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Introduction

Access to information has never been easier, quicker, nor more fragile. The same
technologies that can instantly locate a single drop of information in the vast ocean
of human knowledge can also invent an answer, where none exists, just as quickly
[43, 46, 62]. As language models have grown to dominate both search and question
answering, the line between retrieving and generating information has quietly blurred
[45, 57,59, 93, 110, 130, 147]. What began as a way to find relevant information now
extends to producing entire explanations, stitched together from memory and retrieved
evidence [16, 45, 57]. This new generation of retrieval-augmented models makes it
quick and easy to answer even complex questions [45, 85, 130], yet that convenience
often hides a fragility [67, 87-89, 111]. They work best when the world looks like their
training data, and often falter when it does not.

Modern information retrieval systems increasingly follow a pipeline architecture,
where a first-stage retriever finds a small candidate set of relevant documents and a
reader or generator model produces an answer conditioned on the retrieved candidate
set [31, 50, 51]. The now ubiquitous transformer models dominate both stages of this
pipeline, with transformer encoders supporting semantic matching and scalable indexing
for the first stage, and decoder-based language models providing language understanding
and answer generation for the second stage [26, 44, 48, 50, 51, 86, 113, 147]. This shift
has practical consequences. What is retrieved and what the generator is tasked to do
with it are tightly coupled [42, 126]. Two primary requirements follow if such systems
are to perform reliably at scale. First,

generalizability: a retrieval model trained on one distribution of data must continue
to work on new distributions of data such as new datasets, domains, and languages
[20, 111, 144].

And second,

grounded answers: a generator model should base answers on the retrieved evidence,
and crucially, abstain from answering when evidence is missing [19, 79, 121, 133].

When retrieval and generation lose alignment, the boundary between fact and fabrication
starts to thin [67]. A retriever that overlooks key evidence leaves the generator to fill
in the gaps; a generator that overreaches beyond the retrieved evidence can produce
answers that seem plausible but are inaccurate. In low-stakes settings, this may pass
unnoticed, but in higher stakes settings (scientific, legal, medical, etc.) such errors can
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1. Introduction

have severe consequences [6, 88]. The challenge, then, is to build systems that remain
reliable when the data shifts, when the context is noisy, and when the correct response
is to say nothing at all.

This thesis studies those requirements together and focuses on practical interventions
that can be adopted. On the retrieval side, it studies how training data augmentation and
negative sampling strategies shape the behavior of dense retrievers under distribution
shift, and proposes methods that make them more stable across domains and languages
[87, 89]. On the generation side, it investigates how small, open-source language models
can be trained to answer queries based solely on retrieved evidence, and refuse to answer
when that evidence is insufficient [88, 133, 141]. Finally, it also emphasizes the acces-
sibility of language technology and introduces an accompanying open-source library,
Simple Transformers, that lowers the barrier to building, evaluating, and reproducing
transformer-based retrieval and question answering systems, enabling these methods to
be shared, tested, and extended by a wider community [28, 61, 90, 128].

1.1 Research Outline and Questions

Building on the motivations above, this section outlines the research directions and
questions that structure the thesis. Part I focuses on dense retrieval and the challenge of
maintaining performance under distribution shift. Part II turns to generation, studying
how small language models can be trained to ground answers in retrieved evidence
and refuse when evidence is insufficient. Part III complements these empirical studies
with a practical contribution: an open-source library that lowers the barrier to building,
evaluating, and reproducing transformer-based retrieval and question answering systems.

1.1.1 Robust retrieval under distribution shifts

In terms of effectinveness, dense retrievers based on the transformer architecture far
surpass traditional lexical retrieval techniques [50, 51, 131] when tested under in-
distribution settings, but its performance can degrade under domain, style, or language
shifts [111, 138, 144, 145]. Part I of the thesis focuses on two factors that influence this
behavior and determine how well dense retrievers generalize: (i) the choice of negative
examples during training, and (ii) the composition of the training data itself. Together,
these studies investigate how training-time design choices shape the robustness of dense
retrievers across domains and languages.

RQ 1 How do negative sampling strategies affect the generalization of dense retrievers
under distribution shift across domains and languages?

Chapter 2 investigates multiple negative sampling strategies in a multilingual set-
ting. The study compares lexical, iterative, and clustering-based methods across
in-distribution, out-of-distribution, and zero-shot conditions, and introduces iterative
clustered training (ICT), a method that periodically refreshes hard negatives from
semantically similar clusters. ICT achieves the most robust performance when test
distributions differ from training data and when applied to unseen languages.

2



1.1. Research Outline and Questions

RQ 2 Does training a dense passage retriever (DPR) model on data containing multiple
queries per passage improve the generalizability of the model?

Chapter 3 explores how training data composition influences dense retriever generaliza-
tion. Typical retrieval datasets pair each passage with a single query, which can narrow
what the model learns to represent. By generating datasets with multiple queries per
passage, this study shows that retrieval models learn richer representations and achieve
more stable performance under distribution and domain shifts.

1.1.2 Robust refusal and evidence-based answering

Better retrieval methods alone do not prevent ungrounded or overconfident answers.
In retrieval-augmented generation (RAG) systems, generators can produce plausible
but unsupported responses, or attempt to answer questions even when no relevant
evidence is available [43, 67, 79, 92]. This part of the thesis focuses on small (below
10B-parameter) instruction-tuned models, which are attractive for deployment due to
their efficiency and accessibility [113, 141]. A controlled evaluation across multiple
multi-hop question answering datasets reveals three recurring weaknesses at these scales:
(1) limited accuracy even with gold evidence, (ii) sharp accuracy degradation in the
presence of distractor documents, and (iii) unreliable refusal, with models frequently
answering despite explicit prompts to abstain. These observations motivate the need for
training objectives that explicitly teach models when to answer and when to refuse.

RQ 3 How can relevance-based rewards be used in reward shaping to train small
language models to answer based on retrieved evidence and to refuse when evidence is
insufficient?

Chapter 4 introduces reward shaping for robust refusal (RSRR), a reinforcement learn-
ing framework that augments the standard proximal policy optimization (PPO) fine-
tuning setup with relevance-based rewards [99, 148]. These rewards explicitly encourage
models to answer based on retrieved evidence and to refuse when evidence is insuffi-
cient. Across datasets containing distractor and unanswerable questions, RSRR yields
substantial improvements in correct refusals and robustness to irrelevant context while
maintaining accuracy when evidence is present.

Part II of the thesis investigates how relevance-based reward shaping can be used to
train small language models for robust refusal and reliable, evidence-based answering
in retrieval-augmented settings.

1.1.3 Accessibility and shared practice

Methods only matter if they can be used. Reproducibility and accessibility are essential
for sustained progress in transformer-based information retrieval and question answering.
Training and evaluating transformer models often requires substantial engineering effort,
inconsistent interfaces, and ad-hoc evaluation pipelines, which limit the broader adoption
and reuse of research outputs [18, 100]. This part of the thesis addresses these challenges
by introducing a unified, open-source framework, called Simple Transformers, that
standardizes transformer training, evaluation, and analysis across tasks.
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RQ 4 Can an open-source framework like Simple Transformers lower the technical
barriers to training and reproducing transformer-based retrieval and QA models?

Chapter 5 presents Simple Transformers, an open-source library that provides a con-
sistent interface for training and evaluating transformer models across tasks such as
classification, retrieval, and question answering. The framework encapsulates standard
components, such as model configuration, data preprocessing, evaluation metrics, and
logging, into accessible abstractions that reduce boilerplate code and lower the engineer-
ing overhead required to experiment with transformer architectures. By unifying these
components, the library promotes reproducibility, accelerates experimentation, and
enables researchers and practitioners to adopt and extend transformer-based methods
with minimal setup.

Part III of the thesis contributes practical infrastructure that underpins the experiments
described in Parts I and II, supporting reproducible research and lowering the barriers
to entry for transformer-based information retrieval and generation.

Together, the three parts of this thesis address complementary aspects of reliability and
accessibility in retrieval-augmented systems. Part I examines how dense retrievers can
be trained to remain robust under distribution shifts through better negative sampling
and data composition. Part IT introduces relevance-based reward shaping to improve
the reliability of small language models, enabling robust refusal and evidence-based
answering. Part III complements these contributions with an open-source framework
that standardizes training and evaluation practices, ensuring that the methods developed
in this work can be reproduced, extended, and applied more broadly.

1.2 Main Contributions

This thesis makes contributions across training methods for dense retrieval, training
objectives for small language models in retrieval-augmented generation, and open-
source tooling for reproducible information retrieval.

Methods and algorithms

Iterative clustered training (ICT) for negative sampling (Chapter 2). This method
periodically clusters training passages or queries and refreshes hard negatives from
semantically similar clusters. ICT achieves stronger robustness under domain, style, and
language shifts than lexical or static iterative methods, while avoiding the heavy indexing
cost of full dense negative mining. Empirical results across multilingual retrieval
benchmarks show that BM25 negatives yield the best in-distribution performance,
whereas ICT provides the strongest generalization under out-of-distribution and zero-
shot settings.

Training data composition for generalizable dense retrievers (Chapter 3). A synthetic
data-generation pipeline creates multiple queries per passage, encouraging models to
encode a more complete view of each passage’s semantics. Dense retrievers trained
on these multi-query datasets generalize far better to unseen domains and datasets,
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1.3. Thesis Overview

outperforming models trained on single-query corpora even when trained with fewer
total examples.

Reward shaping for robust refusal (RSRR) (Chapter 4). A reinforcement-learning
framework based on PPO that uses relevance-based rewards to train small language
models for retrieval-augmented question answering. The approach explicitly rewards
models for answering based on retrieved evidence and for refusing when evidence is
insufficient, substantially improving calibrated refusals and robustness to distractor
documents while maintaining answer accuracy when evidence is present.

Artifacts and software

Simple Transformers library (Chapter 5). An open-source framework that standardizes
transformer training and evaluation across tasks such as classification, retrieval, and
question answering. The library lowers the engineering overhead for research on dense
retrievers and retrieval-augmented generation, provides consistent metrics and per-query
analysis, and underpins the experimental work presented in this thesis.

Released datasets and evaluation settings. This includes generated multi-query datasets
for training generalizable dense retrievers and augmented QA datasets with withheld
and distractor documents for training and evaluating robust refusal.

Empirical findings and guidance

Negative sampling guidance. BM25 negatives perform best for in-distribution training,
while ICT—especially passage-level clustering—provides the most reliable generaliza-
tion across domains and languages.

Data composition guidance. Training on multiple queries per passage yields better
passage representations and more stable out-of-distribution performance than single-
query training.

Small-LM RAG guidance. Instruction-tuned models below 10B parameters are prone
to answering without sufficient evidence; relevance-based reward shaping significantly
improves refusal calibration and robustness to noisy retrieval.

1.3 Thesis Overview

The thesis is organized into three parts. Part I focuses on dense retrieval and examines
how training-time choices such as negative sampling and data composition influence
the generalization of transformer-based retrievers under distribution shifts. Part II
investigates retrieval-augmented generation and introduces a reward shaping framework
for robust refusal in small language models. Part III complements these empirical
studies with an open-source contribution, the Simple Transformers library, which enables
accessible and reproducible transformer training and evaluation. Each part can be read
independently.
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Part I — Robust Retrieval under Distribution Shifts. This part consists of two chap-
ters. Chapter 2 studies the effect of negative sampling strategies on the generalization
of dense retrievers across domains and languages. It introduces iterative clustered
training (ICT), a method that periodically clusters passages or queries and refreshes
hard negatives from semantically similar clusters, achieving strong robustness under
distribution shift while remaining computationally efficient. Chapter 3 investigates the
role of training data composition, demonstrating that training on datasets with multiple
queries per passage produces more generalizable retrievers that maintain performance
on unseen datasets and domains. Together, these chapters provide practical guidance on
training dense retrieval models that remain stable under domain, style, and language
variation.

Part II — Robust Refusal and Evidence-Based Answering. Chapter 4 introduces
reward shaping for robust refusal (RSRR), a reinforcement learning framework that
teaches small instruction-tuned language models to answer based on retrieved evidence
and to refuse when evidence is insufficient. The framework augments standard PPO fine-
tuning with relevance-based rewards that balance correctness, refusal, and formatting
objectives. Empirical results across multiple multi-hop QA datasets show consistent
improvements in calibrated refusal and robustness to distractor documents without loss
of accuracy when sufficient evidence is provided.

Part III — Accessibility and Shared Practice. Chapter 5 presents the Simple Trans-
formers library, an open-source framework designed to make transformer-based retrieval
and question answering more accessible and reproducible. The library provides unified
interfaces for training and evaluation across tasks, integrated metrics and per-query
analysis, and implementations of the retrieval and RAG methods explored in this thesis.
By lowering the engineering barriers to experimentation, it enables the broader research
community to replicate, extend, and apply the methods developed in Parts I and II.

1.4 Origins

Chapter 2 is based on the following paper:

» T. C. Rajapakse, A. Yates, and M. de Rijke. Negative sampling techniques
for dense passage retrieval in a multilingual setting. In Proceedings of the
47th International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 575-584, 2024.

TCR: Conceptualization, Data Curation, Formal Analysis, Investigation,
Methodology, Resources, Software, Writing — Original Draft Preparation,
Writing — Review & Editing. AY and MdR: Conceptualization, Supervision,
Writing — Original Draft Preparation, Writing — Review & Editing.

Chapter 3 is based on the following paper:
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* T. C. Rajapakse and M. de Rijke. Improving the generalizability of the
dense passage retriever using generated datasets. In European Conference
on Information Retrieval, pages 94—109. Springer, 2023.

TCR: Conceptualization, Data Curation, Formal Analysis, Investigation,
Methodology, Resources, Software, Writing — Original Draft Preparation,
Writing — Review & Editing. MdR: Conceptualization, Supervision, Writing
— Review & Editing.

