

Our main motivation for this paper is the limitations
f prior work for problem settings with many time series.
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Scaling issues with reconciliation methods. In reconcilia-
tion methods, we encounter the following issues when
scaling to many time series:

• The reconciliation is performed as a post-processing
step and thus has to be performed as an additional
step after generating the base forecasts. Even though
G in Eq. (1) needs to be computed only once using
Eq. (2), the reconciliation still needs to be performed
after each base forecast is produced. Also, G ideally
is sparse (Ben Taieb & Koo, 2019). Still, no reconcil-
iation method guarantees this, so computing Eq. (1)
will generally be a dense matrix–vector product that
scales with the number of time series.

• For MinTShrink (Wickramasuriya et al., 2019), esti-
mating W according to the method of Schäfer and
Strimmer (2005) is computationally expensive, with
a computational complexity of O(Nn2), where N de-
notes the number of training samples used to com-
pute the shrunk covariance estimate. In addition, the
shrunk covariance estimate of Schäfer and Strimmer
(2005) is not guaranteed to give consistent results in
high-dimensional settings (Touloumis, 2015), mak-
ing it less applicable for problem settings with many
time series. Finally, the estimate for W will gener-
ally be a dense matrix, so we cannot use efficient
sparse algorithms to solve Eq. (2). However, even for
simpler, sparse choices of W (such as the identity
matrix of OLS (Hyndman et al., 2011)), we still need
to invert a matrix of size na × na to solve Eq. (2),
which becomes computationally costly for problems
with many aggregations, which naturally arise in
retail forecasting scenarios. For example, for the M5
retail forecasting competition (Makridakis, Spiliotis,
& Assimakopoulos, 2021), na = 12,350, even though
there are only 3049 unique products in this dataset.

• For ERM and its regularized variants (Ben Taieb &
Koo, 2019), we need to either invert multiple dense
matrices that scale quadratically with the number
of time series or we need to compute a Kronecker
product that scales quadratically with the number
of time series, followed by an expensive lasso search
procedure. Improving the computational complexity
of the ERM methods is also mentioned in Ben Taieb
and Koo (2019) as an avenue for future work.

Scaling issues with other methods. Hier-E2E (Rangapuram
et al., 2021) is a multivariate method, which means both
input and output of the neural network scale with the
number of time series. This significantly adds to the train-
ing and parameter costs for neural networks, as many
parameters are required to handle all the separate time
series. This, in turn, requires GPUs with more memory to
train these models, which increases operating costs.

4. Sparse hierarchical loss

This section presents our main technical contribution,
the sparse hierarchical loss. First, we show how cross-
sectional and temporal hierarchical forecasting can be
combined. Then, we introduce and demonstrate our loss

function via a toy example.

4

Combining cross-sectional and temporal hierarchical fore-
casting. We are interested in finding forecasts that can
be aggregated according to a pre-specified cross-sectional
hierarchy Scs ∈ {0, 1}n

cs
× ncsb and temporal hierarchy Ste ∈

{0, 1}n
te

× nteb :

ỹcsh = ScsGcsŷcsh , (3)

ỹte = SteGteŷte . (4)

These equations can be interpreted as follows:

• In Eq. (3), we aggregate ncs
b bottom-level time series

from the same forecast h across a set of ncs
= ncs

b +ncs
a

cross-sectional aggregations.
• In Eq. (4), we aggregate each time series consisting of

nte
b timesteps across a set of nte

= nte
b + nte

a temporal
aggregations, hence we drop the subscript h.

e will only create bottom-level forecasts, thus Gcs
=

0ncsb
× ncs

a Incsb ] and Gte
= [0nteb

× nte
a Inteb ], yielding:

˜
cs
h = Scsŷ

ncsb
h , (5)

ỹte = Steŷn
te
b , (6)

here ŷ
ncsb
h and ŷn

te
b denote the bottom-level base fore-

asts for the cross-sectional and temporal hierarchies,
espectively. Considering only bottom-level forecasts has
number of benefits: (i) each forecast is coherent to any
ierarchy by design, and (ii) we reduce the number of
equired forecasts from n to nb, which can be a significant
eduction (there is no need for a forecast for na aggre-
ations in the hierarchy). We now construct a matrix of
ottom-level base forecasts Ŷnb ∈ Rncsb × nteb , in which the
olumns represent the forecasts of the bottom-level time
eries at a timestep h. This allows us to combine (5) and
6) as follows:

˜ = ScsŶnb (Ste)⊺ , (7)

n which Ỹ ∈ Rncs × nte represents the matrix of fore-
asts aggregated according to both cross-sectional and
emporal hierarchies. Equivalently, we can aggregate our
ottom-level ground truth values Ynb ∈ Rncsb × nteb :

= ScsYnb (Ste)⊺ . (8)

parse hierarchical loss. To find the best forecasts for the
ierarchical forecasting problem (7), we try to find a
orecasting model using gradient-based optimization of
he following loss function:

=

∑[
1
2

((
Y − Ỹ

)
⊙

(
Y − Ỹ

))
⊘

(
dcsdte

)]
, (9)

in which
∑

denotes the sum over all ncs
× nte elements

of the matrix contained in the summation, ⊙ denotes
element-wise multiplication, ⊘ denotes element-wise di-
vision, and the vectors dcs and dte read:

dcs = lcsScs1cs , (10)

dte =
(
lteSte1te)⊺ , (11)

where Scs1cs and Ste1te denote the row-sum of Scs and Ste,
respectively, and lcs and lte denote the number of levels
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in hierarchies Scs and Ste, respectively. We will detail
the necessity of the element-wise division of Eq. (9) by
the matrix

