
Learning to Tokenize for Generative Retrieval

Weiwei Sun1, Lingyong Yan2, Zheng Chen1, Shuaiqiang Wang2, Haichao Zhu2

Pengjie Ren1, Zhumin Chen1, Dawei Yin2, Maarten de Rijke3, Zhaochun Ren4∗
1Shandong University, China 2Baidu Inc., China

3University of Amsterdam, The Netherlands 4Leiden University, The Netherlands
{sunnweiwei,lingyongy}@gmail.com yindawei@acm.org

m.derijke@uva.nl z.ren@liacs.leidenuniv.nl

Abstract

As a new paradigm in information retrieval, generative retrieval directly generates
a ranked list of document identifiers (docids) for a given query using generative
language models (LMs). How to assign each document a unique docid (denoted
as document tokenization) is a critical problem, because it determines whether the
generative retrieval model can precisely retrieve any document by simply decoding
its docid. Most existing methods adopt rule-based tokenization, which is ad-hoc and
does not generalize well. In contrast, in this paper we propose a novel document
tokenization learning method, GENRET, which learns to encode the complete
document semantics into docids. GENRET learns to tokenize documents into
short discrete representations (i.e., docids) via a discrete auto-encoding approach.
We develop a progressive training scheme to capture the autoregressive nature of
docids and diverse clustering techniques to stabilize the training process. Based on
the semantic-embedded docids of any set of documents, the generative retrieval
model can learn to generate the most relevant docid only according to the docids’
semantic relevance to the queries. We conduct experiments on the NQ320K, MS
MARCO, and BEIR datasets. GENRET establishes the new state-of-the-art on
the NQ320K dataset. Compared to generative retrieval baselines, GENRET can
achieve significant improvements on unseen documents. Moreover, GENRET can
also outperform comparable baselines on MS MARCO and BEIR, demonstrating
the method’s generalizability.

1 Introduction

Document retrieval plays an essential role in web search applications and various downstream
knowledge-intensive tasks by identifying relevant documents to satisfy users’ queries. Recently,
generative retrieval has emerged as a new paradigm for document retrieval [1, 5, 37, 41, 46, 47] that
directly generates a ranked list of document identifiers (docids) for a given query using generative
language models (LMs). Unlike dense retrieval [9, 13, 23, 42], generative retrieval presents an
end-to-end solution for document retrieval tasks [37]. It also offers a promising approach to better
exploit the capabilities of recent large LMs [1, 41].

As shown in Figure 1, document tokenization aims to tokenize each document in the corpus as a
sequence of discrete characters, i.e., docids. Document tokenization plays a crucial role in generative
retrieval, as it defines how the document is distributed in the semantic space [37]. And it is still an
open problem how to define docids. Most previous generative methods tend to employ rule-based
document tokenizers, such as generating titles or URLs [5, 46], or clustering results from off-the-shelf
document embeddings [37, 41]. Such rule-based methods are usually ad-hoc and do not generalize
well. In particular, the tokenization results potentially perform well on retrieving documents that have
been seen during training, but generalize poorly to unlabeled documents [17, 20].

∗Corresponding author.
37th Conference on Neural Information Processing Systems (NeurIPS 2023).

32 45 21

TransformerQuery 32 45 21

Document 𝑑 Document Tokenization

𝑅(𝑑|𝑧)

Reconstructed 𝑑Reconstruction

Codebook

docid 𝑧

Generative Retrieval docid 𝑧

Transformer Codebook

Figure 1: An overview of our proposed method. The proposed method utilizes a document tokeniza-
tion model to convert a given document into a sequence of discrete tokens, referred to as a docid. This
tokenization process allows for the reconstruction of the original document through a reconstruction
model. Subsequently, an autoregressive generation model is employed to retrieve documents through
the generation of their respective docids.

To address the above problem, we propose GENRET, a document tokenization learning framework
that learns to tokenize a document into semantic docids in a discrete auto-encoding scheme. GEN-
RET consists of a shared sequence-to-sequence-based document tokenization model, a generative
retrieval model, and a reconstruction model. In the proposed auto-encoding learning scheme, the
tokenization model learns to convert documents to discrete docids, which are subsequently utilized
by the reconstruction model to reconstruct the original document. The generative retrieval model is
trained to generate docids in an autoregressive manner for a given query. The above three models are
optimized in an end-to-end fashion to achieve seamless integration.

There are usually two challenges when using auto-encoding to optimize a generative retrieval model:
(i) docids with an autoregressive nature, and (ii) docids with diversity. To address the first challenge
and also to stabilize the training of GENRET, we devise a progressive training scheme. This training
scheme allows for a stable training of the model by fixing optimized prefix docids z<t. To optimize
the docids at each step, three proposed losses are utilized: (i) a reconstruction loss for predicting the
document using the generated docid, (ii) a commitment loss for committing the docid and avoiding
forgetting, and (iii) a retrieval loss for optimizing the retrieval performance end-to-end. To address
the second challenge, we propose a parameter initialization strategy and a re-assignment of the docid
based on a diverse clustering technique to increase the diversity of the generated docids.

We conduct extensive experiments on three well-known document retrieval benchmark datasets,
NQ320K [15, 37], MS MARCO [4, 46], and BEIR [38]. GENRET attains superior retrieval perfor-
mance against state-of-the-art generative retrieval models on NQ320K. GENRET achieves +14%
relative improvements on the unseen test set of NQ320K over the best generative retrieval baseline.
Experiments on MS MARCO and six BEIR datasets also show that GENRET outperforms existing
generative methods and achieves competitive results compared to popular dense retrieval models.
Experiments on retrieving new documents, analytical experiments, and an efficiency analysis confirm
the effectiveness of the proposed model.

We summarize our contributions as follows: (i) We propose GENRET, a generative retrieval model
that represents documents as discrete semantic docids. To the best of our knowledge, this is the first
tokenization learning method for document retrieval. (ii) We propose an auto-encoding approach,
where the docids generated by our tokenization model are reconstructed by a reconstruction model to
ensure the docids capture the semantic information of the document. (iii) We devise a progressive
training scheme to model the autoregressive nature of docids and stabilize the training process.
(iv) Experimental results demonstrate that GENRET achieves significant improvements, especially on
unseen documents, over generative retrieval baselines.2

2 Preliminaries

The document retrieval task can be formalized as the process of retrieving a relevant document d for a
search query q from a collection of documents D. Each document d ∈ D is assumed to be a plain text
consisting of a sequence of tokens, denoted as d = {d1, . . . , d|d|}, where |d| is the total number of
tokens in the document. For generative retrieval models, it is usually challenging and computationally

2The code of this work is available at www.github.com/sunnweiwei/GenRet.

2

www.github.com/sunnweiwei/GenRet

inefficient to directly generate original documents of typically long length. Therefore, most existing
approaches rely on a technique named document tokenization, which represents a document
d = {d1, . . . , d|d|} as a shorter sequence of discrete tokens (docid) z = {z1, . . . , zt, . . . , zM}, where
each token zt is as a K-way categorical variable, with zt ∈ [1, 2, . . . ,K], and M is the length of the
docid. See Figure 1 for an example of document tokenization with M = 3 and K = 64.