Chapter 4 is based on the following paper:

* T. C. Rajapakse and M. de Rijke. Reward shaping for robust refusal in small
language models for retrieval-augmented question answering. In Under
Review, 2026.

TCR: Conceptualization, Data Curation, Formal Analysis, Investigation,
Methodology, Resources, Software, Writing — Original Draft Preparation,
Writing — Review & Editing. MdR: Conceptualization, Supervision, Writing
— Review & Editing.

Chapter 5 is based on the following paper:

* T. C. Rajapakse, A. Yates, and M. de Rijke. Simple Transformers: Open-
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ROBUST RETRIEVAL UNDER
DISTRIBUTION SHIFTS







Negative Sampling Techniques for Dense
Passage Retrieval in a Multilingual
Setting

2.1 Introduction

Dense retrieval architectures consisting of two transformer models (bi-encoders) have
become the state-of-the-art architecture for passage retrieval [39, 50, 51, 131]. The
dense passage retriever (DPR) model consists of two transformer models that encode the
queries and passages separately. Bi-encoder architectures for dense retrieval are typically
employed to pre-compute passage representations at indexing time, on top of which
computationally more costly re-rankers such as the cross-encoder architecture [26] can
be run.

Hard negative mining or negative sampling techniques have been used in prior work
to improve the effectiveness of bi-encoder models [39, 123, 131]. However, recent
work has demonstrated that reported results can vary significantly based on multiple
factors that can be easily overlooked. For example, Lassance and Clinchant [55] show
that some previous work uses the titles from the MS MARCO dataset leading to unfair
comparisons with methods that do not use the titles. In light of this, we implement all
the methods compared in this work from scratch, using the same libraries and library
versions, and evaluate the methods using the same evaluation framework to provide a
fair comparison. All code is publicly available on GitHub.

Effectiveness of negative sampling strategies on MS MARCO (English). The choice
of negative sampling strategy has a significant effect on the effectiveness of the final
retrieval model. Based on the work of Xiong et al. [131], Hofstétter et al. [39], and
Wang and Zuccon [123], we find that clustering-based negative sampling methods and
iterative negative sampling methods offer comparable performance while outperforming
lexical negative sampling methods (details on the different methods can be found in
Section 2.3.3). Our goal in this chapter is to extend the analysis of negative sampling

This chapter was published as T. C. Rajapakse, A. Yates, and M. de Rijke. Negative sampling techniques
for dense passage retrieval in a multilingual setting. In Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 575-584, 2024.
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methods to multilingual retrieval and determine which negative sampling strategy is
best-suited for this understudied setting.

Monolingual retrieval beyond English. Information access in languages other than
English is a topic with a long history in information retrieval, with resources, bench-
marking activities and algorithm development going back decades; see [e.g., 84] for
an early survey. In contrast, research on DPR has mainly been focused on English
[50, 51, 131], even though some work has been done on monolingual DPR for other
languages, such as Arabic, Japanese, and Russian [146]. These models have been
trained on monolingual corpora and have achieved high performance on monolingual
retrieval tasks.

Multilingual DPR for monolingual retrieval. Using a multilingual DPR model for
monolingual purposes has some clear advantages. It allows for using cross-lingual
information transfer, which can improve performance on low-resource languages [146].
Furthermore, a multilingual model can perform zero-shot retrieval on languages for
which it has not been explicitly trained. For example, Zhang et al. [146] show that a
multilingual dense retrieval model can be used on a new language in a zero-shot manner
with some success, enabling retrieval even in languages for which no retrieval training
data is available. Other work [e.g., 5, 15, 60, 70, 101, 144] supports this finding. Using
a single multilingual model for monolingual retrieval for many different languages is
more cost-effective and scalable than training a separate monolingual model for each
language of interest. Thus, the zero-shot setting is of particular interest in this work. We
explore the capabilities of multilingual bi-encoders in a monolingual setting. We train
our models to perform retrieval for multiple languages (one model for many languages,
i.e., multilingual), and we test them on monolingual datasets (queries and passages in
the same language, i.e., monolingual).

Generalizability. We address the generalizability of dense retrieval models to new
data and new languages. This is of particular interest because dense retrieval models
are known to struggle with out-of-distribution data [111, 144], often falling behind
traditional sparse methods when tested in zero-shot settings. Given this drawback, we
consider the retrieval performance across three settings: (i) in-distribution, (ii) out-of-
distribution, and (iii) zero-shot. The in-distribution setting gives us an idea of how well
a model learns the distribution of data similar to the training data. Out-of-distribution
testing demonstrates how we may expect a model to perform when exposed to new
types of queries and passages. The zero-shot performance of the models is of particular
interest as this represents the real-world use-case of using a multilingual retrieval model
on a language that it is not trained on as no training data was available for that language.

Negative sampling. Negative sampling is the process of selecting negative examples
(passages that are not relevant to a given query) for training a dense retrieval model.
Negative examples are used to train the model to differentiate between relevant and
non-relevant passages. Negative sampling that includes hard negatives (passages that
are similar to the query but are not relevant) is crucial for the effectiveness of dense
retrieval models [39, 131]. Given the importance of negative sampling, we study the
effectiveness of negative sampling methods in a multilingual setting.

Simple methods to select negative examples for training dense retrieval models
include random selection from the corpus (DPRy,g.) or from BM25’s top-ranked docu-
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ments (DPRgyr). However, these approaches do not ensure that the negative examples
are hard negatives, which has motivated other work.

Hofstitter et al. [39] cluster queries and select queries from the same cluster for
a given batch to increase the probability of in-batch negatives being hard negatives
(TAS-Q). Similarly, passages can be clustered, and training batches can be built from
the same cluster of passages (TAS-P). Xiong et al. [131] iteratively update a dense
index of the full collection by periodically re-computing representations of all passages
and select passages that are ranked highly (but not at the top) for each query as negative
examples (ANCE).

As part of our reproducibility work, we identify a gap left by these methods and
consider a combination of these two approaches that combines clustered training with
iterative updates produced using a subset of the collection, which we refer to as iterative
clustered training (ICT). Unlike the work in [39], this method uses the representa-
tions from the model being trained to perform clustering instead of a separate teacher
model. The passages are clustered at the start of every training epoch to ensure that
the training objective remains challenging even as the model learns to differentiate
between similar passages better (ICT-P). Similarly, this method can also be applied to
query representations (ICT-Q). This method is complementary to existing methods and
combines insights from the methods proposed by Hofstitter et al. [39] and Xiong et al.
[131]. Sections 2.3.2 and 2.3.3 provide detailed descriptions of these negative sampling
methods.

Based on these existing negative sampling techniques, as well as the ICT technique
introduced in this chapter, we pose the following research questions in order to answer
the broader research question (RQ 1): How do negative sampling strategies affect the
generalization of dense retrievers under distribution shift across domains and languages?

RQ 1.1 Do prior findings from negative sampling studies in English language dense
retrieval remain valid for multilingual retrieval?

RQ 1.2 Which negative sampling method offers the best overall performance in multi-
lingual dense retrieval?

Main findings. We find that the use of negative sampling methods yields significant
improvements in a multilingual retrieval setting, reproducing the lessons from prior
work in English. The ICT methods perform the best overall, showing the best results in
both out-of-distribution and zero-shot conditions, while achieving the second-highest
scores under the in-distribution condition. ICT-P performs best out of the two ICT
methods. DPRgy shows the best results under the in-distribution conditions.

Furthermore, we see that TAS style clustering is less effective in a multilingual
setting than the other methods. This contradicts the lessons learned from English only
retrieval, where TAS is competitive with other negative sampling methods (such as
ANCE). Thus, we find that ANCE generalizes better to our new multilingual setting
than TAS.

Our results demonstrate that the clustered training method we propose leads to the
best overall retrieval quality in a multilingual retrieval setting. Finally, we provide
recommendations on which negative sampling method should be used in different
scenarios.
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2. Negative Sampling Techniques for Dense Passage Retrieval

2.2 Task Definition

Our task is to use multilingual (the same model used with multiple languages) DPR
models to perform monolingual (queries and passages in the same language) dense
retrieval. We study the effectiveness of existing negative sampling techniques as well as
our proposed technique, clustered training, for this task. Extending beyond the findings
of prior work on English language (monolingual) retrieval with English models, we
explore monolingual retrieval with multilingual models and test whether these findings
can be reproduced in this new setting. We investigate the effectiveness of each negative
sampling technique under three conditions: (i) in-distribution, (ii) out-of-distribution,
and (iii) zero-shot.

* The in-distribution condition uses test data from the same datasets used to train
the models. The in-distribution test datasets consists of languages the models
have been trained on for retrieval. As the training and test data were all gathered
using the same methods at the same time, we consider this to be the in-distribution
setting.

* The out-of-distribution condition uses test data from datasets that are different
from the models’ training datasets. The test sets employed under this condition
solely consist of languages the models have been trained on for retrieval. As
these test datasets were built using different methods, at different times, and by
different contributors compared to the training data for the models, we call this
the out-of-distribution setting. This setting is out-of-distribution with respect to
the testing datasets.

* Similar to the out-of-distribution setting the zero-shot testing condition uses test
datasets that were built using different methods, at different times, and by different
contributors compared to the training data for the models. However, the test sets
under this condition consist solely of languages the models have not been trained
on for retrieval. This setting is out-of-distribution with respect to both the test
datasets and the languages being tested. Hence, this is our zero-shot test setting.

2.3 Negative Sampling for Dense Retrieval

We recall DPR and negative sampling techniques that have been considered for DPR.
We discover a natural but “missing” approach for negative sampling, which we then
describe in detail.

2.3.1 Dense passage retriever (DPR)

Our work uses the DPR model [50]; one of the first effective dense retrieval models.
The DPR model consists of two BERT encoders, a passage encoder E,(-) and a query
encoder E,(-), used to encode passages and queries separately. The passage encoder
E,(-) is used to encode all passages into d-dimensional vectors, and a dense retrieval
index is built with FAISS [48] for all M passages [50].
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2.3. Negative Sampling for Dense Retrieval

During retrieval, the query encoder E,(-) is used to encode a query to a d-dimensional
vector and a desired number of passages are retrieved from the index where the passage
vectors are most similar to the query vector. The similarity is simply defined as the dot
product of two vectors [50]:

sim(q,p) = Eq(q)TEp(p)- 2.1

The training goal is to learn encoders E,(-) and E,(-) such that the encoded representa-
tions for relevant queries and passage pairs have higher similarity relative to irrelevant
query and passage pairs. Consider D = {(qi,pf,pifl, oo sDin)tity, where D is a
training batch consisting of m instances. Each such instance contains a question ¢; and
a relevant passage p;r, as well as n irrelevant passages p; ; [50].

In our work, we use the in-batch negative [50] strategy when training the models.
Therefore, the irrelevant passages are the relevant passages for the other queries in the
batch.

The loss function is optimized as the negative log likelihood of the relevant passage:

esim(ai,p)

2.2)

Lq'aij7p‘7 N 2% :—10g - - .
(gi:p; i,1 1,n) esim(qi,pi) 4 E;}:l Sim(aipg; ;)

The original DPR model was initialized from BERT [26] (English). However, the
models in this work are initialized with Multilingual BERT (mBERT), following [146],
to facilitate multilingual retrieval.

2.3.2 Key characteristics of negative sampling methods

We observe three key dimensions of negative sampling techniques for dense retrieval:

Iterative or non-iterative: whether the negative samples are updated periodically dur-
ing training;

Negative mining model: the model used to find the hard negatives; and

Hard negative source: what is the source of the hard negatives, i.e., whether the hard
negatives are sampled from the corpus or from the training passages or queries (the
size of the corpus is much bigger than the number of training queries/passages).

Table 2.1 summarizes the negative sampling methods we have listed so far and the
design decisions made for the three dimensions listed above. The top part of the
table shows the decisions of the existing negative sampling techniques. We observe
that there is a gap in the existing methods: they do not consider the use of clustering
self-generated (the model being trained) representations periodically to generate hard
negatives. The bottom part of the table characterizes these gaps, which we describe in
detail in Section 2.3.3.
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2. Negative Sampling Techniques for Dense Passage Retrieval

Table 2.1: Overview of negative sampling methods used for dense retrieval DPR and
their features. Top: previously published. Bottom: newly proposed.

Negative Hard Iterative
Model Source mining model negative source  updates
Base [50] N/A N/A N/A
BM25 [50] BM25 Full corpus No
TAS-Q [39] Teacher model Training queries No
TAS-P [39] Teacher model Training passages  No
ANCE [131] Self Full corpus Yes
ICT-Q This work Self Training queries Yes
ICT-P This work Self Training passages  Yes

2.3.3 Current negative sampling techniques

Random negatives (DPRy,s). A dense retrieval model can easily be trained with
random negatives in an inbatch-negative contrastive loss training scheme [50]. Here, a
single training sample s consists of a query ¢, out of the full set of queries (), and its
relevant passage pq. Then, a single training batch B of batch size b out of the full set of
n training batches D is built as follows:

D=)B; (2.3)
i=1
B ={(4:p4) | g € random(Q, b)}. 24)

Here, B; is the i-th batch of the full set D and random(Q, b) are b queries randomly
sampled from ) without replacement. Then the dense retriever can be trained as
described in Section 2.3.1.

BM25 negatives (DPRgy;). Negatives can be sampled from the corpus using the
BM25 algorithm [95] by sampling passages from the top k retrieved passages. The
BM2S5 algorithm is a bag-of-words retrieval function that ranks a set of documents (or
passages) based on the query terms appearing in each document. We refer the reader
to [50, Section 3.2] for a detailed description of using BM25 to sample negatives for
training dense retrievers.