(
dcsdte

)
later in this section. Note that Eq. (9)

hares similarities with the Weighted Root Mean Squared
rror from the M5 competition (Makridakis et al., 2022).
We can derive the gradient and the second-order deriva

ive of (9) with respect to the bottom-level forecasts Ŷnb

ref. Appendix A for the full derivation):

∂L

∂Ỹ
=

(
Ỹ − Y

)
⊘

(
dcsdte

)
, (12)

∂L

∂Ŷnb
= (Scs)⊺

(
∂L

∂Ỹ

)
Ste , (13)

∂2L

∂

(
Ŷnb

)2 = (Scs)⊺
(
1 ⊘

(
dcsdte

))
Ste . (14)

nalysis. The best possible forecast is achieved when the
oss (9) is minimized, or equivalently when the gradient
12) is zero:

∂L

∂Ỹ
=

(
Ỹ − Y

)
⊘

(
dcsdte

)
,

=

(
ScsŶnb (Ste)⊺ − ScsYnb (Ste)⊺

)
⊘

(
dcsdte

)
,

=

(
Scs

(
Ŷnb − Ynb

)
(Ste)⊺

)
⊘

(
dcsdte

)
,

which becomes zero when Ŷnb = Ynb . Thus, the best
forecast model is found when each bottom-level forecast
equals the ground truth. This is equivalent to the standard
(i.e., non-hierarchical) squared error loss often used in
forecasting problems. We argue that our hierarchical loss
gradient can be seen as a smoothed gradient compared to
the standard squared error loss gradient (i.e., Ŷnb − Ynb ).
For example, consider the canonical case where we have
two bottom-level time series (ncs

b = 2) consisting of two
timesteps (nte

b = 2). Furthermore, suppose we have a
single cross-sectional aggregation (the sum of the two
time series, thus ncs

a = 1 and ncs
= ncs

a + ncs
b = 3),

and a single temporal aggregation (the sum of the two
timesteps, thus nte

a = 1 and nte
= nte

a + nte
b = 3). Finally,

there are two levels in our cross-sectional hierarchy and
our temporal hierarchy, thus lcs = 2 and lte = 2. The
standard squared error loss gradient for this problem is:[

∂L
∂ ŷ0,0

∂L
∂ ŷ0,1

∂L
∂ ŷ1,0

∂L
∂ ŷ1,1

]
=

[
e0,0 e0,1
e1,0 e1,1

]
, (15)

n which ei,j denotes the bottom-level forecast error (ŷi,j−
i,j) of the ith bottom-level timeseries and jth timestep,
espectively. For our hierarchical loss, Eq. (7) reads:

˜ =

⎡⎣1 1
1 0
0 1

⎤⎦
  

Scs

[
ŷ0,0 ŷ0,1
ŷ1,0 ŷ1,1

]
  

Ŷnb

[
1 1 0
1 0 1

]
  

(Ste)⊺

, (16)

and the gradient of the loss with respect to the bottom
level time series Eq. (13) reads (ref. Appendix B for the
5

full derivation):[
∂L

∂ ŷ0,0
∂L

∂ ŷ0,1
∂L

∂ ŷ1,0
∂L

∂ ŷ1,1

]
=

[
9
16 e0,0 +

3
16 e1,0 +

3
16 e0,1 +

1
16 e1,1

9
16 e1,0 +

3
16 e0,0 +

3
16 e1,1 +

1
16 e0,1

9
16 e0,1 +

3
16 e0,0 +

3
16 e1,1 +

1
16 e1,0

9
16 e1,1 +

3
16 e1,0 +

3
16 e0,1 +

1
16 e0,0

]
.

When we compare this result to the standard squared
error loss gradient Eq. (15), we find that we smooth the
bottom-level gradient by adding to it portions of the
gradients of all cross-sectional and temporal aggregations
the bottom-level series belongs to. This derivation also
shows the motivation of adding the denominator matrix(
dcsdte

)
to the loss function (9). It is necessary to scale

the aggregation gradients by the number of elements in
the aggregation; otherwise, the magnitude of the gradient
grows with the number of time series and the number of
levels in the hierarchy, which we found to be undesirable
when trying to facilitate stable learning. Thus, we add
(portions of) the average gradient of the aggregations to
the bottom-level gradient.

Sparsity. Scs and Ste are highly sparse. For example, Scs has
at most ncs

b l
cs non-zero elements: the number of bottom-

level time series multiplied by the number of aggregations
in the hierarchy. Hence, the overall sparsity of Scs is given
by 1−

ncsb lcs

ncsncsb
. For the M5 dataset (Makridakis et al., 2021),

ncs
b = 3049, lcs = 12, ncs

= 42,840, corresponding
o a sparsity of 99.97%. Next, the matrix of bottom-level
round truth values Ynb in (8) may be sparse too, for
xample, in the case of products that are not on sale
or every timestep nte

b in the dataset. All these sources
f sparsity motivate using sparse linear algebra when
omputing Eqs. (9)–(14).

mplementation. We implement the hierarchical loss (9),
he bottom-level gradient (12), (13) and second-order
erivative (14) in Python using the sparse library from
ciPy (Virtanen et al., 2020). Note that Eqs. (12)–(13) can
e rearranged:
∂L

∂Ŷ
=

(
(Scs)⊺ ⊘ dcs

) (
Ỹ − Y

) (
Ste ⊘ dte

)
, (17)

such that the parts containing Scs and Ste can be pre-
computed as they do not depend on the forecast values
Ỹ, avoiding a costly division operation inside a training
iteration. Also note that the second-order derivative (14)
does not depend on the forecast values Ỹ, so it can be
precomputed as well. Our implementation, including the
code to reproduce the experiments on public data from
Section 5, is available on GitHub.1

5. Experiments

In this section, we empirically verify the usefulness of
our sparse hierarchical loss. First, we evaluate forecasting
accuracy using a set of experiments on the public M5
dataset (Makridakis et al., 2021). Then, we evaluate our
sparse hierarchical loss in an offline experiment on a
proprietary dataset from our e-commerce partner.

