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Abstract
Large language models (LLMs) have shown success in knowledge-
intensive tasks, including closed-book question answering and
entity linking. However, their susceptibility to hallucination un-
dermines their reliability. Retrieval-augmented generation (RAG)
partially addresses this issue by combining a retriever to locate rel-
evant documents and a generator to produce responses grounded
in the retrieved evidence. Despite its advantages, RAG faces chal-
lenges: (i) the structural gap between traditional dense retrievers
and autoregressive generators, and (ii) limited generation perfor-
mance due to insufficient contextual guidance returned by the re-
triever. To tackle these limitations, we propose MINT, a framework
that enhances RAG by co-training Retrieval-augMented generatIon
and geNeration-augmented reTrieval (GAR). MINT (i) bridges the
gap between the retriever and generator using a unified encoder-
decoder structure, (ii) incorporates an iterative co-training strategy
between RAG and GAR, enabling mutual enhancement through
pseudo-samples generation, and (iii) introduces three heuristic in-
ference strategies to generate relevant document identifiers and
answers. We conduct an empirical study on the KILT benchmark,
and MINT is found to yield significant improvements in both re-
trieval and generation tasks compared with prevailing baselines.
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1 Introduction
Large language models (LLMs) have demonstrated strong capa-
bilities across a wide range of natural language processing (NLP)
tasks [1, 21, 28, 42, 46, 59, 76, 77], including knowledge-intensive
tasks (KILT) [41], such as closed-book question answering and fact
verification [23, 60, 66]. Despite these successes, LLMs often suffer
from hallucination [2, 67], resulting in erroneous or misleading out-
puts. This issue can significantly undermine the reliability of LLMs
on KILT tasks, where accurate knowledge grounding is critical. A
common approach to mitigating hallucination in LLMs is retrieval-
augmented generation (RAG) [17, 19, 41]. As shown in Figure 1(a),
RAG employs a two-step process: a retriever first identifies relevant
documents from a corpus, and a generator then synthesizes the final
response based on the retrieved evidence. By grounding generation
in retrieved documents, RAG can improve factual consistency and
reduce hallucinations, using explicit external evidence to guide the
generative process [39, 68].
Research challenges.While RAG has achieved notable improve-
ments, it still faces two key limitations: (i) RAG systems usually
rely on dense retrievers, which build a corpus index and perform
query-document matching. We argue that the discriminative re-
triever introduces a gap between the retriever and the generator. That
is, the dense retriever operates on vector similarity matching, while
the generator produces text in an autoregressive manner, leading
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to suboptimal collaboration [9]. To alleviate this gap, prior work
has explored unifying retrieval and generation with generative re-
trieval (GR) [36, 58]. GR encodes the corpus as model parameters
based on an encoder-decoder architecture, allowing the model to
directly generate document identifiers (docids) autoregressively.
For example, as shown in Figure 1(c), UniGen [73] uses shared en-
coders for both retrieval and generation, with decoders designed
to output relevant docids and answers. However, it lacks explicit
interaction between the two decoders, limiting performance. Ad-
ditionally, CorpusLM [29] decouples the two tasks into sequential
decoding steps but suffer from inconsistencies between training
and inference, leading to suboptimal results.

(ii) Another limitation in RAG is that the quality of retrieval may
impact the generation outcome. If the retriever fails to retrieve rel-
evant documents, the generator’s performance suffers, as it relies
on the evidence provided by the retriever [9, 72]. While the gener-
ator in RAG benefits from both the query and retrieved evidence,
the retriever typically only has access to the query, making it rela-
tively weaker. To alleviate this, some work has explored generation-
augmented retrieval (GAR) [34], reversing the RAG process by first
using a generator to produce pseudo-answers that guide the re-
triever, as shown in Figure 1(b). This approach helps the retriever
better identify relevant documents by narrowing the query’s scope.
However, since the GAR generator only uses query information, it
remains less robust, limiting its effectiveness.
Approach. To overcome these limitations, we propose MINT, a
framework designed to enhance RAG through co-training of Retrie-
val-augMented generatIon and geNeration-augmented reTrieval.
MINT consists of three core innovations: (i) Unified structure: We
bridge the gap between the retriever and generator by unifying
their structures. Unlike previous work [29, 73], MINT ensures con-
sistent training and inference with parameter sharing across both
components. (ii) Iterative co-training: Inspired by knowledge distil-
lation [8, 14], we improve the performance of the weaker module
(student) in RAG by using the stronger module (teacher) in GAR
to generate high-quality pseudo-samples, and vice versa. These
samples supervise the student’s training, allowing it to benefit from
the teacher’s knowledge. We achieve this by iteratively co-training
RAG and GAR. (iii) Flexible inference strategies: We explore three
heuristic inference strategies to achieve the final results: using RAG
only, using GAR only, and using RAG and GAR simultaneously.
Contributions.We conduct an empirical study on the widely-used
KILT benchmark [41] with two variants of backbone models, i.e., T5
[45] and Llama2 [61]. Experimental results show that the proposed
MINT framework is able to achieve significant improvements in
both retrieval and generation tasks. For example, our method based
on T5 achieves a 15.4% relative improvement in terms of EM on
the NQ dataset over the state-of-the-art baseline CorpusLM (T5),
under the closed-book setting.