Topic aware sampling (TAS-Q and TAS-P). Topic aware sampling (TAS) [39] is a
technique that aims to improve the effectiveness of dense retrievers by building training
batches where all in-batch negatives are hard negatives for any given query. TAS
achieves this by clustering queries once at the beginning of training and then sampling
from those clusters to build training batches (TAS-Q). TAS style negative sampling
requires a teacher model (any model trained to generate representations) to generate the
initial representations used for clustering. For completeness, we also study the effect of
sampling from passage clusters (TAS-P) in addition to query clusters. See [39, Section
3] for a detailed description of the TAS algorithm. Note that, the original TAS method
also used knowledge distillation in a dual-teacher setup (see [39, Section 2.3]), but we
only consider the negative sampling strategy proposed in the same work.
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ANCE. Approximate nearest neighbor negative contrastive estimation (ANCE) [131]
is a technique that aims to improve the effectiveness of dense retrievers by using
hard negatives during training. ANCE accomplishes this by periodically identifying
false positive examples using the retrieval model currently being trained. As the hard
negatives are periodically updated, we refer to this as an iterative method. The false
positive examples are then used as hard negatives for the next training epoch. ANCE
requires maintaining a continuously updated dense index, which requires significant
compute resources. Further details on the ANCE algorithm can be found in [131,
Section 4].

Iterative clustered training (ICT-Q and ICT-P). Considering the established need to
ensure the presence of hard negatives [131] when training DPR models, we combine in-
tuitions from ANCE and TAS to use clustering to place similar training samples in each
training batch. However, unlike with TAS style negative sampling, text representations
are generated by the model itself, thus eliminating the need for a teacher model. The
representations used in clustering can be either passage or query representations. Similar
to ANCE, we also iteratively update the representations used to perform clustering. But,
clustered training methods are more efficient than ANCE since they only cluster the
training queries or passages (unlike ANCE where a full index of the corpus is built
to update the hard negatives). In a typical information retrieval setup, the number of
training queries or passages is much smaller than the total number of documents in the
corpus.

We provide a formal description of the clustered training method below. Note that
we provide the method for clustering passages ICT-P, but the process for clustering
queries remains the same with queries ICT-Q replacing passages in the method.

Before each training epoch, we group all training samples .S into k clusters with k-
means clustering based on the passage representations generated by the passage encoder
E,(-). The objective of the clustering is to minimize the following:

k
argq minz Z lp—pi|?. (2.5)

i=1 peC;

Here, p; is the centroid of the cluster C; and p is a passage representation generated by
E,(-). Now, the training samples S are grouped into & clusters C; where ¢ € {1,...,k}.

Next, we split each cluster C' containing |C'| samples, where |C| > b into sub-
clusters ¢; such that |c;| < b. For a cluster C;:

C’i:{ce{l,...,j}|j:[|i|—‘}. (2.6)

Then, |¢;| < b. Finally, we combine all sub-clusters containing less than b samples such
that each combined cluster contains b or fewer samples until no further combinations
are possible. The set of all sub-clusters of size b, all combined sub-clusters, and any
sub-clusters that could not be combined becomes the set of training batches for a training
epoch.

Then, the training dataset consisting of the set of training batches, built according to
the above procedure, is used to train a dense retrieval model. The clustering represen-
tations are refreshed periodically during training. We refer to this method as iterative
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2. Negative Sampling Techniques for Dense Passage Retrieval

clustered training (ICT), and it comes in two flavors: ICT-Q for clustered training on
queries and ICT-P for clustered training on passages.

2.3.4 Summary of negative sampling techniques

We first looked at the in-batch negative sampling technique used in the original DPR
paper [50]. Then, we summarized the BM25 negative sampling technique [50]. Next,
we described the topic-aware sampling technique [39] and, finally, the ANCE technique
[131]. We also introduced iterative clustered training, which combines ideas from [39]
and [131] and fills a gap left by previously proposed methods. Our next step is to
perform a systematic comparison of these negative sampling methods for dense retrieval
under three conditions: in-distribution, out-of-distribution, and zero-shot.

2.4 Experimental Design

We now describe the training and evaluation processes, the datasets used at query and
passage level, and the models that we used in the systematic comparison of negative
sampling methods for dense retrieval promised at the end of the previous section,

241 Process

We describe the process of training and evaluating the models below.

Training. The DPR models discussed in this work are trained in two steps. First, the
model is pre-finetuned on English and then finetuned on the combined training sets
of all available languages. We follow this procedure to train models using each of the
negative sampling techniques discussed in Section 2.3.

Evaluation. Each model is evaluated in the three settings described in Section 2.2:
in-distribution, out-of-distribution, and zero-shot.

The specific implementation details for each of these processes are discussed in the
remainder of this section.

2.4.2 Datasets

Training datasets. All models evaluated in this work are trained on the same datasets.
The MS MARCO (MAchine Reading COmprehension) dataset (English) [76] is used
for pre-finetuning, followed by fine-tuning on the Mr. TyDi collection of datasets [144].

The Mr. TyDi [144] dataset is a multilingual retrieval benchmark based on the TyDi
dataset [20]. Mr. TyDi contains data from eleven typologically diverse languages, some
of which are written in Latin script, while the others are written in other scripts (with no
two languages sharing the same non-Latin script) [144]. Table 2.2 shows the languages
and the number of associated queries and passages for each language.

Testing datasets. Three collections of datasets/benchmarks are used for testing the
models in three conditions: in-distribution, out-of-distribution, and zero-shot. For the
in-distribution setting, we use the test sets from the Mr. TyDi dataset, as all models
were trained on the Mr. TyDi train sets.

18



2.4. Experimental Design

Table 2.2: Mr. TyDi languages and the associated number of queries and passages.

Language  # Train queries # Test queries # Corpus size

Arabic 12,377 1,081 2,106,586
Bengali 1,713 111 304,059
English 3,547 744 32,907,100
Finnish 6,561 1,254 1,908,757
Indonesian 4,902 829 1,469,399
Japanese 3,697 720 7,000,027
Korean 1,295 421 1,496,126
Russian 5,366 995 9,597,504
Swahili 2,072 670 136,689
Telugu 3,880 646 548,224
Thai 3,319 1,190 568,855

The mMARCO [15] dataset consists of 13 different languages created using machine
translation from the MS MARCO dataset. Four of these languages (Arabic, Indonesian,
Japanese, Russian) are common to both mMARCO and Mr. TyDi. These four languages
are used to evaluate the models in the out-of-distribution setting as they represent
languages the models are trained on but created using different methods.

The remaining nine languages from mMARCO (Chinese, Dutch, French, German,
Hindi, Italian, Portuguese, Spanish, Vietnamese) are not found in Mr. TyDi, and thus,
the models have not been trained on these languages for retrieval. Since mMARCO
consists of machine translated datasets, we include human annotated datasets in our test
datasets for the languages where we were able to find a retrieval dataset. These datasets
are Multi-CPR (E-commerce and entertainment), BSARD (Legal IR), and GerDaLIR
(Legal IR) for Chinese, French, and German, respectively. In addition to being unknown
languages, these datasets are out-of-domain in terms of data distribution as the retrieved
documents are from different domains. Therefore, these languages are used to evaluate
the models in the zero-shot setting.

The datasets that are used in this work, and their purpose, are summarized in
Table 2.3.

Analysis datasets. Finally, we also use two additional datasets for further analysis (see
Section 2.6) beyond our main results. We use the unknown languages from MIRACL
[145], an updated version of the Mr. TyDi dataset, to form an in-distribution, unknown
language setting. Then, we use the nine smallest datasets (for faster evaluation) from
BEIR [111], designed to evaluate out-of-domain performance of retrieval models, to
form an out-of-domain, known language setting.

2.4.3 Models

We train DPR models with different negative sampling methods using the Simple
Transformers' framework, which is based on Huggingface Transformers [128]. All

]https ://github.com/ThilinaRajapakse/simpletransformers
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Table 2.3: The datasets used at each stage of the study.

Stage Condition Dataset
Training pFT (pre-finetuning) MS MARCO

FT (finetuning) Mr. TyDi

In-distribution Mr. TyDi

Out-of-distribution mMARCO (known languages)
Testing mMARCO (unknown languages)

BSARD (French)
Zero-shot GerDaLLIR (German)

Multi-CPR E-com (Chinese)
Multi-CPR video (Chinese)

models we train use mBERT? as the starting point, are then pre-finetuned on MS
MARCO, and finetuned on the complete training set of Mr. TyDi. They consist of
a DPR transformer bi-encoder, with distinct encoders for the queries and passages,
initialized from mBERT (bert-base-multilingual-cased).

The models trained with TAS negative sampling require two teacher models to
perform negative sampling. The first, used for the English pretraining step, is a publicly
available DistilBERT? model. The second, used for multilingual finetuning, is a publicly
available BERT model* trained on the Mr. TyDi training set.

To specify the DPR models that we train, we use the abbreviations and acronyms
introduced for the corresponding negative sampling methods in Section 2.3.3 and 2.3.3,
and summarized in Table 2.1:

* DPRy,se: A DPR model trained without any negative sampling.

» DPRgy: A DPR model trained with BM25° negatives.

* TAS-Q: A DPR model trained with TAS negative sampling on queries.
* TAS-P: A DPR model trained with TAS negative sampling on passages.
* ANCE: A DPR model trained with ANCE negative sampling.

¢ ICT-Q: A DPR model trained with ICT using training queries.

e ICT-P: A DPR model trained with ICT using training passages.

2.4.4 Implementation

Training pipeline. Using the Adam optimizer, each model is trained for 40 epochs with
a learning rate of le-5 and a batch size of 16. Negative log likelihood loss is used as the

2https: //github.com/google-research/bert

3https ://huggingface.co/sentence-transformers/msmarco-distilbert-base-tas-b
4https: //huggingface.co/castorini/mdpr-tied-pft-msmarco-ft-all

5https ://github.com/castorini/pyserini
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Table 2.4: Results on the Mr. TyDi (in-distribution) datasets. Each dataset is evaluated
on two metrics: MRR@100 and Recall@100. Best scores per metric are in bold;
second-best are italicized.

Dataset Metric ~ ANCE BM25 ICT-P ICT-Q DPRgy DPRpye TAS-P TAS-Q
ar MRR@100 0.524 0247 0457 0417 0.586™ 0305 0.422 0413
Recall@100 0.868 0.636 0.884 0.882 0.907°* 0.856 0.865 0.859

bn MRR@100 0.446 0.333 0.492 0469 0.563 0.398 0.454 0.494
Recall@100 0.847 0.730 0.919 0.919 0901 0.892 0.901 0.910

fi MRR@100 0.419 0.161 0.431 0.396 0471 0.259 0.373 0.357
Recall@100 0.828 0.507 0.856 0.866 0.881 0.823 0.836 0.854

id MRR@100 0.475 0.288 0.427 0.413 0.502° 0.321 0.402 0.382
Recall@100 0.870 0.742 0.877 0.878 0.903"" 0.864 0.876 0.876

ja MRR@100 0.333 0.173 0.362 0.319 0.430" 0.215 0.314 0.284
Recall@100 0.794 0.624 0.835 0.844 0.864° 0.808 0.814 0.815

ko MRR@100 0.354 0.196 0.343 0.323 0.399" 0239 0.316 0.306
Recall@100 0.753 0.360 0.753 0.760 0.805" 0.720 0.732 0.724

ru MRR@100 0.410 0.209 0.350 0.326 0.436° 0.241 0.317 0.294
Recall@100 0.821 0.462 0.843 0.859 0.871 0.813 0.826 0.838

SW MRR@100 0.397 0.363 0.530 0.492 0.530 0.386 0.507 0.438
Recall@100 0.785 0.743 0.863 0.881 0.870 0.852 0.854 0.867

te MRR@100 0.677 0.186 0.703 0.579 0.774" 0.469 0.594 0.461
Recall@100 0.921 0.426 0.967 0.964 0.966 0.947 0.966 0.966

th MRR@100 0.416 0.161 0.423 0.384 0.489" 0.288 0.392 0.353
Recall@100 0.807 0.489 0.887 0.905 0.842 0.863 0.873 0.893

loss function. This procedure is followed separately for both the pre-finetuning (pFT)
and the finetuning (FT) steps. The model, initialized from mBERT, is pre-finetuned on
the MS MARCO dataset for 40 epochs and is then finetuned for another 40 epochs on
the combined training sets of Mr. TyDi following the setup in [146]. The representations
are updated every 10 epochs for the iterative methods.

Evaluation and testing. Following [144, 146], we report the MRR and Recall@ 100
scores for each test dataset. We test the seven DPR models on two datasets, the Mr. TyDi
benchmark and the mMARCO dataset, under three settings. We report results under
the three conditions, in-distribution (Mr. TyDi test sets), out-of-distribution (nMARCO
languages that are present in Mr. TyDi), and zero-shot (nMARCO languages that are
not present in Mr. TyDi).

We consider observed differences to be statistically significant if p < 0.05 in a
paired t-test. We write ™" to indicate p < 0.01 and " to indicate p < 0.05. Statistical
significance is computed between each dataset’s highest and second-highest scores.
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Table 2.5: Results on the MMARCO OOD datasets. Each dataset is evaluated on two
metrics: MRR@ 100 and Recall@100. Best scores per metric are in bold; second-best
are italicized.

Dataset Metric  ANCE BM25 ICT-P ICT-Q DPRgy DPRp,e TAS-P TAS-Q
ar MRR@100 0.092 0.106 0.138"°0.125 0.105 0.103 0.124 0.116
Recall@100 0.355 0.375 0.461°70.441 0370 0409 0.428 0.433

id MRR@100 0.114 0.15470.140 0.124 0.118 0.099 0.117 0.115
Recall@100 0.425 0.5417°0.509 0.487 0.439 0435 0474 0.470

ja MRR@100 0.128 0.136 0.167°°0.157 0.139 0.129 0.153 0.147
Recall@100 0.462 0.469 0.545 0.540 0474 0.506 0.522 0.524

ru MRR@100 0.134 0.102 0.157°70.143 0.139 0.124 0.137 0.136
Recall@100 0.480 0.354 0.541°0.531 0.482 0.498 0.503 0.509

2.5 Results

2.5.1 In-distribution results (Known language)

Table 2.4 shows the MRR@ 100 and Recall@ 100 scores obtained by each model on the
Mr. TyDi test sets (the in-distribution setting).