As an alternative sequence of the original document, the tokenized docid z should satisfy the following
two properties: (i) different documents have short but different docids; and (ii) docids capture the
semantics of their associated documents as much as possible [37]. Because z is a sequence of a fixed
length and usually shorter than the original document d, the model’s training and inference can be
simplified and more efficient. This paper employs a tokenization model Q : d → z to map d to docid
z. More details about Q are provided in Section 3.1. After tokenizing each document to docid z, a
generative retrieval model P : q → z learns to retrieve relevant documents by generating a query q to
a docid z autoregressively [37].

3 Method

Conventionally, document tokenization is done by a fixed pre-processing step, such as using the title
of a document or the results of hierarchical clustering obtained from BERT [5, 37]. However, it has
been observed that such ad-hoc document tokenization methods often fail to capture the complete
semantics of a document. For example, the title of a web page often does not exist or has low
relevance to the content of the web page, and the use of clustering-based docids arbitrarily defines the
document in discrete space.

In this paper, we propose GENRET, a novel tokenization learning method based on discrete auto-
encoding, to learn semantic docid in a fully end-to-end manner. Figure 1 gives an overview of the
proposed method. The proposed GENRET comprises three main components: (i) a sequence-to-
sequence based retrieval model P (z | q), (ii) a document tokenization model Q(z | d), and (iii)
a reconstruction model R(d | z). The document tokenization model tokenizes a document d into
unique discrete variables z, and the retrieval model is trained to generate the latent variables z for
a given query q. In addition, the reconstruction model is used to re-generate the original document
from z to ensure z captures the semantics of the original document as much as possible.

3.1 Model architecture

Following DSI [37], we employ an encoder-decoder Transformer to implement the generative retrieval
model. Specifically, given an input text d3, the T5-based tokenization model encodes d and a prefix
of docid z<t and continuously produces latent representation dt of d at time step t:

dt = Decoder(Encoder(d), z<t) ∈ RD, (1)

where D denotes the hidden size of the model. Encoder(d) denotes the output of the Encoder.

Then, the tokenization model generates a token for each document based on dt. At each timestep t,
we define an external embedding matrix named codebook Et ∈ RK×D, where K is the size of the
discrete latent space. There are K embedding vectors et,j ∈ RD, j ∈ [K], and each vector et,j can
be regarded as the centroid of a segmentation.

Based on the codebook Et, the discrete latent variable zt at timestep t is calculated by a dot-product
look-up using the codebook Et:

Q(zt = j | z<t, d) = Softmaxj(dt ·E⊤
t), (2)

where Q(zt = j | z<t, d) denotes the probability of tokenizing d to a particular value j ∈ [K] at
timestep t, Softmaxj is a softmax function to output the probability of axis j.

Document reconstruction model. The docid generated by the tokenization model Q is required to
capture the semantic information of the document. To this end, we propose an auto-encoding training
scheme, where a reconstruction model R : z → d that predicts d using z is designed to force the
tokenization model Q : d → z to reproduce a docid z that can be reconstructed back-to-the original
document.

3We use document d here for the denotation, noting that the computation is the same when q is input.

3

The input of the reconstruction model is docid z, and the output is its associated document d. We
first embed z into representation matrix z = {z1, . . . , zM} ∈ RM×D using the codebook of the
tokenization model:

z = {e1,z1 , e2,z2 , . . . , eM,zM } ∈ RM×D, (3)

where each t ∈ [M], zt = et,zt ∈ RD is the embedding vector of zt in the t-step codebook Et.

We then devise a retrieval-based reconstruction model that predicts the target document d by retrieving
it from document collection D, based on the inputs z. The relevance score between the input docid z
and the target document d is defined as follows:

R(d | z) =
M∏
t=1

exp(zt · sg(d⊤
t))∑

d∗∈S(z<t)
exp(zt · sg(d∗⊤

t))
, (4)

where S(z<t) is a sub-collection of D consisting of documents that have a docid prefix that is the
same as z<t. d∗ ∈ S(z<t) represents a document from the sub-collection S(z<t). dt and d∗

t are
continuous representations of documents d and d∗, respectively, as defined in Eq. 1. The operator
sg(·) is the stop gradient operator to prevent gradient back propagation. Intuitively, R(d | z) is
designed to retrieve a specific document d from a set of documents S(z<t) at each timestep t. The
set S(z<t) only includes those documents that are assigned the same docid prefix z<t as the target
document d. By utilizing this loss function, at each step t, the model is facilitated to learn the residual
semantics of the documents not captured by the previous docid z<t.

3.2 Model optimization

For the document tokenization model Q(z | d), generative retrieval model P (z | q), and reconstruc-
tion model R(d | z), jointly optimizing these three models using auto-encoding is challenging due
to the following reasons: (i) Learning docids in an autoregressive fashion. On one hand, the
prediction of the zt at time t relies on previously predicted docids z<t, which is often under-opti-
mized at the beginning and rapidly changes during training, making it difficult to reach convergence.
On the other hand, simultaneously optimizing z makes it challenging to guarantee a unique docid
assignment. Hence, to stabilize the training of GENRET, we devise a progressive training scheme (see
Section 3.2.1). (ii) Generating docids with diversity. Optimizing the model using auto-encoding
often leads to unbalanced docid assignment: a few major docids are assigned to a large number of
documents and most other docids are rarely assigned. Such a sub-optimal distribution of docids
affects the model distinguishability, which in turns triggers length increments of docids in order to
distinguish conflicting documents. We introduce two diverse clustering techniques to ensure docid
diversity (see Section 3.2.2).

3.2.1 Progressive training scheme

Figure 2: Progressive training scheme.
zt (docid at timestep t) is optimized at
the t-th training step, while z<t (docids
before timestep t) are kept fixed.

To optimize each of the three models listed above in an
autoregressive manner, we propose a progressive auto-
encoding learning scheme, as illustrated in Figure 2. The
whole learning scheme contains M learning steps with
respect to the final docid in M -token. And the docid zT
at step T ∈ [M] is learned and optimized at the corre-
sponding learning step. Besides, at each step T ∈ [M],
the docid zT and the model parameters associated with zT
generation are updated, while previously produced docids
z<T and other parameters are kept fixed. By progressively
performing the above process, we can finally optimize and
learn our models.

At each optimization step, say the T -step, we devise the learning objective for document tokenization
consisting of three loss functions detailed below.

Reconstruction loss. We utilize the reconstruction model R(d | z) as an auxiliary model to learn
to optimize the docid generation, whose main goal is capturing as much semantics in the docid as

4

possible. Therefore, we define a reconstruction loss function of step T as follows:
LRec = − logR(d | ẑ≤T), where ẑ≤T = {sg(z1), . . . , sg(zT−1), zT } ∈ RT×D

∀t ∈ [T] : zt = et,j∗ ∈ RD, where j∗ = argmax
j

Q(zt = j | z<t, d),
(5)

where ẑ≤T is the first T representations of the z, and only the variable zT is optimized in step T .
Q(zt = j | z<t, d) is defined in Eq. 2. And the document tokenization model Q can therefore be
optimized when minimizing LRec.

Of note, since the computation involves a non-differentiable operation (argmax(·)), we apply
straight-through gradient estimation to back-propagate the gradient from reconstruction loss to dT

following [39, 44], which copies the gradient of zT directly to dT . Specifically, the gradients to
document representation dT are defined as ∂LRec

∂dT
:= ∂LRec

∂zT
. And the gradients to the codebook

embedding eT,j are defined as ∂LRec
∂eT,j

:= 1zT=j
∂LRec
∂zT

.