2 Preliminaries
We briefly introduce generative retrieval, and describe and analyze
the fundamental mechanisms underlying RAG and GAR.
Generative retrieval. Generative retrieval (GR) uses differentiable
search indexes to directly generate relevant docids in response to a
query based on auto-regressive generative models. GR targets two
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Figure 1: Three combinations of retrievers and generators:
(a) Retrieval-augmented generation (RAG): Document re-
trieval is performed first, followed by answer generation.
(b) Generation-augmented retrieval (GAR): Answer genera-
tion is performed first, followed by document retrieval. (c)
Retrieval-augmented parallel generation (RPG): Document
retrieval and answer generation are performed simultane-
ously with a shared query encoder.

key tasks [58]: (i) indexing: memorizing corpus information by asso-
ciating the content of each documentwith its docid; and (ii) retrieval:
assessing relevance by learning a mapping from queries to their
relevant documents. Formally, given a corpus D = {𝑑1, . . . , 𝑑 |D | },
each document 𝑑𝑖 has a corresponding docid 𝑖𝑑𝑖 . Let ID denote
all the docids of D. Given a query set Q = {𝑞1, . . . , 𝑞 | Q | }, its rel-
evant docid set is IQ . The indexing and retrieval operations are
typically learned in a multi-task setup and optimized via maximum
likelihood estimation (MLE) [40]:

LGR (Q,ID ,D;𝜃 ) = Lindexing (D,ID ;𝜃 ) + Lretrieval (Q,IQ ;𝜃 ), (1)

where 𝜃 represents the GR model parameters, and the two terms
Lindexing (D,ID ;𝜃 ) and Lretrieval (Q,IQ ;𝜃 ) are defined as:

Lindexing (D,ID ;𝜃 ) = −
∑︁

𝑑𝑖 ∈D

∑︁
𝑖𝑑𝑖 ∈ID

log 𝑃𝜃 (𝑖𝑑𝑖 | 𝑑𝑖 ), (2)

Lretrieval (Q,IQ ;𝜃 ) = −
∑︁
𝑞𝑖 ∈Q

∑︁
𝑖𝑑𝑖 ∈IQ

log 𝑃𝜃 (𝑖𝑑𝑖 | 𝑞𝑖 ) . (3)

Through GR, relevant documents can be retrieved all within a
generative model, facilitating joint learning with answer generation
tasks in RAG and GAR.
Retrieval-augmented generation.As shown in Figure 2 (a), given
a query, the retriever first retrieves relevant documents by gener-
ating a ranked docid list. Then these docids are mapped to corre-
sponding documents. These documents subsequently serve as the
evidence to aid the generator in producing high-quality answers.
The warm-up of RAG involves two basic tasks using labeled data
and several auxiliary tasks using LLM-generated data. To equip the
model with both retrieval and generation capabilities simultane-
ously, the parameters are shared between them.
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Figure 2: Comparison between RAG (a) and GAR (b), where the evidence-supported answer generator in RAG uses information
retrieved by the document retriever to produce answers, and the answer-oriented document retriever uses the answers generated
by the answer generator to retrieve documents.

Basic tasks. The retriever is trained based on labeled query-
docid pairs and document-docid pairs via Eq. (1). For the gener-
ator, given Q with IQ and the corresponding answer set A =

{𝑎1, . . . , 𝑎 |A | }, where 𝑎𝑖 is the answer of 𝑞𝑖 ∈ Q, the training ob-
jective LG

RAG (Q,A,ID ,D; 𝛽) with MLE is formalized as:

−
∑︁

𝑞𝑖 ∈Q,𝑎𝑖 ∈A,𝑖𝑑𝑖 ∈ID ,𝑑𝑖 ∈D
log 𝑃𝛽 (𝑎𝑖 | 𝑞𝑖 , 𝑑𝑖 , 𝑖𝑑𝑖 ; 𝛽), (4)

where 𝛽 denotes the parameters of the evidence-supported answer
generator. Here, we develop a unified language model for retrieval
and generation in RAG, so 𝛽 and 𝜃 of the GR model are shared.

Auxiliary tasks. For the retriever, to augment the docid un-
derstanding by pre-trained language models, we introduce two
unsupervised docid understanding tasks: (i) generating a ranked
docid list based on a pseudo-query to improve ranking performance;
and (ii) predicting a ranked docid list related to a given docid to cap-
ture document-level relevance [29]. For the generator, to enhance
pre-trained language models’ capability to integrate supporting
knowledge, we use pseudo-training triplets (pseudo-query, query
context, answer) to generate answers from pseudo-queries and
query contexts. Pseudo-queries and pseudo-training triplets are
generated using the Llama2-7B model [61] with specific prompts.
For pseudo-queries, the prompt is:
“Generate five pseudo queries for the following document.
The queries should be relevant and diverse, reflecting
the key points and topics discussed: {d}.”

For the evidence-supported question generator, the prompt is:
“Given the document and its title, generate five
alternative titles for the document. Ensure the new
titles are relevant to the document’s content and
different from the provided title. The document is:
{d}. The title is:{title}.”

Pseudo-docids are formed by concatenating the titles of documents
and their respective multiple sections. All auxiliary tasks are for-
mulated as seq2seq generative tasks.

Warm-up. The warm-up of RAG aims to optimize objectives via
a combined loss function with the above basic and auxiliary tasks:

LRAG (Q,A,ID ,D;𝜃 ) =𝜆1LGR + 𝜆2LG
RAG + 𝜆3LAUX

RAG , (5)

where LAUX
RAG is the loss function for the auxiliary tasks. 𝜆1, 𝜆2 and

𝜆3 are weighting coefficients used to balance these tasks.
Generation-augmented retrieval. As depicted in Figure 2(b),
given a query, the generator first produces answers and then the
retriever retrieves related documents using the query and the gener-
ate answers. This process is akin to navigating a maze game, where
the initial guess guides subsequent exploration [37]. The basic and
auxiliary tasks for initializing GAR are as follows.