We find that DPRgy; outperforms all other methods across all languages (statistically
significant for all but two languages) in the in-distribution setting. This indicates that
simple BM25 negatives are surprisingly effective when training multilingual dense
retrievers. While Hofstitter et al. [39], who introduced TAS-style negative sampling,
demonstrated impressive retrieval effectiveness, our results indicate that most of the
improvements possibly came from the other techniques used in [39] (e.g., knowledge
distillation).

ICT-P, obtains the second-best performance with the passage clustering approach
outperforming query clustering across the board. We see the same pattern with TAS
clustering where TAS-P outperforms TAS-Q. We believe the better performance of clus-
tering passages instead of queries is likely due to passages being longer and containing
more information, leading to better clusters and harder negatives.

ANCE performance is close to ICT-P performance, with ICT-P obtaining higher
MRR @100 on six languages while ANCE obtains higher MRR @ 100 on four languages.
In terms of Recall@ 100, ICT-P gets higher scores than ANCE on all languages except
Korean (tie).

DPRy,se With random in-batch negatives performs the worst out of all methods,
confirming that effective negative sampling methods are essential to train good dense
retrievers in a multilingual setting.

Based on these results, we recommend using negative sampling based on BM25 hard
negatives when training a multilingual dense retrieval model if the model is primarily
tasked with retrieval in an in-distribution setting. We further analyze the effectiveness
of DPRpy in the in-distribution setting in Section 2.6.1.
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Table 2.6: Results on the MMARCO zero-shot datasets. Each dataset is evaluated
on two metrics: MRR@100 and Recall@100. Best scores per metric are in bold;
second-best are italicized.

Dataset Metric ~ ANCE BM25 ICT-P ICT-Q DPRgy DPRpye TAS-P TAS-Q
zh MRR@100 0.136 0.119 0.169°°0.164 0.145 0.135 0.154 0.154
Recall@100 0.499 0.451 0.576 0.578 0.515 0529 0.543 0.547

nl MRR@100 0.155 0.142 0.1727°0.154 0.150 0.128 0.148 0.142
Recall@100 0.518 0.488 0.582°°0.567 0.513 0517 0.534 0.535

fr MRR@100 0.159 0.149 0.186"0.167 0.157 0.139 0.159 0.154
Recall@100 0.548 0.519 0.611 0.608 0.551 0.560 0.567 0.573

de MRR@100 0.156 0.135 0.175"0.158 0.158 0.137 0.156 0.150
Recall@100 0.517 0.464 0.575"0.561 0.519 0.530 0.534 0.538

hi MRR@100 0.087 0.134 0.141 0.130 0.107 0.111 0.131 0.128
Recall@100 0.324 0.470 0.470 0.462 0.387 0435 0453 0.449

it MRR@100 0.154 0.145 0.179"°0.166 0.154 0.137 0.155 0.151
Recall@100 0.543 0.499 0.604°0.593 0.541 0.546 0.561 0.560

pt MRR@100 0.156 0.158 0.1857°0.168 0.152 0.140 0.160 0.160
Recall@100 0.537 0.544 0.6047°0.593 0.534 0.542 0.563 0.568

es MRR@100 0.170 0.159 0.196°0.177 0.164 0.147 0.168 0.166
Recall@100 0.566 0.551 0.6357°0.624 0.558 0.578 0.590 0.594

vi MRR@100 0.118 0.140 0.141 0.126 0.121 0.106 0.120 0.118
Recall@100 0.423 0.508 0.498 0.481 0.439 0.444 0.461 0.459

2.5.2 Out-of-distribution results (Known language)

Table 2.5 shows the MRR@ 100 and Recall@ 100 scores for each model on the out-
of-distribution language datasets from mMARCO. In this setting, the two variants of
iterative clustered training, ICT-P and ICT-Q, outperform all other negative sampling
methods. Similar to the in-distribution setting, we again see that passage-based cluster-
ing yields better results than query-based clustering, with the ICT-P model obtaining
the highest scores of the negative sampling methods on all four languages (statistically
significant).

We compare ICT-P and DPRg)y; on BEIR datasets (English language) to confirm
our findings in the out-of-distribution setting free from machine translation artifacts in
Section 2.6.2.

These results indicate that the clustered training methods (both ICT-P and ICT-Q)
provide superior out-of-distribution results compared to the other negative sampling
methods.

2.5.3 Zero-shot results (Unknown language)

Next, Table 2.6 shows the MRR@ 100 and Recal @ 100 scores obtained by each model
on the zero-shot languages. This is the setting that we are most interested in as it
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2. Negative Sampling Techniques for Dense Passage Retrieval

Table 2.7: Results on the other zero-shot datasets. Each dataset is evaluated on two
metrics: MRR@100 and Recall@100. Best scores per metric are in bold; second-best are
italicized.

Dataset Metric ANCE BM25 ICT-P ICT-Q DPRgm DPRpase TAS-P TAS-Q
BSARD MRR@100 0.150 0.225° 0.161 0.168 0.146 0.161 0.147 0.148

Recall@100 0.310 0.466 0.368 0.398 0.352 0.430 0.383 0.348
GerDaLIR MRR@100 0.120 0.1997°0.163 0.151 0.104 0.148 0.158 0.144

Recall@100 0.349 0.650°°0.422 0.401 0.319 0.401 0409 0.387

Multi-CPR Ecom MRR@100 0.118 0.2937°0.191 0.192 0.118 0.190 0.188 0.203
Recall@100 0.399 0.7117°0.530 0.549 0409 0.550 0.542 0.552

Multi-CPR Video MRR@100 0.112 0.230 0.203 0.210 0.124 0.188 0.199 0.204
Recall@100 0.449 0.73570.634 0.648 0.469 0.601 0.650 0.666

represents the real-world scenario of using a multilingual dense retrieval model for
monolingual retrieval in a language that it has not been trained on for retrieval.

Similar to the out-of-distribution setting, the ICT methods outperform all other
methods on all zero-shot languages (statistically significant). Again, we see that clus-
tering passages yields better results compared to clustering queries for both ICT and
TAS-style clustering.

We also report results on four additional retrieval datasets in zero-shot languages
(French, German, and Chinese) to confirm that the results on the mMARCO datasets
are not due to machine translation artifacts. In addition to these datasets being zero-shot
languages, they are out-of-domain datasets as described in Section 2.4.2. Table 2.7
shows that the ICT methods outperform the other negative sampling methods on these
human annotated datasets. However, we see that the baseline BM25 model outperforms
the dense retrieval method on these datasets. This agrees with findings from Thakur
et al. [111] that the lexical-based BM25 method can be superior to dense retrievers in
an out-of-domain setting.

The results from the zero-shot language tests shows that the iterative ICT methods
(ICT-P and ICT-Q) show superior domain adaptability as well as adaptability to new
languages compared to the other negative sampling methods.

2.5.4 Summary of results

Finally, we summarize the findings from this section.

* DPRgy demonstrates impressive results on in-distribution test sets, outperforming
all other methods.

* ICT outperforms the other negative sampling methods in out-of-distribution and
zero-shot settings.

» TAS-style clustering using an external model underperforms other negative sam-
pling techniques in a multilingual setting.
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Table 2.8: Results on the MIRACL zero-shot languages.

MRR@100 Recall@100
Dataset ICT-P DPRgy ICT-P DPRpy
German 0.435 0.458 0.767 0.772
Spanish 0512 0.572* 0.712  0.700
Persian  0.434 0.461 0.805"" 0.764
French 0.389 0.459* 0.782 0.798
Hindi 0.412 0.451° 0.732 0.727
Yoruba 0.540 0.577 0.866 0.861
Chinese 0.517  0.511 0.854™ 0.815

2.6 Analysis

We look at two variants of the three main settings from Section 2.5 and consider the
two best-performing negative sampling methods, namely, ICT-P and DPRpy;.

2.6.1 In-distribution data, unknown language

We introduce a variant of the in-distribution setting to further analyze the effectiveness
of DPRg) under in-distribution testing conditions. We compare the performance of the
DPRgym and ICT-P models (best and second-best results in the in-distribution setting,
respectively) on the MIRACL languages that do not appear in Mr. TyDi. In this setting,
we test on data that is in-distribution in terms of data collection, annotation, and sources,
but zero-shot in terms of the language.

In Table 2.8 we see that DPRgy; outperforms ICT-P on in-distribution data in terms
of ranking metrics even when the language is new to the model. Interestingly, ICT-P
gets better recall than DPRg)y;, unlike what we saw in Section 2.5.1. This suggests that
the better generalizability of the ICT-P model helps it adapt to the newer languages.
However, DPRpyy still has better overall performance in the in-distribution setting which
strengthens our recommendation to use DPRgy, for in-distribution multilingual retrieval
scenarios.

2.6.2 Out-of-domain data, known language

Now, we compare the performance of ICT-P and DPRg); on BEIR which presents a
setting where the data is out-of-domain (out-of-distribution and new domains) but in a
known language (English).

In Table 2.9, we see that the ICT-P model outperforms the DPRgy model in the
out-of-domain, known language setting. This serves to confirm our recommendation to
use ICT-P models in a multilingual retrieval setting where generalizability to new data
distributions or domains is needed. We also report nDCG@ 10 for the BEIR results as
this is the official metric used in [111].
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Table 2.9: Results on the BEIR datasets.

nDCG@10 MRR@100 Recall@100
Dataset ICT.P DPRpy ICT-P DPRpy ICT-P DPRpy
ArguAna 0.304  0.235 0.214™  0.165 0.891" 0.852
CQA Dup Stack  0.207**  0.147 0.219 0.154 0.406™  0.320
DBPedia 0.230  0.238 0.510  0.538 0324  0.332
FiQa 0.205™ 0.181 0.265° 0.239 0.475™  0.432
NFCorpus 0.214  0.192 0.395  0.386 0.202 0.182
Quora 0.770  0.264 0.760°*  0.256 0.967" 0.613
SciDocs 0.084°  0.077 0.175°  0.156 0.203  0.204
SciFact 0420 0.396 0.399 0370 0.753  0.775
TREC-COVID  0.464™ 0.355 0.696  0.583 0.057  0.051

2.7 Related Work

Dense retrieval. Traditionally, passage retrieval has been performed using sparse
retrieval methods such as BM25 [118]. Karpukhin et al. [50] show that transformer-
based [115] dual-encoder models can surpass traditional sparse methods by using the
ability of transformer models to represent semantic meaning, unlike classic keyword-
based methods. However, later work [97, 98, 111, 138] has shown that dense retrieval
models, specifically dual-encoder models, struggle to generalize to out-of-distribution
data.

Improved training regimes to boost generalizability. Prior work has proposed a range
of data generation, data augmentation, and data selection techniques for improving
the effectiveness of dense retrieval models. Since the release of the BEIR benchmark
[111], researchers have begun to specifically consider whether these techniques improve
out-of-distribution generalization as well as in-domain effectiveness. Negative sampling
techniques [39, 50, 131] represent one such approach to improve the generalizability
of dense retrievers. We focus on their effectiveness in boosting the generalizability of
dense retrievers in a multilingual setting.

Negative sampling for dense retrieval. Early dense retrieval models like DPR [50]
select their negative training examples from a combination of false positives identified
by BM25 and from other queries in the same training batch (“in-batch negatives™).
ANCE [131] demonstrates the importance of selecting hard negative training examples,
which it accomplishes by periodically identifying false positive examples using the
retrieval model currently being trained. Although the original work focuses on in-
distribution performance and does not explore out-of-distribution or zero-shot retrieval,
later work [111] shows that out-of-distribution results also improve. ANCE requires
maintaining a continuously updated dense index, which requires significant compute
resources, though these requirements can be reduced by freezing the document encoder
for part of training [137]. Alternatively, computational requirements can be reduced
by caching negative examples rather than periodically recomputing the entire index
[65, 132].
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Rather than using a dense retrieval model to mine hard negative examples, TAS-B
[39] creates difficult training batches by clustering queries once at the start of training
and then samples from those clusters to build training batches. TAS-B combines this
with knowledge distillation to improve the retrieval performance of dense retrievers.
TAS-B uses a separately trained BERT model to generate the representations for the
clustering. Therefore, the effectiveness of TAS-B is dependent on the availability of a
teacher model, which can be a restrictive constraint in a multilingual setting.

A systematic comparison of negative sampling methods for dense retrieval under
different generalizability conditions (in-distribution, out-of-distribution, zero-shot) is
missing. This is the gap that we fill. We consider a rich multilingual setting that allows
us to formulate all three conditions, and we discover a gap in the choices available for
negative sampling for dense retrieval so far.

Multilingual retrieval. To understand the generalizability of dense retrievers we
consider a multilingual setting, that naturally allows us to consider challenging in-
distribution, out-of-distribution, and zero-shot settings. The literature on information
retrieval in multiple languages is rich. Cross-lingual retrieval (queries in one language
and passages in another), in particular, has been the focus of many publications, and we
refer the reader to [29, 140] for recent surveys on this area. However, our work focuses
on multilingual retrieval, where both queries and passages are in the same language
(monolingual), but the models used support monolingual retrieval in many languages.
However, cross-lingual and multilingual retrieval both benefit from cross-lingual transfer
capabilities, particularly of large language models. The zero-shot knowledge transfer
ability of large language models has previously been studied in [70, 101].

Zhang et al. [146] offer a comprehensive guide on training multilingual dense
retrievers based on the Mr. TyDi benchmark and focuses on monolingual retrieval
with multilingual retrievers. We also focus on the same task, however, we pay careful
attention to the generalizability of the multilingual dense retrievers, both for out-of-
distribution data and for new languages. We analyze the effectiveness of different
negative sampling methods under the in-distribution, out-of-distribution, and zero-shot
conditions in a multilingual setting, and investigate whether existing findings from
English language research generalizes to these new conditions.