1 https://github.com/elephaint/hfas

https://github.com/elephaint/hfas
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5.1. Public datasets

Task & dataset. Our task is forecasting product demand.
We use the M5 dataset (Makridakis et al., 2021) for our
offline, public dataset experiments. The M5 dataset con-
tains product-level sales from Walmart for 3049 products
across ten stores in the USA. Furthermore, the dataset
contains 12 cross-sectional product aggregations (e.g. de-
partment, region), which allow us to test hierarchical
forecasting performance. We preprocess the dataset, re-
sulting in a set of features as described in Appendix C. We
forecast 28 days into the future.

Baseline models. For our baseline forecasting model, we
primarily use LightGBM (Ke et al., 2017), trained to predict
one-day ahead. We subsequently recursively generate
predictions for 28 days. Tree-based models dominated
the M5 forecasting competition due to their strong per-
formance and ease of use (Januschowski et al., 2022;
Makridakis et al., 2022). Moreover, our e-commerce part-
ner’s primary product forecasting is a LightGBM-based
model, so we expect results from offline experiments on
public datasets to transfer to our proprietary setting when
using the same base forecasting model. We compare
the performance of our LightGBM models against tradi-
tional statistical methods ARIMA (Box & Pierce, 1970), ETS
(Hyndman, Koehler, Ord, & Snyder, 2008), Theta
(Assimakopoulos & Nikolopoulos, 2000), SeasonalNaive
(Hyndman & Athanasopoulos, 2021), Naive (Hyndman &
Athanasopoulos, 2021) and Croston (Croston, 1972). We
note that deep learning-based approaches are becoming
more prevalent in e-commerce (Kunz et al., 2023), es-
pecially with the rise of the Transformer-architecture in
forecasting models (Li et al., 2019; Lim, Arık, Loeff, &
Pfister, 2021). We considered this for future work and did
not consider this for our study as (i) the cloud cost to
operate these models is 10x higher for our e-commerce
partner than a tree-based model, and (ii) none of the
neural-network-based methods can scale to the size of
our e-commerce partner, as explained in Section 3.2.

Experimental setup. To test our hierarchical sparse loss
function against baseline forecasting systems, we consider
the following scenarios:

1. Bottom-up. We train a single global model only
on the bottom-level time series. Subsequently, the
bottom-level forecasts are aggregated to obtain the
aggregated (reconciled) forecasts.

2. Separate aggregations. We train separate mod-
els for every aggregation in the hierarchy, resulting
in 12 models for the entire M5 dataset.

3. Global. We train a single global model on all time
series in the dataset, including all the aggregations.

For the first scenario in our experiments (Bottom-up), we
vary both the objective (i.e. loss function that LightGBM
ptimizes) and the evaluation metric (i.e. the loss function
hat governs early-stopping during hyperparameter opti-
ization). For the objective, we consider the squared error

oss (SL), the Tweedie loss (TL) and our sparse hierarchical
oss (HL). The Tweedie loss is a loss function that assumes
6

that the time series follows a distribution somewhere be-
tween a Poisson and Gamma distribution, which is useful
in zero-inflated settings such as retail demand forecasting.
It is a loss function favoured by contestants in the M5
forecasting competition (Januschowski et al., 2022), and
it is the loss also used in the primary forecasting system
of our e-commerce partner.

For the latter two scenarios, we will obtain non-cohere
nt forecasts. Thus, these methods require a reconcilia-
tion post-processing step to reconcile the forecasts to
the hierarchy. We employ the following cross-sectional
reconciliation methods:

• Base. No reconciliation is performed.
• OLS. Ordinary Least Squares (OLS) (Hyndman et al.,

2011), where W in Eq. (2) is the identity matrix.
• WLS-struct and WLS-var. Weighted Least Squares

(WLS) (Wickramasuriya et al., 2019), where W in
Eq. (2) is a diagonal matrix containing respectively
the sum of the rows of S (WLS-struct) or the in-
sample forecast errors (WLS-var).

• MinT-shrink. Trace Minimization (Wickramasuriya
et al., 2019), where W in Eq. (2) is the shrunk co-
variance matrix of in-sample forecast errors. We also
experimented with using the non-shrunk covariance
matrix of the in-sample forecast errors (MinT-cov),
but this produced erroneous/high variance results,
which we attribute to precisely the motivation to
shrink the covariance matrix in MinT-shrink: to re-
duce the variance when the amount of time series
considered becomes very large.

