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Recently, a novel generative retrieval (GR) paradigm has been proposed, where a single sequence-to-sequence model is learned

to directly generate a list of relevant document identiiers (docids) given a query. Existing GR models commonly employ

maximum likelihood estimation (MLE) for optimization: this involves maximizing the likelihood of a single relevant docid

given an input query, with the assumption that the likelihood for each docid is independent of the other docids in the list. We

refer to these models as the pointwise approach in this paper. While the pointwise approach has been shown to be efective

in the context of GR, it is considered sub-optimal due to its disregard for the fundamental principle that ranking involves

making predictions about lists. In this paper, we address this limitation by introducing an alternative listwise approach, which

empowers the GR model to optimize the relevance at the docid list level. Speciically, we view the generation of a ranked

docid list as a sequence learning process: at each step we learn a subset of parameters that maximizes the corresponding

generation likelihood of the �-th docid given the (preceding) top � − 1 docids. To formalize the sequence learning process,

we design a positional conditional probability for GR. To alleviate the potential impact of beam search on the generation

quality during inference, we perform relevance calibration on the generation likelihood of model-generated docids according

to relevance grades. We conduct extensive experiments on representative binary and multi-graded relevance datasets. Our

empirical results demonstrate that our method outperforms state-of-the-art GR baselines in terms of retrieval performance.

CCS Concepts: · Information systems→ Retrieval models and ranking.

Additional Key Words and Phrases: Document retrieval, Generative retrieval, Listwise approach

1 INTRODUCTION

Document retrieval plays a critical role in many information retrieval (IR) related tasks, e.g., web search [19, 70]
and question answering [33, 80]. It aims to return an initial set of potentially relevant documents from a large-scale
document repository when given a query. Recently, a new retrieval paradigm called generative retrieval (GR)
[69] for document retrieval has been proposed. The key idea is to fully parameterize diferent components of
indexing and retrieval within a single consolidated model, in which the information of all the documents in
a corpus is encoded into the model parameters. In essence, this paradigm formalizes the document retrieval
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task as a sequence-to-sequence (Seq2Seq) problem that directly maps string queries to relevant document
identiiers (docids). Following the initial publication by Metzler et al. [69], many subsequent investigations
[10, 15, 22, 84, 87, 105] have showcased the potential of this novel paradigm. In comparison to traditional dense
retrieval [9, 63, 71, 99], GR has several advantages:

(i) During training, such a consolidated model can be optimized directly in an end-to-end manner towards a
global objective. By generating docids token-by-token in an autoregressive fashion and conditioning them
on the query, we can capture ine-grained interactions between the query and the document.

(ii) During inference, the need for a complicated explicit index structure is eliminated. Instead, docid generation
is performed using a vocabulary with tens of thousands of words, aligned with identiiers of all the
documents in the corpus. Such autoregressive decoding signiicantly reduces the memory space and
computational costs.

Themajority of existing GRmodels relies on the standard Seq2Seq objective, i.e., maximum likelihood estimation
(MLE) [31, 51] with teacher forcing for learning. That is, during training, a number of queries are provided; each
query is associated with a perfect ranked list of docids (in descending order of relevance scores); GRmodels operate
in a pointwise manner. For example, as shown in Figure 1 (Top), existing works mainly focus on maximizing
the likelihood of individual docids at a time. The inal ranking is achieved by simply sorting the list based on
the generated likelihood scores of these docids. In essence, the score assigned to each docid is independent of
the other docids for a given query. This approach sufers from several issues: First, the learning objective under
the MLE criterion is formalized as minimizing errors in generation of docids, rather than minimizing errors in
rankings of docids, making it inconsistent with evaluation metrics like nDCG [38]. Second, given a query, the
assumption that the query-docid pairs are generated independently and identically distributed (i.i.d.) is a strong
assumption. Thirdly, the number of query-docid pairs can vary greatly from one query to another, leading to a
GR model that is biased towards queries with a larger number of docid pairs [11].
In this paper, we design a novel listwise approach to GR, in which docid lists instead of individual docids are

used as instances in learning, as shown in Figure 1 (Bottom). Inspired by listwise learning-to-rank [11, 48, 91], it
is crucial to efectively capture the diference between a ranked list of docids produced by a GR model and the
ranked list given as the ground truth. To formalize the listwise loss function for GR, our key idea is to view the
problem of generating a ranked list of relevant docids as a sequential learning process: in each step we target
to maximize the corresponding stepwise probability distribution. Speciically, at step 1, we aim to maximize
the probability distribution that the top-1 docid is generated. At step � > 1, we maximize the �-th probability
distribution given the top � − 1 docids. Leveraging the characteristics of GR, we deine the probability distribution
as the output sequence likelihood of generating each docid, token-by-token in an autoregressive fashion, and
conditioned on the given query. To solve the sequential learning problem, we transform it into a single-objective
optimization problem via linear scalarization, in which the position importance in ranking is highlighted [48].
By assigning appropriate weights to diferent ranking positions, the inal listwise loss function can efectively
emphasize the signiicance of each position and optimize the overall objective accordingly. The comparison
between previous pointwise approaches and our proposed listwise approach for GR is illustrated in Figure 1. We
refer to the GR model using the listwise loss function as ListGR.

At inference time, the trained ListGR model uses beam search to generate a ranked list of potentially-relevant
docids, which are based on possibly erroneous previous steps. However, in the proposed listwise loss function,
the predictive probability of each reference docid is maximized given the gold sub-sequence before it. To solve
this decoding inconsistency problem, we propose to perform relevance calibration to re-train the model with a
relevance calibration objective. This objective aims to calibrate the likelihood of generated candidate docids to
better align with ground-truth ranked lists according to their relevance grades to the query.

Our main contributions are the following:
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Fig. 1. Optimization objectives. Assume that the following are given: a query � and two ground-truth docids, �����1 and
�����2, where �����1 is more relevant than �����2 to �. Top: Most existing GR work relies on maximum likelihood estimation,
by maximizing the likelihood of the target docid for each query-docid pair. All relevant docids �����1 and �����2 are treated
equally, sharing similar likelihood values. Botom: A listwise objective (yellow rectangle) is designed for GR, directly modeling
the ranked docid lists and incorporating positional information between �����1 and �����2 (�����1 with darker green has a
larger positional weight), resulting in a positional weighted likelihood.

(i) To the best of our knowledge, this is the irst proposal for a listwise approach speciically designed for GR.
(ii) We formulate a listwise learning objective for GR, by directly minimizing the expected loss deined on the

predicted docid list and the ground-truth list, and taking into account position information.
(iii) Our experimental results on ive representative retrieval datasets demonstrate the efectiveness of our

method, particularly on datasets with multi-graded relevance. Compared to the current state-of-the-art
pointwise GR method, NCI, our approach achieves a signiicant improvement of 15.8% in terms of nDCG@5
on the ClueWeb 200K dataset.

The remainder of the paper is structured as follows. Section 2 introduces preliminary concepts necessary for
understanding the proposed method. Section 3 outlines the details of our proposed method. Section 4 describes
the experimental setup. Section 5 presents the experimental results and analysis, highlighting the performance of
our method compared to existing approaches. Section 6 presents an overview of related work in the ield. Finally,
Section 7 provides a summary of the paper and discusses limitations and potential future research directions.

2 PRELIMINARIES

We irst recall the basic idea of the GR paradigm and of listwise algorithms that have been widely adopted in
learning-to-rank; Table 1 lists the most important notations used in the paper.

ACM Trans. Inf. Syst.
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Table 1. Important notation.

� Document set
� Document in �
�� Docid set corresponding to �
�� Docid in the docid set ��
�� (� ) �-th ranked docid in a ranked docid list
�� Ground-truth docid list of �
�� Set of ground-truth docid lists of �
� Query set
� Query
�� GR model parameters
�� Token in the docid ��
� Document set to be further ranked for a query
�� Ground-truth permutation of documents � for a query
�� Ranking position of document �� in ��

�−1 (�) Index identiier of documents in the �-th position of ��
ℎ� Learning to rank function

2.1 Generative retrieval

Generative retrieval (GR) aims to directly generate a ranked list of docids for a given query using a text-to-text
model. In the following, we summarize the model architecture, training, and inference process of GR.

2.1.1 Model architecture. In existing approaches, the GR model, represented as �� , usually makes use of a
transformer-based encoder-decoder architecture to answer queries. The encoder is responsible for processing the
input sequence, i.e., query or document, and extracting meaningful representations to capture the essential topics.
Based on the representation produced by the encoder, the decoder is responsible for generating the target docid.

2.1.2 Document identifiers (docids). Tay et al. [84] propose two primary document identiiers to represent
documents:

(i) Arbitrary unique integers without explicit semantic connections to the corresponding documents [84].
(ii) Structured semantic numbers that carry semantic associations with the documents, often obtained through

techniques like hierarchical k-means clustering [84, 87].

Incorporating semantic associations between docids and documents improves the retrieval process [10, 22, 84, 87].
In this work, we adopt the structured semantic numbers for docid representation and we leave a detail discussion
of the docid generation process to Section 4.5. Recently, alternative forms of docids such as n-grams and titles
have been proposed. A comprehensive explanation of these docids can be found in Section 6.