2.8 Discussion

We discuss the strengths and weaknesses of the negative sampling techniques we have
investigated and our central reproducibility question, viz. how existing findings from
English language models and datasets generalize to the setting of monolingual retrieval
with multilingual models. We also discuss the implications for the use of multilingual
dense retrieval models in practice.

Generalizability of English language findings to the multilingual setting. Broadly
speaking, we found that existing findings on English language retrieval (the importance
of the presence of hard negatives) generalize to the multilingual domain. Good hard
negative sampling methods yields significant improvements in multilingual retrieval
quality. However, one of the most effective negative sampling methods, TAS, is less
effective in the multilingual setting. We believe that this is due to the comparative
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lack of effective teacher models that can be employed to generate the query or passage
representations for clustering. Therefore, the iterative negative mining methods (ICT-P,
ICT-Q, and ANCE) demonstrate superior retrieval quality over the non-iterative methods
as they do not require external models to perform negative sampling.

DPRy,se (Random negatives) requires no additional data, models, or hardware re-
sources to be used. It also requires the least training time and is the simplest to
implement, but it is also the least effective of the methods we have investigated. We
recommend using DPRy,s. only when no additional data, models, or hardware resources
are available and training time efficiency is the primary concern.

DPRgy (Non-iterative BM25 negatives) requires an external BM25 model to find
negatives. However, BM25 is a sparse retrieval method and is generally much faster
and cheaper than dense retrieval methods. Therefore, DPRgy; can be used with little
additional effort in most cases. DPRpy; does not require any additional hardware
resources to use.

Using BM25 negatives is surprisingly effective as long as there is little distributional
shift between the training and test data, demonstrating superior retrieval quality in
the in-distribution setting compared to the other methods. Based on these factors, we
recommend using DPRgy; when the model is used mostly for in-domain retrieval. This
contradicts in-distribution English language findings where negative sampling methods
like ANCE and TAS were developed in order to improve over BM25 negatives.

ICT-Q and ICT-P (Iterative, clustering-based negatives) ICT-P demonstrated supe-
rior performance in all three settings between the two ICT methods. While ICT-Q is
marginally faster in the clustering phases during training due to queries usually being
shorter than passages, we do not believe this makes a practical difference. Therefore,
we recommend using ICT-P over ICT-Q.

Overall, ICT-P obtained the best results in two out of three settings (out-of-distribution
and zero-shot). Based on this, we recommend using ICT-P as the negative sampling
method in most multilingual retrieval scenarios except for the special case detailed
above (the model is intended for use in an in-distribution setting).

TAS-Q and TAS-P (Non-iterative, clustering-based negatives) While both TAS-Q
and TAS-P outperform DPRy,. across all three settings, they perform similar or inferior
to the other negative sampling methods. In addition to this, these two negative sampling
methods require an external model to perform the clustering in order to sample similar
queries/passages for training batches.

We believe that a possible reason for TAS negative sampling to underperform in a
multilingual setting is that it relies heavily on the external model used for clustering to
find good hard negatives. The external models available in the multilingual retrieval
setting tend to be less effective and reliable compared to the models available for English
such as ColBERT [51]. Furthermore, while the approach in [39] performs well in an
English language setting, it uses other techniques, such as knowledge distillation, in
addition to negative sampling explored in this work. Wang and Zuccon [123] also found
that TAS-style negative sampling, without knowledge distillation, can underperform
random negatives in an English language setting indicating that the success of [39] could
largely have been influenced by the effectiveness of knowledge distillation. Due to these
limitations, we do not recommend using TAS-Q or TAS-P for negative sampling in a
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multilingual retrieval setting.

ANCE (Iterative, full-corpus mined negatives) ANCE is fairly effective in multi-
lingual retrieval in all three settings that we considered. However, it has the highest
hardware resource requirements (for training) of all the methods considered in this work.
Periodically building a dense index of the full document collection increases training
time significantly compared to the other methods. Therefore, we recommend using
ICT-P instead which builds on similar ideas as ANCE, but is more efficient to train, and
also outperformed ANCE in all three settings.

2.9 Conclusion

We studied the generalizability of earlier insights into the effectiveness of negative
sampling methods for multilingual retrieval under in-distribution, out-of-distribution,
and zero-shot conditions. We identified a gap in the literature, and by combining earlier
insights, introduced an iterative, clustering-based method, to fill this gap.

Our experiments confirmed the choice of the negative sampling method used to train
dense retrievers has a significant impact on their multilingual retrieval effectiveness.
This answers RQ 1.1, showing that prior findings from negative sampling studies in
English language dense retrieval remain valid for multilingual retrieval. However, TAS,
a highly effective clustering-based negative sampling method in English, underper-
formed other negative sampling methods in a multilingual setting contradicting existing
findings. On the other hand, iterative negative sampling methods performed well in
the multilingual setting, maintaining their effectiveness from prior English language
work. The comparative lack of effective teacher models in a multilingual setting poses a
barrier for methods that rely on external representations, such as TAS. Iterative negative
sampling methods do not require external representations; instead, they use the repre-
sentations from the model being trained to find hard negatives and, therefore, succeed
in finding good hard negatives even as the model learns even in a multilingual setting.

Interestingly, the best negative sampling method depends on whether the model is
tested on in-distribution or out-of-distribution data. For the in-distribution setting, simple
BM25 negatives (DPRg)y) obtained the best performance and, therefore, we recommend
using DPRpy; for in-distribution multilingual retrieval tasks. For out-of-distribution
and zero-shot settings, we found that ICT-P has the best performance. Based on this,
we recommend using ICT-P for out-of-distribution or zero-shot scenarios. Unless the
situation clearly calls for in-distribution performance only, our overall recommendation
is also to use ICT-P due to its better generalizability. These experiments also answer
RQ 1.2 and shows that ICT-P offers the best overall performance in multilingual
dense retrieval. Taken together, these findings answer RQ 1: the choice of negative
sampling strategy has a decisive effect on cross-domain and cross-lingual generalization,
with iterative clustered training (ICT-P) providing the most robust performance across
distribution shifts, while BM25 negatives remain optimal in purely in-distribution
settings.

As to limitations of our work, we have constrained ourselves to the DPR architecture
and have not explored the benefits of clustered training for other architectures. We
only considered a contrastive learning setup and did not experiment with other training
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methods such as knowledge distillation (consistently good teacher models are rarer in
the multilingual retrieval setting than in English only retrieval). In future work we intend
to generalize our findings to different architectures and training setups, and explore
interactions between negative sampling methods and other training setups.
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Improving the Generalizability of the
Dense Passage Retriever Using Generated
Datasets

3.1 Introduction

Recently, a number of transformer-based dense retrieval models have achieved state-
of-the-art results on various benchmark datasets [50, 51, 131]. The dense passage
retriever (DPR) architecture consists of two encoder models, typically BERT models
[26], which encode the query and the passages separately. A simple similarity metric,
such as the inner product or cosine distance, is then used to compute the relevance of a
passage for a query.

An advantage of the DPR architecture is that passage representations can be pre-
computed offline and built into an index with relatively small computational cost,
making it a preferred model over recent proposals such as, e.g., ColBERT [51] and
ANCE [131] with higher computational cost for training and/or retrieval. At runtime, the
query encoder is used to compute a dense representation for the query and approximate
nearest neighbor methods are used to find the most relevant passage.

A disadvantage of this approach is that a mismatch may exist between the infor-
mation available to the passage encoder and the information available to the query
encoder. As the training objective forces the passage and query encoders to generate
representations that are similar, we hypothesize that the passage encoder (which has
access to more information) learns to discard information that is not relevant to the
query in a given training query-passage pair. The issue is exacerbated by the fact that
most retrieval datasets and benchmarks contain far more passages with only one query
from a given passage than passages with multiple queries per passage (see Table 3.1).
In such situations, the model is not sufficiently penalized against learning to discard
information that is not relevant to the (single) query that is asked from a given passage.

We hypothesize that a DPR model trained on datasets where a given passage typi-
cally has one associated query generalizes poorly to other datasets, new types of queries

This chapter was published as T. C. Rajapakse and M. de Rijke. Improving the generalizability of the
dense passage retriever using generated datasets. In European Conference on Information Retrieval, pages
94-109. Springer, 2023.
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or topics, or both. We investigate this hypothesis by testing the zero-shot performance
of the pretrained DPR model (from [50], which is trained on NQ [54]) in both out-
of-distribution and out-of-domain settings. Here, we define out-of-distribution to be
datasets that share the same passage corpus but with queries collected at different times
and/or using different methods, and out-of-domain to be datasets with their own unique
passage collection typically focused on a particular domain (see Section 3.4.1).

Having established that a DPR model trained on datasets where a given passage
typically has one associated query, generalizes poorly, we propose a treatment to help
improve out-of-distribution and out-of-domain performance. We synthetically generate
training datasets where the passages typically have multiple queries from any given
passage. The generation pipeline consists of a NER model to tag entities, a sequence-to-
sequence model to generate queries, and a question answering model to filter out bad
queries (see Section 3.3.1).

Our results show that training on data with multiple queries per passage leads to a
DPR model with better generalizability to both out-of-distribution and out-of-domain
data. In both settings, our DPR model trained on multiple queries per passage data
easily outperforms the baseline DPR model trained on mostly single query per passage
data (NQ).

In summary, then, this chapter asks the following research question:

RQ 2 Does training a DPR model on data containing multiple queries per passage
improve the generalizability of the model?

In the out-of-distribution setting, the pre-trained DPR model [50], serving as the baseline,
and our DPR model trained on generated queries with multiple queries per passage
are tested, zero-shot, on six datasets. Our model achieves higher retrieval accuracy on
five out of the six datasets demonstrating that training data containing multiple queries
per passage does improve the generalizability of dense retrievers to out-of-distribution
queries.

The picture becomes even clearer in the out-of-domain setting where our model
outperforms the pretrained DPR model on 12 out of 13 datasets. Training DPR models
on passages with multiple associated queries prevents the context encoder from (exclu-
sively) focusing on a specific detail or piece of information in the passage, leading to a
better generalized retrieval model.

Our analysis of increasing the size of the set of generated queries with multiple
queries per passage as a way to improve the generalizability of dense retrievers indicates
a subtle balance. While the model trained on the largest training dataset does achieve
higher scores compared to the others, the improvements are relatively minor. But, these
relatively minor improvements come at a significantly higher costs in terms of compute
and training time. Even the smallest generated dataset with multiple queries per passage
performs competitively with larger generated datasets and handily outperforms the
pre-trained model trained on mostly single query per passage data.
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3.2 Related Work

Passage retrieval. Passage retrieval has classically been performed using sparse re-
trieval methods such as BM25 [118]. Recently, transformer-based dense retrieval
methods have garnered interest as the performance of dense retrieval methods surpasses
that of traditional sparse methods [50, 51, 131]. A dense passage retriever indexes a
collection of passages in a low-dimensional and continuous space, such that the top-k
passages are relevant to a given query [50]. Here, the size of the passage collection is
typically very large (21M passages in this work and in [50]) and % is very small (e.g., 20—
100). Going beyond in-distribution and in-domain testing, we focus on generalizability
to new data which can be out-of-distribution and out-of-domain.

Test collections. The Benchmarking-IR (BEIR) [111] test collection was introduced to
facilitate the effectiveness of retrieval models in out-of-domain settings. It provides a
collection of 18 datasets (13 of which are readily available) from diverse retrieval tasks
and domains. Thakur et al. [111] also highlight considerable room for improvement in
the generalization capabilities of dense retrieval models. Our work aims to improve the
generalizability of dense retrievers by using synthetic datasets with specially chosen
composition of data (multiple queries per passage).

Automatically generated collections. Automatically generating training, development
and test collections for retrieval has a long history in information retrieval. Examples
include test collections for bibliographic systems [108], known-item test collections [7],
desktop search [52], web search [4], test collections for academic search [11]. Berend-
sen et al. [12] focus on test collection generation to improve robustness for tuning
and learning. A comprehensive approach to simulated test collection building with
considerable attention to privacy preservation is offered in [38]. What we add on top of
this is test collection building with a specific focus on generalizability by preventing
overfitting.

3.3 Methodology

We train DPR models on generated query datasets and compare their retrieval perfor-
mance against the pre-trained model on the test datasets.

3.3.1 Dataset generation process

For our dataset generation process, we follow the steps below:
(1) Identify potential answers to questions to be generated;
(2) Generate queries that are answered by one of the potential answers; and

(3) Filter out bad queries, that is, queries that are unanswerable or do not end with a
question mark.

Identifying potential answers. We train a token classification model to identify words
or phrases from a passage that could serve as potential answers to queries. The trained
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model is then used to tag potential answers for each passage in a dataset. This process
enables us to find all potential answers in a passage, which is critical to ensure that there
are sufficient queries from any given passage.

Generating queries. The passages, along with the tagged answers, are fed to a sequence-
to-sequence model that generates a query for each passage-answer pair. Each passage
can have multiple associated answers, resulting in multiple queries from the same
passage. This ensures that there are queries related to most, if not all, entities found in a
given passage.

Filtering queries. The generated queries are filtered to remove potentially unanswerable
queries (from the originating passage). To find such queries, we feed the passages and
queries to a question answering (QA) model and discard queries where the QA model
answer does not match the original tagged answer. We also discard queries that contain
more than one sentence or do not end with a question mark (?). This is to ensure that all
the generated queries used for training are reasonable queries (see Section 3.4.2) and
provide a good training signal for the model being trained on them.

3.3.2 Training the retriever

We build training datasets by generating queries following the procedure given in
Section 3.3.1. The generation process ensures that most passages in the training datasets
have multiple queries associated with them. We train bi-encoder retrieval models on
these training datasets.