• ERM. The Empirical Risk Minimization (ERM) method
(Ben Taieb & Koo, 2019). Due to computational is-
sues explained in Section 3.2, we could not apply
the regularized ERM variants to our experiments, but
only the unregularized variant.

e optimize the hyperparameters of each of the Light-
BM models by Bayesian hyperparameter optimization
sing Optuna (Akiba, Sano, Yanase, Ohta, & Koyama, 2019).
he settings for the hyperparameter optimization can
e found in Appendix D. Each model is trained for ten
ifferent random seeds, and our results are based on
he mean and standard deviation of those ten rollouts.
or the traditional statistical methods, we use Nixtla’s
tatsForecast (Garza, Mergenthaler Canseco, Challú, & Oli-
ares, 2022), which includes automatic optimization of
he hyperparameters of the statistical methods.

valuation. We evaluate our results for every aggrega-
ion in the hierarchy using the Root Mean Squared Error
RMSE) and Mean Absolute Error (MAE) (Hyndman &
thanasopoulos, 2021). In the results section, we present
he RMSE/MAE relative to the Bottom-up scenario using
he squared-loss objective with the squared-loss metric.
or the results’ absolute values and standard deviation,
ee Appendix E.

esults – LightGBM as baseline model. For our first ex-
eriment, we only consider cross-sectional hierarchies
i.e., Ste = Inteb ). We present our results on relative RMSE
sing LightGBM as a baseline model in Table 4 and con-
lude the following:
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Table 1
Forecasting results for all time series (incl. aggregations) on the M5
dataset, using different baseline models. We show absolute and relative
RMSE and MAE. Lower is better, and bold indicates the best-performing
method.
Model Reconciliation RMSE MAE

Abs. Rel. Abs. Rel.

LightGBM (SL/SL) None 22.39 1.00 2.20 1.00
LightGBM (HL/HL) None 19.54 0.87 2.10 0.95
LightGBM (HL/SL) None 19.59 0.88 2.10 0.95
ARIMA MinT-shrink 39.88 2.43 1.78 1.10
ETS MinT-shrink 36.48 2.35 1.63 1.07
Theta MinT-shrink 36.66 2.39 1.64 1.08
Croston None 39.40 2.76 1.76 1.25
Naive None 74.91 3.95 3.35 1.80
Seasonal Naive None 39.40 2.76 1.76 1.25

Table 2
Forecasting results for all time series (incl. aggregations) on the M5
dataset, ablating for using cross-sectional and temporal hierarchies. We
show absolute and relative RMSE and MAE, with the standard deviation
in brackets. Lower is better, and bold indicates the best-performing
method. Note that the hierarchical loss equals the standard squared
error loss when not using cross-sectional or temporal aggregations.
Hierarchies RMSE MAE

Cross- Temporal Abs. Rel. Abs. Rel.
sectional

No No 22.39 (0.16) 1.00 2.20 (0.01) 1.00
Yes No 19.54 (0.38) 0.87 2.10 (0.01) 0.95
Yes Yes 29.81 (1.52) 1.33 2.47 (0.04) 1.12
No Yes 26.65 (0.32) 1.19 2.36 (0.01) 1.07
Random No 23.54 (0.73) 1.05 2.19 (0.02) 1.00

• The best method is the Bottom-up-scenario com-
bined with our sparse hierarchical loss as objective,
outperforming the baseline by 0%–20% across aggre-
gations. This holds for both settings in which we use
our sparse hierarchical loss.

• Even when we only use our sparse hierarchical loss
as an evaluation metric during training whilst op-
timizing the standard squared loss (the SL/HL sce-
nario), we already see a small improvement of ±5%
across aggregations.

• Even though the Tweedie loss improves over the
baseline loss, our sparse hierarchical loss function
still outperforms it by ±5% across aggregations.

• From the reconciliation methods, MinT-shrink and
WLS-var perform best in the Separate aggre-
gations-scenario, although the performance delta
across aggregations is still ±5%–30% as compared to
the best (our) method.

e present our results for relative MAE in Table 5. Over-
ll, our sparse hierarchical loss still performs best by
5% compared to other loss functions and scenarios.
owever, the results are more nuanced: we find that
inT-shrink in the Separate aggregations-scenario
erforms strongly as well. In addition, we also find that
he Tweedie loss (TL) performs relatively well. This find-
ng corroborates the usefulness of the TL in intermittent
emand settings, such as retail, where zero demand is
ften observed.
7

Table 3
Forecasting results for all time series (incl. aggregations) on the M5
dataset, ablating for using cross-sectional and temporal hierarchies. We
show relative RMSE for several forecasting day buckets of the forecast.
Lower is better, and bold indicates the best-performing method.
Hierarchies Forecast day

Cross-sectional Temporal 1–7 8–14 15–21 22–28

No No 1.00 1.00 1.00 1.00
Yes No 0.98 0.99 0.81 0.80
Yes Yes 1.75 1.50 0.96 1.66
No Yes 1.37 1.24 0.97 1.41
Random No 1.31 0.94 1.07 0.87

Next, we compare our findings against the forecast-
ing results when employing different baseline models
in Table 1. We only show the metrics for all time se-
ries combined (incl. aggregations) for brevity. In addi-
tion, we only show a single reconciliation method for the
other baseline models, as we found little difference in
results when employing different reconciliation methods.
We then find that in terms of RMSE, our sparse hierar-
chical loss outperforms the other baseline models by at
least 50% and in terms of MAE by at least 10%. This verifies
that on this dataset and with this type of problem, using a
more complex model such as LightGBM greatly improves
forecasting performance, as was also shown in the M5
forecasting competition (Makridakis et al., 2022).

Analysis: impact of hierarchy. We investigate the impact
of the choice of hierarchy.