Commitment loss. In addition, to make sure the predicted docid commits to an embedding and to
avoid models forgetting previous docid z<t, we add a commitment loss as follows:

LCom = −
T∑

t=1

logQ(zt | z<t, d). (6)

Retrieval loss. For the generative retrieval model P , we jointly learn it together with the document
tokenization model Q, where P learns to generate the docids of relevant documents d given a query q.
Specifically, suppose (q, d) are a query and relevant document pair; we define the learning objective
of retrieval model P as:

LRet = − log
exp(qT · dT)∑

d∗∼B exp(qT · d∗
T)

−
T∑

t=1

logP (zt | z<t, q), (7)

where the first term is a ranking-oriented loss enhancing the model using (q, d) pair; d∗ is an in-batch
document sampled from the same training mini-batch B; qT and dT denote the representation of q
and d at timestep T . The second term is the cross-entropy loss for generating docid z based on q.

The final loss we use at step-T is the sum of reconstruction loss, commitment loss, and retrieval loss:
L = LRec + LCom + LRet. (8)

3.2.2 Diverse clustering techniques

To ensure diversity of generated docids, we adopt two diverse clustering techniques–codebook
initialization and docid re-assignment at each progressive training step, where codebook initialization
mainly aims to increase the balance of semantic space segmentation, and the docid re-assignment
mainly aims to increase the balance of docid assignments.

Codebook initialization. In order to initialize the codebook for our model, we first warm-up the
model by passing the continuous representation dT to the reconstruction model instead of the docid
representation zT as defined in Eq. 3. During this warm-up phase, we optimize the model using the
reconstruction loss LRec and commitment loss LCom. Next, we collect the continuous representations
dT of all documents in D, and cluster them into K groups. The centroids of these clusters are then
used as the initialized codebook ET . To balance the initialized docid distribution, we utilize a diverse
constrained clustering algorithm, Constrained K-Means, which first normalizes the embeddings of
each prefix group, and modifies the cluster assignment step (E in EM) by formulating it as a minimum
cost flow (MCF) linear network optimization problem [2].

Docid re-assignment. In order to assign docids to a batch of documents, we modify the dot-product
look-up results in Eq. 2 by ensuring that the docid for different documents in the batch are distinct
following the method described in [6, 44]. Specifically, let Dt = {d(1)

t , . . . ,d
(B)
t } ∈ RB×D denote

the continuous representation of a batch of documents with batch size of B. The dot-product
results are represented by H = Dt · E⊤

t ∈ RB×K . To obtain distinct docids, we calculate an
alternative H∗ = Diag(u) exp(Hϵ)Diag(v), where u and v are re-normalization vectors in RK

and RB , respectively. The re-normalization vectors are computed via the iterative Sinkhorn-Knopp
algorithm [8]. Finally, H∗ is used instead of H in the Softmax and argmax (Eq. 2) operations to
obtain the docid zt.

5

4 Experimental Setup

4.1 Datasets and evalutaion metrics

We conduct experiments on three well-known document retrieval datasets: NQ320K [15],
MS MARCO [4], and BEIR [38]. We divide the test set of NQ320K into seen test and unseen
test, based on whether the target documents of the query have annotated queries in the training data,
to test the generalization ability of the model on unlabeled documents. More details about data
pre-processing and data statistics are listed in the Appendix A.

On NQ320K, we use Recall@{1,10,100} and Mean Reciprocal Rank (MRR)@100 as evaluation
metrics, following [41]. On MS MARCO, we use Recall@{1, 10, 100} and MRR@10 as evaluation
metrics, following [46]. On BEIR, we use nDCG@10 as the main metrics and calculate the average
nDCG@10 values across multiple downstream sub-datasets as overall metrics.

4.2 Baselines

We consider three types of baselines: sparse retrieval methods, dense retrieval methods, and generative
retrieval methods. The sparse retrieval baselines are: BM25 [32] and DocT5Query [24]. The dense
retrieval baselines are: DPR [13], ANCE [42], Sentence-T5 [22], GTR [23], and Contriever [11].
The generative retrieval baselines are: GENRE [5], DSI [37], SEAL [1], CGR-Contra [17], DSI-
QG [47], NCI [41], and Ultron [46]. The following three baselines use the same pre-trained LM
T5 as GENRET: (i) Sentence-T5 outputs continuous vectors, (ii) GENRE outputs document titles,
and (iii) DSI-QG outputs clustering IDs, while GENRET outputs docids learned using the proposed
tokenization method. See Appendix B for more details on the other baselines.

4.3 Implementation details

Hyper-parameters. In our experiments, we utilize the T5-Base model [27] as the base Transformer
and initialize a new codebook embedding Et for each time step. The parameters of both the encoder-
decoder and codebook are shared between the tokenization model and the retrieval model. We set the
number of clusters to be K = 512 for all datasets, with the length of the docid M being dependent on
the number of documents present. For datasets containing a larger number of candidate documents, a
larger value of M is set to ensure that all documents are assigned unique document ids. In the docid
re-assignment, the hyper-parameter ϵ is set to 1.0, and the Sinkhorn-Knopp algorithm is executed for
100 iterations.

Indexing with query generation. Following previous work [47, 41, 40], we use query generation
models to generate synthetic (query, document) pairs for data augmentation. Specifically, we use the
pre-trained query generation model from DocT5Query [24] to augment the NQ and MS MARCO
datasets. In query generation, we use nucleus sampling with parameters p = 0.8, t = 0.8 and generate
five queries for each document in the collection. For the BEIR datasets, we use the queries generated
by GPL [40]. GPL uses a DocT5Query [24] generator trained on MS MARCO to generate about
250K queries for each BEIR dataset. Note that the query generator used for BEIR is purely trained
on MS MARCO (without using any training data of BEIR) and thus conforms to the zero-shot setting
of BEIR [38, 40].

Training and inference. The proposed models and the reproduced baselines are implemented with
PyTorch 1.7.1 and HuggingFace transformers 4.22.2. We optimize the model using AdamW and set
the learning rate to 5e− 4. The batch size is 256, and the model is optimized for up to 500k steps for
each timestep. During training, we pre-gather documents which share the same docid prefix into a
batch. Therefore, the reassignment strategy is applied to a batch, where we aim to have documents
with as diverse IDs as possible. We add a factor of 0.1 to the reconstruction losses to balance the scale.
In progressive training, we first warm up the model for 5K steps and then initialize the codebook
using the clustering centroids as mentioned in Section 3.2.1. We use constrained clustering4 to obtain
diverse clustering results. During inference, we use beam search with constrained decoding [5] and a
beam size of 100.

4https://github.com/joshlk/k-means-constrained

6

https://github.com/joshlk/k-means-constrained

Table 1: Results on Natural Questions (NQ320K). The results of the methods marked with † are
from our own re-implementation, others are from their official implementation. * and ** indicate
significant improvements over previous-best generative retrieval baselines with p-value < 0.05 and
p-value < 0.01, respectively. ♮ and ♯ indicate significant improvements over previous-best dense
retrieval baselines with p-value < 0.05 and p-value < 0.01, respectively. The best results for each
metric are indicated in boldface.