Basic tasks. For the generator, given a query 𝑞𝑖 ∈ Q, the objec-
tive is to maximize the likelihood of generating the target answer,
defined as:

LG
GAR (Q,A;𝜓 ) = −

∑︁
𝑞𝑖 ∈Q,𝑎𝑖 ∈A

log 𝑃𝜓 (𝑎𝑖 | 𝑞𝑖 ;𝜓 ), (6)

where𝜓 represents the model parameters of GAR. For the retriever,
given a query𝑞𝑖 ∈ Q and corresponding answer𝑎𝑖 the inputs, it gen-
erates relevant docids. The learning objective LR

GAR (𝑄,ID ,A;𝜓 )
is formalized as:

−
∑︁

𝑞𝑖 ∈Q,𝑖𝑑𝑖 ∈ID ,𝑎𝑖 ∈A
log 𝑃𝜓 (𝑖𝑑𝑖 | 𝑞𝑖 , 𝑎𝑖 ;𝜓 ), (7)

where the generator and the retriever in GAR share parameters𝜓 .
Auxiliary tasks. For the generator, we use pseudo-training

pairs (pseudo-query, pseudo-answer) to predict answers for queries.
For the retriever, the unsupervised docid understanding task is to
generate a ranked docid list based on the pseudo-query and pseudo-
answer. Similar to RAG, the pseudo-data is generated using the
Llama2-7B model [61] with the specific prompt:
“Given the document, generate a relevant query and
provide an answer based on the document’s content.
The document is: {d}.”
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Table 1: Comparison of warmed-up RAG and GAR under the
retrieval and RAG settings.

Method Retrieval RAG setting

RAG 71.32 90.15
GAR 72.57 87.47

The loss function of the auxiliary tasks is represented by LAUX
GAR .

Warm-up. Similar to RAG, the training objective of GAR is
defined as:

LGAR (Q,A,ID ,D;𝜓 ) = 𝜆4LG
GAR + 𝜆5LR

GAR + 𝜆6LAUX
GAR , (8)

where 𝜆4, 𝜆5 and 𝜆6 are hyperparameters, which are used to weight
each module.
Discussion.We warm up both RAG and GAR as described above
and then evaluate their retrieval and answer generation perfor-
mance. We conduct a comparison on the FEV dataset under the
retrieval and RAG setting, with R-precision and accuracy as the
metrics, respectively. Detailed experimental settings are provided
in Section 4. As shown in Table 1, each approach exhibits distinct
strengths. (i) For RAG, the performance of the answer generation is
better than that of GAR under the RAG setting, validating that RAG
has a stronger ability of evidence-supporting answer generation.
(ii) For GAR, the retrieval performance is better than RAG, while
the answer generation performance is weaker than RAG. Therefore,
GAR tends to have a stronger ability for retrieval. Can we develop
a novel framework that harnesses the diverse capabilities of RAG
and GAR and uses their respective strengths to enhance the overall
performance of retrieval and generation?

3 Methodology
In this section, we introduce the co-training process of RAG and
GAR as shown in Figure 3. The key idea is that stronger modules
can generate high-quality pseudo-samples to teach and supervise
weaker modules [14], improving their performance iteratively. The
process involves three key steps: (i) pseudo-sample generation,
(ii) confidence-based sample filtering, and (iii) iterative co-training.
Then, we introduce the inference process.
Pseudo-samples generation. As described in Section 2, we warm
up RAG and GAR using their respective basic and auxiliary tasks.
The model parameters after warm-up for RAG and GAR are denoted
as 𝜃0 and 𝜓0, respectively. Based on the initialized 𝜃0 and 𝜓0, we
randomly select𝑀 documents, denoted as 𝐷− , from unlabeled data
to construct pseudo-data for subsequent co-training. Inspired by
[7], we use a leading passage and a leading sentence from these
documents as pseudo-queries, allowing RAG and GAR to gener-
ate relevant docids and answers. The generated pseudo-samples,
i.e., triplets (pseudo-query, docids, answers), are denoted as 𝐷0

𝑅𝐴𝐺
.

Similarly, GAR-generated samples are denoted as 𝐷0
𝐺𝐴𝑅

.
Confidence-based sample filtering. The generated pseudo-sam-
ples might suffers from noise introduced by erroneous predictions,
which can degrade model performance. To address this, we priori-
tize high-confidence samples, inspired by the principle that reliable
data leads to better training outcomes [48]. We apply a confidence

𝐷!"#$ 𝐷#"!$

𝒕-th iteration

Pseudo-samples generation

𝐷%

RAG 𝜃!"# GAR 𝜓!"#

RAG 𝜃! GAR 𝜓!

Eq.(5) Eq.(8)

Iterative co-training

Exchanging 
samples

Confidence-based sample filtering

RAG 𝜃$ GAR 𝜓$

Warm-up training

𝐷!"#$ 𝐷#"!$

… …

Figure 3: The co-training process of RAG and GAR in the 𝑡-th
iteration.

interval to filter the data based on their confidence scores. By nor-
malizing these scores and applying a confidence interval based
on the model’s behavior on ground-truth data, the method filters
out low-confidence, noisy samples, retaining only reliable ones for
training. This process is iteratively refined to enhance the reliability
of the pseudo-samples. (i) For the aforementioned (pseudo-query,
docids, answers) triplet, we can obtain the conditional likelihood
probability scores of the model’s output during generation. For ex-
ample, in RAG, the retriever, given a query, outputs relevant docids
along with their corresponding probability scores. Similarly, the
generator, given a query and a docid with the corresponding docu-
ments as input, outputs an answer and its corresponding probability
score. We further normalize these probability scores by length and
take their absolute values as their respective confidence scores [38].
(ii) Regarding the confidence interval, considering the reliability of
existing labeled data, we set the interval based on the information
from the labeled data. We first calculate the probability scores of the
model generating ground-truth outputs given the corresponding
inputs. Next, we normalize these probability scores by length and
take their absolute values. Finally, we use the maximum and mini-
mum of these values as the boundaries of the confidence interval.
(iii) We retain only the data pairs with confidence scores within
this interval, denoting the filtered pseudo-relevant data as 𝐷0

𝑅𝐴𝐺

and 𝐷0
𝐺𝐴𝑅

. Similarly, based on the parameters 𝜃𝑡 and𝜓𝑡 after the
𝑡-th round, the filtered data pairs generated by RAG and GAR are
denoted as 𝐷𝑡

𝑅𝐴𝐺
and 𝐷𝑡

𝐺𝐴𝑅
, respectively.