2.1.3 Training and optimization. Maximum likelihood estimation (MLE) is widely employed in current GR
methods to optimize two main tasks, i.e., the indexing task and the retrieval task, via maximizing the likelihood
estimation of the target docid, given a document or query.

Indexing task. To memorize the corpus, the GR model �� takes the document � in the document set � as the
input, and outputs its corresponding docid �� in the docid set �� with MLE optimization algorithm, deined as,

LIndexing (�, �� ;�� ) = −
︁

�∈�

log � (�� | � ;�� ), (1)

ACM Trans. Inf. Syst.
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where � (�� | � ;�� ) is the likelihood of generation docid �� ,

� (�� | � ;�� ) =
∏

� ∈[1, |�� | ]

� (�� | �,�<� ;�� ), (2)

where�� is the �-th ground-truth token in the �� , and�<� represents the tokens before the �-th one in the �� .

Retrieval task. A query � in the query set � can have one or multiple associated docids, and these docids may
possess varying degrees of relevance. For �, it has a ground-truth docid list, �� = [�� (1) , �� (2) , . . .], in descending

order of relevance, where �� (1) is the docid ranked at the irst position, and �� (2) is the docid ranked at the
second position, and so on. We denote the set of relevant docids for all the queries � as �� . Relevance grades for
documents are non-negative integers. A relevance grade of 0 indicates that the document is irrelevant to the
query. The higher the integer value, the greater the relevance of the document to the given query. And � (�)

denotes the relevance grade of the document � to a query. To achieve the retrieval task efectively, the GR model
also leverages MLE to learn how to map the query � in the query set � to relevant docids, deined as,

LRetrieval (�, �� ;�� ) = −
︁

�∈�,��∈��

log � (�� | �;�� ), (3)

where � (�� | �;�� ) is similar to Eq. (2), deined as

� (�� | �;�� ) =
∏

� ∈[1, |�� | ]

� (�� | �,�<� ;�� ) . (4)

Finally, the total loss incurred during training a GR model is a combination of the indexing loss and the retrieval
loss, i.e.,

LTotal (�, �, �� ) = LIndexing (�, �� ;�� ) + LRetrieval (�, �� ;�� ) . (5)

2.1.4 Inference. During inference, given a query, the GR model usually uses beam search [45] to generate the
top-� ranked docids in an autoregressive manner, in descending order based on the conditional probability of
each output. Note that, when generating the next token, the model relies on the former generated token, rather
than the ground-truth token.

2.1.5 Discussion. In current GR methods, MLE is primarily used to train query-docid pairs (as shown in Eq. (3)),
which is a pointwise approach. This approach, however, is limited in its ability to support the model in generating
the single most relevant docid even when a query has multiple relevant docids. During inference, the goal of the
retrieval task is to obtain a ranked docid list, where the docids are ordered based on their relevance to the query.
The pointwise approach fails to guarantee an optimal ordering of docids within the list.

To address this limitation and enhance the capability of the GR model to generate a high-quality ranked docid
list, this work focuses on modeling and optimizing the relevance at the list level. By shifting the optimization
objective from a pointwise perspective to a listwise perspective, we aim to further improve the overall efectiveness
of the GR models.

2.2 ListMLE algorithm

In learning-to-rank (LTR), listwise approaches emphasize optimizing the entire ranked list of items for overall
ranking performance. Listwise approaches recognize that the order in which items are presented in the list is
crucial for accurate ranking. In the following, we describe a related algorithm for our work, including listMLE
and position-aware listMLE.

ACM Trans. Inf. Syst.
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2.2.1 ListMLE. Formally, suppose � = {�1, . . . , ��} ∈ � is the subset of corpus � to be further ranked, obtained
from an initial document retrieval step. And �� = [�1, . . . , ��] ∈ � is the corresponding ground-truth permutation

of these documents, where �� is the position of �� , and �
−1 (�) is the index identiier of documents in the �-th

position of �� . Listwise LTR aims to learn a ranking function ℎ� : � → � , where� are the function parameters
and � is the corresponding function space (i.e., ℎ ∈ � ), that can minimize the expected risk.
ListMLE [91] is a widely-used framework for listwise ranking that introduces a parameterized exponential

probability distribution over all possible permutations, given the ranking function ℎ� . And it leverages negative
log likelihood of the ground truth list as the loss function, deined as:

L(�, �� ;ℎ� ) = − log � (�� | � ;ℎ� ). (6)

According to the Plackett-Luce model [64, 75], which is a distribution over permutations �� , � (�� | � ;ℎ� ) can be
deined as:

� (�� | � ;ℎ� ) =

�∏

�=1

exp(ℎ� (��−1 (� ) ))∑�
�=� exp(ℎ� (��−1 (� ) ))

. (7)

The probability of a list can be deconstructed into the product of stepwise conditional probabilities. Each �-th
conditional probability represents the likelihood of a document being ranked at the �-th position, given that the
preceding documents are ranked appropriately up to that point. i.e.,

� (�� | � ;ℎ� ) = � (�
−1 (1), . . . , �−1 (�) | � ;ℎ� ) (8)

= � (�−1 (1) | � ;ℎ� )

�∏

�=2

� (�−1 (�) | �,�−1 (1), . . . , �−1 (� − 1);ℎ� ), (9)

where

� (�−1 (1) | � ;ℎ� ) =
exp(ℎ� (��−1 (1) ))∑�
�=1 exp(ℎ� (��−1 (� ) ))

, (10)

� (�−1 (�) | �,�−1 (1), �−1 (2), . . . , �−1 (� − 1);ℎ� ) =
exp(ℎ� (��−1 (� ) ))∑�
�=� exp(ℎ� (��−1 (� ) ))

,∀� = 2, . . . , �. (11)

2.2.2 Position-aware ListMLE. ListMLE, despite its efectiveness, ignores the signiicance of position impor-
tance [48]. Recognizing the impact of item positions for ranking, an advanced listwise ranking algorithm called
position-aware ListMLE [p-ListMLE, 48] has been developed to take into account position information. p-ListMLE
considers the ranking process as a sequential procedure: it operates by maximizing the probability of correctly
ranking the top 1 document with a weight assigned to the top position. Subsequently, it focuses on maximizing
the probability of correctly ranking the �-th document, considering the corresponding position weight, assuming
that the top � − 1 documents have been ranked correctly. This loss function of the process is formally deined as:

L� (�, �� ;ℎ� ) = − � (1) log � (�−1 (1) | � ;ℎ� ) −

�︁

�=2

� (�) log �
(
�−1 (�) | �,�−1 (1), . . . , �−1 (� − 1);ℎ�

)
,

(12)

where � (·) is a decreasing function, i.e., � (�) > � (� + 1).
To ensure consistency with the target metric, such as normalized discounted cumulative gain (NDCG), � (·) is

deined as the gain function � (�) = ����(�) = 2�−� − 1, which assigns larger weights to documents with higher
relevance grades. Combining the Plackett-Luce model (7) with the above loss (12), the optimization objective is

ACM Trans. Inf. Syst.
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Fig. 2. Overview of the two-stage listwise learning methods, which consists of a training stage using listwise loss and a
re-training stage with relevance calibration based on the trained model.

to minimize the following likelihood loss function:

L� (�, �� ;ℎ� ) =

�︁

�=1

� (�)

(
−ℎ� (��−1 (� ) ) + log

(
�︁

�=�

exp(ℎ� (��−1 (� ) ))

))
. (13)

3 OUR APPROACH

In this section, we present novel listwise generative retrieval models via a sequential learning process. We irst
provide an overview of our method and then describe the training and re-training stages in detail.

3.1 Overview

In this paper, we propose a listwise GR approach (ListGR for short), in which docid lists instead of individual
docids are used as instances in learning. ListGR includes a two-stage optimization process, i.e., training with
position-aware ListMLE and re-training with relevance calibration. The overall optimization process is illustrated
in Figure 2.
To accurately represent listwise relevance, we irst establish the position-aware conditional probability of a

docid ranked at a particular position with respect to a given query, and employ position-aware ListMLE [48] to
train the GR model. To address the decoding inconsistency between the proposed listwise loss function and the
beam search decoding, we further retrain the model with relevance calibration techniques for a generated docid
list.

3.2 Training with listwise loss function

Inspired by listwise LTR algorithms [11, 48, 91], our key idea is to view the docid ranking problem as a sequential
learning process, with each step targeting to maximize the corresponding stepwise probability distribution. In
the following, we irstly deine the conditional probability distribution of each ground-truth docid with each step,
and then apply it to model the ranking list.