3.4 Experimental Setup

3.4.1 Datasets

Most popular open-domain retrieval datasets contain a much larger number of passages
with only a single query originating from it than passages with multiple queries. Ta-
ble 3.1 shows the frequency of passages with a given number of queries originating
from the passage for the five datasets used in [50] as well as the five datasets that were
generated. The Wikipedia collection and five of the datasets used (NQ, Trivia QA,
Curated TREC, Web Questions, and SQuAD) are the same versions provided by [50]
available on GitHub.!

Out-of-distribution test datasets. To test the models on out-of-distribution data, we use
the four datasets available from [50] that were not used in training the baseline model,
namely Trivia QA, Curated TREC, Web Questions, and SQuAD. In addition to these
four, we include two generated test datasets. The first of these is generated from the NQ
dev passages and the second is generated from randomly selected Wikipedia passages.
This results in a total of six out-of-distribution test datasets. As these datasets use
the same passage collection but contain queries collected or generated using different
approaches, we consider the datasets to be out-of-distribution but in-domain.

'https://github.com/facebookresearch/DPR
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Table 3.1: Frequency of passages with a given number of queries originating from the
passage.

Number of queries/passage

Dataset 1 2 >2
Natural Questions 32,155 4,973 3,542
Trivia QA 43,401 5,308 1,793
Curated TREC 990 41 16
Web Questions 2,019 148 46
SQuAD 8,468 6,056 11,790
Generated from NQ train 2,784 3,418 30,120
Wikipedia passages ("58k) single 58,880 0 0
Wikipedia passages ("58k) multi 16,634 19,641 985
Wikipedia passages (7236k) 19,487 18,061 41,308

Wikipedia passages ("786k) 62,264 60,472 137,266

Out-of-domain test datasets. We use the 13 readily available datasets from [111], each
with their own distinct passage collection, to test the models on out-of-domain data. The
datasets are as follows: TREC-COVID [117], NFCorpus [17], HotpotQA [136], FiIQA-
2018 [71], ArguAna [119], Touché-2020 [14], CQADupStack [40], Quora, DBPedia
[37], SCIDOCS [22], FEVER [112], Climate-FEVER [27], and SciFact [120]. These
datasets cover multiple domains, including bio-medical, Wikipedia/general, finance,
news, and scientific domains.

3.4.2 Generation pipeline

Named entity recognition model for tagging answers. The named entity recognition
model is a RoBERTa [68] model trained on the large NER dataset (1 million sentences)
from Naman Jaswani on Kaggle,? with the tags: Organization, Person, Location, Date,
Time, Money, Percent, Facility, and Geo-Political Entity (GPE). The RoBERTa model,
trained on a large NER dataset, ensures that we find all the entities in a passage.

MACAW model for query generation. The pretrained MACAW [107] model (3 billion
parameters) is used to generate the queries. It is a strong sequence-to-sequence question
generation model (among other tasks) based on the TS5 model [86]. This model is
capable of generating queries for each entity found in the passage such that they are
relevant to the context of the passage.

Question answering model for query filtering. A RoBERTa [68] model trained on
the SQuAD dataset is used to filter out potential bad queries in the generated datasets.
The RoBERTa model is a question answering model that is good at extractive question
answering. We can reasonably assume that the questions the model is incapable of
answering are most likely flawed.

This generation pipeline results in queries that are typically relevant and answerable

2https://www.kaggle.com/namanj27/ner-dataset
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Table 3.2: Examples of generated queries and answers for a randomly sampled passage.

Passage Generated query Generated answer  Related  Answerable

Sirocco (play) is a Sirocco was first performed at Daly’s Theatre Yes Yes
play in four acts by  which theater in London?

Noél Coward. It
opened at Daly’s
Theatre on November

When did the first performance November 24, 1927  Yes Yes
of Sirocco take place?

24, .1927’ directed by which actor played the role of Ivor Novello Yes No
Basil Dean. Tvor Sirocco in the original produc-

Novello was part of ;119

the original cast. The

London opening met Who wrote the play Sirocco? Noél Coward Yes Yes
with h.arsh Who directed the first production Basil Dean Yes Yes
reception. .. of Sirocco?

from their passages of origin. We found 92% of queries to be relevant, and 86% to
be answerable from their passages of origin, based on a randomly sampled set of 50
queries (example shown in Table 3.2).

3.4.3 Retrieval pipeline

The architecture of the retrieval model is identical to [50], i.e., a bi-encoder architecture
consisting of two BERT [26] encoders, one for encoding the passages/contexts and the
other for encoding the queries. We also use the same hyperparameters as [50] except for
the batch size, where we use a batch size of 80 vs. a batch size of 120 due to resource
limitations.

We choose the DPR [50] model as our architecture of choice to avoid introducing
any confounding factors in our analysis. Other architectures, notably the late interaction
based ColBERT [51] architecture, has demonstrated superior retrieval accuracy over the
original DPR [50] architecture. However, ColBERT has higher latency and much larger
space footprints for indices. As our work is focused on the composition of data, the
simpler and more straightforward architecture of DPR is better suited to our analysis.
Furthermore, the higher resource demands and complexity of ColBERT makes it a
less viable option compared to DPR in any setting with even moderate computational
resource constraints.

We build five training datasets by generating queries following the procedure given
in Section 3.3.1. One dataset is built by generating queries from the same passages used
in the NQ train set, while the other four are from randomly selected Wikipedia passages.
A bi-encoder DPR model, starting from the pretrained BERT [26] weights, is trained on
each of these five datasets.

While positive training examples (matching query and document pairs) are available
directly in retrieval datasets, negative training examples must be selected from the set
of all documents. The original DPR model is trained using a combination of in-batch
negatives (the positive documents of all other queries in the batch used as negatives for a
given query) and BM25 selected negatives (highest ranked document retrieved by BM25,
which does not contain the answer to the query). In our work, we simply use the in-batch
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negatives as the negative examples leaving improvements from more complex negative
selection strategies for future work as our results demonstrate improved generalizability
even without using hard negatives.

3.4.4 Experiment

We use two models trained on two different datasets to compare the generalizability
of DPR models trained on data with multiple queries per passage versus DPR models
trained on data with mostly a single query per passage. The pre-trained DPR model
from [50], trained on NQ with mostly single query per passage data, is used as the
baseline model to be compared against our model trained 58,880 generated queries
containing mostly multiple queries per passage data (58k generated).

The two models are tested in both the out-of-distribution (6 datasets) and the out-
of-domain settings (13 datasets). Top-100 accuracy is used as the evaluation metric
for the out-of-distribution setting while recall@ 100 is used as the evaluation metric
for the out-of-domain setting. The decision to use two different metrics is motivated
by the fact that the set of all relevant passages is only available for the out-of-domain
datasets, which is necessary to calculate recall. Only the true answers are available for
the out-of-distribution datasets, so we calculate top-100 accuracy by checking whether
the true answer is present in any of the top-100 retrieved documents. In addition to this,
we also report MRR @ 100 (Mean Reciprocal Rank) for all experiments.

3.5 Results

We report results from the baseline pretrained model trained on NQ (58,880 queries)
against our model trained on 58,880 generated queries for the two generalizability
settings; out-of-distribution and out-of-domain. Here, the generated query dataset
contains mostly passages with multiple queries per passage.

3.5.1 Out-of-distribution generalizability

Table 3.3 shows the top 100 accuracy scores obtained by the baseline DPR model
(trained on NQ) and our DPR model, trained on the 58k generated query dataset with
multiple queries per passage (58k generated), on the out-of-distribution datasets. We
also include the scores on the NQ dataset itself for completeness, but it should be noted
that this dataset is an in-distribution dataset for the baseline model.

The model trained on 58k generated (our model) outperforms the baseline DPR
model on 5 out of 6 out-of-distribution datasets, with the Curated TREC dataset being
the sole exception. However, the difference in accuracy between the two models on
Curated TREC and WebQ are not statistically significant. Our model generalizes better
in all four datasets (out of six) where the difference is statistically significant. The
baseline DPR model does better on the NQ test dataset (in-distribution) compared to
the our model trained on generated queries (out-of-distribution).

Interestingly, the baseline DPR model trails our model trained on 58k generated
even on the queries generated from the NQ passages despite being trained on fairly
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Table 3.3: Top 100 accuracy scores for the model trained on 58k generated and the
baseline DPR model trained on NQ for out-of-distribution datasets. The highest score
is in bold and * indicates in-domain performance. Statistical significance with paired
t-test: * indicates p < 0.05 and ** indicates p < 0.01.

Standard datasets Generated datasets
Model NQ TriviaQA TREC WebQ SQuAD NQ dev Wikipedia
Baseline DPR 84.97™ 78.7 90.7 776 63.5 81.5 56.7

58k generated (ours) 75.0  80.0°" 89.6 78.3 694~ 853 792"

Table 3.4: MRR @ 100 scores for the model trained on 58k generated and the baseline
DPR model trained on NQ for out-of-distribution datasets. Same notational conventions
as in Table 3.3.

Standard datasets Generated datasets
Model NQ TriviaQA TREC WebQ SQuAD NQ dev Wikipedia
Baseline DPR 0.512%"" 0.437"" 0.583" 0.389"" 0.234 0.449""  0.240

58k generated (ours) 0.313 0426  0.507 0.358 0.258" 0426  0.415"

similar data. This indicates that the performance of DPR models trained on data with
mostly a single query from each passage deteriorates rapidly when tested on new queries.
This observation may be explained by our initial hypothesis. If a model trained on data
with a single query per passage learns to discard information, it is logical that the model
would struggle when dealing with multiple queries from a passage as this requires the
context encoder to encode all information available in the passage in order to correctly
match all the queries from that passage. These results indicate that training a model
on data with multiple queries per passage results in improved generalizability in the
out-of-distribution setting.

The baseline model outperforms the model trained on 58k generated on 4 out of 6
out-of-distribution datasets when considering MRR @ 100 scores (Table 3.4). However,
the 58k generated model performs slightly better on average.

3.5.2 Out-of-domain generalizability

Table 3.5 shows the recall@ 100 scores obtained by the baseline DPR model (trained on
NQ) and our DPR model trained on 58k generated. The model trained on 58k generated
outperforms the baseline DPR model achieving higher recall@ 100 scores in 12 out of 13
out-of-domain datasets. Considering only the statistically significant results (p < 0.05),
our model trained on multiple query per passage data outperforms the baseline DPR
model on all 10 out of 10 datasets.

The MRR @ 100 scores (Table 3.5) follow a similar pattern, with the model trained
on 58k generated outperforming the baseline in 9 out of 10 out-of-domain datasets
where the results are statistically significant.

The model trained with data containing multiple queries per passage (our model
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Table 3.5: Recall@100 and MRR @ 100 scores for the baseline DPR model trained on
NQ and the model trained on 58k generated queries for out-of-domain datasets. Same
notational conventions as in Table 3.3.

Recall@100 MRR@100

Dataset Baseline DPR 58k generated = Baseline DPR 58k generated
ArguAna 0.480 0.919™ 0.051 0.213"
Climate FEVER 0.410 0.405 0.258" 0.220
CQA Dup Stack 0.109 0.139" 0.041 0.068"
DBPedia 0.310 0.335" 0.559 0.564
FEVER 0.748 0.805™ 0.497 0.492
FiQa 0.313 0.369" 0.131 0.195™
HotpotQA 0.493 0.502 0.419 0.559™
NFCorpus 0.170 0.238 0.306 0.377"
Quora 0.566 0.880" 0.279 0.590™
SciDocs 0.196 0.253" 0.136 0.207"
SciFact 0.581 0.704™ 0.247 0.372"
Touche 0.276 0.344" 0.234 0.386™
TREC-COVID 0.096 0.177" 0.287 0.354

trained on 58k generated) dominates the baseline DPR model, trained on mostly single
query per passage data, in both the out-of-distribution and out-of-domain setting. This
clearly superior zero-shot generalization performance when a DPR model is trained on
data with multiple queries per passage answers the research question (RQ 2) demon-
strating that training a DPR model on data with multiple queries per passage does result
in a better generalized model.

3.6 Analysis

3.6.1 Generation versus data composition

We conduct a further analysis to confirm that the improvements in generalizability
shown in Section 3.5 is due to the composition of the dataset, specifically the number
of queries per passage, rather than any artifact of the query generation process. Here,
we compare the generalizability to out-of-distribution and out-of-domain data of two
models trained on generated queries. The first model is trained on generated queries
with multiple queries per passage (same as in Section 3.5) and the second model is
trained on generated queries with only a single query from each passage.

Table 3.6 shows the top-100 accuracy scores obtained by the two models on the
out-of-distribution datasets. The model trained on 58k generated (multi) outperforms
the model trained 58k generated (single) on 5 out of 7 datasets (one loss and one
tie). Four of these results are statistically significant with the model trained on 58k
generated (multi) generalizing better in all four cases. Similarly, the model trained on
58k generated (multi) outperforms the model trained on 58k generated (single), in terms
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Table 3.6: Top 100 accuracy scores for the models trained on 58k generated (single)
and 58k generated (multi) for out-of-distribution datasets. Same notational conventions
as in Table 3.3.

Standard datasets Generated datasets
Model NQ TriviaQA TREC WebQ SQuAD NQ dev Wikipedia

58k generated (single) 75.0  78.4 90.2 775 679 81.9 74.5
58k generated (multi) 75.0 80.0"° 89.6 783 694~ 853"  79.2"

Table 3.7: MRR @100 scores for the models trained on 58k generated (single) and 58k
generated (multi) for out-of-distribution datasets. Same notational conventions as in
Table 3.3.

Standard datasets Generated datasets
Model NQ TriviaQA TREC WebQ SQuAD NQ dev Wikipedia

58k generated (single) 0.309 0.397 0.489 0.350 0.247  0.394 0.366
58k generated (multi) 0.313 0.426™ 0.507 0.358 0.258" 0.426~ 0.415™

of MRR @100 scores (Table 3.7), on all six out-of-distribution datasets with four of the
results being statistically significant. These results clearly show that having multiple
queries per passage in the training data helps the model generalize better to out-of-
distribution queries, as the only difference between the two models is the composition
of the training data.