Iterative co-training. In each iteration, the co-training algorithm
uses filtered generated pseudo-samples with high confidence scores
from RAG or GAR, respectively, to form an auto-labeled dataset.
The other component is then updated with the exchanged auto-
labeled dataset. (i) For the 1-st round of co-training, based on the
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initialized 𝜃0 and𝜓0, we exchange the filtered pseudo data for train-
ing both components: training 𝜃0 (RAG) with 𝐷0

𝐺𝐴𝑅
via Eq. (5) and

𝜓0 (GAR) with 𝐷0
𝑅𝐴𝐺

via Eq. (8). Subsequently, the model parame-
ters are updated from 𝜃0 to 𝜃1 and from𝜓0 to𝜓1, followed by new
pseudo-samples generation for subsequent iterations. (ii) For the
𝑡-th (𝑡 ≥ 1) round, based on 𝜃𝑡−1, 𝜓𝑡−1, the filtered pseudo-data
𝐷𝑡−1
𝑅𝐴𝐺

and 𝐷𝑡−1
𝐺𝐴𝑅

, we train 𝜃𝑡−1 (RAG) with 𝐷𝑡−1
𝐺𝐴𝑅

using Eq. (5),
and𝜓𝑡−1 (GAR) with 𝐷𝑡−1

𝑅𝐴𝐺
using Eq. (8). And the parameters are

updated from 𝜃𝑡−1 to 𝜃𝑡 and from𝜓𝑡−1 to𝜓𝑡 , respectively, followed
by new pseudo-samples generation obtaining 𝐷𝑡

𝑅𝐴𝐺
and 𝐷𝑡

𝐺𝐴𝑅
for

the next iteration. (iii) After enough iterations with the properly
selected unlabeled data, the performance of RAG and GAR would
be stable generally.
Inference. After iterative co-training optimization, we explore
three inference mechanisms:
• Using RAG only: RAG’s evidence-supported answer generator
exhibits stronger knowledge integration and generation capa-
bilities than GAR. Hence, we use RAG for question answering
tasks.

• Using GAR only: GAR’s answer-oriented document retriever has
stronger retrieval capabilities than RAG. Hence, we use GAR for
retrieval tasks.

• Using RAG and GAR simultaneously: We first use the document
retriever and the evidence-supported answer generator in RAG
to generate the final answers. This is followed by the answer-
oriented document retriever in GAR to generate the relevant doc-
ids, as the final supporting documents. However, this approach
incurs higher inference costs than the first two, thus requiring
some trade-offs and future exploration.

We refer to these three types of mechanism as MINT𝑅 , MINT𝐺 and
MINT𝑅𝐺 , respectively.

4 Experimental Settings
Datasets.We conduct experiments on the KILT benchmark [41]
with 11 datasets spanning 5 knowledge-intensive natural language
tasks, to evaluate the retrieval and generation capabilities of MINT.
For detailed statistics, please refer to Table 2. We evaluate the
performance in retrieval, closed-book generation, and retrieval-
augmented generation tasks.
Evaluation metrics. To measure the retrieval performance, we
use R-precision following the official KILT evaluation metrics and
previous works [3, 7, 29]. To measure the generation performance,
we employ specific metrics tailored for each task akin to [41]: for
FEV, AY2, WnWi, WnCw, T-REx, and zsRE, we use Accuracy; For
NQ, TQA, and HoPo, we use Exact Match (EM); for ELI5 and WoW,
we use ROUGEL and F1, respectively. Specifically, R-precision is
calculated as the fraction of relevant contexts within the top-R
retrieved contexts, where R is the number of contexts in the prove-
nance set. Accuracy measures the percentage of correctly answered
samples out of the total number of samples. EM is a stricter version
of accuracy where all labels have to match exactly for the sample to
be correctly classified. And ROUGEL measures the longest match-
ing sequence of words between a generated text and a reference
text, emphasizing both precision and recall in terms of sequence

Table 2: Datasets statistics of the KILT benchmark. #Train
and #Dev denote the number of queries in the training set
and development set, respectively. And “-” denotes that the
task does not provide a ground-truth label in the training set.
(FC: Fact checking; EL: Entity linking; SF: Slot filling; ODQA:
Open domain question answering; D: Dialogue.)

Label Dataset Task #Train #Dev

FEV [60] FEVER FC 104,966 10,444
AY2 [16] AIDA CoNLL-YAGO EL 18,395 4,784
WnWi [15] WNED-WIKI EL - 3,396
WnCw [15] WNED-CWEB EL - 5,599
T-REx [15] T-REx SF 2,284,168 5,000
zsRE [25] Zero Shot RE SF 147,909 3,724
NQ [23] Natural Questions ODQA 87,372 2,837
HoPo [66] HotpotQA ODQA 88,869 5,600
TQA [20] TriviaQA ODQA 61,844 5,359
ELI5 [13] ELI5 ODQA 272,634 1,507
WoW [12] Wizard of Wikipedia D 63,734 3,054