Full test Seen test Unseen test

Method R@1 R@10 R@100 MRR R@1 R@10 R@100 MRR R@1 R@10 R@100 MRR

Sparse retrieval
BM25 [32] 29.7 60.3 82.1 40.2 29.1 59.8 82.4 39.5 32.3 61.9 81.2 42.7
DocT5Query [24] 38.0 69.3 86.1 48.9 35.1 68.3 86.4 46.7 48.5 72.9 85.0 57.0

Dense retrieval
DPR [13] 50.2 77.7 90.9 59.9 50.2 78.7 91.6 60.2 50.0 74.2 88.7 58.8
ANCE [42] 50.2 78.5 91.4 60.2 49.7 79.2 92.3 60.1 52.0 75.9 88.0 60.5
Sentence-T5† [22] 53.6 83.0 93.8 64.1 53.4 83.9 94.7 63.8 56.5 79.5 90.7 64.9
GTR-Base [23] 56.0 84.4 93.7 66.2 54.4 84.7 94.2 65.3 61.9 83.2 92.1 69.6

Generative retrieval
GENRE† [5] 55.2 67.3 75.4 59.9 69.5 83.7 90.4 75.0 6.0 10.4 23.4 7.8
DSI† [37] 55.2 67.4 78.0 59.6 69.7 83.6 90.5 74.7 1.3 7.2 31.5 3.5
SEAL [1] 59.9 81.2 90.9 67.7 - - - - - - - -
CGR-Contra [17] 63.4 81.1 - - - - - - - - - -
DSI-QG† [47] 63.1 80.7 88.0 69.5 68.0 85.0 91.4 74.3 45.9 65.8 76.3 52.8
NCI [41] 66.4 85.7 92.4 73.6 69.8 88.5 94.6 76.8 54.5 75.9 84.8 62.4
Ours 68.1∗♯ 88.8∗♮ 95.2∗ 75.9∗♮ 70.2♯ 90.3♯ 96.0♮ 77.7♯ 62.5∗∗ 83.6∗∗ 92.5∗∗ 70.4∗∗

5 Experimental results

5.1 Main results

Results on NQ320K. In Table 1, we list the results on NQ320K. GENRET outperforms both the
strong pre-trained dense retrieval model, GTR, and the previous best generative retrieval method,
NCI, thereby establishing a new state-of-the-art on the NQ320K dataset. Furthermore, our results
reveal that existing generative retrieval methods perform well on the seen test but lag behind dense
retrieval methods on the unseen test. For example, NCI obtains an MRR@100 of 76.8 on the seen test,
which is higher than the MRR@100 of 65.3 obtained by GTR-Base. However, on unseen test data,
NCI performs worse than GTR-Base. In contrast, GENRET performs well on both seen and unseen
test data. This result highlights the ability of GENRET to combine the advantages of both dense and
generative retrieval by learning discrete docids with semantics through end-to-end optimization.

Results on MS MARCO. Table 2 presents the results on the MS MARCO dataset. GENRET
outperforms generative retrieval methods such as Ultron and dense retrieval baselines such as ANCE
and Sentence-T5. Furthermore, previous generative retrieval methods (e.g., GENRE, Ultron) utilizing
metadata such as the title and URL, while exhibiting decent performance on the NQ320K dataset,
underperform in comparison to dense retrieval and sparse retrieval methods on the MS MARCO
dataset. This may be because the NQ320K dataset retrieves Wikipedia documents, where metadata
like the title effectively capture the semantics of the document. In the case of the MS MARCO dataset,
which is a web search dataset, the metadata often does not adequately characterize the documents,
resulting in a decline in performance of the generative retrieval model. In contrast, GENRET learns to
generate semantic docids that effectively enhance the generative retrieval model.

Results on BEIR. Table 3 lists the results of the baselines and GENRET on six datasets of BEIR.
These datasets represent a diverse range of information retrieval scenarios. On average, GENRET
outperforms strong baselines including BM25 and ST5 GPL, and achieves competitive results
compared to previous-best sparse and dense retrieval methods. Additionally, GENRET demonstrates
a significant improvement over the previous generative retrieval model GENRE that utilizes titles as
docids. Furthermore, GENRE performs poorly on some datasets, such as BEIR-Covid and BEIR-
SciDocs. This may be because the titles of the documents in these datasets do not adequately capture
their semantic content.

7

Table 2: Results on MS MARCO. The re-
sults of the methods marked with † are from
our own re-implementation, other results
are cited from the original paper or imple-
mented using official code. The best results
are indicated in boldface.
Method R@1 R@10 R@100 MRR

Sparse retrieval
BM25 [32] 39.1 69.1 86.2 48.6
DocT5Query [24] 46.7 76.5 90.4 56.2

Dense retrieval
ANCE [42] 45.6 75.7 89.6 55.6
Sentence-T5† [22] 41.8 75.4 91.2 52.8

Generative retrieval
GENRE† [5] 35.6 57.6 79.1 42.3
Ultron-URL [46] 29.6 67.8 - 40.0
Ultron-PQ [46] 31.6 73.1 - 45.4
Ultron-Atomic [46] 32.8 74.1 - 46.9
Ours 47.9 79.8 91.6 58.1

Table 3: nDCG@10 results on BEIR. The re-
sults of the methods marked with † are from our
own re-implementation, other results are cited from
the original paper or implemented using official
code. ST5 GPL denotes Sentence-T5 trained on GPL
datasets [40].
Method Arg Covid NFC SciF. SciD. FiQA Avg.

Sparse retrieval
BM25 [32] 29.1 58.9 33.5 67.4 14.8 23.6 37.8
DocT5Query [24] 34.9 71.3 32.8 67.5 16.2 29.1 41.9

Dense retrieval
ST5 GPL† [22] 32.1 74.4 30.1 58.6 12.7 26.0 39.0
Contriever [11] 40.0 68.8 33.5 61.4 16.3 30.7 41.8

Generative retrieval
GENRE† [47] 42.5 14.7 20.0 42.3 6.8 11.6 30.0
Ours 34.3 71.8 31.6 63.9 14.9 30.2 41.1

5.2 Analytical experiments

We further conduct analytical experiments to study the effectiveness of the proposed method.

In Figure 3 (left), we plot the frequencies of docids at the first timestep of various learning methods.
We label each method using a box with a docid and a diversity metric d , which is calculated by:
d = 1− 1

2n

∑K
j=1 |nj − nu|, where |·| represents the absolute value, n denotes the total number of

documents, nj denotes the number of documents that have a docid = j, and nu = n
K is the expected

number of documents per docid under the uniform distribution.

The results demonstrate the superiority of GENRET (represented by the yellow line) in terms of
distribution uniformity. It uses all the potential docid k = 512 and achieves the highest diversity
metric with a value of d = 0.90. The method without docid reassignment also yields a relatively
balanced distribution, with a diversity metric of d = 0.77. However, the distribution of the method
without diverse codebook initialization is highly uneven, which could be due to the fact that most
of the randomly initialized codebook embeddings are not selected by the model during the initial
training phase, leading to a lack of update and further selection in subsequent training. Additionally,
the models without diverse clustering tend to converge to a trivial solution where all documents are
assigned the same docid.