Table 3.8 shows the recall@ 100 scores obtained by the two models on the out-of-
domain datasets. Again, the model trained with multiple queries per passage outperforms
the model trained on single query per passage data and generalizes better to 10 out of
13 out-of-domain datasets. Looking at the statistically significant results, the model
trained on 58k generated (multi) does better on 6 out of 7 datasets. The results on the
remaining six datasets are likely not statistically significant as they contain a very small
number of queries.

Overall, the model trained on 58k generated (multi) generalizes better, in both
out-of-distribution and out-of-domain settings, compared to the model trained on 58k
generated (single) when all other factors are kept constant. This confirms that the
composition of training data, specifically the number of queries per passage, is an
important factor to consider when training dense retrieval models and that training on
data with multiple queries per passage leads to a model that is capable of generalizing
better to out-of-distribution and out-of-domain queries.

3.6.2 Effect of dataset size

We also investigate the effect of the total number of generated queries in a training
dataset on the generalizability of DPR models. For this analysis we compare three DPR
models trained on three generated query datasets, where each dataset contains 58,880
(58k generated), 236,444 (236k generated), and 786,312 (786k generated) queries
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Table 3.8: Recall@ 100 and MRR @ 100 scores for the models trained on 58k generated
(single) and 58k generated (multi) for out-of-domain datasets. Same notational conven-
tions as in Table 3.3.

Recall@100 MRR @100

Dataset 58k generated 58k generated 58k generated 58k generated

(single) (multi) (single) (multi)
ArguAna 0.885 0.919" 0.208 0.213
Climate FEVER 0.378 0.405™ 0.188 0.220"
CQA Dup Stack 0.134 0.139™ 0.068 0.068
DBPedia 0.312 0.335™ 0.545 0.564
FEVER 0.722 0.805™ 0.415 0.492"
FiQa 0.358 0.369 0.189 0.195
HotpotQA 0.430 0.502" 0.460 0.559"
NFCorpus 0.185 0.238 0.376 0.377
Quora 0.909™ 0.880 0.658™ 0.590
SciDocs 0.246 0.253 0.202 0.207
SciFact 0.685 0.704 0.346 0.372
Touche 0.371 0.344 0.343 0.386
TREC-COVID 0.181 0.177 0.300 0.354

Table 3.9: Top 100 accuracy scores for the models trained on the three generated
query datasets 58k, 236k, and 786k for out-of-distribution datasets. Same notational
conventions as in Table 3.3.

Standard Datasets Generated Datasets
Model NQ TriviaQA TREC WQ SQuAD NQdev Wikipedia

58k Generated  75.0  80.0 89.6 783 694 85.3 79.2
236k Generated 79.5 825 91.7 80.6 71.6 90.1 85.4
786k Generated  80.5° 832" 922 80.7 729" 924"  89.4"

respectively. Note that all three of these datasets contain data with multiple queries
per passage. Again, we report zero-shot scores in both the out-of-distribution and
out-of-domain settings.

Table 3.9 shows the top-100 accuracy scores obtained by each model on the out-
of-distribution datasets. The model trained on 786k generated generalizes better to
all seven datasets, with five of the results being statistically significant. In terms of
MRR @100 (Table 3.10), the model trained on 786k generated obtains higher scores
on 5 out of 6 datasets, with four being statistically significant. These results indicate
that training on larger datasets, containing data with multiple queries per passage, does
yield better results on out-of-distribution datasets in a zero-shot setting.

Table 3.11 shows the recall@ 100 scores obtained by each model on the out-of-
domain datasets. Overall, the model trained on the largest dataset, 786k generated, does
marginally better than the other two models, obtaining the highest recall@ 100 score for

41



3. Improving the Generalizability of the Dense Passage Retriever

Table 3.10: MRR@100 scores for the models trained on the three generated query
datasets 58k, 236k, and 786k for out-of-distribution datasets. Same notational conven-
tions as in Table 3.3.

Standard Datasets Generated Datasets
Model NQ TriviaQA TREC WQ SQuAD NQ dev Wikipedia

58k Generated 0313 0.426  0.507 0.358 0.258 0.426 0.415
236k Generated 0.339  0.467 0.515 0.381 0.274 0.493 0.488
786k Generated  0.360°" 0.492°" 0.526 0.379 0.283" 0.522"" 0.542"

Table 3.11: Recall@100 and MRR @100 scores for the model trained on the three
generated query datasets 58k generated, 236k generated, and 786k generated for the
out-of-domain datasets. Same notational conventions as in Table 3.3.

Recall@100 MRR@100
58k 236k 786k 58k 236k 786k
Dataset
generated generated generated generated generated generated
ArguAna 0.919 0.939 0.940 0.213 0.209 0.202
Climate FEVER  0.405 0.406 0.371 0.220 0.224 0.198
CQA Dup Stack  0.139 0.154 0.153 0.068 0.072"  0.069
DBPedia 0.335 0.362 0.364 0.564 0.564 0.564
FEVER 0.805 0.853 0.856 0.492 0.508  0.476
FiQa 0.369 0.385 0.377 0.195 0.190 0.171
HotpotQA 0.502 0.557 0.572" 0.559 0.598 0.603
NFCorpus 0.238 0.216 0.216 0.377 0.387 0.382
Quora 0.880 0.897 0.929"™ 0.590 0.613 0.636"™
SciDocs 0.253 0.253 0.261 0.207 0.212 0.198
SciFact 0.704 0.737 0.790 0.372 0.373 0.374
Touche 0.344 0.366 0.325 0.386 0.325 0.314
TREC-COVID 0.177"  0.124 0.119 0.354" 0.219 0.166

seven out of thirteen out-of-domain datasets. The other two models, trained on 236k
generated and 58k generated, achieve the highest scores in four out of thirteen and two
out of thirteen, respectively. Only three of these results are statistically significant with
the model trained on 786k generated doing better on two and the model trained on 58k
generated performing better on the other. The MRR @100 scores (Table 3.11) are even
more mixed, with the model trained on 236k genrated performing better in 2 out of 4
statistically significant results while the other two models perform better on one each.
While larger training datasets help with zero-shot performance on out-of-distribution
datasets, the benefit of more generated data is less clear with regard to zero-shot
performance on out-of-domain datasets. Although the model trained on 786k generated
generalizes better than the other two models, the increase in recall scores are marginal,
especially compared to the increased cost of training which increases linearly with
dataset size. Overall, training DPR models on more generated queries with multiple
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queries per passage can improve the generalizability of the model, but with sharply
diminishing gains. This is likely due to the fact that increasing the size of the training
dataset does not necessarily increase the diversity of the training data.

3.7 Conclusion and Future Work

We have shown that the generalizability of dense passage retrievers may suffer from
learning to discard information from passages during training. This problem can be
mitigated by using training data containing a sufficient number of passages with multiple
associated queries. By exposing the dense retriever to multiple facets of information
contained in the same passage, we ensure that the model does not learn to discard
potentially useful information, leading to improved retrieval accuracy for out-of-domain
topics and queries and a better-generalized model overall. This answers the research
question (RQ 2) posed in this chapter and concludes that training on data with multiple
queries per passage improves the generalizability of dense passage retriever models.

As a general lesson, when training a dense retrieval model, it is important to consider
the number of queries per passage, or more generally, how much of the information
contained in a given passage is covered by the queries. Training datasets with a
large number of queries per passage can be automatically generated for training dense
retrievers resulting in a better generalized model.

As to limitations, we did not use hard negative mining [131] or late interaction [51],
which are known to improve the generalizability of dense retrievers. We leave their
integration to future work but note that our method is trivially compatible with such
techniques and is also independent of the actual dense retriever architecture that is used.

Finally, it would be interesting to use our proposed dataset generation method on
a full collection of Wikipedia passages to train a DPR model. While our analysis
of the effect of dataset size (Section 3.6.2) did not demonstrate meaningful gains in
generalizability, a sufficiently large query collection (a generated query dataset of
the full Wikipedia collection would be several orders of magnitude larger) containing
diverse topics may generalize very well to most domains.
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Reward Shaping for Robust Refusal in
Small Language Models for
Retrieval-Augmented Question
Answering

4.1 Introduction

Retrieval-augmented generation (RAG) is an effective technique to extend the knowl-
edge of language models (LMs) beyond what was learned during pre- and post-training
[16, 35, 57]. This is most useful in enterprise settings or in domains where information
is continuously updated, making it infeasible to keep an LM’s knowledge updated
through training [16, 45]. In high-stakes domains, it is critical to ensure that any re-
sponse from a LM is truthful [6, 43]. It is often better to conservatively refuse to answer
a question rather than attempt to guess and risk hallucinating a plausible-sounding, but
incorrect answer [127, 133]. In such scenarios, we want a LM deployed as part of a
RAG system to answer questions based on, and only based on, the documents retrieved
by the retrieval component.

We focus on the behavior of the LM component of a RAG system and analyze the
ability of open-source LMs to (a) refuse to answer queries when sufficient evidence is
not present in the provided information, (b) accurately answer complex queries given
sufficient information (in one or more documents), and (c) robustly answer complex
queries in a noisy retrieval scenario (e.g., in real-world RAG systems) where both
relevant and non-relevant documents are present.

Small LMs. While large-scale proprietary models can often be prompted to behave
reliably, small open-source LMs remain highly relevant [1, 3, 141]. They are efficient
to train and deploy, making them practical in domains where computational budgets,
privacy requirements, or regulatory constraints preclude the use of frontier models
[122, 125, 134]. Small models are easier to steer with explicit reward shaping, providing
a tractable testbed for studying how refusal behavior can be trained rather than emerged

This chapter was published as T. C. Rajapakse and M. de Rijke. Reward shaping for robust refusal in
small language models for retrieval-augmented question answering. In Under Review, 2026.
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implicitly [64, 124]. Small LMs are not just a pragmatic choice but a valuable target for
building more trustworthy retrieval-augmented systems.

Observed behavior. Our analysis of current instruction-tuned LMs reveals three con-
sistent patterns: (a) in refusal settings where relevant evidence is withheld, models
often attempt to answer instead of refusing, despite explicit prompts; (b) even in vanilla
conditions with gold documents provided, performance remains moderate; and (c) when
distractor documents are added, accuracy drops significantly in most cases, with models
failing to identify relevant evidence. General-purpose instruction-tuning and prompting
alone do not suffice for reliable refusal and robustness to real-world, noisy retrieval
scenarios.

Our approach. We introduce reward shaping for robust refusal (RSRR), a reinforcement
learning framework that explicitly trains models to both ground their answers in evidence
and to refuse to answer when evidence is insufficient. We build on proximal policy
optimization (PPO) [60, 75, 148], widely used in RLHF, and extend it with reward
components tailored for retrieval-augmented QA [16, 35, 57, 78]. Our design combines
(a) a relevance-based reward that encourages models to generate reasoning more
relevant than any single input document, (b) an answer correctness reward that schedules
a penalty/bonus depending on whether the gold answer (including NO-RES) is present,
(c) a formatting reward that enforces structured outputs, and (d) a KL penalty to stabilize
training.

The primary research question posed in this chapter is the following: (RQ 3) How
can relevance-based rewards be used in reward shaping to train small language models
to answer based on retrieved evidence and to refuse when evidence is insufficient?

To answer RQ 3, we explore the following sub-questions in this chapter:

RQ 3.1 Can existing small, instruction-tuned LMs answer questions based on retrieved
evidence and refuse to answer when evidence is insufficient?

RQ 3.2 Can RSRR improve the refusal accuracy of small LMs, i.e., refuse to answer
when evidence is insufficient?

RQ 3.3 Can RSRR improve the robustness of small LMs to distractor documents?

Contributions. Our contributions are threefold:

(1) We evaluate small instruction-tuned LMs under vanilla, refusal, and distractor
settings, showing that they struggle with calibrated refusal and robustness.

(2) We introduce RSRR, a reward shaping framework that couples evidence-grounded
generation with explicit refusal training.

(3) We demonstrate that RSRR substantially improves refusal accuracy (+43.3%
relative improvement) and robustness to distractor documents (+39.8% relative
improvement) across multiple QA benchmarks, making small LMs more reliable
components in retrieval-augmented systems.
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4.2 Related Work

Recent research has paid a lot of attention to reducing hallucinations and guiding refusal
behavior of LLMs, especially in RAG systems. We highlight related work that focuses
on improving LLM accuracy and refusal behavior.

Sensitive domains. Hallucination mitigation and calibrated refusal is especially impor-
tant in high-stakes domains such as healthcare. Pandit et al. [§3] introduce MedHallu,
a benchmark dataset for detecting medical hallucinations where the task is to predict
whether an answer is hallucinated or grounded. They show that even state-of-the-art
LMs struggle to detect medical hallucinations, with the best model achieving an F1
score of 0.625. Lee et al. [56] develop a RAG-based system to enhance the reliability
of diabetes management advise provided by LMs and show that using the retrieval
sources significantly improves the reliability of the provided answers. These works
underscore the prevalence of hallucination, especially in the healthcare domain, and how
RAG systems can be used to reduce such hallucinations. They focus on hallucination
detection or reduction via better retrieval.

In contrast, we examine the behavior of LMs after the retrieval step. We evaluate the
question answering accuracy of LMs under both ideal and noisy conditions, as well as
the ability to refuse when sufficient evidence is absent, complementing retrieval-centric
approaches with mechanisms for conservative abstention.

Refusal. Some research efforts move beyond retrieval and RAG and consider directly
aligning LM refusal behavior through reward models and reinforcement learning. Xu
et al. [133] propose reinforcement learning from knowledge feedback, rewarding correct
answers and refusals, and penalizing hallucinations. This approach teaches models to
abstain when outside their knowledge scope, thereby reducing overconfident mistakes.
Similarly, Mu et al. [74] introduce rule-based rewards to refine refusal behavior, us-
ing explicit safety rules to guide reinforcement learning, resulting in safer and more
consistent outputs. Other work focuses on balancing helpfulness and harmlessness,
and shows that naively optimizing for refusal can lead to over-refusal, thereby hurting
usefulness [109]. These works highlight the importance of calibrated refusal and intro-
duce reward mechanisms to encourage it, but they focus on not exceeding a model’s
knowledge boundary.