length. Additionally, for a fair comparison with non-finetuned gen-
erators, we include the percentage of outputs containing gold an-
swers (“has_answer”).
Baselines for retrieval tasks. Following [7, 29], the baselines
for retrieval tasks include two main types: (i) Sparse & dense re-
trieval: (a) BM25 [47] is a typical strong sparse retrieval method
which represents the classical probabilistic retrieval model. (b) DPR
[22] is a BERT-based dual-encoder architecture to obtain the dense
vectors of the query and document. (c) MT-DPR [33] is a multi–
task variant of DPR. (d) RAG [27] combines dense retrieval with
Seq2Seq models tailored for knowledge-intensives tasks. (e) E5 [62]
is a strong text-embedding model, which uses weakly-supervised
contrastive pre-training. (f) SimLM [63] designs pre-training for
the dense passage retrieval. (ii) Generative retrieval: (a) T5 [44] is
a pre-trained text-to-text model for multitask learning based on
an encoder-decoder structure. (b) BART [26] designs several text
denoising pre-training tasks for text generation tasks. (c) SEAL [3]
takes all the n-grams in a document as its docids base on FM-in-
dex. (d) CorpusBrain [7] designs pre-training tasks tailored for the
KILT benchmark. (e) GenRet [49] learns to generate a string of
discrete numbers as the docids, specifically for the retrieval task.
(f) Llama2 [61] is an available open-sourced LLM. (g) UniGen [30]
optimizes the retrieval and QA with a shared encoder and two inde-
pendent decoders. (h) GCoQA [31] has a generative retriever firstly,
followed by a generator for QA. (i) CorpusLM (T5) [29] a unified
language model that uses an external corpus to tackle various based
on T5-Base. (j) CorpusLM (Llama2) [29] is based on Llama2-7b-Chat.
All retrieval models are fine-tuned with labeled data from KILT
datasets. While the DPR model undergoes fine-tuning on each spe-
cific dataset, other dense and GR models are multi-task fine-tuned
using labeled data from all datasets.
Baselines for downstream tasks. Following [29], two primary
streams are considered, including closed-book generation and re-
trieval-augmented generation. For closed-book generation, the base-
lines are: T5 [44], BART [26], Llama270B [61], UniGen [30], GCoQA
[31], CorpusLM(T) [29], CorpusLM(L) [29].
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For RAG, baselines are: (i) DPR+BART [41] uses DPR as the re-
triever and BART as the generator. (ii) RAG [27] is an end-to-end
retriever-generator model. (iii) MT-DPR+FID uses the multi-task
variant of DPR [33] as the dense retriever, and a fusion-in-decoder
model [18] as the generator. (iv) BM25+Llama2-70B uses BM25 as
the initial retriever and Llama2 as the generator. (v) E5+Llama2-13B&70B
[17] uses E5 as the retriever and Llama2 as the generator.
Implementation details.We use titles as docids, since the articles
in Wikipedia have unique high-quality titles. We use the T5-base
[45] (T5) and Llama2-7B-Chat [61] (Llama2) as our backbonemodels.
For T5-Base, the hidden size is 768, the feed-forward layer size
is 12, the number of self-attention heads is 12, and the number
of transformer layers is 12. For LLama2-7B-chat, it consists of 32
transformer layers with 4096 hidden embedding sizes.

In the warm-up phase, we first independently train each module
within each framework using the corresponding annotated data
and constructed data pairs. For the indexing task of GR, we use
Eq. 2 to learn document-docid pairs. It is learned together with the
retrieval task (Eq. 3) in a multi-task manner. During training, to
balance the importance between tasks, all 𝜆 series parameters, i.e.,
𝜆𝑖 (𝑖 = {1, 2, 3, 4, 5, 6}), are set to 1. For hyperparameters, we specify
the learning rate as 5e-5, label smoothing as 0.1, weight decay as
0.01, sequence length of documents as 512, maximum training steps
as 50K, and batch size as 80. And we specify𝑀 as 100K, considering
the training efficiency. For the retrieval tasks, the total iteration
number 𝑡 is set to 6, while for the generation tasks, 𝑡 is 7.

To improve the training efficiency of MINT (Llama2), we use
QLoRA [11] and DeepSpeed [25] technologies. We train MINT on
eight NVIDIA Tesla A100 80GB GPUs. During training, we use the
Adam optimizer with a linear warm-up over the first 10% steps.
During inference, we set the beam size to 50. We will open-source
the code and trained models upon publication.

5 Experimental Results
5.1 Retrieval performance
We conduct retrieval inference using the proposed three inference
mechanisms; see Table 3.
Comparison with sparse & dense baselines. (i) Although dense
retrievers like MT-DPR, E5, RAG, and SimLM show competitive
performance through multi-task fine-tuning, MINT outperforms
them by a significant margin on most datasets. For instance, on the
WnWi dataset, MINT𝑅𝐺 (T5) outperforms SimLM by 41.4% in terms
of R-precision. (ii) Joint training of the DPR model on multiple
datasets (MT-DPR) consistently yields better results than individual
dataset training, highlighting the effectiveness of joint training for
enhanced retrieval performance.
Comparison with GR baselines. (i) Generative retrievers gener-
ally perform better than dense retrievers, indicating the effective-
ness of generative models for knowledge-intensive tasks. (ii) Cor-
pusLM (T5) sometimes performs better than CorpusLM (LLama2),
possibly because T5’s pre-training corpus is based on Wikipedia,
allowing its knowledge to be effectively applied to these datasets.
(iii) Compared to most GR baselines, MINT𝑅𝐺 consistently achieves
superior performance. For example, on the HoPo dataset, MINT𝑅𝐺
(Llama2) performs better than the SOTA CorpusLM (Llama2) by

5% in terms of R-precision. (iv) MINT𝐺 and MINT𝑅𝐺 demonstrate
similar performance. This is likely because iterative co-training has
allowed the modules in GAR and RAG to complement each other,
resulting in similar generative effectiveness.

