
Local Search and Modal Logic

Maarten C. Stol? and Maarten de Rijke??

Institute for Logic, Language and Computation (ILLC)
Faculty of Science, University of Amsterdam

Plantage Muidergracht 24, 1018 TV Amsterdam
Email: {mstol, mdr}@science.uva.nl

URL: http://www.science.uva.nl/~{mstol, mdr}

Abstract. Local search techniques have widespread use for solving pro-
positional satisfiability problems. We investigate the use of adaptive local
search techniques for model generation problems for modal logics; we
focus on the modal logic S5. A local search algorithm extended with an
adaptive heuristic is presented and tested on an ensemble of randomly
generated problem instances. We briefly discuss the limitations of using
local search for other NP-complete modal logics.

1 Introduction

There is a clear need for automated reasoning methods for modal and modal-like
logics [1]. As many reasoning tasks for such logics are NP-, PSPACE-, or even
EXPTIME-hard, there is usually no single algorithm which can be developed,
implemented and then used as a black box that performs well on all inputs.
Instead, we need a variety of qualitatively different algorithms and heuristics for
solving reasoning tasks, each of which may perform well on only a limited class
of inputs. Combined, such solvers should cover as many inputs as possible.

There is a broad spectrum of methods for solving satisfiability problems
for propositional logic [5]. Unfortunately, this diversity is largely absent for
modal and modal-like logics, where most algorithms for satisfiability checking
and model generation are either resolution-based (usually through translations
into first-order logic) or tableau-based. The aim of this paper is to help broaden
the spectrum of methods for modal logic by developing an algorithm for model
generation based on local search [8].

The rest of the paper is organized as follows. In Section 2 we recall basic facts
about local search and modal logic. We then develop a local search algorithm
for the modal logic S5; we discuss the representation of candidate solutions and
adaptive mechanisms in some detail. We conclude by discussing local search for
other NP-complete modal logics and for modal logics beyond NP.

? Supported by the Netherlands Organization for Scientific Research (NWO) under
project number 612.069.006.

?? Supported by the Spinoza project ‘Logic in Action’ and by grants from the Nether-
lands Organization for Scientific Research (NWO), under project numbers 612-13-
001, 365-20-005, 612.069.006, 612.000.106, and 220-80-001.

2 Background

Given a problem, each instance is associated with a finite set of candidate solu-
tions. Every candidate has a cost, with each candidate a neighborhood is associ-
ated, and the goal is to find a solution with minimal cost. E.g., in propositional
satisfiability (SAT), the set of candidates for an instance consists of all assign-
ments of Boolean values to the variables. Local search algorithms start from an
initial candidate and repeatedly replace the current candidate by a neighboring
one of lower cost until such improvements are no longer possible. At this point
we have a locally optimal candidate, and the algorithm terminates [8].

To obtain a global optimum, additional techniques are required. To name
just two, [4] presents a local search algorithm WGSAT that uses an adaption
scheme to change the neighborhood structure at runtime to avoid local optima.
Another example are the Saw-ing evolutionary algorithms [3]. We will present a
comparable adaption scheme for modal model generation.

We assume that the reader is familiar with the basics of propositional modal
logic [2]. Models are structures of the form (W,R1, . . . , Rn, V), where W is a
non-empty set (the domain), each Ri is a binary relation on W (which may be
required to satisfy additional properties), and V is a valuation, i.e., a function
assigning subsets of W to proposition letters. We use the standard semantics:
M,w |= 3iφ if there exists v ∈W with Riwv and M, v |= φ.

Different modal logics may be obtained by imposing properties on the struc-
ture of models. The model generation problem for a modal logic L consists in
finding, for a given formula φ, a structure (W,R1, . . . , Rn) with the correct prop-
erties for L and building a model on (W,R1, . . . , Rn) by defining a valuation V
such that one of the states satisfies φ.