Temporal hierarchies. As noted before, we only used
cross-sectional aggregations in our first experiments. We
now include temporal aggregations by aggregating our
bottom-level time series across years, weeks and months.
We ablate for every setting and show the results in
Table 2. Interestingly, we find that using temporal hierar-
chies jointly with cross-sectional hierarchies reduces fore-
casting performance by ±35% (RMSE) and ±17% (MAE).
This setting is even worse than only using temporal hi-
erarchies, which performs worse than using only cross-
sectional hierarchies by ±26% (RMSE) and ±12% (MAE).
We further analyze these results by studying the RMSE
across the forecast days in Table 3. As noted before, we
forecast 28 days ahead, and each forecast is created by
recursively applying the one-step ahead LightGBM model.
We find that as we forecast further into the future, the
setting with only using cross-sectional aggregations starts
to perform better by up to 20% compared to the baseline
where we do not use any aggregations. Again, the setting
where we employ temporal hierarchies shows relatively
bad performance across all forecast day buckets.

Random hierarchies. In hierarchical forecasting prob-
lems, the aggregation matrices Scs and Ste are commonly
fixed a priori and considered constant during training and
prediction. We can modify these matrices as we perform
the reconciliation end-to-end during training. This allows
us to understand the robustness of our solution to possi-
ble misspecification of the hierarchy and, more generally,
to what extent the choice of the hierarchy affects forecast-
ing performance. We experiment by randomly sampling
an Scs-matrix before we start the LightGBM training pro-

cess. We sample uniformly at random (i) a number of
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Table 4
Forecasting results for all stores on the M5 dataset, using LightGBM as a baseline model. We report relative RMSE compared to the baseline (shown
in italics). Lower is better, and bold indicates the best method for the aggregation, considering the best method’s standard deviation across the ten
seeds. For the results’ absolute values and standard deviation, see Appendix E. The Bottom-up scenario using the HL loss commonly outperforms all
other scenarios.
Scenario/Objective Metric Reconciliation Product Department Category Store Product State Total All series

Department Category Total Store State Department Category Total

Bottom-up
SL SL None 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SL HL None 1.00 0.97 0.95 0.98 0.97 0.98 0.99 1.00 0.98 0.96 0.99 1.00 0.98
HL HL None 1.00 0.88 0.80 0.93 0.89 0.93 0.97 0.99 0.89 0.84 0.88 0.87 0.87
HL SL None 1.00 0.88 0.81 0.94 0.90 0.94 0.96 0.98 0.89 0.84 0.88 0.87 0.88
TL HL None 1.00 0.95 0.96 0.99 1.00 1.00 0.99 1.00 0.97 0.98 0.98 0.96 0.97
TL SL None 1.00 0.94 0.93 1.00 1.00 1.00 0.99 1.00 0.97 0.98 0.98 0.93 0.96
TL TL None 1.17 2.72 2.81 1.76 1.83 1.73 1.52 1.33 2.15 2.18 2.08 2.71 2.38

Sep. agg.
SL SL Base 1.00 1.44 1.29 1.19 1.14 1.14 1.01 0.99 1.23 1.34 1.27 1.60 1.35
SL SL OLS 1.00 1.39 1.41 1.10 1.06 1.07 1.00 1.00 1.20 1.19 1.23 1.50 1.30
SL SL WLS-struct 1.00 1.26 1.37 1.03 1.05 1.02 0.99 0.99 1.11 1.16 1.16 1.39 1.23
SL SL WLS-var 1.00 1.12 1.23 0.99 1.02 0.99 0.99 0.99 1.03 1.09 1.07 1.22 1.12
SL SL MinT-shrink 1.00 1.15 1.27 0.97 0.99 0.97 1.00 1.00 1.03 1.09 1.09 1.30 1.15
SL SL ERM 1.22 1.25 1.29 1.07 1.03 1.07 1.17 1.22 1.17 1.14 1.22 1.49 1.26

Global
SL SL Base 1.02 1.33 1.45 1.09 1.10 1.10 1.03 1.03 1.25 1.27 1.81 1.57 1.46
SL SL OLS 1.01 1.32 1.39 1.07 1.09 1.16 1.02 1.02 1.20 1.25 1.38 1.49 1.34
SL SL WLS-struct 1.01 1.38 1.54 1.08 1.13 1.11 1.03 1.02 1.19 1.28 1.27 1.55 1.36
SL SL WLS-var 1.01 1.51 1.70 1.18 1.27 1.22 1.03 1.02 1.31 1.43 1.38 1.66 1.48
SL SL MinT-shrink 1.03 1.26 1.41 1.05 1.10 1.15 1.06 1.05 1.11 1.17 1.24 1.54 1.30
SL SL ERM 1.21 1.59 1.69 1.26 1.28 1.34 1.20 1.23 1.45 1.49 1.61 1.80 1.59
Table 5
Forecasting results for all stores on the M5 dataset, using LightGBM as a baseline model. We report relative MAE compared to the baseline (shown
in italics). Lower is better, and bold indicates the best method for the aggregation, considering the best method’s standard deviation across the ten
seeds. For the results’ absolute values and standard deviation, see Appendix E. The Bottom-up scenario using the HL loss commonly outperforms
ll other scenarios.
Scenario/Objective Metric Reconciliation Product Department Category Store Product State Total All series