5.2 Generation performance
As shown in Table 4, we evaluate the generation performance in
both closed-book and open-retrieval (i.e., RAG) settings on the dev
set. For the closed-book setting, we conduct inference using the
evidence-supported answer generator of RAG without documents
as input, as well as using the answer generator of GAR. For the
RAG setting, we conduct inference using RAG to generate answers
with retrieved information.
Closed-book setting. (i) With the same backbone, MINT outper-
forms the current SOTA method CorpusLM. For example, on the
NQ dataset, MINT𝑅 (T5) improves by 15.4% over CorpusLM (T5),
and MINT𝑅 (Llama2) improves by 13.8% over CorpusLM (Llama2)
in terms of the EM metric. These results demonstrate the effec-
tiveness of our co-training approach. (ii) MINT shows a perfor-
mance improvement when the backbone is switched from T5 to
Llama2, highlighting the importance of the backbone in our ap-
proach. (iii) MINT𝑅 consistently outperforms MINT𝐺 , even though
both use a generator to produce answers without input documents.
This again highlights the stronger answer generation ability of RAG
compared to GAR. (iv) Further, MINT𝑅 (T5) outperforms GCoQA
by 21.4% on the NQ dataset in terms of the EM metric, validating
the effectiveness of the co-training between two components.
RAG setting. (i) Similarly, with the same backbone, MINT𝑅 consis-
tently outperforms the current SOTA method CorpusLM, demon-
strating the effectiveness of our approach. Specifically, on theWnWi
dataset, MINT𝑅 (T5) achieves a 5.7% improvement over CorpusLM
(T5) in terms of the accuracy metric. (ii) Additionally, MINT𝑅 (T5)
even performs better than the larger baseline E5+Llama-70B across
most datasets. MINT𝑅 (T5) outperforms GCoQA by 45.2% on the
zsRE dataset in terms of accuracy. These results confirm the effec-
tiveness of our collaborative co-training approach. (iii) Among the
two variants, the one using Llama2 as the backbone demonstrates
stronger performance, highlighting that larger model capacity en-
ables the parameterization of more knowledge.

5.3 Ablation studies
We conduct an ablation analysis using GAR inference for retrieval
tasks. We investigate the impact of co-training, auxiliary tasks
and warm-up training based on T5-base. The results are shown
in Table 5. (i) When co-training is not used (i.e., 2nd row), that
is, we only perform the warm-up training. We can observe that
there is a significant performance drop compared to MINT𝐺 . This
confirms that the collaboration between RAG and GAR enhances
both modules. (ii) When no auxiliary tasks are used for any modules
(i.e., 3rd row), and only annotated data is used for warm-up, there
is a noticeable decline in performance across the datasets. This
demonstrates the importance of the quality of the warm-up and
the effectiveness of the auxiliary tasks we designed. (iii) When
skipping the warm-up phase (i.e., 4th row), that is, RAG without
using Eq. 5 and GAR without using Eq. 5 for learning, we observe
a significant drop in retrieval performance. This indicates that the
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Table 3: R-Precision (%) for the retrieval task on the KILT dev set. † indicates results from [29]. And "-" indicates that the baseline
does not report data the specified metric, due to the lack of ground-truth labels in the training set. ∗ indicates statistically
significant improvements over all the baselines (𝑝 ≤ 0.05).

Methods FC Entity linking Slot filling Open domain QA Dial

FEV AY2 WnWi WnCw T-REx zsRE NQ HoPo TQA ELI5 WoW

Sparse & dense retrieval
BM25† 30.29 2.82 1.38 3.84 32.04 43.37 12.34 31.31 14.40 1.20 17.20
DPR† 59.10 79.51 - - 60.61 70.91 31.13 39.47 35.48 - 37.66
MT-DPR† 64.05 81.69 49.20 46.95 57.64 73.81 32.80 38.42 36.29 10.86 38.00
RAG† 66.04 76.40 48.28 46.01 53.57 67.97 38.25 34.61 41.38 10.70 38.04
E5† 68.52 79.72 50.47 48.10 54.48 70.01 39.40 37.35 42.62 11.02 39.16
SimLM† 68.06 80.11 51.98 49.54 55.42 72.11 38.58 36.11 41.80 10.36 38.31

Generative retrieval
T5† 71.63 86.71 67.34 62.20 64.87 78.51 38.69 38.09 45.73 10.35 42.51
BART† 69.90 87.43 67.22 60.71 61.57 76.13 39.84 38.44 47.26 10.09 40.19
SEAL† 70.55 82.05 57.09 58.70 55.91 74.89 39.67 40.54 44.16 9.32 41.59
CorpusBrain† 72.23 88.79 69.40 63.23 63.42 79.05 40.09 39.45 47.97 10.68 42.19
GenRet 72.45 88.92 69.57 63.56 63.77 79.52 40.25 39.78 48.21 10.67 42.26
Llama2† 74.39 85.53 66.55 61.45 66.12 77.90 40.59 40.37 48.43 10.66 42.69
UniGen 72.57 89.12 69.77 63.74 63.86 79.74 40.43 39.84 48.41 10.73 42.53
GCoQA 70.83 87.43 67.12 61.03 61.35 77.23 38.77 37.25 46.93 10.20 40.78
CorpusLM (T5)† 75.64 90.96 70.35 65.43 68.89 81.08 41.46 39.31 48.80 10.90 44.96
CorpusLM (Llama2)† 76.21 88.59 69.39 64.18 69.17 80.79 44.10 42.06 50.62 10.88 43.92

Co-training RAG and GAR (Ours)
MINT𝑅 (T5) 75.69 90.99 70.42 65.52 68.91 81.00 41.52 39.37 48.84 10.91 44.97
MINT𝐺 (T5) 78.84 92.24 73.47 67.83 70.03 83.24 43.89 42.01 50.13 10.93 45.73
MINT𝑅𝐺 (T5) 78.87 92.26∗ 73.51∗ 67.85∗ 70.08 83.27∗ 43.95 42.16 50.22 10.95 45.81∗

MINT𝑅 (Llama2) 76.51 88.84 69.85 64.82 69.25 81.32 44.78 42.76 51.21 10.90 43.98
MINT𝐺 (Llama2) 77.56 89.38 70.13 65.47 70.56 81.84 45.83 43.81 51.78 10.91 44.24
MINT𝑅𝐺 (Llama2) 79.13∗ 90.67 71.46 66.32 71.48∗ 82.47 46.52∗ 44.15∗ 52.81∗ 10.92 44.87

warm-up training is essential, as it enables the model to acquire
fundamental retrieval and generation capabilities, which are crucial
for supporting subsequent co-training. We also conduct an ablation
analysis using RAG inference for generation tasks. As shown in
Table 6, we observe the same trend as with GAR, which further
confirms the effectiveness of the proposed mechanisms.

