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ABSTRACT
Generative retrieval (GR) has become a highly active area of infor-
mation retrieval (IR) that has witnessed significant growth recently.
Compared to the traditional “index-retrieve-then-rank” pipeline,
the GR paradigm aims to consolidate all information within a cor-
pus into a single model. Typically, a sequence-to-sequence model
is trained to directly map a query to its relevant document identi-
fiers (i.e., docids). This tutorial offers an introduction to the core
concepts of the GR paradigm and a comprehensive overview of
recent advances in its foundations and applications. We start by pro-
viding preliminary information covering foundational aspects and
problem formulations of GR. Then, our focus shifts towards recent
progress in docid design, training approaches, inference strategies,
and the applications of GR. We end by outlining remaining chal-
lenges and issuing a call for future GR research. This tutorial is
intended to be beneficial to both researchers and industry practi-
tioners interested in developing novel GR solutions or applying
them in real-world scenarios.
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1 TUTORIAL INFORMATION
On-site tutorial. All presenters will attend SIGIR-AP in person to
deliver this tutorial and engage in Q&A with the audience.
Intended audience. The tutorial is open to those with a basic
understanding of information retrieval (IR) and natural language
processing (NLP). It will appeal to both academic researchers spe-
cializing in IR/NLP and industry practitioners.
Length. This tutorial is scheduled to last for three hours.
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2 PRESENTERS
Yubao Tang is a Ph.D. student at the Institute of Computing Tech-
nology, Chinese Academy of Sciences. She obtained her M.Sc. de-
gree from the Institute of Information Engineering, Chinese Acad-
emy of Sciences, and her B.Eng. from Sichuan University. Her re-
search focuses on information retrieval, and she is the first author
of a full paper on generative retrieval at KDD’23 [38].
Ruqing Zhang is an Associate Researcher at the Institute of Com-
puting Technology, Chinese Academy of Sciences. Her recent re-
search focuses on information retrieval, with a particular emphasis
on generative information retrieval, the robustness of neural rank-
ing models, and trustworthy retrieval through the lens of causality.
She has authored several papers in the field of generative retrieval
[3–6, 23, 38]. And Ruqing co-organized the first workshop on gen-
erative information retrieval at SIGIR 2023 (Gen-IR@SIGIR23) [1],
which aimed to foster discussions and innovations in GR. Ruqing
is the main contact person.
Jiafeng Guo is a Researcher at the Institute of Computing Tech-
nology, Chinese Academy of Sciences (CAS) and a Professor at the
University of Chinese Academy of Sciences. He is the director of
the CAS key lab of network data science and technology. He has
worked on a number of topics related to web search and datamining,
with a current focus on neural models for information retrieval and
natural language understanding. He has received multiple best pa-
per (runner-up) awards at leading conferences (CIKM’11, SIGIR’12,
CIKM’17, WSDM’22). He has been (co)chair for many conferences,
e.g., reproducibility track co-chair of SIGIR’23, workshop co-chair
of SIGIR’21 and short paper co-chair of SIGIR’20. He serves as an
associate editor for ACM Transactions on Information Systems
and Information Retrieval Journal. Jiafeng has previously taught
tutorials at ACML, CCIR and CIPS ATT.
Maarten de Rijke is a Distinguished University Professor of Ar-
tificial Intelligence and Information Retrieval at the University of
Amsterdam. His research is focused on designing and evaluating
trustworthy technology to connect people to information, partic-
ularly search engines, recommender systems, and conversational
assistants. He is the scientific director of the Innovation Center for
Artificial Intelligence and a former editor-in-chief of ACM Trans-
actions on Information Systems and of Foundations and Trends in
Information Retrieval, and a current co-editor-in-chief of Springer’s
Information Retrieval book series, (associate) editor for various jour-
nals and book series. He has been general (co)chair or program
(co)chair for CIKM, ECIR, ICTIR, SIGIR, WSDM, WWW, and has
previously taught tutorials at these same venues and AAAI.
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3 MOTIVATION
Information retrieval (IR) is a core task in a wide range of real-world
applications, such as web search [9, 12, 15, 29, 34] and question an-
swering [11, 14, 17, 35]. It aims to retrieve information from a large
repository that is relevant to an information need. Most existing
IR methods follow a common pipeline paradigm of “index-retrieve-
then-rank,” which includes (i) building an index for each document
in the corpus [7, 22]; (ii) retrieving an initial set of candidate doc-
uments for a query [16, 27]; and (iii) determining the relevance
degree of each candidate [22, 24]. Despite its wide usage, this para-
digm has limitations: (i) during training, heterogeneous modules
with different optimization objectives may lead to sub-optimal per-
formance, and capturing fine-grained relationships between queries
and documents is challenging; and (ii) during inference, a large doc-
ument index is needed to search over the corpus, which may come
with substantial memory and computational requirements.