3.2.1 Positional conditional probability. Given a query and its ground-truth docid list �� , for each docid

�� (� ) in the list, we irst obtain the estimated log-probability of generating �� (� ) for the given query (based on
Eq. (4)), regardless of the position of �� (� ) , and perform length normalization, denoted as,

�̃ (�� (� ) | �;�� ) =
log

∏
� ∈[1, |�� (� ) | ] � (�� | �,�<� ;�� )

|�� (� ) |
, (14)

where �� is the �-th ground-truth token in the �� (� ) , �<� represents the tokens before the �-th one in the �� (� ) .
Based on Eq. (14), we further deine the positional likelihood, that is, the probability of generation of �� (� ) being
ranked at position � . More speciically, it is the conditional probability distribution of the GR model generating the
ground-truth docids from the �-th to the �-th, conditioned on the query. It also represents that the preceding � − 1

ACM Trans. Inf. Syst.
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docids are generated at the right positions. The sequential learning process for docid ranking can be summarized
as follows:

Step 1: Maximizing the following top-1 positional conditional probability:

� (�� (1) | �;�� ) =
exp(�̃ (�� (1) | �;�� ))∑�
�=1 exp(�̃ (��

( � ) | �;�� ))
. (15)

Please note that Eq. (14) only considers the generation of �� (� ) conditioned on the query without considering
its ranking position in the list , while Eq. (15) requires �� (� ) to be ranked at the �-th position.

Step �: For � = 2, . . . , �, we maximize the following �-th positional conditional probability,

� (�� (� ) | �, �� (1) , . . . , �� (�−1) ;�� ) =
exp(�̃ (�� (� ) | �;�� ))∑�
�=� exp(�̃ (��

( � ) | �;�� ))
. (16)

The learning process ends at step � + 1.

3.2.2 Listwise probability with position importance. To transform the above sequential optimization
problem into a single-objective optimization problem, we deine the likelihood of the ground-truth docid list ��
for a query. The likelihood of generating �� is deined as the product of positional conditional probabilities of
diferent docids. Higher positions are more important and, therefore, we assign the corresponding positional
conditional probabilities with higher weights. Therefore, for a query �, the optimization problem is to minimize
the probability of generating �� with negative log likelihood as follows:

min
��

− log � (�� | �;�� )

= −� (1) log � (�� (1) | �;�� ) −

�︁

�=2

� (�) log �
(
�� (� ) | �, �� (1) , . . . , �� (�−1) ;��

)
,

(17)

where the weight � (·) is a decreasing function; following [48], we set � (�) = 2�−�−1. Incorporating the probability
based on Plackett-Luce model as described in Eq. (15) and 16 into the above optimization problem, we obtain the
inal listwise loss function:

LList (�, �� ;�� ) =

�︁

�=1

� (�)

(
−�̃ (�� (� ) | �;�� ) + log

(
�︁

�=�

exp(�̃ (�� (� ) | �;�� ))

))
. (18)

The total loss function of a query set � is LList (�, �� ;�� ) =
∑

�∈� LList (�, �� ;�� ).

Discussions. For retrieval tasks, our listwise approach LList is diferent from the pointwise approach used in
existing GR works. (i) The existing pointwise approach aims to maximize the likelihood probability of generating
relevant docids with MLE for a query. Simultaneously, it suppresses the probability of other irrelevant tokens.
When dealing with multi-graded relevance datasets, this method treats docids of diferent relevance grades as
equally important. (ii) In contrast, our listwise approach, LList loss (Eq. (18)) maximizes the likelihood probability
of the ground-truth docid list. Additionally, it assigns corresponding positional weights to diferent docids based
on their relevance grades using p-ListMLE. This enables the model to have better discriminative ability for
ine-grained relevance grades. Therefore, our approach aligns more closely with the goal of GR, which is to
generate a relevant docid list given a query.

3.2.3 Training loss. To model the aforementioned listwise relevance, the GR model also needs to learn the
fundamental indexing task with the loss deined in Eq. (1) and the retrieval task with the loss deined in Eq. (3).
Taken together, the total loss for the training stage is deined as:

LTraining (�, �, �� , �� ;�� ) = LList (�, �� ;�� ) + LIndexing (�, �� ;�� ) + LRetrieval (�, �� ;�� ). (19)

ACM Trans. Inf. Syst.
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3.3 Re-training with relevance calibration

After training with a listwise loss function, the GR model gains a better discriminative ability for ranked lists of
docids than the previous pointwise approach. However, a decoding inconsistency problem arises [8]. During
training, the proposed listwise loss leverages the preceding ground-truth tokens to generate the subsequent token.
During inference, the model relies solely on the preceding generated tokens without access to ground-truth
tokens. This decoding inconsistency may result in the generated list not being ideal in terms of its ranking
according to relevance. Besides, larger beam sizes would cause shorter lengths and worse generation quality
[95, 103].

To further improve the quality of the ranked list, we propose to calibrate the generated list, in which the key
idea is to align candidates’ likelihoods according to their relevance grades to the query. Speciically, we utilize
the model trained with Eq. (19) for re-retraining, denoted as �̂� . And for a given query � ∈ � , a ranked docid

list is generated with the beam search strategy, denoted as �̂� = [�̂�
(1)
, . . . , �̂�

(�)
]. We perform both token-level

calibration and sequence-level relevance calibration as follows.

3.3.1 Token-level relevance calibration. For correctly predicted docids, tokens within docids with higher
relevance grades are assigned with higher likelihood weights. For incorrectly predicted docids, the generation
probability of their tokens should approach zero. Formally, we deine the token-level relevance calibration loss as,

LToken (�, �̂� ; �̂� ) = −
︁

�∈�

︁

�̂�∈�̂�

︁

�� ∈�̂�

�true (�� | �,�<� ) log � (�� | �,�<� ; �̂� ), (20)

where�� is the �-th generated token in �̂� ,�<� represents tokens before the �-th token, and �̂� is the generated
docid list for all queries in � . Moreover, ����� (�� | �,�<� ) is the weight of generating token �� computed as

follows, given two diferent candidate docids in �� , �̂�
(� )

and �̂�
( � )

:




�true (�� | �,�<� ) = 1 − 1(
�

(
�̂�

(� )
)
+1

)2 , ∀�� ∈ �̂�
(� )
, if �̂�

(� )
∈ ��

∑
�̂�

(� )
∈�̂�

�true (�� | �,�<� ) = �, ∀�� ∈ �̂�
(� )
, if �̂�

(� )
∉ ��

�true (�� | �,�<� ) > �true (�� | �,�<�), ∀�� ∈ �̂�
(� )

∈ �̂�,�� ∈ �̂�
( � )

∈ �̂�,

if�
(
�̂�

(� )
)
> �

(
�̂�

( � )
)

(21)

where � is a hyperparameter close to zero, and�
(
�̂�

(� )
)
is the relevance grade of �̂�

(� )
, deined in Section 2.1.3.

Additionally,�� represents the�-th token of �̂�
( � )
, and�<� represents tokens before the�-th token in �̂�

( � )
.

The efect of each condition of this equation is as follows,

(i) For the irst condition, if the generated �̂�
(� )

is in the ground-truth ranking list �� , we assign a higher
weight ����� to this docid, to support its generation. Speciically, this weight is a value less than 1, directly
proportional to the relevance grade of the ground-truth label. The higher the relevance grade of the docid,
the closer this weight is to 1.

(ii) For the second condition, if the predicted �̂�
(� )

does not belong to the ground truth docid list, we assign a
small weight to suppress its generation. Speciically, this weight � is a small value less than 1, approaching
0.

(iii) For the third condition, for any two docids in the candidate docid list, �̂�
(� )

and �̂�
( � )

, both belonging to the
ground truth ranking list, we adjust their relative weights based on their ground-truth relevance grades. If

ACM Trans. Inf. Syst.
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the relevance grade of �̂�
(� )

is higher than that of �̂�
( � )

, then the tokens of �̂�
(� )

should have higher weights

(i.e., ����� (�� | �,�<� )) compared to weights (i.e., ����� (�� | �,�<�)) of �̂�
( � )

.

3.3.2 Sequence-level relevance calibration. Diferences in generation probabilities among distinct docids
should correspond to diferences in their relevance grades. Docids with higher relevance grades should be
prioritized, resulting in a higher likelihood of being ranked higher and generated. Therefore, the sequence-level
relevance calibration loss is,

LSeq (�, �̂� ; �̂� ) =
︁

�

︁

�>�

max
(
0, �̂� (�̂�

( � )
) − �̂� (�̂�

(� )
) + �� �

)
, (22)

where �̂� (�̂�
(� )
) is � (�̂�

(� )
| �; �̂� ) normalized by docid length, i.e.,

�̂� (�̂�
(� )
) =

log � (�̂�
(� )

| �; �̂� )

|�̂�
(� )
|�

, (23)

where � is the length penalty hyperparameter, ∀�, �, 1 < � < � ≤ �, and �� � is the margin multiplied by the
diference in rank position between the docids, i.e., �� � = ( � − �)�.

3.3.3 Re-training loss. The inal loss of the relevance calibration is deined as:

LRe-training (�, �̂� ; �̂� ) = LToken (�, �̂� ; �̂� ) + �L��� (�, �̂� ; �̂� ), (24)

where � is the hyperparameter of balancing the two losses.
In summary, our model is irst trained using the listwise loss in Eq. (19) and then used to decode ranked docid

lists for training queries. After re-training the model using the loss in Eq. (24), inference is performed according
to the approach described in Section 2.1.4.