5.4 Impact of the number of iterations
The number of co-training iterations is a crucial factor affecting
performance. Therefore, we evaluate the model’s R-precision of
the retrieval and accuracy of closed-book generation and RAG,
on the FEVER dataset across different iteration counts. For the re-
trieval, we use MINT𝐺 (T5); for the closed-book generation and
RAG, we use MINT𝑅 (T5). From Figure 4, we can observe the fol-
lowing: (i) Retrieval performance gradually improves from 1 to 6
iterations, reaching its peak at the 6-th iteration (the green triangle
in Figure 4). Beyond this point, performance gradually declines
with additional iterations. Similarly, we notice that in closed-book
generation and RAG settings, performance increases from 1 to 7
iterations and then gradually decreases. This indicates the necessity
and effectiveness of iterative training. (ii) Additionally, we observe
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Figure 4: Results of different numbers of the iterations under
the retrieval, closed-book generation and RAG settings, on
the FEVER dataset.

that when retrieval performance reaches its peak, closed-book gen-
eration and RAG performance have not yet reached their highest
values. This might be because the capabilities required for retrieval
and closed-book generation tasks are somewhat conflicting: re-
trieval demands a broader range of relevance, whereas closed-book
generation requires more fine-grained accuracy.
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Table 4: Generation performance on KILT dev set under closed-book and RAG setting. † indicates results from [29]. And "-"
indicates that the original work [29] does not report numbers for baselines under the specific metric. ∗ indicates statistically
significant improvements over all the baselines (𝑝 ≤ 0.05).

Methods FC Entity linking Slot filling Open domain QA Dial

FEV AY2 WnWi WnCw T-REx zsRE NQ HoPo TQA ELI5 WoW

Closed-book generation

T5† - 81.84 47.35 46.58 47.24 1.58 25.20 12.66 25.79 21.02 13.15
BART† 80.67 86.62 47.91 48.01 43.84 3.03 26.15 16.86 32.54 22.69 13.77
Llama2-70B† 33.60 39.80 42.80 39.20 28.50 11.30 19.60 13.90 67.40 23.00 13.30
UniGen 81.01 86.75 48.23 48.34 44.51 3.11 26.56 17.01 33.43 22.71 13.81
GCoQA 81.55 86.85 48.77 48.51 44.82 3.24 26.74 17.23 33.51 22.74 13.85
CorpusLM (T5)† 81.93 87.16 49.68 51.65 49.65 3.61 28.14 17.32 25.02 21.33 13.90
CorpusLM (Llama2)† 85.34 86.91 56.66 50.37 51.05 18.22 29.57 26.13 41.34 22.94 14.85

Co-training RAG and GAR (Ours)
MINT𝑅 (T5) 84.24 91.32∗ 53.57 54.41∗ 53.36 3.81 32.46 19.75 28.25 23.51 14.37
MINT𝐺 (T5) 82.95 88.19 50.97 52.68 50.68 3.74 29.17 18.35 26.05 22.35 14.01
MINT𝑅 (Llama2) 89.42∗ 90.14 58.93∗ 52.26 55.74∗ 20.31∗ 33.65∗ 28.59∗ 43.68 24.78∗ 15.84∗

MINT𝐺 (Llama2) 87.53 88.32 57.25 51.19 53.84 19.28 31.21 27.13 42.51 23.64 15.06

Retrieval-augmented generation

DPR+BART† 88.11 - 44.96 45.70 56.70 34.96 45.05 25.75 59.28 18.53 15.51
RAG† 87.70 77.40 49.00 46.70 61.48 47.42 48.78 27.68 61.73 16.11 13.28
MT-DPR+FID† 88.49 79.77 49.52 47.15 79.43 69.09 50.07 36.50 69.92 15.77 15.60
BM25+Llama2† 46.20 18.00 19.10 14.20 25.90 31.40 25.30 25.90 65.80 21.30 12.20
E5+Llama2-13B† 66.30 51.20 48.60 45.60 17.20 31.70 36.10 14.30 56.30 20.90 12.30
E5+Llama2-70B† 49.90 51.20 48.60 45.60 28.90 35.00 36.40 28.10 71.10 21.50 13.20
UniGen 88.23 78.24 49.32 46.81 61.52 47.51 48.84 28.42 62.32 18.42 13.31
GCoQA 88.94 86.79 49.67 48.94 63.67 49.69 50.67 30.56 64.84 20.46 15.89
CorpusLM (T5)† 89.81 87.09 50.02 49.77 80.68 70.34 53.39 40.96 70.94 22.13 16.65
CorpusLM (Llama2)† 90.22 85.03 56.54 50.32 81.57 72.79 55.38 42.23 72.43 23.46 16.96

Co-training RAG and GAR (Ours)
MINT𝑅 (T5) 90.15 89.53∗ 52.85 51.94 82.45 72.13 55.16 42.02 71.89 23.14 16.87
MINT𝑅 (Llama2) 92.84∗ 87.73 58.91∗ 53.82∗ 83.81∗ 74.88∗ 57.35∗ 44.87∗ 74.82∗ 25.19∗ 17.25∗

Table 5: Ablation studies on retrieval performance. The best results are in bold.