Recently, a fundamentally different paradigm, known as gen-
erative retrieval (GR) [26], has garnered attention to replace the
long-standing “index-retrieve-then-rank” paradigm. The key idea
of the GR paradigm is to parameterize the indexing, retrieval, and
ranking components of traditional IR systems into a single consoli-
dated model. A sequence-to-sequence (Seq2Seq) model is trained to
directly map queries to their relevant document identifiers (docids).
Such a single-step generative model dramatically simplifies the
search process, can be optimized in an end-to-end manner, and can
better leverage the capabilities of large language models (LLMs).
Importance and timeliness. In 2021, Metzler et al. [26] envisioned
a model-based IR approach that replaces the long-standing “index-
retrieve-then-rank” paradigm with a single consolidated model.
With the expectation that similar successes achieved with genera-
tive languagemodels in other areas like natural language processing
could be replicated in IR, we have witnessed substantial growth
in GR research, both in academia and industry, in recent years. A
plethora of publications have emerged in reputable conferences, e.g.,
SIGIR [4, 5], CIKM [3, 6, 42], KDD [38], NeurIPS [2, 39, 41], ICLR
[10], and ACL [8, 18, 21, 33], in Gen-IR@SIGIR2023 [23, 30, 31, 48],
in journals [47], and on arXiv [20, 28, 37, 45, 46].

The first workshop on generative information retrieval at SIGIR
2023 (Gen-IR@SIGIR2023) [1] welcomed many submissions and
attendees, underscoring the research community’s current keen
interest in this field. To the best of our knowledge, there is currently
no tutorial that provides a comprehensive overview of the advances
in GR. This is an opportune moment to provide such a tutorial that
can arouse the interest of more researchers and help them gain a
better understanding of this novel field.

4 OBJECTIVES
1. Introduction. We start by reminding our audience of the re-
quired background and examining the motivation behind GR.
2. Preliminaries. With GR, the document retrieval task is formu-
lated as a Seq2Seq problem, i.e., directly generating identifiers of
relevant documents with respect to the given query. To achieve this
functionality, GR encompasses two fundamental training tasks [39],
based on an encoder-decoder architecture: (i) indexing – this task
aims to establish associations between each document and its cor-
responding docid; the GR model takes each original document as

input and generates its docid as output in a straightforward Seq2Seq
fashion; and (ii) retrieval – this task focuses on mapping each query
to its relevant docids; given a query, the GRmodel learns to generate
its relevant docid string.

It is crucial to store document information as comprehensively
as possible during the indexing process, thus ensuring that the
subsequent retrieval process is not hindered by information loss [8].
Using these two operations, a GR model can be trained to index a
corpus of documents and optionally fine-tune with an available set
of labeled query-document pairs. Thereafter, during inference, the
optimized generative retriever can be used to efficiently retrieve
relevant documents within a single neural model.