In Figure 3 (right), the results of two ablated variants are presented. First, GENRET w/o learning is a
generative model that has been trained directly using the final output docid from GENRET, without
utilizing the proposed learning scheme. Its retrieval performance is comparable to that of GENRET
on seen test data; however, it is significantly lower on unseen test data. This variant demonstrates that
the generative retrieval model jointly trained with auto-encoding objectives can represent documents
more sensibly based on semantics. This could enhance performance on the less-optimized documents.
Contrarily, the parameters obtained via cross-entropy loss on docid generation tasks are less effective
in conveying the semantic information of documents. Secondly, GENRET w/ T5-Small uses a small
model, and its performance is inferior to that of GENRET using T5-Base. However, the gap between
the performance on seen and unseen test data is smaller, which could be attributed to the limited
fitting capacity of the small model.

In Appendix C, we evaluate the proposed model’s capacity to retrieve new documents and find that it
performs well in adapting to new documents compared to existing document tokenization approaches.
Additionally, in Appendix D, we analyze the efficiency of various retrieval models in comparison to
the various baselines in terms of memory usage, offline, and online latency, and show the advantages
of the proposed model.

8

5%

4%

3%

2%

1%

0%
0 100 200 300 400 500

GenRet
GenRet w/o Reassignment
GenRet w/o Initialization
GenRet w/o Diverse Cluster

Docid

Frequency

= 494
𝒹 = 0.77

= 34
𝒹 = 0.07

= 1
𝒹 = 0.00

= 512
𝒹 = 0.90

75

65

55

45

Recall@1

GenRet GenRet
w/o learning

Full test
Seen test
Unseen test

GenRet
w/ T5-Small

Figure 3: Left: Docid distribution on NQ320K. The id are sorted by the assigned frequency. Right:
Ablation study on NQ320K.

5.3 Qualitative analysis

Figure 4 (left) illustrates the document content (title) and the corresponding docid generated by
GENRET on the NQ320K dataset. We observe that documents with more similar docids tend to
have more relevant content. For example, documents with docids starting with 338-173 are related
to Email, such as Email marketing, Mail merge, and Email address, while documents with docids
starting with 338 relate to information exchange methods (e.g., Business letter, US Postal Service,
and Postage stamps), representing a more generalized semantics than Email alone.

Figure 4 (right) illustrates a word cloud of documents grouped by docid prefixes. It is evident
that documents within the same group are semantically related. For example, major words for
documents with the docid prefix 338 are mail and stamp. When a second-level docid 173 is added,
the corresponding documents become more specifically related to email. With the addition of a
third-level docid 1, the document group becomes specifically associated with email marketing (docid:
338-173-1). Similar patterns can be observed in the other three cases. The case study shows that
there is a hierarchical semantic structure within the learned docids.

Figure 5 in Appendix E visualizes the codebook embedding and document embedding. We see that
the codebook embedding appears to distribute uniformly within the document representation space,
producing meaningful clusters when documents are categorized by docids. We also find that the
uniformity of the embedding distribution decreases with increasing docid-length. This may be due to
the fact that uniform segmentation is more challenging as the semantic granularity becomes finer.

0

338

173

1

448

508

379 - 392

502 - 222

224 – 106

Email marketing

Mail merge

Email address

Business letter

US Postal Service

Postage stamps

196 – 140 - 409 Mother Tracy McConnell

293 – 433 - 204 Human fertilization

Document TitleDoc ID

Figure 4: Left: Document titles along with their corresponding docids. It is observed that documents
with similar docids tend to have more relevant content. Right: Word cloud representing documents
grouped by docid prefixes. This illustrates that different positions of the docid correspond to different
levels of information, and the semantics within each cluster are closely related.

6 Related work

Sparse and dense retrieval. Traditional sparse retrieval calculates the document score using term
matching metrics such as TF-IDF [31], query likelihood [16], or BM25 [32]. Sparse retrieval is
widely used in practice due to its efficiency, but often suffers from the lexical mismatches [18]. Dense

9

retrieval (DR) addresses this by presenting queries and documents in dense vectors and calculating
their similarities with the inner product or cosine similarity [13]. Various techniques have been
proposed to improve DR models, such as hard negative mining [42, 26], late interaction [14, 34],
knowledge distillation [10, 19], and pre-training [30, 23, 11]. Despite their success, DR approaches
have several limitations [5, 21]: (i) DR models employ an index-retrieval pipeline with a fixed
search procedure (MIPS), making it difficult to optimize the model end-to-end [37, 41]. (ii) Training
DR models relies on contrastive learning [13] to distinguish positives from negatives, which is
inconsistent with large LMs training objectives [3] and fails to fully utilize the capabilities of pre-
trained LMs [1, 35].

Generative retrieval. Generative retrieval is gaining attention. It retrieves documents by generating
their docid using a generative model like T5. Generative retrieval presents an end-to-end solution
for document retrieval tasks [37, 21] and allows for better exploitation of the capabilities of large
generative LMs [1]. Cao et al. [5] first propose an autoregressive entity retrieval model to retrieve
documents by generating titles. Tay et al. [37] propose a differentiable search index (DSI) and
represent the document as atomic id, naive string, or semantic string. Bevilacqua et al. [1] suggest
using arbitrary spans of a document as docids. Additionally, multiple-stage pre-training [7, 46],
query generation [41, 47, 46], contextualized embedding [17], and continual learning [20], have
been explored in recent studies. Recently, Tang et al. [36] introduce a query-based docid and the
rehearsal-based document indexing to improve DSI. However, existing generative retrieval models
have a limitation in that they rely on fixed document tokenization to produce docids, which often fails
to capture the semantic information of a document [37]. It is an open question how one should define
the docids. To further capture document semantics in the docid, we propose document tokenization
learning methods. The semantic docid is generated by the proposed discrete auto-encoding learning
scheme in an end-to-end manner. Concurrently, Rajput et al. [28] propose a RQ-VAE module to
produce semantic docids for generative recommender systems. As a comparison, our proposed
method jointly models the tokenization and retrieval tasks with shared parameters to better align the
model’s representation of the two tasks and are optimized in an end-to-end manner.

Discrete representation learning. Learning discrete representations using neural networks is an
important research area in machine learning. For images, Rolfe [33] proposes the discrete variational
autoencoder, and VQ-VAE [39] learns quantized representations via vector quantization. Dall-
E [29] uses an autoregressive model to generate discrete image representation for text-to-image
generation. Recently, representation learning has attracted considerable attention in NLP tasks, for
tasks such as machine translation [48], dialogue generation [45], and text classification [12, 43].
For document retrieval, RepCONC [44] uses a discrete representation learning method based on
constrained clustering for vector compression. We propose a document tokenization learning method
for generative retrieval, which captures the autoregressive nature of docids by progressive training
and enhances the diversity of docids by diverse clustering techniques.

7 Conclusions

This paper has proposed a document tokenization learning method for generative retrieval, named
GENRET. The proposed method learns to tokenize documents into short discrete representations (i.e.,
docids) via a discrete auto-encoding approach, which ensures the semantics of the generated docids.
A progressive training method and two diverse clustering techniques have been proposed to enhance
the model’s training. Empirical results on various document retrieval datasets have demonstrated
the effectiveness of the proposed method. Especially, GENRET achieves outperformance on unseen
documents and can be well generalized to multiple retrieval tasks.