Adaption to binary relevance data. For binary relevance data, since the relevant docids for a query have the
same relevance grade, a query may have one or multiple ground-truth docid lists, each containing only one
relevant docid, i.e., the top-1 docid. Therefore, in the irst training stage, the corresponding position weight
� (1) in the listwise loss (Eq. (18)) is set to 0 (� (�) = 2(�−� ) − 1). Consequently, Eq. (19) reduces into Eq. (5). For
binary relevance data, this is acceptable since it only contains docids with the same relevance grade. Our main
improvement for the binary relevance data is the relevance calibration Eq. (24) in the re-training stage. It could
further optimize the generated candidate docid list, according to docids’ relevance grade to the query. In future
work, we will explore designing alternative weight functions to enable list-level enhancement for binary relevance
data in the irst stage as well.

4 EXPERIMENTAL SETTINGS

In this section, we present the experimental settings, including datasets, baselines, model variants, evaluation
metrics, and implementation details.

4.1 Datasets

We utilize ive widely-used ad-hoc retrieval datasets:

(i) ClueWeb09-B (ClueWeb) [18] is a large-scale web collection containing over 50 million documents. The
topics are gathered from the TREC Web Tracks conducted from 2009 to 2011.

(ii) Gov2 [17] consists of approximately 150 queries and 25 million documents collected from the .gov domain
web pages. The topics are accumulated from the TREC Terabyte Tracks from 2004 to 2006.

ACM Trans. Inf. Syst.
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(iii) Robust04 [86] comprises 250 queries and 0.5 million news articles. The topics of the queries are collected
from the TREC 2004 Robust Track.

(iv) MS MARCO Document Ranking (MS MARCO) [70] is a comprehensive benchmark dataset for web
document retrieval.

(v) Natural Questions (NQ) [46] includes natural language questions as queries and Wikipedia articles as
documents. Following previous GR studies [10, 84, 87], we perform experiments on the NQ320K version of
the dataset, containing 307,000 query-document pairs.

Dataset preprocessing. For multi-graded relevance datasets, i.e., ClueWeb, Gov2, and Robust04 datasets, they
are annotated with multi-graded relevance labels, indicating varying degrees of matching with the query intent
or information need. Akin to [84], we sample subsets of the original ClueWeb, Gov2, and Robust04 corpora, each
of size 200K, for our subsequent experiments. These sampled subsets are referred to as ClueWeb 200K, Gov
200K, and Robust 200K, respectively. The sampling process involves selecting annotated documents irst and
then randomly choosing additional documents from the remaining corpus, resulting in a total of 200K documents.
For binary relevance datsets, i.e., MS MARCO and NQ datasets, they have documents labeled with binary

relevance, indicating whether a document is relevant or irrelevant to a query. For the MS MARCO dataset,
following [16, 105], we sample a sub-dataset,MS MARCO 100K, consisting of 100K documents, 97K training
queries and 3K queries for testing. We sample the training and testing queries from the original training set and
development set, respectively. For the NQ320K dataset, following [87], we utilize its open-source preprocessing
code.1 It removes special characters from the documents and performs cleaning and concatenation based on the
document structure, such as titles, abstracts, and body text. Table 2 provides statistics of the datasets used in
experiments.

Table 2. Data statistics. #Grades denotes the number of relevance grades, e.g., highly relevant and relevant. #Avg denotes the
average number of multi-graded relevant documents for queries.

Relevance Type Dataset #Queries #Documents #Grades #Avg

Multi-graded Robust 200K 250 0.2M 2 69
Multi-graded Gov 200K 150 0.2M 2 180
Multi-graded ClueWeb 200K 150 0.2M 3 84
Binary MS MARCO 100K 97K 100K 1 1
Binary NQ320K 307K 228K 1 1

4.2 Baselines

We irst compare our method with traditional retrieval baselines commonly used for document retrieval tasks,
including sparse retrieval and dense retrieval methods. The sparse retrieval baselines are:

(i) BM25 [79] is an efective term-based sparse retrieval method, that represents the classical probabilistic
retrieval model.

(ii) DocT5Query [73] generates a set of pseudo-queries for each document by a inetuned T5 [77], and then
expand the document with these pseudo-queries.

(iii) SPLADE [26, 27] uses a BERT to encode the document into a sparse lexical representation.

The dense retrieval baselines are:

(i) DPR [41] is a BERT-based dual-encoder model using dense embeddings for text blocks.

1https://github.com/solidsea98/Neural-Corpus-Indexer-NCI/blob/main/Data_process/NQ_dataset/NQ_dataset_Process.ipynb
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(ii) ANCE [93] periodically refreshes the ANN indexer and adpots hard negatives for training a RoBERTa-based
dual-encoder model.

(iii) RepBERT [99] is a BERT-based two-tower model. And it takes the in-batch negative sampling technique.
RepBERT leverages the representation learning capabilities of BERT to represent the query and document,
enhancing dense retrieval performance.

Further, we explore several advanced GR methods that are trained in a pointwise manner:

(i) DSI-Num [84] uses arbitrary unique numbers as docids. And it uses the MLE loss based on query-docid
pairs (Eq. (3)) and document-docid pairs (Eq. (1)).

(ii) DSI-Sem [84] generates docids by concatenating category numbers obtained through a hierarchical k-
means clustering algorithm. This results in similar documents having similar docids. It shares the same
training objective as DSI-Num.

(iii) DSI-QG [105] utilizes pairs of pseudo-queries and docids for indexing. The pseudo-queries are generated
conditioned on the document using docT5query [73]. Similar to DSI-Num, arbitrary unique numbers are
used as docids. DSI-QG can be viewed as DSI-Num with data augmentation techniques.

(iv) NCI [87] replaces the arbitrary unique numbers with semantic structured numbers, similar to DSI-Sem.
It uses pairs of pseudo-queries and docids, as well as pairs of leading contents of original documents
and docids, to train the model. NCI further designs a preix-aware decoder, which can distinguish the
diferent meanings of the same number in diferent positions. NCI can be viewed as the DSI-Sem with data
augmentation techniques.

(v) GENRE [22] retrieves a Wikipedia article by generating its title, speciically designed for the NQ dataset.
Due to the absence of titles or incomplete titles in other datasets, we did not experiment with GENRE on
those datasets.

(vi) SEAL [10] uses arbitrary n-grams in documents as docids and retrieves documents based on an FM-index
during inference.

The GR baselines all optimize indexing (Eq. (1)) and retrieval (Eq. (3)) tasks with MLE, so they can all be considered
pointwise approaches.

4.3 Model variants

We employ some degraded ListGR models to investigate the efect of our proposed mechanisms:

(i) ListGRpListMLE only trains the model using Eq. (19), and omits the re-training stage.
(ii) ListGRListMLE replaces the position-wise loss in ListGRpListMLE with the ListMLE loss (Eq. (8)), without

considering the position information of docids.
(iii) ListGRRetrain irst trains the model using indexing and retrieval loss (Eq. (5)) during the training stage. Then,

we perform relevance calibration (Eq. (24)) over the decoded candidate docid lists during the re-training
stage.

(iv) ListGR���
��������

irst trains the model using Eq. (19), and then re-trains the model with the token-level

relevance calibration (Eq. (21)).
(v) ListGR

���

��������
irst trains the model using Eq. (19), and then re-trains the model with the sequence-level

relevance calibration (Eq. (22)).
(vi) ListGR−��� irst trains the model (Eq. (19)) without augmented data, and then perform relevance calibration

(Eq. (24)) during the re-training stage.
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Listwise Generative Retrieval Models via a Sequential Learning Process • 13

4.4 Evaluation metrics

For datasets with multi-graded relevance labels, i.e., ClueWeb 200K, Gov 200K, and Robust 200K, we perform
5-fold cross-validation to prevent overitting while maintaining an adequate number of training instances. The
topic titles are used as queries, and the queries are randomly divided into 5 folds. The model parameters are
tuned on 4 out of 5 folds, and the remaining fold is used for evaluation. This process is repeated 5 times, with
each fold serving as the evaluation set once. The inal performance is computed by averaging the results from all
tested folds. The evaluation metrics used in this study are normalized discounted cumulative gain (nDCG@�)
with � = {5, 20}, expected reciprocal rank (ERR@20), and precision at rank 20 (P@20), following [13, 32, 66].

For datasets with binary relevance labels, i.e., MS MARCO 100K and NQ320K, we adopt the evaluation metrics
used in the original DSI model [84] and subsequent studies [10, 87, 105]. Speciically, we use mean reciprocal
rank (MRR@� ) with � = {3, 20} and hit ratio (Hits@� ) with � = {1, 10}. The performance results are reported
on the validation set since the MS MARCO and NQ leaderboards impose restrictions on submission frequency,
following [66, 84].