How can we use local search methods for model generation for modal logic?
Modal models have propositional and modal aspects to them. We know how
to use local search for propositional model generation—but how can we handle
the modal aspects by means of local search? To simplify matters, we start by
developing local search methods for the modal logic S5, whose models have a
very regular structure. In S5, every formula φ can be rewritten to a formula φ∗,
in S5CNF, such that φ∗ has the following properties: (i) No two modal operators
occur nested; that is, φ∗ is of modal depth at most 1. (ii) Every path from the
root to a leaf in the S5CNF formula tree passes through the connectives in the
order of ∧, ∨, 3/2, ∧, ∨, ¬, before it reaches a variable; some connectives may
be skipped but the order is fixed. (iii) φ∗ is S5-satisfiable if and only if φ is
S5-satisfiable. (iv) The length of φ∗ is polynomial in the length of φ.

Basically, a formula in S5CNF is a large conjunction of clauses, as in propo-
sitional CNF, but now the literals in such clauses can be modal formulas. Every
literal of type 2 or 3 has a propositional CNF subformula. This similarity to
CNF is necessary in order to adapt propositional local search to S5.

Our local search method for modal model generation works by generating a
representation of a model, using a local search method and constraint weights
that are adapted at runtime to avoid stagnation at a suboptimal solution. In

procedure main:
input: formula φ in S5CNF.
parse(φ)
initialize

while no solution found and generations < maximum
mutate(M) % create λ neighboring candidate solutions M1, . . . , Mλ

M := select(M1, . . . , Mλ) % select best candidate from the sampled neighbors
if update period expired adapt(W) end if

if M0,0 < B0,0, B := M end if % replace if improvement occurred
generation := generation +1

end while

end main

Table 1. The main procedure, showing an initialization stage and the iteration of
procedures mutate, select, and adapt.

Table 1 we give a high-level overview of our algorithm; in Sections 3 and 4 we
provide further details of its core aspects.

3 Representing Candidate Solutions

We use mosaics to represent modal models in such a way that local search can
act on them. Mosaics were introduced by [10] and have since been used in modal
logic by e.g., [9]. Briefly, a mosaic is a small part of a model. By imposing the
right saturation conditions on sets of mosaics, the existence of an S5-model
becomes equivalent to the existence of a finite S5-saturated set of mosaics.

More formally now, let φ be a modal formula and let Cl(φ) be the closure
under single negations of the set of subformulas of φ, i.e., the set of subformulas
of φ such that whenever ψ ∈ Cl(φ) for some non-negated subformula ψ of φ
then ¬ψ ∈ Cl (φ). Also, for each ¬2ψ ∈ Cl(φ) we have 3¬ψ ∈ Cl(φ). A mosaic

µ is a subset of Cl(φ); it is coherent if it satisfies the following four constraints:
(i) ⊥ 6∈ µ; (ii) for every negated subformula ¬ψ ∈ Cl (φ): ¬ψ ∈ µ iff ψ 6∈ µ;
(iii) for every conjunction ψ1 ∧ ψ2 ∈ Cl(φ): ψ1 ∧ ψ2 ∈ µ iff ψ1 ∈ µ and ψ2 ∈ µ;
and (iv) for every 2φ ∈ Cl(φ): ¬2ψ ∈ µ iff 3¬ψ ∈ µ.

Definition 1 (S5-Saturation). An S5-saturated set of mosaics is a set of mo-
saics M = {µ1, . . . , µm} such that each mosaic µi ∈ M is coherent and the
following constraints are satisfied:

– For every µi ∈M and for every 3ψ ∈ Cl(φ), if ψ ∈ µi then 3ψ ∈ µi.
– For every µi ∈ M and for every 3ψ ∈ Cl(φ), if 3ψ ∈ µi then there is some
µj ∈ M such that {ψ} ∪ {θ | 2θ ∈ µi} ∪ {3θ | θ ∈ µi} ⊆ µj and for every
3χ ∈ Cl (φ), {3χ | 3χ ∈ µj} ⊆ µi.

If there exists an S5-saturated set of mosaics for φ, then φ is satisfiable in some
reflexive, transitive and symmetric model. Conversely, if φ is satisfiable in a
reflexive, transitive and symmetric model, then there exist an S5-saturated set
of mosaics for φ of size at most 1+ the number of 3’s in φ. As an immediate

corollary we have that an S5-saturated set of mosaics corresponds to a model in
which the accessibility relation is universal.