Methods FC Entity linking Slot filling Open domain QA Dial

FEV AY2 WnWi WnCw T-REx zsRE NQ HoPo TQA ELI5 WoW

MINT𝐺 (T5) 78.84 92.24 73.47 67.83 70.03 83.24 43.89 42.01 50.13 10.93 45.73
w/o co-training 72.57 87.84 68.42 61.46 61.63 78.93 39.14 37.84 47.14 10.25 41.57
w/o auxiliary 76.82 90.73 69.46 64.28 68.24 81.01 40.67 39.86 48.23 10.7 44.83
w/o warm-up 68.54 84.73 65.27 58.75 58.52 75.63 36.21 34.79 44.72 8.73 37.64

5.5 Inference efficiency
As shown in Table 7, we analyze the inference efficiency, consider-
ing model parameters, memory footprint and query latency. Among
them, query latency refers to the amount of time it takes for the
model to inference to a query. Here, for our method, we only con-
sider the RAG to conduct inference. MINT𝑅 (T5) significantly re-
duces the number of parameters and memory usage compared to
methods like RAG and MT-DPR+FID. Specifically, (i) MINT has
around 2.8 times fewer parameters than the RAG model, which

needs a substantially lower computational cost. (ii) In terms of the
memory footprint, MINT achieves 201.2-fold decrease compared
with MT-DPR+FID, mainly because the model only needs to store
document titles as docids instead of a large-scale dense document
index. However, CorpusLM requires storing document titles and
section titles as docids. (iii) In terms of query latency, CorpusLM
(T5) performs the best due to its continuous decoding strategy. The
query latency of our method is comparable to RAG and is also
acceptable. Overall, our method demonstrates advantages in terms
of reduced parameter size and memory footprint, ensuring efficient
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Table 6: Ablation studies on generation performance in RAG setting. The best results are in bold.

Methods FC Entity linking Slot filling Open domain QA Dial

FEV AY2 WnWi WnCw T-REx zsRE NQ HoPo TQA ELI5 WoW

MINT𝑅 (T5) 90.15 89.53 52.85 51.94 82.45 72.13 55.16 42.02 71.89 23.14 16.87
w/o co-training 88.97 86.96 49.73 49.13 79.67 69.87 52.84 49.67 69.73 22.01 16.23
w/o auxiliary 89.94 88.51 50.67 50.36 81.57 71.75 54.26 41.36 71.56 22.78 16.64
w/o warm-up 84.26 83.46 46.05 46.58 75.73 64.18 47.36 45.67 65.42 17.18 14.42

Table 7: Results about inference efficiency.

Method Parameters Storage Latency

RAG 626M 59.3G 106.7ms
MT-DPR+FID 440M 51.2G 160.9ms
CorpusLM (T5) 220M 426.1M 78.4ms
MINT𝑅 (T5) 220M 260.5M 103ms

resource utilization. Additionally, it maintains a moderate query la-
tency, striking a balance between performance and responsiveness.

6 Related Work
Generative retrieval. Key aspects [51, 55–57] of recent GR re-
search include: (i) Docid designs: GR approaches typically use fixed
docids during training, including number-based docids [4, 35, 58,
74, 75] and word-based docids like document titles [6, 7, 10, 24, 29],
n-grams [3, 5, 32], important word sets [71], pseudo-queries [50].
Some research designs learnable docids for the retrieval [49, 65, 69,
70], but these require more complex design. For the KILT bench-
mark, we use Wikipedia’s document titles as docids, since the doc-
uments have well-written unique titles. (ii) Training methods: The
widely used training strategy is jointly optimizing indexing and
retrieval tasks with maximum likelihood estimation [58]. Various
improvements [43, 50, 52–54, 64, 78] have since enhanced perfor-
mance. (iii) Inference strategies: Ensuring valid generated docids
involves three main approaches, including constrained beam search
[6, 7, 10, 49, 50] and FM-index based constrained decoding [3, 5, 65].
Retrieval-augmented generation. RAG is an advanced approach
that combines the strengths of IR and text generation. In RAG, a
retriever first searches for relevant documents or passages from a
large corpus based on a given query. The retrieved information is
then used to augment the context for a generator, which generates
more accurate and contextually relevant responses or answers. For
the mainstream methods, the retriever and reader modules are indi-
vidually trained, using dense retrieval models [41]. Recently, some
work has jointly trained these two modules, such as CorpusLM [29]
and UniGen [30].
Differences. (i) CorpusLM aims for end-to-end retrieval and an-
swer generation with a single model. Its training optimizes query-
docid and query-answer pairs jointly, while inference follows a
two-stage process: first generating the docid, linking it to the docu-
ment, and then generating the answer. This gap between training
and inference makes it difficult to align the intended behavior of
generating both docid and answer simultaneously. (ii) UniGen em-
ploys a shared encoder and two separate decoders for docid and

answer generation. The absence of explicit interaction between the
two decoders reduces the effectiveness of joint generation.

We agree that the two-stage process is intuitive. Building on this
idea, our approach ensures consistency between training and infer-
ence. Inspired by knowledge distillation [14], we use the stronger
module as a teacher to generate pseudo-samples, which provide
guidance and supervision to improve the weaker module.

7 Conclusion
This study proposes a novel cooperative framework to enhance
the specific answer generation and document retrieval abilities of
RAG and GAR, thereby improving the performance of retrieval,
closed-book generation, and RAG. The proposed method effectively
activates and utilizes intrinsic knowledge within RAG and GAR
through iterative co-training, exchanging high-confidence pseudo-
labeled samples. MINT is able to improve the retrieval and gener-
ation performance of RAG, while GAR can aid in understanding
RAG from another perspective.

Limitations include: (i) The selection of the confidence interval
relies on limited annotated data. The features contained in the
annotated data are not comprehensive. Therefore, the confidence
interval may not be fully suitable for all documents in the corpus.
(ii) Additionally, since our inference phase still requires two-stage
inference, there is room for improvement in inference speed.

For futurework, we are interested in combiningmodality-agnostic
data augmentation to make RAG and GAR co-training applicable
to other tasks. We will also investigate an adversarial retriever-
generator framework to boost RAG performance.
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