4.5 Implementation details

Model architecture. Following existing GR works [84, 87, 105], we utilize the T5-base model2 as the backbone
for ListGR and the baseline models, for a fair comparison. This particular T5-base model is equipped with a
hidden size of 768, a feed-forward layer size of 12, a total of 12 self-attention heads, and a coniguration consisting
of 12 transformer layers.

Baseline implementation. For BM25, we use the Pyserini [59] implementation for this baseline. For DSI-Num
and DSI-Sem, we re-implement these baselines since the source code is unavailable. For other baselines, we use
the publicly available source code for experiments.

Docid generation. For the docids used in our work, we leverage semantic structured numbers [84, 87]. Speciically,
we apply the hierarchical �-means algorithm introduced in [84] over the document embeddings, which are
generated through a 12-layer BERT model with pre-trained parameters, following [84, 87]. First, we cluster all
documents into 10 clusters. Then, we recursively apply the clustering algorithm for each cluster that consists
of more than 100 documents. The result obtained at each level is used as input for the next level, ensuring a
well-organized and manageable clustering process. Finally, for each document, all category numbers obtained at
each level are concatenated sequentially as its inal docid.

Construction of docid lists. In the ive datasets there exist multiple docids at the same relevance grade with
respect to a query. During training, we can construct multiple ground-truth docid lists for the query using
permutations. The length of the list is determined by the highest annotated relevance grade with respect to the
query. Docids within the list are arranged in descending order of relevance grade.

Hyperparameters. Both ListGR and the reproduced baselines are implemented using HuggingFace transformers
4.16.2. For multi-graded relevance datasets, during the training process, we employ the Adam optimizer with a
linear warm-up strategy that spans the initial 10% of steps. Our chosen learning rate is set to 6e-5, with a label
smoothing factor of 0.01 and a weight decay rate of 0.01. Furthermore, the sequence length of documents is ixed
at 512. For binary relevance datasets, the hyperparameter settings are as follows: learning rate is 0.001, batch size
is 80, and training steps of 100K. We also adopt Adam optimizer with a linear warm-up strategy that spans the
initial 200K steps, label smoothing factor of 0.001, and weight decay rate of 0.02. For all datasets, the maximum

2https://huggingface.co/t5-base
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number of training steps is capped at 100K, and a batch size of 80 is utilized. To facilitate the training of ListGR,
we make use of eight NVIDIA Tesla A100 40GB GPUs, ensuring eicient computation and faster convergence.

Training, re-training and inference. During the training stage, for multi-graded relevance datasets, we set
relevance margin � and docid length penalty � (Eq. (22)) as 0.001 and 0.6, respectively. And during the re-training
stage, we set � used in Eq. (24) to 100, and � used in Eq. (21) to 0.002. For all datasets, to address the limited
availability of supervised data, we employ a data augmentation technique that is widely used in existing GR work
[16, 76, 82, 83, 87]. Furthermore, following [16, 76, 82, 87], we generate a set of pseudo-queries for all documents
to construct additional query-docid pairs for augmentation. Speciically, for MS MARCO 100K, we directly use a
publicly trained DocT5query model3 on the MS MARCO corpus to generate 20 pseudo-queries for each document.
For other datasets, we ine-tune a DocT5query model with labled query-document pairs for them to generate
20 pseudo-queries for training, based on the code4 provided in [105]. DSI-QG, NCI, and our ListGR use same
pseudo-queries to enhance the training for a fair comparison. During inference, we construct a decimal trie to
constrain the model to decode integers with only 20 beams.

5 EXPERIMENTAL RESULTS

In this section, we report and analyze the experimental results to demonstrate the efectiveness of the proposed
ListGR. We target the following research questions:

(RQ1) How does ListGR perform compared with strong retrieval baselines across diferent relevance scenarios?
(RQ2) How do the training and re-training stages of ListGR afect the retrieval performance?
(RQ3) How does ListGR perform in low-resource settings?
(RQ4) How does the number of relevance grades afect the retrieval performance during training?
(RQ5) How do the model size and beam size afect the eiciency of retrieval?
(RQ6) Can we better understand how diferent models perform via some case studies?

5.1 Baseline comparison

To answer RQ1, we compare ListGR with several representative traditional retrieval methods and some advanced
GR methods, in both multi-graded and binary relevance scenarios.

5.1.1 Results on multi-graded relevance. Table 3 shows the performance of ListGR and baselines on multi-
graded relevance datasets. We analyze the results in three parts.

The performance of traditional retrieval baselines. (i) On the three multi-graded datasets, the dense retrieval
baseline ANCE outperforms DPR, RepBERT, and sparse retrieval baselines. The reason may be attributed to its
ability to learn rich semantic information, and the strategy of using negative samples that aids in acquiring stronger
discriminative capabilities than sparse retrieval baselines. (ii) RepBERT exhibits slightly lower performance
than BM25 on Gov 200K and Robust 200K, which aligns with indings reported in previous studies [62, 65, 98].
The sub-optimal performance of RepBERT in learning efective query and document representations might be
primarily attributed to the limited size of the training set available in Gov 200K and Robust 200K.

The performance of generative retrieval baselines. (i) DSI-Sem surpasses the performance of DSI-Num,
while SEAL exhibits even higher performance than DSI-Sem. DSI-Num, DSI-Sem and SEAL use random integers,
semantic structured clustering numbers, and n-grams from the documents, respectively. The integration of
docids with stronger semantic associations to the document content can signiicantly enhance the indexing
and retrieval efectiveness of GR. This observation aligns with indings reported in previous studies such as
[10, 22, 84]. (ii) DSI-QG demonstrates superior performance compared to DSI-Num, DSI-Sem, and SEAL, indicating

3https://github.com/castorini/docTTTTTquery
4https://github.com/ArvinZhuang/DSI-QG
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Table 3. Experimental results on datasets with multi-graded relevance. ∗, †, and ‡ indicate statistically significant improve-
ments over the best performing sparse retrieval baseline SPLADE, dense retrieval baseline ANCE, and generative retrieval
baseline NCI, respectively (� ≤ 0.05).

nDCG P ERR

Method @5 @20 @20 @20

C
lu
eW

e
b
2
0
0
K

BM25 0.2397 0.2568 0.3221 0.2278
DocT5query 0.2542 0.2658 0.3363 0.2328
SPLADE 0.2588 0.2697 0.3371 0.2357

DPR 0.2672 0.2986 0.3568 0.2806
ANCE 0.2694 0.3012 0.3587 0.2815
RepBERT 0.2646 0.2963 0.3520 0.2799

DSI-Num 0.1520 0.1857 0.2182 0.1167
DSI-Sem 0.1905 0.2198 0.2563 0.1747
SEAL 0.2241 0.2355 0.2725 0.1831
DSI-QG 0.2765 0.2862 0.3604 0.2825
NCI 0.2885 0.3058 0.3625 0.2863

ListGR 0.3341∗†‡ 0.3442∗†‡ 0.3704∗†‡ 0.2928∗†‡

G
o
v
2
0
0
K

BM25 0.3712 0.3787 0.3379 0.2398
DocT5query 0.3824 0.3913 0.3435 0.2419
SPLADE 0.3873 0.3959 0.3486 0.2476

DPR 0.3864 0.3986 0.3584 0.2496
ANCE 0.3921 0.4092 0.3605 0.2501
RepBERT 0.3328 0.3443 0.3076 0.2288

DSI-Num 0.1525 0.1588 0.1477 0.1360
DSI-Sem 0.1780 0.1469 0.1516 0.1444
SEAL 0.2283 0.2053 0.1952 0.1675
DSI-QG 0.3941 0.4087 0.3635 0.2547
NCI 0.3986 0.4161 0.3733 0.2629

ListGR 0.4153∗†‡ 0.4368∗†‡ 0.3978∗†‡ 0.2824∗†‡

R
o
b
u
st

2
0
0
K

BM25 0.3743 0.3587 0.3456 0.2283
DocT5query 0.3803 0.3617 0.3549 0.2314
SPLADE 0.3896 0.3685 0.3573 0.2352

DPR 0.3917 0.3693 0.3588 0.2371
ANCE 0.3952 0.3701 0.3592 0.2393
RepBERT 0.3608 0.3374 0.3244 0.2097

DSI-Num 0.1649 0.1574 0.1311 0.1205
DSI-Sem 0.1887 0.1765 0.1508 0.1566
SEAL 0.2209 0.2093 0.1831 0.1769
DSI-QG 0.3979 0.3723 0.3615 0.2401
NCI 0.4012 0.3765 0.3678 0.2435

ListGR 0.4284∗†‡ 0.3919∗†‡ 0.3727∗† 0.2592∗†‡

the advantages gained by employing data augmentation techniques that generate additional query-docid pairs.
(iii) NCI outperforms DSI-QG due to its use of semantic structured numbers and the presence of the preix-aware
decoder, which efectively distinguishes the meanings of the same numbers in distinct positions within the
clustering numerals. (iv) NCI and DSI-QG perform slightly better than ANCE, indicating that using pseudo-queries
to enhance learning is crucial for GR models. This has been validated in [76] as well.