It may seem natural to represent a mosaic µ by a bit string bµ of length
|Cl(φ)| in such a way that bµ(i) = 1 if the i-th subformula of φ is in µ, and bµ(i) =
0 if it is not. Instead of using the values 0 and 1 to represent set membership,
however, a real number can be used to represent a degree of constraint violation.
The value 0 represents no violation, any value > 2 represents the presence of
some constraint violation, and larger values are seen as less desirable by the
heuristic. A propositional formula ψ in the variables p1, . . . , pn is changed into a
function ψ̃ of variables p̃1, . . . , p̃n taking values 0 for true, and 2 for false. E.g.,
the formula (p1∨p2∨¬p3) ∧ (¬p1∨¬p2) becomes p̃1 ·p̃2 ·(2−p̃3) + (2−p̃1)·(2−p̃2).

Definition 2 (Candidate Solution). A candidate solution is a matrix Mi,j of
non-negative real numbers holding the constraint violation values of the elements
ψj in Cl(φ) in each mosaic µi in a given set of mosaics. We say i ∈ sub(j) if the
i-th element of Cl(φ) is a subformula of the j-th. Also, there is a matrix Wi,j of
positive real numbers containing the weights of the elements ψj in Cl (φ) in each
mosaic µi in the set. The row M0 corresponds to the state in the model where φ
is to be satisfied. If φ is true in M0, i.e., if the constraint violation value of φ in
M0 is 0, then the candidate is an actual solution.

4 Evaluation and Adaption

Evaluation of candidate solutions is at the heart of all heuristic methods for
automated problem solving. It is the key component of our algorithm that dis-
tinguishes it from a random walk in the space of candidate solutions. Every
candidate is assigned a numerical value, its fitness. In propositional logic, the
fitness of a candidate is determined by the assignment of truth values to the
variables. For us, a candidate is determined by the assignments in each state of

the model. Hence, we evaluate the fitness of a candidate by computing the truth
value of propositional subformulas in every single mosaic, and by interpreting
the modal subformulas as quantifying over the full set of mosaics:

Mi,j =






2 − Mi,sub(j) if type(j) = ¬;∏
h Mi,h if type(j) = ∨, h ∈ sub(j);∑
h Wi,h · Mi,h if type(j) = ∧, h ∈ sub(j).

(1)

To evaluate S5-saturation we need a way to deal with the modal information
present in the candidate and assign appropriate values to the entries of type 3

and 2 in M0. Equation (2) reflects the quantificational properties of 3 and 2:

M0,j =

{
mink{Wk,sub(j) · Mk,sub(j)}, if type(j) = 3;
maxk{Wk,sub(j) · Mk,sub(j)}, if type(j) = 2.

(2)

The maximum and minimum are taken over all mosaics µk in the set. Our algo-
rithm searches for the right assignments to variables in the separate states and
tries to minimize the amount of constraint violation for φ in µ0 measured by these

sums. The search ends when M0,0 = 0. What is new here, is the interpretation
of 3 and 2 as minima and maxima over the full set of mosaics.

Equations (1) and (2) enable the heuristic evaluation of candidate solutions.
Moreover, the use of the matrix W allows us to adapt the very heuristic itself to
the results of the search. If an entry in W has a large value, the corresponding
subformula has a large influence on the overall fitness of the candidate. One
avoids local optima by increasing the weights of subformulas that need to be
satisfied but have remained violated for some period during the search.

Two questions arise when extending adaption schemes of propositional logic
to modal logics. First, where do we assign weights in the formula graph? We have
opted to assign weights to all subformulas corresponding to clauses, whether
propositional or modal. Second, how do we adapt weights so as to enhance the
search behavior? If a modal literal in M0 needs to be satisfied, the search should
try to satisfy the propositional constraints that the modal literal demands of
the set of mosaics. Therefore, the constraints of such modal literals in M0 need
to be propagated to the rest of the mosaics, and the algorithm needs some
control over this propagation. This control is provided by letting the adaption
mechanism increase the weights of the propositional constraints that have the
lowest violation value for a given modal literal. In this way, the search can
perform both the modal and the propositional reasoning task simultaneously.