The limitations of this work include experiments only on moderately sized datasets like NQ320K.
The employed data are in sufficient quantity to validate the effectiveness of the proposed method, but
application to larger-scale data may require more model parameters and computational resources.
Another aspect for improvement is the generalization of the model to unoptimized document collec-
tions in different types or domains, as compared to continuous embedding approaches. We recognize
this as an important research question for generative retrieval but believe that addressing this is
beyond the scope of this paper. In future work, we would like to extend the approach to large
document collections. We also plan to explore generative pre-training for document tokenization
using large-scale language models. Additionally, we intend to investigate the dynamic adaptation of
docid prefixes for progressive training.

10

Acknowledgements

This work was supported by the Natural Science Foundation of China (62272274, 61972234,
62072279, 62102234, 62202271), the Natural Science Foundation of Shandong Province
(ZR2021QF129, ZR2022QF004), the Key Scientific and Technological Innovation Program of
Shandong Province (2019JZZY010129), the Fundamental Research Funds of Shandong Univer-
sity, the China Scholarship Council under grant nr. 202206220085, the Hybrid Intelligence Center,
a 10-year program funded by the Dutch Ministry of Education, Culture and Science through the
Netherlands Organisation for Scientific Research, https://hybrid-intelligence-centre.nl,
and project LESSEN with project number NWA.1389.20.183 of the research program NWA ORC
2020/21, which is (partly) financed by the Dutch Research Council (NWO). All content represents
the opinion of the authors, which is not necessarily shared or endorsed by their respective employers
and/or sponsors.

References
[1] Michele Bevilacqua, Giuseppe Ottaviano, Patrick Lewis, Wen tau Yih, Sebastian Riedel, and

Fabio Petroni. Autoregressive search engines: Generating substrings as document identifiers.
In NeurIPS 2022, 2022.

[2] Paul S. Bradley, Kristin P. Bennett, and Ayhan Demiriz. Constrained k-means clustering.
Microsoft Research, 2000.

[3] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, T. J. Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeff Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In NeurIPS 2020,
2020.

[4] Daniel Fernando Campos, Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh
Tiwary, Rangan Majumder, Li Deng, and Bhaskar Mitra. MS MARCO: A Human Generated
MAchine Reading COmprehension Dataset. ArXiv, abs/1611.09268, 2016.

[5] Nicola De Cao, Gautier Izacard, Sebastian Riedel, and Fabio Petroni. Autoregressive entity
retrieval. In ICLR 2021, 2021.

[6] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand
Joulin. Unsupervised learning of visual features by contrasting cluster assignments. ArXiv,
abs/2006.09882, 2020.

[7] Jiangui Chen, Ruqing Zhang, Jiafeng Guo, Yiqun Liu, Yixing Fan, and Xueqi Cheng. Corpus-
Brain: Pre-train a generative retrieval model for knowledge-intensive language tasks. In CIKM
2022, 2022.

[8] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In NIPS 2013,
2013.

[9] Daniel Gillick, Alessandro Presta, and Gaurav Singh Tomar. End-to-end retrieval in continuous
space. ArXiv, abs/1811.08008, 2018.

[10] Sebastian Hofstätter, Sheng-Chieh Lin, Jheng-Hong Yang, Jimmy J. Lin, and Allan Hanbury.
Efficiently teaching an effective dense retriever with balanced topic aware sampling. In SIGIR
2021, 2021.

[11] Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand
Joulin, and Edouard Grave. Unsupervised dense information retrieval with contrastive learning.
In TMLR, 2022.

[12] Shuning Jin, Sam Wiseman, Karl Stratos, and Karen Livescu. Discrete latent variable represen-
tations for low-resource text classification. In ACL 2020, 2020.

11

https://hybrid-intelligence-centre.nl

[13] Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Yu Wu, Sergey Edunov,
Danqi Chen, and Wen tau Yih. Dense passage retrieval for open-domain question answering. In
EMNLP 2020, 2020.

[14] Omar Khattab and Matei Zaharia. ColBERT: Efficient and effective passage search via contex-
tualized late interaction over BERT. In SIGIR 2020, 2020.

[15] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur P. Parikh,
Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova,
Llion Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc V.
Le, and Slav Petrov. Natural questions: A benchmark for question answering research. TACL,
7:453–466, 2019.

[16] John Lafferty and ChengXiang Zhai. Document language models, query models, and risk
minimization for information retrieval. In SIGIR 2001, 2001.

[17] Hyunji Lee, Jaeyoung Kim, Hoyeon Chang, Hanseok Oh, Sohee Yang, Vladimir Karpukhin,
Yi Lu, and Minjoon Seo. Nonparametric decoding for generative retrieval. In Findings of ACL
2023, 2023.

[18] Jimmy Lin, Rodrigo Nogueira, and Andrew Yates. Pretrained Transformers for Text Ranking:
BERT and Beyond. Springer Nature, 2022.

[19] Yuxiang Lu, Yiding Liu, Jiaxiang Liu, Yunsheng Shi, Zhengjie Huang, Shi Feng, Yu Sun, Hao
Tian, Hua Wu, Shuaiqiang Wang, Dawei Yin, and Haifeng Wang. ERNIE-Search: Bridging
cross-encoder with dual-encoder via self on-the-fly distillation for dense passage retrieval.
ArXiv, abs/2205.09153, 2022.

[20] Sanket Vaibhav Mehta, Jai Gupta, Yi Tay, Mostafa Dehghani, Vinh Quang Tran, Jinfeng Rao,
Marc-Alexander Najork, Emma Strubell, and Donald Metzler. DSI++: Updating transformer
memory with new documents. ArXiv, abs/2212.09744, 2022.

[21] Donald Metzler, Yi Tay, and Dara Bahri. Rethinking search: Making domain experts out of
dilettantes. In SIGIR 2021, 2021.

[22] Jianmo Ni, Gustavo Hernández Ábrego, Noah Constant, Ji Ma, Keith B. Hall, Daniel Matthew
Cer, and Yinfei Yang. Sentence-T5: Scalable sentence encoders from pre-trained text-to-text
models. In Findings of ACL 2022, 2022.

[23] Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo Hernández Ábrego, Ji Ma, Vincent
Zhao, Yi Luan, Keith B. Hall, Ming-Wei Chang, and Yinfei Yang. Large dual encoders are
generalizable retrievers. In EMNLP, 2022.

[24] Rodrigo Nogueira1 and Jimmy Lin. From doc2query to doctttttquery. https://cs.
uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.
pdf, 2019.

[25] Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick Lewis, Majid Yazdani, Nicola De Cao,
James Thorne, Yacine Jernite, Vassilis Plachouras, Tim Rocktaschel, and Sebastian Riedel.
KILT: A benchmark for knowledge intensive language tasks. In NAACL 2021, 2021.

[26] Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Xin Zhao, Daxiang Dong, Hua Wu,
and Haifeng Wang. RocketQA: An optimized training approach to dense passage retrieval for
open-domain question answering. In NAACL 2021, 2021.

[27] Colin Raffel, Noam M. Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. JMLR, 2020.

[28] Shashank Rajput, Nikhil Mehta, Anima Singh, Raghunandan H. Keshavan, Trung Hieu Vu,
Lukasz Heldt, Lichan Hong, Yi Tay, Vinh Q. Tran, Jonah Samost, Maciej Kula, Ed H. Chi, and
Maheswaran Sathiamoorthy. Recommender systems with generative retrieval. In NeurIPS 2023,
2023.

12

https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf
https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf
https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf

[29] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In ICML 2020, 2020.

[30] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In EMNLP 2019, 2019.

[31] Stephen E. Robertson and Steve Walker. On relevance weights with little relevance information.
In SIGIR 1997, 1997.