Building on these preliminaries, we will cover docid design,
training approaches, inference strategies, and applications of GR in
downstream scenarios.
3. Docid designs. With GR, employing identifiers, rather than
generating original documents directly, could reduce irrelevant
information in documents and make it easier for the model to
memorize the corpus. Therefore, one of the key challenges in GR
is how to assign a high-quality identifier to represent a document.
An effective docid should be unique to enable effective distinction
among different documents and concise for ease of generation.
Therefore, we proceed to discuss the work related to docid designs.

Most existing GR approaches utilize pre-defined static docids,
i.e., these docids are fixed and are not learnable during training
the indexing and retrieval tasks. To be specific, these works usu-
ally leverage a single docid to represent the document, and several
types of identifiers have been explored, including number-based and
word-based docids. The number-based docids encompass atomic
unique integers [25, 28, 39, 47], structured integer strings [39], se-
mantically structured strings [30, 39, 41], product quantization code
[3, 46], while the word-based docids primarily involve document
titles [5, 6, 10, 18, 40], n-grams [2, 4, 20], important word sets [45],
pseudo-queries [38], and URLs [33, 46]. Given that a document
has the potential to answer multiple queries from different views,
some research advocates the use of multiple types of identifiers to
comprehensively represent a document [20, 21].

Although pre-defined static docids have demonstrated some ef-
fectiveness, they are not tailored to the retrieval objectives, limiting
their capacity to adapt to semantic relationships within documents
during the training process. Consequently, recent research [37, 42]
has introduced document tokenization learning methods to acquire
learnable docids for GR.
4. Training approaches. Here, we consider two main scenarios
for training the GR model. The first, a more straightforward one,
assumes a stationary learning scenario where the document collec-
tion is fixed and no longer updates. The second, a more practical
scenario, is a dynamic corpora setting where information changes
and new documents emerge incrementally over time.

The majority of GR research [2, 10, 39, 41, 48] primarily fo-
cuses on implementing GR in a stationary learning scenario. These
works can be further categorized into supervised learning methods
and pre-training methods, depending on the availability of labeled
query-docid pairs. (i) For supervised learning methods, Tay et al.
[39] introduced fundamental training strategies, jointly optimizing
indexing and retrieval tasks using the standard Seq2Seq objective,
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i.e., maximum likelihood estimation [43] with teacher forcing. Build-
ing upon this foundation, a series of improvements [31, 38, 41, 48]
have been proposed, significantly enhancing performance. These
solutions involve direct fine-tuning of off-the-shelf pre-trained gen-
erative models on downstream labeled datasets. (ii) In IR research,
limited labeled data is often a challenge. Some researchers explore
the design of self-supervised pre-training objectives to generate a
large number of pseudo pairs of queries and docids [6]. The pre–
trained model can then be further fine-tuned to improve retrieval
performance for various downstream tasks.