5 Preliminary Tests

We have implemented our algorithm and tested it on a large number of ran-
domly generated S5CNF formulas. Our first aim was to compare the algorithm’s
search behavior with that of a random walk in order to test wether the adaptive
scheme helps the search escape from local minima. The test formulas come from
an ensemble whose parameters include the number of variables, modal clauses,
propositional clauses under a 3 or 2, etc.

Using a random formula generator, we proceeded in two stages. First, we
tried to find regions in the input space that contain hard (satisfiable) problems;
we aimed to construct a well parameterized set (see [7]) that contains modal
problems that are not trivially satisfiable. Secondly, in the interesting regions we
generated a new set of problems. On these problems we examined the impact
of weight adaption. Using a paired sample t-test we found that adaption does
significantly improve search length on the problems in our test set. Our future
tests will involve measuring other performance aspects such as success rate as
well as comparisons with other model generation methods for S5.

6 Discussion: Beyond S5 and NP

We have seen the application of adaptive local search to model generation for
the modal logic S5. There were two key factors to the success of our use of
local search: the very simple structure of S5-models and the poly-sized model
property (meaning that every satisfiable formula can be satisfied on a model

whose size is bounded by a polynomial of the input). To which extent do these
factors hamper or facilitate the extension of our work to our modal logics?

Let’s look at other logics with the poly-size model property first. Recall that
S4.3 is the logic of reflexive transitive non-branching frames, and KnAlt1 is
the logic of partial functions; both are NP-complete [2]. For S5 and KnAlt1 we
only need to consider a single frame when trying to generate a model for a given
formula; that is, for S5 and KnAlt1 the search for the correct frame (W,R)
is easy and the model generator is mainly concerned with finding the correct
valuation V . This unique frame property fails for S4.3. As a consequence, if we
want to generalize Equations (1) and (2) to S4.3, the minima and maxima for 3

and 2 have to be taken over suitable subsets of the set of mosaics, which leads
to a substantial complication of the search procedure.

What if we give up the poly-size model property, and move to logics like K
and S4? Such logics are at the focus of our ongoing work. Model generation for
these logics requires a mixture of efficient representations and implicit ways of
manipulating models. Bounding the size of candidate solutions and slowly incre-
menting their sizes during the search is essential so as to avoid the use of very
large structures whenever possible. The strategy advocated by [6] is particularly
relevant here; it solves modal satisfiability problems by alternating propositional
and modal steps. In the propositional step one views modal formulas as proposi-
tional formulas with “modal atoms.” Once a propositional model has been found,
the “modal atoms” are unpacked by peeling off a single 3 or 2, and then doing
a purely propositional step again. We propose to use local search for the propo-
sitional step, and are exploring ways of using local search for the intermediate
modal steps.

References

1. C. Areces, E. Franconi, R. Goré, M. de Rijke, and H. Schlingloff. Use your logic.
Logic Journal of the IGPL, 8:231–237, 2000.

2. P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. CUP, 2001.
3. A. E. Eiben and J. van Hemert. Saw-ing EAs: Adapting the fitness function for

solving constraint problems. In D. Corne et al., editor, New Methods in Optimisa-

tion, Advanced Topics in Computing, pages 389–402. McGraw-Hill, 1999.
4. J. Frank. Weighting for Godot, learning heuristics for GSAT. In Proceedings

AAAI-96, pages 338–343, 1996.
5. I. Gent, H. van Maaren, and T. Walsh, editors. SAT2000. IOS Press, 2000.
6. E. Giunchiglia and R. Sebastiani. Building decision procedures for modal logics

from propositional decision procedures. In CADE-13, 1996.
7. I. Horrocks, P. Patel-Schneider, and R. Sebastiani. An analysis of empirical testing

for modal decision procedures. Logic Journal of the IGPL, 8(3):293–323, 2000.
8. D.S. Johnson, C.H. Papadimitrou, and M. Yannakakis. How easy is local search?

Journal of Computer and System Sciences, 37:79–100, 1988.
9. M. Marx, Sz. Mikulás, and M. Reynolds. Temporal mosaics. Division of business,

information technology and law research working paper, Murdoch University, 1999.
10. I. Németi. Decidable versions of first order logic and cylindric-relativized set alge-

bras. In Logic Colloquium ’92, pages 171–241, 1995.