Department Category Total Store State Department Category Total

Bottom-up
SL SL None 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SL HL None 1.00 0.98 0.96 0.98 0.98 0.99 1.00 1.00 0.97 0.97 1.00 1.02 0.99
HL HL None 0.99 0.81 0.78 0.90 0.89 0.94 0.98 0.99 0.85 0.83 0.89 0.88 0.95
HL SL None 0.99 0.81 0.77 0.90 0.90 0.94 0.98 0.99 0.85 0.83 0.89 0.87 0.95
TL HL None 0.98 0.83 0.82 0.93 0.94 0.96 0.97 0.98 0.88 0.89 0.92 0.88 0.95
TL SL None 0.99 0.85 0.84 0.95 0.95 0.98 0.98 0.99 0.90 0.91 0.96 0.90 0.96
TL TL None 1.02 2.06 2.39 1.47 1.61 1.65 1.14 1.07 1.69 1.88 1.97 2.86 1.29

Sep. agg.
SL SL Base 1.00 1.11 1.06 1.02 1.10 1.08 0.96 0.97 1.03 1.15 1.20 1.55 1.02
SL SL OLS 0.96 1.08 1.16 1.01 0.99 1.00 0.96 0.97 1.00 1.01 1.12 1.49 0.99
SL SL WLS-struct 0.97 0.99 1.13 0.92 0.95 0.95 0.96 0.97 0.93 0.98 1.04 1.42 0.98
SL SL WLS-var 0.98 0.91 1.00 0.91 0.92 0.92 0.96 0.97 0.90 0.93 0.95 1.16 0.96
SL SL MinT-shrink 0.97 0.93 1.05 0.90 0.90 0.91 0.96 0.97 0.89 0.92 0.98 1.30 0.96
SL SL ERM 1.18 1.17 1.21 1.09 1.06 1.07 1.19 1.22 1.11 1.12 1.19 1.57 1.18

Global
SL SL Base 1.04 1.04 1.17 1.00 1.02 1.05 0.99 0.99 1.04 1.09 1.62 1.58 1.05
SL SL OLS 0.98 1.09 1.17 1.05 1.07 1.13 0.99 1.00 1.09 1.13 1.27 1.50 1.03
SL SL WLS-struct 0.99 1.09 1.26 0.98 1.01 1.04 1.00 0.99 1.00 1.07 1.15 1.57 1.02
SL SL WLS-var 0.99 1.24 1.40 1.09 1.13 1.13 1.01 1.00 1.14 1.21 1.25 1.69 1.06
SL SL MinT-shrink 0.99 1.13 1.24 1.06 1.08 1.15 1.02 1.01 1.05 1.07 1.15 1.60 1.04
SL SL ERM 1.17 1.49 1.62 1.30 1.34 1.37 1.19 1.20 1.39 1.49 1.58 1.96 1.27
levels for the cross-sectional hierarchy and (ii) a num-
ber of maximum categories for the level and construct
a random Scs-matrix to be used in the gradient (13) and
second-order derivative (14). We validate and test on the
‘true’ Scs-matrix. We present the results in Tables 2 and
3, under ‘Random’. In Table 2, we find that on RMSE,
forecasting performance deteriorates by about 5% as com-
pared to the baseline using no hierarchies and by about
20% as compared to the best setting in which we use
the correct cross-sectional hierarchies during training. In
Table 3, we find that ‘Random’ performs poorly on the
first forecast period, whereas it performs strongly on the
8

second and final week of the forecast period. Thus, mis-
specification of the hierarchy can severely deteriorate
forecasting performance. Still, the relatively strong per-
formance at some forecast intervals in Table 3 could also
indicate that a better hierarchy randomization strategy
might lead to improved forecast results. We leave this for
future work.

Analysis: time complexity. We investigate the computa-
tional time complexity required to perform training and
prediction for each scenario and present the results in
Table 6. The training and prediction time complexity is
indicated by how the training time and prediction time
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Table 6
Computational time complexity and observed timings in seconds for all scenarios. The complexity is indicated by how respectively the training time
and prediction time scales with respect to the default LightGBM training/prediction time L, where nte

b denotes the number of timesteps per time
eries, ncs

b denotes the number of bottom-level time series in the hierarchy, ncsl
b the number of time series in each level in the hierarchy and lcs

he number of levels in the cross-sectional hierarchy, ncs (nte) the total number of cross-sectional (temporal) aggregations, and na = n − nb . The
ottom-up scenario using the HL loss is computationally more efficient than the Separate aggregations (both training and prediction) and
lobal (prediction) scenarios.
Scenario/Obj. Metric Reconciliation Complexity Training time (s) Prediction time (s)

Training Prediction 1 store All stores 1 store All stores

Bottom-up

SL SL None O
(
L
(
nte
b n

cs
b

))
O

(
L
(
nte
b n

cs
b

)
+ nte

b

(
ncs
b

)3) 8 173 1.1 11

HL (dense) HL (dense) None O
(
L
(
nte
b n

cs
b + nte

b

(
ncs
b

)3))
O

(
L
(
ntencs

)
+ nte

b

(
ncs
b

)3) 14 1,185 1.1 10

HL (sparse) HL (sparse) None O
(
L
(
nte
b n

cs
b + nte

b

(
ncs
b

)2 lcs))
O

(
L
(
ntencs

)
+ nte

b

(
ncs
b

)2 lcs) 12 318 0.1 11

HL+ (sparse) HL+ (sparse) None O
(
L
(
nte
b n

cs
b + nte

b

(
ncs
b

)2 lcsncs
b

(
nte
b

)2 lte))
O

(
L
(
ntencs

)
+ nte

b

(
ncs
b

)2 lcsncs
b

(
nte
b

)2 lte) 723 15

Sep. agg.