In many scenarios, document collections are dynamic, with new
documents continuously being added to the corpus, old documents
being removed, or updated. A significant challenge in GR is how
to enable the model to capture and remember information from
new documents while minimizing the forgetting of information
from previously learned documents. Mehta et al. [25] demonstrate
that continually memorizing new documents leads to considerable
forgetting of old documents. They achieved this by assigning each
new document an arbitrary unique integer identifier and sampling
some old documents using experience replay for incremental up-
dates. Several follow-up approaches have been proposed to address
this issue, such as updating a partial quantization codebook [3] and
modifying training dynamics to reduce forgetting [44].
5. Inference strategies.During inference, when given a new query,
we can easily employ the learned GR model to provide relevant doc-
uments through autoregressive generation. In cases where a single
docid represents a document, the trained GRmodel autoregressively
generates a ranked list of candidate docids in descending order of
output likelihood conditioned on each query. To ensure the validity
of the generated docids, three classical approaches are commonly
used: constrained beam search [5, 6, 10, 19, 37, 38], constrained
greedy search [45] and FM-index [2, 4, 42]. In cases where multiple
docids represent a single document, some research [20, 21] com-
bines the aforementioned approaches and designs heuristic scoring
functions to determine the ranking order of relevant docids.
6. Applications. After discussing the basic building blocks of GR,
we will demonstrate how GR models are adapted to downstream
applications. First, we will discuss methods designed to enhance GR
models for specific offline tasks, such as entity retrieval [10], fact
checking [5, 6], recommender systems [32], multi-hop retrieval [19]
and code generation [28]. Then, we will explore methods tailored
for building more powerful GR models in industrial applications,
such as the Baidu search system [38]. These examples underscore
the tremendous promise and value of the GR paradigm in IR.
7. Conclusions and future directions. We conclude our tutorial
by discussing several important questions and future directions, in-
cluding (i) Most existing studies only demonstrate the effectiveness
of their approaches over relatively small corpora or task-specific
datasets. Evaluating at a larger scale remains a significant challenge
for GR [31]. Therefore, one potential future direction is to explore
how we can enhance the scalability of GR models to support com-
plex, diverse, and dynamically changing retrieval tasks. (ii) Previous
retrieval models are primarily discriminative models, where the
core focus is on measuring the matching degree based on query–
document pairs [13]. In contrast, GR takes the query as input and
directly generates docids. It is evident that the relevance modeling

mechanism centered around matching is no longer applicable. Con-
sequently, there is an urgent need to understand the differences
and connections between generative models and discriminative
models in terms of fundamental indexing and retrieval mechanisms.
(iii) When it comes to the practical deployment of retrieval sys-
tems, transparency, trustworthiness, and user-friendly interaction
are pivotal for ensuring secure applications [36]. Additionally, it’s
worth considering how this technical evolution of search engines
may effect the current content ecosystem.

5 RELEVANCE TO THE IR COMMUNITY
GR has garnered significant attention within the IR community on
the back of the emergence of generative language models. At SIGIR
2023, Marc Najork, serving as the keynote speaker, provided a com-
prehensive summary of existing generative information retrieval
systems and discussed many open challenges in this emerging field.
And the first workshop on generative information retrieval also
took place at SIGIR 2023. One of the research tracks at SIGIR-AP is
dedicated to search and ranking, with a particular focus on topics
such as web search, and retrieval models and ranking. GR aligns
well with the theme of SIGIR-AP.

6 TUTORIAL OUTLINE
1. Introduction (15 minutes)

• An overview of the tutorial
• Why generative retrieval?

2. Preliminaries (15 minutes)
• Retrieval task formulation: generative models vs. discrimina-
tive models

• Basic concepts in generative retrieval
3. Generative retrieval: Docid design (30 minutes)

• Pre-defined static docids
– Single docids: number-based and word-based docids
– Multiple docids

• Learnable docids: jointly with retrieval tasks
4. Generative retrieval: Training approaches (40 minutes)

• Static corpora: supervised learning with labeled data, and pre-
training with unlabeled data

• Dynamic corpora: continual learning
5. Generative retrieval: Inference strategies (25 minutes)

• For a single docid: constrained beam search, constrained greedy
search and FM-index

• For multiple docids: heuristic scoring functions
6. Generative retrieval: Applications (35 minutes)

• Offline application: e.g., entity retrieval, fact checking, recom-
mender systems, multi-hop retrieval and code generation

• Industry applications
7. Conclusions and future directions (20 minutes)

7 TUTORIAL MATERIALS
We plan to make all teaching materials available online for atten-
dees, including: (i) Slides: The slides will be made publicly available.
(ii) Annotated bibliography: This compilation will contain refer-
ences listing all works discussed in the tutorial, serving as a valuable
resource for further study. (iii) Code: We will provide an annotated
list of pointers to open-source code bases and datasets related to
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works discussed in the tutorial. Besides, we are open to the publica-
tion of the slides and video recordings in the ACM anthology.
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