[32] Stephen E. Robertson and Hugo Zaragoza. The probabilistic relevance framework: BM25 and
beyond. Found. Trends Inf. Retr., 2009.

[33] Jason Tyler Rolfe. Discrete variational autoencoders. In ICLR 2017, 2017.

[34] Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, and Matei Zaharia.
ColBERTv2: Effective and efficient retrieval via lightweight late interaction. In NAACL 2022,
2022.

[35] Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang Wang, Pengjie Ren, Zhumin Chen, Dawei
Yin, and Zhaochun Ren. Is ChatGPT good at search? Investigating large language models as
re-ranking agents. In EMNLP 2023, 2023.

[36] Yubao Tang, Ruqing Zhang, Jiangui Guo, Jiangui Chen, Zuowei Zhu, Shuaiqiang Wang, Dawei
Yin, and Xueqi Cheng. Semantic-enhanced differentiable search index inspired by learning
strategies. In SIGIR 2023, 2023.

[37] Yi Tay, Vinh Quang Tran, Mostafa Dehghani, Jianmo Ni, Dara Bahri, Harsh Mehta, Zhen
Qin, Kai Hui, Zhe Zhao, Jai Gupta, Tal Schuster, William W. Cohen, and Donald Metzler.
Transformer memory as a differentiable search index. In NeurIPS 2022, 2022.

[38] Nandan Thakur, Nils Reimers, Andreas Ruckl’e, Abhishek Srivastava, and Iryna Gurevych.
Beir: A heterogenous benchmark for zero-shot evaluation of information retrieval models. In
NeurIPS 2021, 2021.

[39] Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation
learning. In NIPS 2017, 2017.

[40] Kexin Wang, Nandan Thakur, Nils Reimers, and Iryna Gurevych. GPL: Generative pseudo
labeling for unsupervised domain adaptation of dense retrieval. In NAACL 2022, 2022.

[41] Yujing Wang, Ying Hou, Hong Wang, Ziming Miao, Shibin Wu, Hao Sun, Qi Chen, Yuqing
Xia, Chengmin Chi, Guoshuai Zhao, Zheng Liu, Xing Xie, Hao Sun, Weiwei Deng, Qi Zhang,
and Mao Yang. A neural corpus indexer for document retrieval. In NeurIPS 2022, 2022.

[42] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett, Junaid Ahmed,
and Arnold Overwijk. Approximate nearest neighbor negative contrastive learning for dense
text retrieval. In ICLR 2021, 2021.

[43] Erxin Yu, Lan Du, Yuan Jin, Zhepei Wei, and Yi Chang. Learning semantic textual similarity
via topic-informed discrete latent variables. In EMNLP 2022, 2022.

[44] Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and Shaoping Ma. Learning
discrete representations via constrained clustering for effective and efficient dense retrieval. In
WSDM 2022, 2022.

[45] Tiancheng Zhao, Kyusong Lee, and Maxine Eskénazi. Unsupervised discrete sentence represen-
tation learning for interpretable neural dialog generation. In ACL 2018, 2018.

[46] Yujia Zhou, Jing Yao, Zhicheng Dou, Ledell Yu Wu, Peitian Zhang, and Ji rong Wen. Ultron:
An ultimate retriever on corpus with a model-based indexer. ArXiv, abs/2208.09257, 2022.

[47] Shengyao Zhuang, Houxing Ren, Linjun Shou, Jian Pei, Ming Gong, Guido Zuccon, and Daxin
Jiang. Bridging the gap between indexing and retrieval for differentiable search index with
query generation. ArXiv, abs/2206.10128, 2022.

[48] Łukasz Kaiser, Aurko Roy, Ashish Vaswani, Niki Parmar, Samy Bengio, Jakob Uszkoreit, and
Noam M. Shazeer. Fast decoding in sequence models using discrete latent variables. In ICML
2018, 2018.

13

A Datasets details

Table 4: Statistics of datasets used in our experiments. The three values split by / on # Test queries
denote the number of queries in the full, seen subset, and unseen subset, respectively. In BEIR, all
queries in the test set are unseen.

Dataset # Docs # Test queries # Train pairs

NQ320K 109,739 7,830 / 6,075 / 1,755 307,373
MS MARCO 323,569 5,187 / 807 / 4,380 366,235

BEIR-Arg 8,674 1,406 -
BEIR-Covid 171,332 50 -
BEIR-NFC 3,633 323 -
BEIR-SciFact 5,183 300 -
BEIR-SciDocs 25,657 1,000 -
BEIR-FiQA 57,638 648 -

We conduct experiments on three document5 retrieval datasets: NQ320K, MS MARCO, and BEIR.

NQ320K. NQ320K is a popular dataset for evaluating generative retrieval models [37, 41]. It is
based on the Natural Questions (NQ) dataset proposed by Google [15]. NQ320K consists of 320k
query-document pairs, where the documents are gathered from Wikipedia pages, and the queries are
natural language questions. We follow the evaluation setup in NCI [41] and further split the test set
into two subsets: seen test, in which the annotated target documents of the queries are included in the
training set; and unseen test, in which no labeled document is included in the training set.

Note that the NQ320K dataset we utilized has been pre-processed based on the NCI [41] and
includes approximately 100k documents. This differs from the DSI approach [37], which processed a
version of the NQ320K dataset containing about 200k documents. The distinction lies in the method
used to remove duplicate documents. In our case, we eliminated duplicates by comparing document
titles, whereas DSI employed URLs. For example, pages https://en.wikipedia.org//w/index.
php?title=Statue_of_Liberty&oldid=804877528 and https://en.wikipedia.org/
/w/index.php?title=Statue_of_Liberty&oldid=834310497 are two versions of entity

“Statue of Liberty”. DSI NQ320K treats them as separate documents, whereas our implementation
considers them as a single document. We have found that the content of different versions of the
same entity’s pages is usually almost identical, with only minor variations, often occurring in later
parts of the document. Consequently, we believe that distinguishing between different versions of
an entity is beyond the model’s capabilities, and that using different versions of the same entity as
negative examples in training may hurt model performance.

MS MARCO. MS MARCO is a collection of queries and web pages from Bing search. To create the
document collections, akin to NQ320k and following [46], we sample a subset of original documents
by retaining the top-1 document for each query. We evaluate the models on the queries of the MS
MARCO dev set and retrieval on the sampled document subset. We did not split the dev set into seen
and unseen because 84% of the queries in the MS MARCO dev set are unseen.

BEIR. BEIR is a collection of datasets for heterogeneous retrieval tasks. In this paper, we evaluate
the models on 6 BEIR datasets, which include distinct retrieval tasks and document collections
from NQ and MS MARCO: (i) BEIR-Arg retrieves a counterargument to an argument; (ii) BEIR-
Covid retrieves scientific articles about the COVID-19 pandemic; (iii) BEIR-NFC retrieves medical
documents from PubMed; (iv) BEIR-SciFact retrieves scientific papers for fact-checking; (v) BEIR-
SciDocs retrieves citations for scientific papers; (vi) BEIR-FiQA retrieves financial documents. All
the queries in BEIR test set are unseen [38].

We summarize the statistics of above datasets in Table 4.