SL SL Base

O
(
lcs · L

(
ncsl
b ntel

b

)) O
(
lcs · L

(
ncsl
b ntel

b

))
11 36,018

4.4 103

SL SL OLS O
(
lcs · T

(
ncsl
b ntel

b

)
+

(
ncs
a

)3) 4.5 149

SL SL WLS-struct O
(
lcs · T

(
ncsl
b ntel

b

)
+

(
ncs
a

)3) 4.5 151

SL SL WLS-var O
(
lcs · T

(
ncsl
b ntel

b

)
+

(
ncs
a

)3) 4.5 151

SL SL MinT-shrink O
(
lcs · T

(
ncsl
b ntel

b

)
+ (ncs)3

)
5.8 305

SL SL ERM O
(
lcs · T

(
ncsl
b ntel

b

)
+ (ncs)3

)
6.0 239

Global
SL SL Base

O
(
L
(
ntencs

))
O

(
T

(
ntencs

))
4 173

2.4 71

SL SL OLS O
(
T

(
ntencs

)
+

(
ncs
a

)3) 2.5 118

SL SL WLS-struct O
(
T

(
ntencs

)
+

(
ncs
a

)3) 2.5 120

SL SL WLS-var O
(
T

(
ntencs

)
+

(
ncs
a

)3) 2.5 120

SL SL MinT-shrink O
(
T

(
ntencs

)
+ (ncs)3

)
4.2 274

SL SL ERM O
(
T

(
ntencs

)
+ (ncs)3

)
4.0 207
scales with respect to the default LightGBM training and
prediction time complexity. We first investigate the case
where we only consider cross-sectional hierarchies. This
case is indicated by ‘HL’ in Table 6. First, we note that
adding our hierarchical loss objective adds a component
to the time complexity that scales with

(
ncs
b

)3, as we need
to compute (12). However, our sparse implementation of
the hierarchical loss reduces this component from

(
ncs
b

)3
to

(
ncs
b

)2 lcs, effectively reducing the scaling from cubic to
quadratic in the number of bottom-level time series, as
lcs is generally small. In the reconciliation scenarios, we
always need to compute a matrix inversion to solve Eq. (2)
that scales cubically with the number of cross-sectional
aggregations ncs

a or with the total number of time series
ncs. The first is not problematic as generally ncs

a ≪ ncs
b in

large-scale settings, but methods with this time complex-
ity consequently trade in performance, as we observed
in Table 4. We recorded the training and prediction time
for each scenario to verify the differences in asymptotic
time complexity empirically. We show timings for train-
ing and prediction for a single store of the M5 dataset
(4M training samples) and for the entire M5 dataset (52M
training samples) to indicate scaling when the problem
size increases by an order of magnitude. First, we note
that using our sparse implementation of the HL reduces
training time by a factor of 3× when training for all stores.
Second, our sparse HL has a prediction time similar to
the baseline (SL). Next, we find that the training time of
our sparse hierarchical loss is two orders of magnitude
faster than reconciliation methods in the Separate ag-

gregations-scenario. This is mainly due to the many

9

individual models that need to be trained in this scenario,
and thus, it shows a clear benefit of having just a single
model. We observe an order of magnitude difference in
prediction time when comparing the sparse hierarchi-
cal loss to the Separate aggregations-scenario when
predicting all stores. Again, this shows a clear benefit of
having just a single model for this forecasting task. For
the Global-scenario, we see that reconciliation methods
require a shorter training time when training for all stores
(about twice less); however, that scenario also did not
give strong forecasting performance as we established in
Table 4. Also, the prediction time using our sparse HL is
an order of magnitude lower. As ML costs in production
systems mainly consist of prediction costs, having a lower
prediction time is beneficial.2 Finally, we show the time
complexity of using cross-sectional and temporal hier-
archies jointly, as indicated by ‘HL+’ in Table 6. Adding
temporal hierarchies adds another matrix multiplication
that scales with the number of timesteps to the com-
plexity. In our experiments, we find that adding temporal
hierarchies results in a twice higher training time when
training for all stores and a 50% higher prediction time
when predicting for all stores. We view it as potential
future work to efficiently investigate how to perform
this end-to-end learning of cross-sectional and temporal
hierarchies.

2 For example, Google designed its first TPU for inference:
https://techcrunch.com/2017/05/17/google-announces-second-
generation-of-tensor-processing-unit-chips.

https://techcrunch.com/2017/05/17/google-announces-second-generation-of-tensor-processing-unit-chips
https://techcrunch.com/2017/05/17/google-announces-second-generation-of-tensor-processing-unit-chips
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Fig. 1. Forecasting results for the primary product forecasting model at our e-commerce partner bol.com. We show RMSE (a, left) and MAE (b, right)
by weekly demand bucket relative to the Tweedie loss baseline for each forecasting horizon (week). The Hierarchical loss outperforms the Tweedie

loss on RMSE and MAE on smaller weekly demand buckets.
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Table 7
Comparison of dataset characteristics between the M5 dataset and the
proprietary dataset. We split the weekly demand into weekly demand
buckets and showed the percentage of samples and percentage of
demand for each bucket.
Weekly % samples % demand

demand M5 Proprietary M5 Proprietary

0 40.73% 34.15% 0% 0%
1 7.92% 19.23% 1.02% 3.99%
2–10 33.28% 37.31% 20.93% 31.6%
11–100 17.21% 8.89% 57.38% 46.01%
101–500 0.84% 0.39% 18.59% 14.27%
501+ 0.02% 0.02% 2.08% 4.13%

Total 100.00% 100.00% 100.00% 100.00%

To conclude, we showed that our sparse HL incurs
some additional training overhead but no additional pre-
diction overhead compared to the base case SL. In con-
trast, it does not require the additional reconciliation step
that reconciliation methods require.