The performance of ListGR. By adopting a listwise approach in which lists of docids are used as łinstancesž
in learning, ListGR achieves signiicantly better performance than existing generative retrieval baselines that
work in a pointwise manner. Speciically, on the ClueWeb 200K dataset, ListGR outperforms NCI by 15.8% in
terms of nDCG@5. On the Gov 200K dataset, ListGR surpasses NCI by 7.4% in terms of ERR@20. On the Robust
200K dataset, ListGR surpasses NCI by 6.8% in terms of nDCG@5. Furthermore, this outcome suggests that the
inclusion of additional relevance levels within the annotated data, such as ClueWeb 200K, yields substantial
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Table 4. Experimental results on datasets with binary relevance. ∗, † and ‡ indicate statistically significant improvements
over the best performing sparse retrieval baseline SPLADE, dense retrieval baseline ANCE, and generative retrieval baseline
NCI, respectively (� ≤ 0.05).

Methods

MS MARCO 100K NQ320K

MRR Hits MRR Hits

@3 @20 @1 @10 @3 @20 @1 @10

BM25 0.3884 0.4157 0.4912 0.5572 0.2849 0.4426 0.2927 0.6015
DocT5query 0.4053 0.4376 0.5029 0.5741 0.3641 0.4825 0.3913 0.6972
SPLADE 0.4164 0.4454 0.5095 0.5813 0.4467 0.7036 0.4982 0.7835

DPR 0.4212 0.4598 0.5214 0.6124 0.4792 0.7583 0.5024 0.8042
ANCE 0.4235 0.4601 0.5327 0.6267 0.4821 0.7622 0.5183 0.8149
RepBERT 0.4202 0.4571 0.5183 0.6052 0.4589 0.7154 0.4835 0.7981

DSI-Num 0.1348 0.1353 0.1264 0.1218 0.1815 0.3785 0.2214 0.4184
DSI-Sem 0.2278 0.2209 0.2123 0.2714 0.2198 0.4248 0.2793 0.5763
GENRE ś ś ś ś 0.3543 0.6218 0.3942 0.7061
SEAL 0.3299 0.3771 0.3721 0.5397 0.3672 0.6398 0.4173 0.7289
DSI-QG 0.4276 0.4524 0.5273 0.6285 0.5834 0.7592 0.6349 0.8236
NCI 0.4359 0.4638 0.5362 0.6396 0.5952 0.7641 0.6425 0.8332

ListGR 0.4656∗†‡ 0.4901∗†‡ 0.5576∗†‡ 0.6471∗†‡ 0.6019∗†‡ 0.7723∗†‡ 0.6593∗†‡ 0.8412∗†‡

beneits for ListGR. By incorporating more comprehensive relevance information, ListGR can efectively learn
and accurately assess the relevance order among the docid list.

5.1.2 Results on binary relevance. For the binary relevance datasets, where the positional weight (� (�) =
2�−� −1) of relevant docids is zero, the training stage only utilizes the indexing and retrieval loss (Eq. (5)). Based on
this, the trained model undergoes relevance calibration. Table 4 shows the performance of ListGR and baselines
on binary relevance datasets. We observe the following: (i) The three dense retrieval baselines outperform sparse
retrieval baselines. This could be attributed to the availability of abundant labeled query-document pairs in
these two datasets. It helps dense models learn dense representations and captures the semantic relationship
between queries and documents. (ii) DSI-Num and DSI-Sem perform worse than dense retrieval baselines, e.g.,
RepBERT, DPR and ANCE on both binary relevance datasets. This suggests that learning both indexing and
retrieval tasks simultaneously through these two types of docids and MLE is still challenging. (iii) SEAL shows
better performance than vanilla DSI methods, i.e., DSI-Num and DSI-Sem. The reason might be that SEAL uses
n-grams from the documents as docids. This type of docid contains more explicit semantics, which helps the
model learn better than numeric docids. (iv) Moreover, both DSI-QG and NCI outperform SEAL, DSI-Num and
DSI-Sem, indicating that data augmentation methods, such as transforming documents into pseudo-queries for
learning, contribute signiicantly to the improvement. (v) ListGR outperforms the best-performing GR baseline,
NCI, on both binary relevance datasets. Speciically, ListGR achieves improvements of 6.8% in terms of MMR@3
on MS MARCO 100K. This indicates that relevance calibration has the ability to correct inappropriate ordering of
docid lists generated by beam search decoding.

5.2 Ablation study

In this section, to answer RQ2, we conduct an ablation analysis on three multi-graded relevance datasets to
quantitatively assess the impact of each component in ListGR; see Table 5. For the binary relevance datasets, the
training stage lacks listwise loss, so that ListGR and ListGRRetrain are the same in this setting; therefore, we did
not analyze the performance on binary relevance datasets in this context. We have the following observations:

Listwise loss. (i) ListGRRetrain, only using the re-training stage leads to signiicantly lower performance than
ListGR. Additionally, in the training stage, ListGRpListMLE and ListGRListMLE combining a listwise loss with an
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Table 5. Ablation analysis of ListGR with its variants on multi-graded relevance datasets. ∗ indicates statistically significant
improvements over all the corresponding variants (� ≤ 0.05).

nDCG P ERR

Method @5 @20 @20 @20

C
lu
eW

e
b
2
0
0
K

ListGRpListMLE 0.3087 0.3205 0.3618 0.2887

ListGRListMLE 0.2947 0.3114 0.3609 0.2874

ListGRRetrain 0.2961 0.3156 0.3686 0.2881

ListGR���
��������

0.3224 0.3302 0.3641 0.2894

ListGR
���

��������
0.3252 0.3331 0.3668 0.2908

ListGR−��� 0.2713 0.2811 0.3509 0.2746

ListGR 0.3341† 0.3442† 0.3704 0.2928

G
o
v
2
0
0
K

ListGRpListMLE 0.3998 0.4214 0.3842 0.2765

ListGRListMLE 0.3991 0.4185 0.3787 0.2685

ListGRRetrain 0.3995 0.4192 0.3818 0.2716

ListGR���
��������

0.4062 0.4256 0.3871 0.2782

ListGR
���

��������
0.4094 0.4288 0.3919 0.2809

ListGR−��� 0.3551 0.3731 0.3036 0.2204

ListGR 0.4153 0.4368† 0.3978 0.2824

R
o
b
u
st

2
0
0
K

ListGRpListMLE 0.4074 0.3798 0.3694 0.2483

ListGRListMLE 0.4057 0.3778 0.3685 0.2456

ListGRRetrain 0.4068 0.3783 0.3689 0.2471

ListGR���
��������

0.4145 0.3826 0.3697 0.2498

ListGR
���

��������
0.4193 0.3851 0.3705 0.2559

ListGR−��� 0.3528 0.3026 0.2971 0.2066

ListGR 0.4284† 0.3919† 0.3727 0.2592

indexing and retrieval loss improves the retrieval performance over NCI (in Table 3). These results indicate that
modeling the ranked docid list explicitly is crucial for better retrieval performance, as using MLE alone does not
capture the relationships between docids. (ii) ListGRpListMLE performs better than ListGRListMLE , highlighting the
importance of position weights in ranking, aligning with the observations in [48]. (iii) ListGR−��� signiicantly
outperforms SEAL (in Table 3). It demonstrates that our listwise approach, even without data augmentation, can
assist the GR model in learning stronger discriminative abilitty for relevance.

Relevance calibration. (i) By removing relevance calibration, ListGRpListMLE and ListGRListMLE have a signiicant
drop in performance compared to ListGR. This suggests that beam search decoding has an impact on the
inference efectiveness of GR. (ii) Additionally, both ListGR���

��������
and ListGR

���

��������
, built upon ListGRpListMLE ,

show improved performance. This indicates that further relevance calibration to candidate docids is essential.
(iii) Furthermore, we observe that the performance of ListGR���

��������
and ListGR

���

��������
is similar, suggesting that

both sequence-level and token-level relevance calibration are crucial for the GR model. These results demonstrate
that adjusting the generation probabilities of docids in the candidate docid list generated by the trained model
contributes to generating more accurate ranking positions in the list.
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Fig. 3. Training with limited supervision data. The x-axis indicates the number of training queries.

5.3 Low-resource setings

In this section, to answer RQ3, during training, we simulate a low-resource retrieval scenario by randomly
sampling a ixed and limited number of queries from the training set. More speciically, for the purpose of
comparing ListGR and NCI, we randomly sample 15, 30, 45, and 60 queries from the ClueWeb 200K, Gov 200K,
and Robust 200K datasets. For the MS MARCO 100K and NQ320K datasets, we randomly sample 2K, 4K, 6K, and
8K queries.
Based on Figure 3, we observe the following: (i) On multi-graded relevance datasets, ListGR outperforms

NCI, which suggests that ListGR is capable of modeling the relevance of docid lists using limited information.
(ii) Similarly, on binary relevance datasets, ListGR achieves better performance than NCI, indicating that the
relevance calibration stage can further enhance the model’s ability to recognize the relevance order of docids
within the list, even under the pointwise training objective. (iii) ListGR exhibits superior performance compared to
a strong BM25 baseline on most datasets. For example, on the ClueWeb 200K dataset, ListGR achieves comparable
performance with 58 queries in terms of nDCG@20, while on the MS MARCO 100K dataset, ListGR performs
well with only 8% queries, i.e., 7.8K queries in terms of MRR@20.