5A document in our context typically corresponds to a webpage, while a passage is a piece of text within a
document. Our study focuses on building docid for documents. Using document retrieval tasks allows us to
make fair comparisons with existing methods that utilize document URLs, titles, etc. And it also aligns with the
settings of NQ320K and BEIR. Passage retrieval, as a different task, could lead to different evaluation results.

14

https://en.wikipedia.org//w/index.php?title=Statue_of_Liberty&oldid=804877528
https://en.wikipedia.org//w/index.php?title=Statue_of_Liberty&oldid=804877528
https://en.wikipedia.org//w/index.php?title=Statue_of_Liberty&oldid=834310497
https://en.wikipedia.org//w/index.php?title=Statue_of_Liberty&oldid=834310497

B Baselines

The sparse retrieval baselines are as follows:

• BM25, uses the tf-idf feature to measure term weights; we use the implementation from
http://pyserini.io/.

• DocT5Query, expands a document with possible queries predicted by a finetuned T5 with
this document as the input.

The dense retrieval baselines are as follows:

• DPR [13], a dual-encoder model using the representation of the [CLS] token of BERT.

• ANCE [42], an asynchronously updated ANN indexer is utilized to mine hard negatives for
training a RoBERTa-based dual-encoder model.

• Sentence-T5 [22], a dual-encoder model that uses T5 to produce continuous sentence
embeddings. We reproduce Sentence-T5 (ST5 for short) on our datasets, the model is based
on T5-Base EncDec model and is trained with in-batch negatives.

• GTR [23], a state-of-the-art dense retrieval model that pre-trains sentence-T5 on billions of
paired data using contrastive learning.

• Contriever [11], a dual-encoder model pre-trained using unsupervised contrastive learning
with independent cropping and inverse cloze task.

And the generative retrieval baselines are as follows:

• GENRE [5], an autoregressive retrieval model that generates the document’s title. The
original GENRE is trained on the KILT dataset [25] using BART, and we reproduce GENRE
on our datasets using T5 for a fair comparison. For datasets without title, we use the first 32
tokens of the document as pseudo-title.

• DSI [37], which represents documents using hierarchical K-means clustering results, and
indexes documents using the first 32 tokens as pseudo-queries. As the original code is not
open source, we reproduce DSI using T5-base and the docids of NCI [41].

• SEAL [1] uses arbitrary n-grams in documents as docids, and retrieves documents under the
constraint of a pre-built FM-indexer. We refer to the results reported by Wang et al. [41].

• CGR-Contra [17], a title generation model with a contextualized vocabulary embedding
and a contrastive learning loss.

• DSI-QG [47], uses a query generation model to augment the document collection. We
reproduce the DSI-QG results using T5 and our dataset.

• NCI [41], uses a prefix-aware weight-adaptive decoder and various query generation strate-
gies, including DocAsQuery and DocT5Query. In particular, NCI augments training data by
generating 15 queries for each document.

• Ultron [46], uses a three-stage training pipeline and represents the document as three types
of identifiers, including URL, PQ, and Atomic.

C Performance on retrieving new documents

In this experiment, we investigate the impact of various document tokenization techniques on the
ability of generative retrieval models to retrieve new documents. The generative models with different
tokenization methods are trained on NQ320K data, excluding unseen documents, and are evaluated on
NQ320K Unseen test set and BEIR-{Arg, NFC, SciDocs} datasets. For the baseline methods, which
use rule-based document tokenization methods, the docids are generated for the target document
collection using their respective tokenization techniques. In contrast, our proposed method uses a
tokenization model to tokenize the documents in the target collection, producing the docids. However,
our method may result in duplicate docids. In such cases, all corresponding documents are retrieved
and shuffled in an arbitrary order. The results of this evaluation are summarized in Table 5.

15

http://pyserini.io/

Table 5: Zero-shot evaluation on retrieving new documents with different document tokeniza-
tion methods. The second column indicates the type of docid, where BERT-HC denotes BERT-
Hierarchical-Clustering [37], Prefix-HC denotes Prefix-aware BERT-Hierarchical-Clustering [41],
and dAE denotes discrete auto-encoding.

NQ (R@1) BEIR (nDCG@10)
Method Docid Unseen Arg NFC SciDocs

DSI-Naive† [37] Naive String 0.0 0.1 1.0 0.1
DSI-Atomic† [37] Atomic 0.0 0.2 0.8 0.1
GENRE† [5] Title 6.0 0.0 2.4 0.6
DSI† [37] BERT-HC 1.3 1.8 11.1 5.9
NCI [41] Prefix-HC 15.5 0.9 4.3 1.2

Ours dAE 34.2 12.1 12.1 12.3

Document tokenization methods that do not consider the semantic information of the documents,
such as Naive String and Atomic, are ineffective in retrieving new documents without model updating.
Methods that consider the semantic information of the documents, such as those based on title or
BERT clustering, show some improvement. Our proposed document tokenization method significantly
improves over these existing rule-based document tokenization methods. For instance, when the
model trained on NQ – a factoid QA data based on Wikipedia documents – is applied to a distinct
retrieval task on a different document collection, BEIR-SciDocs, a citation retrieval task on a collection
of scientific articles, our proposed document tokenization model still showed promising results with
an nDCG@10 of 12.3, which is comparable to those models trained on the target document collection.
This suggests that our proposed method effectively encodes the semantic information of documents
in the docid and leads to a better fit between the docid and the generative retrieval model.

Table 6: Efficiency analysis.
Method Memory Time (Offline) Top-K Time (Online)

ANCE 1160MB 145min 100 0.69s
GTR-Base 1430MB 140min 100 1.97s

GENRE 851MB 0min 100 1.41s
10 0.69s

DSI 851MB 310min 100 0.32s
10 0.21s

Ours 860MB 220min 100 0.16s
10 0.10s

D Efficiency analysis

In Table 6, we compare GENRET with baseline models on MS MARCO (323,569 documents) in
terms of memory footprint, offline indexing time (not including the time for neural network training),
and online retrieval latency for different Top-K values. We have four observations: (i) The memory
footprint of generative retrieval models (GENRE, DSI-QG, and the proposed model) is smaller
than of dense and sparse retrieval methods. The memory footprint of generative retrieval models
is only dependent on the model parameters, whereas dense and sparse retrieval methods require
additional storage space for document embeddings, which increases linearly with the size of the
document collection. (ii) DSI and GENRET take a longer time for offline indexing, as DSI involves
encoding and clustering documents using BERT, while GENRET requires tokenizing documents using
a tokenization model. Dense retrieval’s offline time consumption comes from document encoding;
GENRE uses titles hence no offline computation. (iii) The online retrieval latency of the generative
retrieval model is associated with the beam size (i.e., Top-K) and the length of the docid. GENRET
utilizes diverse clustering to generate a shorter docid, resulting in improved online retrieval speed
compared to DSI and GENRE.

16

E Embedding visualization

Figure 5: t-SNE visualization of the codebook embedding and document embedding on the NQ320K
dataset. The codebook embedding is uniformly scattered in the document representation space.

17

	Introduction
	Preliminaries
	Method
	Model architecture
	Model optimization
	Progressive training scheme
	Diverse clustering techniques

	Experimental Setup
	Datasets and evalutaion metrics
	Baselines
	Implementation details

	Experimental results
	Main results
	Analytical experiments
	Qualitative analysis

	Related work
	Conclusions
	Datasets details
	Baselines
	Performance on retrieving new documents
	Efficiency analysis
	Embedding visualization