5.2. Proprietary datasets

Our e-commerce partner bol.com uses a LightGBM-
based forecasting model as the primary product forecast-
ing model. The model is used to forecast weekly product
demand for 12 weeks. Every day, 12 separate models
are trained, each tasked to forecast demand for a single
week for every product. The model forecasts most of the
products on sale at any moment, which is approximately
5 million unique items. We investigate using our sparse
hierarchical loss function as a drop-in replacement for the
existing Tweedie loss used within the company.

Dataset. The offline dataset consists of 36M training sam-
ples from January 2017 to the end of June 2021. We test
on 55M samples from July 2021 to January 2022. We
show statistics of the proprietary dataset compared to
the M5 dataset in Table 7, in which we split the weekly
demand of both datasets according to weekly demand
buckets used by our e-commerce partner. In Table 7, we
find that the M5 dataset and our proprietary dataset share

demand characteristics in terms of sparsity (i.e., zero de- q

10
mand), which is 41% for M5 and 34% for our propri-
etary dataset, respectively. We generally find that the two
datasets share sufficient weekly demand density charac-
teristics to warrant using our sparse HL on our proprietary
dataset. The proprietary dataset contains 19 proprietary
features, which are similar to those used in the M5 dataset
(ref. Table C.8), and consist of (i) product categorical fea-
tures, (ii) weekly demand (target) lagged features, and (iii)
seasonality features.

Experimental setup. The baseline model for every weekly
forecast model is a LightGBM model with a Tweedie loss
(TL). We replaced the TL with our HL and investigated
forecasting performance on the test set. We apply log-
scaling to the target values. For the HL, we use the propri-
etary aggregations product_group and seasonality_group,
each containing respectively ±70 and ±6000 unique val-
ues. We have ncs

b = ±5M bottom-level time series and
cs
a = ±6070 aggregated time series across lcs = 4 levels:
roduct (bottom-level), product_group, seasonality_group
nd total.

esults. On average, our sparse HL outperforms the exist-
ng TL model by about 1%–2% on RMSE and ±10% on MAE.
e further investigate the performance by investigating
ow the RMSE and MAE vary across the 12 forecasting
orizons and weekly demand buckets, and present the
esults in Fig. 1. Our sparse HL performs best on both
MSE and MAE on the lower weekly demand buckets
up to 100 products sold per week), outperforming the
L averaged over all the forecasting horizons. The TL
s better for higher weekly demand buckets, commonly
utperforming the HL and SL by up to 5%. Next, we inves-
igate forecasting performance across the cross-sectional
ierarchies that we defined. We show the results in Fig. 2.
e find that for most forecasting horizons, the HL and

L outperform the TL, with an average outperformance of
he HL over the TL of ±10% at the product level, ±5% at
he product group level and ±4%–7% at seasonality group
evel. Hence, we can confirm some of the results we found
n the M5 experiment, although the baseline SL performed

uite strongly in this experiment. We believe this is due to
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Fig. 2. Forecasting results for the primary product forecasting model
at our e-commerce partner bol.com. We show RMSE (left column of
figures) and MAE (right column of figures) by aggregation level relative
to the Tweedie loss baseline for each forecasting horizon (week). The
Hierarchical loss commonly outperforms the Tweedie loss on every
aggregation level.

the M5 experiment having much more hierarchical levels
(12 compared to the four we used for our proprietary
dataset experiment) since the HL is equal to the SL in the
case of no hierarchies. With fewer hierarchies, the HL thus
becomes closer to the SL. Hence, our HL is most useful in
settings with many time series and hierarchies.

To conclude, this experiment demonstrates the useful-
ess of our sparse HL applied to a production forecasting
ystem at a major e-commerce platform.

. Conclusion

We introduced a sparse hierarchical loss function to
erform hierarchical forecasting in large-scale settings.
e demonstrated that we could outperform existing hi-

rarchical forecasting methods both in terms of perfor-
ance as measured by RMSE and MAE by up to 10%
s well as in terms of computational time required to
erform the end-to-end hierarchical forecasting in large-
cale settings, reducing prediction time as compared to
he best hierarchical forecasting reconciliation method by
rder of magnitude. We empirically verified our sparse
ierarchical loss in an offline test for bol.com, where we
onfirmed the results from our offline test on the public
5 dataset.
In addition to our main contributions, one of our main

earnings has been that we could not find a benefit of
aving multiple models for separate aggregations in the
ierarchy, as the bottom-up scenario we employed con-
istently outperformed other scenarios. Secondly, we did
ot find a benefit in training a model whilst jointly adher-
ng to cross-sectional and temporal hierarchies.

Limitations of our work are that we did not con-
ider the probabilistic forecasting setting, where recon-
iled forecasts are required across an entire forecast
istribution.
For future work, we aim to extend our work to the set-

ing of probabilistic forecasting by combining our sparse
ierarchical loss with existing probabilistic forecasting
11
frameworks from, e.g., Hasson, Wang, Januschowski, and
Gasthaus (2021), Sprangers, Schelter, and de Rijke (2021),
Stankeviciute, Alaa, and van der Schaar (2021). In addi-
tion, we seek to investigate solutions for efficiently com-
bining cross-sectional and temporal hierarchies further.
Finally, we aim to understand further the influence of
hierarchy misspecification in the hierarchical forecasting
setting.
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