5.4 Analysis of the relevance grades

To answer RQ4, we conduct an analysis by controlling the number of relevance grades employed in the listwise
loss during the training phase. This investigation assesses the inluence of diferent numbers of relevance grades
on the performance of ListGR.

Speciically, we conduct experiments on the ClueWeb 200K dataset using three, two, and one relevance grades
in Eq. (17), respectively. For the case of using two relevance grades, we further divide it into three scenarios:
using 2- and 3-grades, using 1- and 3-grades, and using 1- and 2-grades for training. Using only one relevance
grade data is equivalent to training with MLE alone (Eq. (5)), which has the same efect as ListGRRetrain. During
testing, we uniformly use the original testing set consistently across all the aforementioned scenarios.
Based on Figure 4, we observe the following: (i) On the same dataset, increasing the number of relevance

grades used in the listwise loss (Eq. (17)) during the training stage leads to better performance. For example, using
three relevance grades (blue bar) yields a higher nDCG@20 value than using two (green bars) or one (orange bar)
relevance grades only. This could be because providing more relevance labels allows the model to learn more
comprehensive and ine-grained diferences in relevance. (ii) Among the scenarios using two relevance levels,
incorporating 3-graded data results in better performance. For instance, both scenarios using 2- and 3-grades, and
using 1- and 3-grades have higher nDCG@20 values than the scenario using 1- and 2-grades. This suggests that
docids with higher relevance grades may carry more importance in the list, and learning these docids contributes
to better docid list generation.
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Fig. 4. During the training stage, diferent numbers of relevance grades in the ClueWeb 200K dataset are used in the listwise
loss (Eq. (17)). The x-axis represents the number of relevance grades used, indicated in parentheses as the combination of the
relevance grades or the corresponding model names.

5.5 Eficiency analysis

To answer RQ5, we analyze the eiciency using an NVIDIA A100-40GB GPU. It is important to note that
the inference speed of ListGR is inluenced by two factors: model capacity and beam size. In order to provide
comprehensive insights, following [87], we have included the latency and throughput measures for various
settings in Table 6. Speciically, latency refers to the time it takes for a retrieval model to process a query. And
throughput represents the speed at which a retrieval model can process a certain number of queries within
a second. Based on the ClueWeb 200K dataset, for latency, we randomly sampled multiple batches of queries,
measured the total time for inference, and then divided it by the number of queries to obtain latency. For
throughput, we also randomly sampled multiple batches of queries, measured the average number of queries
inferenced in 1 second, and obtained the throughput.

Table 6. Eficiency analysis. According to two important factors, namely model size and beam size, ListGR demonstrates
encouraging performance in terms of latency and throughput.

Model size Beam size Latency (ms) Throughput (queries/s)

Small 10 76.38 59.73
Base 10 112.56 54.28
Large 10 180.64 45.53

Small 100 218.25 7.81
Base 100 264.07 5.32
Large 100 357.81 4.16

In terms of latency and throughput, ListGR demonstrates promising performance for certain near-real-time
applications. The latency of ListGR is comparable to that of DSI [84] when using the same model size and beam
size, as both approaches employ beam search with transformer decoders. Similar phenomena is observed in [87].
BM25 has higher retrieval eiciency, but due to a lack of semantic matching, its retrieval performance is lower.
RepBERT has lower eiciency because it performs brute-force search based on dense vectors, making it more
time-consuming.
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Table 7. An example from the ClueWeb 200K dataset, given the query łhorse hooves,ž which has relevant docids with three
diferent grades, ListGR and NCI return the top-5 beams. We also present the corresponding topics and relevance labels of
these predicted docids.

ListGR NCI

#Rank Docid Topic Label Docid Topic Label

1 95573 Taking Care Of Horse’s Hooves 3 716310 Horse Care Products 1

2 582003 The Barefoot Horse 2 777805 Horse Information 1

3 729007 Steel Horseshoes 2 729007 Steel Horseshoes 2

4 729707 All About Horses 2 729707 All About Horses 2

5 716310 Horse Care Products 1 777711 Pap test 0

5.6 Case study

To answer RQ6, we perform case studies from two perspectives. First, we scrutinize the docid lists generated by
various methods for a given query. Second, we employ visualization techniques to assess the representations of
the query and its candidate documents.

Textual analysis.We take a sample from the test set of ClueWeb 200K and compare the top-5 docid lists predicted
by ListGR and NCI. Since both models use semantic structured numbers as docids, we also summarize the topics
of the corresponding documents for better understanding and analysis of the diferences; see Table 7. Given the
query łhorse hoovesž (QID: 51), docids predicted by ListGR align with their respective relevance labels. However,
NCI fails to predict any docids with a relevance level of 3 and struggles to distinguish the relative order of docids
with relevance levels 2 and 1. This indicates that the objective of modeling the docid list in ListGR contributes to
generating accurate and high-quality docid lists in GR.

Fig. 5. t-SNE plots of query and document representations for ListGR and NCI. The representations are the output of the
encoder of ListGR and NCI.

Visual analysis. To deepen our understanding of ListGR, we employ t-SNE [85] for visualizing the distributions
of query and document representations in the semantic space. Expanding on the previous query sample, we
create a t-SNE plot to compare the representations of the sampled query and its top-100 candidate documents
generated by the encoder output of ListGR and the best-performing GR baseline, NCI [87].
As shown in Figure 5, for ListGR, documents with higher relevance levels are closer to the query, while

irrelevant documents are located far away. In the case of NCI, 1-grade relevant documents are closest to the
query, while 2- and 3-grade relevant documents are much further away. This demonstrates that ListGR has the
ability to diferentiate the relevance of docids in a more ine-grained manner in the docid list.
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6 RELATED WORK

In this section, we review related work, including the traditional document retrieval, pre-trained language models,
and generative retrieval.

6.1 Traditional document retrieval

Document retrieval has traditionally followed an łindex-retrievež paradigm, where documents are indexed and
then retrieved based on a query. This paradigm has resulted in two main approaches to document retrieval,
namely sparse retrieval and dense retrieval.

6.1.1 Sparse retrieval. Sparse retrieval methods represent queries and documents using sparse vectors. These
methods rely on exact matching to compute similarity scores between queries and documents. In sparse retrieval,
the focus is on identifying the presence or absence of speciic query terms within documents. Two typical
methods in this category are BM25 [79] and the query likelihood model [50]. BM25 takes into account factors
such as document length, term frequency, and inverse document frequency to rank documents based on the
occurrence of query terms within each document. The query likelihood model [50], on the other hand, leverages
a generative model and estimates the probability of generating the query terms given a document. Documents
are then ranked based on their likelihood of generating the query. However, these approaches solely consider
statistical information and do not incorporate semantic information. To overcome this limitation, several studies
[5ś7, 20, 28, 104] have utilized word embeddings to reweight the importance of terms. For example, HDCT [21]
focuses on long documents. It irst utilizes BERT to generate contextual term representations, which are then
used to estimate passage-level term weights. Subsequently, these passage-level term weights are aggregated
using a weighted sum to obtain document-level term weights. DeepTR [104] constructs a feature vector for query
terms and employs a regression model to map these feature vectors to the ground truth weights of terms.

Limitations. Sparse retrieval methods ofer computational eiciency due to their reliance on exact matching.
They are particularly useful in large-scale retrieval scenarios where the number of documents is substantial.
However, these methods often lack the ability to capture semantic relationships and contextual information
between query terms and documents, which can limit their retrieval performance.

6.1.2 Dense retrieval. Unlike sparse retrieval methods that rely on exact matching, which gives rise to the
vocabulary mismatch problem [29, 102] dense retrieval focuses on capturing semantic relationships and contextual
information [35, 63, 92, 97, 99]. It represents both queries and documents as continuous, dense vectors in a high-
dimensional semantic space, to calculate similarity, i.e., using the dot product or cosine similarity as the relevance
score.

To enhance the eiciency of dense retrieval, approximate nearest neighbor search methods [4, 9] are employed.
These methods accelerate the retrieval process by inding approximate nearest neighbors instead of exact matches.
In addition, numerous pre-trained models and techniques have been leveraged to further improve the performance
of dense retrieval [1, 12, 33, 42, 53, 71]. For instance, DC-BERT [71] employs dual BERT encoders. In the lower
layers, an online BERT encoder is responsible for encoding the query once, while an oline BERT encoder
pre-encodes all the documents and stores their term representations in a cache. The obtained contextual term
representations are fed into high-layer transformer interaction, initialized by the last few layers of the pre-trained
BERT. These approaches take advantage of pre-trained models and advanced techniques to enhance the quality
of dense retrieval and can capture more nuanced and subtle semantic relationships between words and phrases
in queries and documents, which are often challenging for sparse retrieval methods. To enhance performance,
the ranking module is also often leverages [97] . In this work, we focus only on the łindex-retrievež stage,

ACM Trans. Inf. Syst.



22 • Tang et al.

leaving ranking enhancement for future work. To improve eiciency, approximate nearest neighbor algorithms
[30, 39, 93] and various sampling methods [35, 94] have been proposed.

Limitations. Despite the promising performance of the łindex-retrievež paradigm in dense retrieval, there are
limitations that need to be addressed: (i) During training, a query encoder and a document encoder are utilized
to generate representations for the query and the document, respectively. However, the independence of these
encoders restricts the depth of interactions between the representations, thus posing a risk of missing information.
Furthermore, the discrete modules in the system cannot be optimized in an end-to-end manner, resulting in
sub-optimal performance. (ii) During inference, the query is required to search for relevant documents across
the entire corpus. Although eiciency-enhancing strategies are available, such as approximate nearest neighbor
search, these methods may sacriice some semantic information in the process. These limitations highlight the
need for further advancements to explore more eicient methods that can retain important semantic information
during the retrieval process.

6.2 Pre-trained language models

Pre-trained models have revolutionized natural language processing tasks by leveraging large-scale unsupervised
training on vast amounts of text data, with pre-training and ine-tuning techniques [1, 3, 24, 37, 43, 44, 49, 56, 88, 89].
Usually, these models are trained to learn contextualized representations of words, sentences, or documents,
which capture rich semantic and syntactic information. Pre-trained models can be broadly classiied into two
categories, namely discriminative models and generative models.

6.2.1 Discriminative pre-trained models. Discriminative pre-trained models are primarily designed for tasks
that involve classiication, regression, or any other form of prediction. Examples of discriminative models include
BERT [23], RoBERTa [61], and SpanBERT [40]. Further, they are widely used in IR, for example, BERT is used to
re-weight term weights [20, 21, 104] in spare retrieval. Furthermore, dual BERT architectures are used to learn
dense query and document representations to support ine-grained semantic interaction [1, 33, 42, 53, 71] in
dense retrieval. To bridge the gap between general pre-trained language models and downstream retrieval tasks,
some studies [54, 66ś68, 92] have proposed specialized pre-training tasks for the retrieval.

6.2.2 Generative pre-trained models. In addition to discriminative pre-trained models, there has been a
growing focus on generative pre-trained models and techniques [2, 36, 47, 60, 77, 100, 101] for text generation.
Generative models typically use autoregressive modeling techniques, such as language modeling, where they
predict the next word or token in a sequence based on the previous context. Examples of generative models
include GPT [74], BART [55], T5 [77]. They have also been researched and applied in IR, for example, T5 is utilized
to generate queries for a document. These synthetic queries are then appended to the original documents, creating
an łexpanded documentž to enhance document retrieval [73]. And in [72], given a document, the conditional
likelihood of generating queries using GPT serves as the relevance score, which is used for ranking. And dos
Santos et al. [25] propose that, given a query and document, T5 concatenates them as input and produces either
a łTruež or łFalsež token as output; if the query is relevant to the document, it outputs łTruež and proceeds to
calculate the generation probability as the relevance score; if the query is irrelevant, it outputs łFalsež.

Limitations. While these explorations with generative models have shown some improvements in information
retrieval, some work still revolve around matching queries with documents. This method faces limitations when
it comes to dealing with a substantial volume of documents, and it incurs a high computational burden.

6.3 Generative retrieval

In order to further develop the capabilities of generative models, a new retrieval paradigm based on generative
models has been proposed, called generative retrieval (GR) [69]. GR aims to directly generate relevant docids for
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a qiven query. GR methods parameterize the corpus information, by replacing the traditional external index by a
training process that learns the mapping from documents to their corresponding document identiiers (docids).
Building upon this framework, researchers have proposed various approaches [10, 14, 15, 22, 52, 57, 78, 82, 84, 87,
96]. GR needs to learn a Seq2Seq model that address two key tasks simultaneously, namely indexing and retrieval.

6.3.1 Indexing task. In GR this task is aimed at establishing associations between documents and docids. For
the document identiiers, in addition to the two primary approaches described in Section 2 ś arbitrary unique
integers and structured semantic numbers ś, there are other types of identiiers. Document titles have garnered
considerable attention as they possess inherent semantic relevance [15]. However, methods that use document
titles heavily rely on the availability of speciic document metadata, limiting their applicability. To address this
limitation, some approaches have explored using all n-grams within a passage as its docid [10]. Moreover, the
utilization of pseudo-queries generated from the documents as docids has shown signiicant improvements in
retrieval performance [83]. This is because such docids can represent key information about the documents to
some extent. Ren et al. [78] leverage tokenized URLs as docids, which may contain key phrases of documents. To
provide a more comprehensive representation of the document’s information, Li et al. [57] use multiple docids to
represent a single document.

To encode the entire corpus, existing approaches primarily employ a Seq2Seq framework, where the original
document is taken as input, and the corresponding docid is generated as the output. In this way, the index is
embedded within the model parameters, and indexing becomes an integral part of the model training process.
Building on [84], we adopt a straightforward input-to-target approach, explicitly associating document tokens
with their corresponding docids.

6.3.2 Retrieval task. In GR this task focuses onmapping queries to relevant docids. Current GRmodels typically
employ a teacher forcing approach [34, 58, 90], maximizing the likelihood of the output sequence conditioned on
the input query. If a query has multiple relevant docids, it learns multiple query-docid pairs.

Building upon this blueprint, the irst exploration of the GR paradigm was undertaken by GENRE [22]. GENRE
utilized the unique titles of Wikipedia articles as document identiiers and employed the BART model [55]
to directly generate a list of relevant article titles for a given query using constrained beam search, with a
preix tree of all article titles. This method surpassed some traditional pipelined approaches across various tasks
based on Wikipedia. Subsequent research eforts [10, 15, 84, 87, 105] have continued to investigate and enhance
the GR paradigm. For example, Zeng et al. [96] design a multi-stage training strategy to generalize GR from
moderate-scale datasets [46] to large-scale datasets [70].

Advantages. The GR paradigm ofers several advantages: (i) It enables end-to-end optimization, allowing the
model to be trained towards the global objective. This means that the entire retrieval process, including both
document representation and ranking, can be optimized jointly. (ii) During inference, given a query, the generative
model generates docids based on a small-sized vocabulary with beam search. This approach improves retrieval
eiciency by eliminating the need for a heavy traditional index, where all documents in the corpus need to be
matched against the query for dense retrieval methods.

Limitations. There are several limitations to the GR paradigm. For example, existing work optimizes the model
with query-docid pairs by straightforward MLE, which only supports inding the most relevant docids. For queries
with multiple relevant docids with multiple relevance grades, the relative order of these relevant docids in the
ranked list is randomized, resulting in sub-optimal overall relevance of the ranked list. In this work, we optimize
the ranked docid list in a listwise manner and calibrate the generation probabilities of docids within the ranked
docid list generated by a beam search-based strategy. To the best of our knowledge, this work is the irst attempt
to perform listwise optimization in GR.
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7 CONCLUSION AND FUTURE WORK

In this paper, to better align with practical retrieval needs of generating a ranked list of results in response to
a query, we propose to directly model ranked docid lists in generative retrieval, so that docid lists instead of
invididual docids are used as instances in learning. Inspired by position-aware ListMLE in LTR, and considering
the characteristics of GR, we maximize the �-th conditional likelihood of a Plackett-Luce model given the top
� − 1 docids. Furthermore, to address the issue of beam search decoding in GR, we design relevance calibration to
optimize the order of docids in the list. By conducting comprehensive experiments, we have substantiated that
our approach exhibits superior efectiveness compared to existing GR methods.

ListGR has several limitations that give rise to interesting lines of future work:

(i) This work represents our initial exploration of listwise GR, and there are many other listwise approaches
[11, 91] in the LTR literature. In the future, we will continue to explore and optimize this work frommultiple
perspectives. For example, we will investigate how to design position weights in the loss function from a
theoretical perspective to make it more suitable for speciic use cases. Additionally, we may generate the
entire list using a single beam instead of multiple beams, in order to alleviate the impact of beam search
decoding on performance.

(ii) In this study, we did not extensively address the design of docids. It is worth noting that the choice of docids
can signiicantly impact both the learning process and retrieval efectiveness. Similar to most existing GR
approaches, we assumed that docids are unrelated to the retrieval model and did not optimize them. It is
desirable to incorporate the generation and optimization of docids into the model optimization process,
allowing for joint learning of docids that are well-suited for GR.

(iii) The paper emphasizes modeling relevance at the list level but acknowledges that relevance should not be
the sole focus [81]. LM-based search systems prioritize technology over user-centric aspects, necessitating
further development in user interaction and personalization modules. Addressing bias and ensuring control-
lable and trustworthy search systems are also important topics, along with traceability and interpretability
of retrieval structures.

REPRODUCIBILITY

To facilitate reproducibility in this paper, we have only used open datasets. Detailed experimental results and
settings are available at https://github.com/lightningtyb/ListGR.
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