In contrast, we focus on answering or refusing based on the evidence provided to
the model instead of relying on internal knowledge acquired during training an LM. We
create evaluation settings where refusal is the correct outcome and shape rewards to
teach models to abstain when evidence is missing, while rewarding faithful reasoning
when sufficient evidence is present. This joint emphasis on reasoning and refusal is
crucial for reliable RAG systems.

Reward shaping and alignment. Another line of research focuses on shaping reward
functions to improve factuality and alignment in LMs. Zhang et al. [139] introduce train
reward models on large preference datasets annotated along axes such as hallucination,
comprehensiveness, and attribution. These reward models are then used to fine-tune
LMs with reinforcement learning, yielding improved generation quality and reduced
hallucinations in retrieval-augmented settings. Other works emphasize alignment strate-
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gies beyond factuality. E.g., Mu et al. [74] propose rule-based rewards to control safety
and refusal behavior.

While these works demonstrate the effectiveness of shaping reward functions to
improve reliability, they target broad aspects of alignment such as factuality, style,
or safety. In contrast, we introduce reward shaping that directly couples reasoning
over retrieved evidence with the ability to refuse when evidence is insufficient. By
explicitly rewarding multi-document reasoning alongside conservative abstention, we
complement prior alignment efforts and address a key gap in retrieval-augmented
generation: ensuring that models do not only generate answers based on, and only based
on, provided evidence, but also recognize when no answer can be supported by the
available evidence.

4.3 Analysis of Instruction-Tuned Models

We analyze instruction-tuned models to investigate their ability to answer questions
based on evidence and their ability to refuse to answer when sufficient evidence is not
provided. We consider three settings, using the augmentation methods described in
Section 4.3.3. As our focus is on the QA part of the RAG pipeline, we ensure that the
gold documents (required to answer the query) are always present in the prompt, except
in the refusal setting (Section 4.3.3), to prevent introducing noise from an imperfect
retriever to the results of our analysis.

In the refusal setting, we investigate the ability of instruction-tuned models to refuse
to answer when evidence is missing.

In the vanilla setting, we look at the ability of instruction-tuned models to answer
complex queries that may require reasoning. This also serves as a baseline to assess any
drop in performance in a RAG scenario where non-relevant documents (distractors) are
likely to be presented alongside relevant ones.

In the setting with distractors, we include distractor documents by sampling from a
ranked list of documents to obtain pseudo-relevant documents. This setting is analogous
to a RAG setup where an imperfect retriever is unlikely to retrieve relevant, and only
relevant, documents for a given query.

4.3.1 Models

We test a variety of instruction-tuned, open-source language models, namely, Llama 3,
Gemma 2, Qwen 2.5, and DeepSeek-R1. For this analysis, we use the instruction-tuned
versions of the models without any additional training.

4.3.2 Datasets

We analyze the performance of existing instruction-tuned models on four datasets
(statistics summarized in Table 4.2):

PubmedQA. PubmedQA is a biomedical question answering dataset that contains 1k
expert-annotated, 61.2k unlabeled, and 211.3k artificially generated QA instances. We
use the official test set from [47] comprising 500 question and context pairs, where
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reasoning over the context is required to answer (yes/no/maybe) the question. We use
the accompanying context of each question to simulate a RAG question answering
scenario.

BioASQ. BioASQ is a biomedical question answering dataset, designed to reflect the
real information needs of biomedical experts [53]. The dataset contains four types of
questions; binary yes/no, factoid, list, and summarization. In this work, we focus on the
binary yes/no and factoid questions to enable exact match evaluation. The dataset also
provides relevant snippets and documents for each question and we use these supporting
texts to simulate a RAG question answering scenario.

BeerQA. BeerQA [85] is a multi-hop question answering and retrieval dataset where
reasoning over one or more Wikipedia passages is required to answer the queries. In
this work, we focus on the reasoning and question answering aspect of the task.

StrategyQA. StrategyQA [32] is a question answering benchmark requiring multi-hop
reasoning where the reasoning steps are implicit in the question and should be inferred
by the model. Again, we use the questions and evidence paragraphs to construct a RAG
style question answering scenario.

4.3.3 Augmentation

Next to the vanilla datasets (where all queries are correctly answerable from the evidence
paragraphs), we create two settings by augmenting the data. Section 4.5.2 details the
process of building the with distractors and refusal settings.

Refusal (No-Res). To test a model’s ability to refuse to answer a query without sufficient
evidence, we replace the original evidence documents with pseudo-relevant documents
by sampling from ranked lists of candidate documents.

With distractors. A real-world RAG question answering scenario would contain rele-
vant and non-relevant (or pseudo-relevant) passages given the imperfect nature of any
retrieval system. We investigate the question answering performance of models when
given a mix of relevant and non-relevant documents to the query. That is, sufficient
evidence is given to answer the query, but additional distractor documents are also
present.

Summary. Across all datasets, we evaluate models in three distinct settings: vanilla (fully
answerable queries), refusal (queries without sufficient evidence), and with distractors
(queries with both relevant and irrelevant documents). These experiments are conducted
on four diverse datasets to assess performance under varying evidence conditions.

4.3.4 Evaluation

We evaluate models across three retrieval-augmented QA scenarios: No-Res (gold
evidence removed; the correct output is NO-RES), Vanilla (gold evidence present), and
Distractor (gold evidence plus additional irrelevant documents).

Metric. We report tagged accuracy: an answer is considered correct if it is produced
inside the required <ANSWER>. . .</ANSWER> tag and matches one of the gold
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Table 4.1: Tagged accuracy of instruction-tuned models in vanilla, distractor, and No-
Res scenarios (mean across prompt lengths).

Setting Model BioASQ BeerQA PubmedQA StrategyQA Average Wins
RI1-7B 0.308 0.663  0.408 0699 0520 0
NoR Gemma-2-2B  0.479  0.800  0.562 0472 0578 1
ORES | LaMA-32-3B 0484 0682  0.723 0.617  0.627 0
Qwen-2.5-3B  0.683  0.662  0.921 0927 0749 3
RI1-7B 0.402 0588  0.485 0460 0484 2
Vanill Gemma-2-2B 0477 0474  0.340 0.138 0357 1
altid 1 1aMA-32-3B 0.321  0.596  0.464 0.351 0433 1
Qwen-2.5-3B 0402 0453  0.392 0.358 0401 0
R1-7B 0.320 0.497  0.390 0458 0419 2
Distractors GeMMa-22B  0.482 0491 0.233 0287 0373 1
LLaMA-32-3B  0.323 0.542  0.366 0.368  0.400 1
Qwen-2.5-3B  0.383  0.355  0.235 0.373 0336 0

answers after normalization. Normalization removes case distinctions, punctuation, and
articles, and applies standard whitespace trimming. This metric emphasizes whether
the model can produce a grounded, verifiable answer when one exists, and whether it
can refuse to answer (following [24], we prompt the models to respond with NO-RES)
when evidence is absent.

We report the average across three different prompts (Appendix 4.A) to reflect
consistent performance. Some examples of the input and output to the models are
shown in Appendix 4.B.

4.3.5 Results of the analysis

We observe several patterns across the evaluation settings in Table 4.1. Qwen-2.5-3B
demonstrates the strongest refusal behavior, particularly on PubMedQA and StrategyQA,
while other models frequently hallucinate instead of refusing. Even with explicit
prompting, all models fail a significant fraction of cases, showing that instruction-tuning
and prompting alone is insufficient for calibrated refusal.

In the vanilla setting, instruction-tuned models achieve only moderate performance.
While LLaMA-3.2-3B performs best on average and R1-7B records the higher number
of wins, no single model consistently dominates across all datasets, and overall accuracy
remains limited. Hence, models at these parameter scales, are not reliable when required
to integrate information across multiple documents, even when explicitly prompted.

When distractor documents are introduced, all models (with the exception of
Gemma-2-2B) experience a noticeable drop in performance compared to the vanilla
setting. This suggests that current instruction-tuned models are highly sensitive to
non-relevant information and often fail to robustly identify and reason over the relevant
evidence.

Overall, the results indicate three consistent weaknesses in current instruction-tuned
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small LMs: unreliable refusal behavior when evidence is absent, limited reasoning
ability even under ideal conditions, and reduced accuracy in noisy retrieval settings.
These results indicate that the answer to the first research question of this chapter
(RQ 3.1) is that small LMs cannot reliably answer questions based on retrieved evidence
and refuse to answer when evidence is insufficient. This motivates the need for explicit
reward shaping approaches such as ours, which teach models to both reason faithfully
over provided evidence and refuse to answer when evidence is insufficient.

4.4 Reward Shaping for Reasoning and Refusal (RSRR)

4.4.1 Proximal policy optimization (PPO)

We adopt Proximal Policy Optimization (PPO) as the reinforcement learning algorithm
for fine-tuning instruction-tuned language models with our proposed reward signals.
PPO is widely used in RLHF pipelines as it provides a stable and sample-efficient
method for policy optimization while preventing large, destabilizing updates. Formally,
given a policy my parameterized by 6, PPO maximizes the clipped surrogate objective:

LPO(9) = E, [min (re(0) Ay, clip(ry(0),1— €, 1+ e)At)} 4.1)

To(ai|st)

where r(6) = ) is the probability ratio between the updated and old policies,

T Togg(atlse
and A; is the estimated advantage at timestep ¢. The clipping parameter € prevents
excessively large policy updates. In our setup:

* Policy (7p): the instruction-tuned LLM generating step-by-step reasoning and
final answers.

* Environment: a query together with retrieved documents.
* Actions: token-level generations, terminated by end-of-sequence.

* Rewards: shaped signals described in Sections 4.4.2 to 4.4.6 (relevance-based
reasoning, answer correctness, formatting penalty, and KL regularization).

Following standard PPO-RLHF practice, we add a scalar value head to the model to
estimate state values for advantage computation. A KL penalty is applied to ensure that
the updated policy remains close to the reference model, preventing catastrophic drift
during training.

442 Relevance-based reward

The central component of our reward design is a relevance-based signal that encourages
model reasoning to be grounded in the retrieved evidence. For a query ¢, the model
output y is parsed to obtain a reasoning span r = extract(y, REASONING). Let
D = {d;} X, be the set of documents provided to the model. We use a learned ranking
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model Rel(q, -) to score the relevance of the reasoning span and the documents to the
query. We define the relevance reward as

Rrel(q7 Y, D) = Rel(q7 T) - glé%( Rel(q, d)v (42)

which is positive only when the model’s reasoning is more relevant to the query than
any individual document. This reward promotes reasoning that faithfully integrates
information from multiple documents and resists distractors. We scale this term by A
in the final objective.

4.4.3 Alignment reward

We include an alignment reward Ryjie, from a separate reward model trained to capture
general quality dimensions such as fluency and coherence. This reward complements
the relevance signal by ensuring that outputs are both grounded in the retrieved evidence
and well-formed. Formally,

Ralign(Q7 y) = )\align 9((1, y)7 (43)

where g is the alignment reward model and Ayign is a weighting coefficient.

444 Answer correctness

To encourage inclusion of the correct answer, we add a scheduled shaping term. For
each example, let a* denote the gold answer or NO—RES if the query is unanswerable,
and define correct(y, a*) = 1 if the extracted ANSWER span from y matches a* under
task normalization, else 0. The reward is

+¢(t), correct(y,a*) =

—¢(t), correct(y,a*) 4.4)

L,
Rcorrect(y7 CL*, t) = {

0,
where ¢(t) >0 grows over steps t: small early (encouraging exploration), larger later
(enforcing correctness).

4.4.5 Formatting reward

Outputs must follow the required template with <REASONING> and <ANSWER> tags.
Let valid(y) € {0, 1} indicate conformity. With a fixed g > 0, we assign

Rf (y) _ +Ytmt, Vahd(y) = ]-7 (4 5)
mt - . .
—vmt, valid(y) = 0.

446 KL

We regularize my against a reference s with a per-token KL term:
rik = B KL(ﬂ'g(-\st) | ﬂref(-\st)), (4.6)

where [ controls penalty strength and prevents drift from the initialization.
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Table 4.2: Dataset statistics for evaluation.

Dataset Test size ~ Answer type
BioASQ 2,688 yes/no, span
PubMedQA 500 yes/no/maybe
BeerQA 14,121 span
StrategyQA 229 yes/no

4.4.7 Final reward

The overall reward combines all sequence-level terms with KL regularization. At the
sequence level we define

Rseq = )\reerel + /\alignRalign + Rcorrect + Rfmta (47)

where Ar and \gjign Weight the relevance and alignment components, and Reorrects Rt
are scaled by their hyperparameters ¢(t) and 7. Following standard RLHF practice,
Rieq is added at the final token while per-token KL penalties 75" are applied throughout,
yielding

r=(rit ekl K Req)- (4.8)

This vector is used for advantage estimation with GAE and PPO optimization.

4.5 Experimental Setup for Reward Shaping

451 Datasets

We use the BeerQA [85] dataset for training as it consists of multi-hop questions that
require evidence from multiple documents to answer correctly. We augment the training
set of BeerQA to add examples containing distractor documents along with the relevant
documents, and we also generate unanswerable versions of each query by replacing all
relevant documents with distractor documents. The augmentation process is detailed in
Section 4.5.2.

We evaluate on four QA datasets spanning biomedical and multi-hop reasoning:
PubMedQA [47], BioASQ [53], BeerQA [85], and StrategyQA [32]. We cast each
example as retrieval-augmented QA with evidence documents D. We follow the same
evaluation procedure as in Section 4.3 and evaluate the models under refusal, vanilla,
and with distractors settings.

Splits. We use the official test or held-out evaluation splits when available and reserve a
subset of the remaining data for training. See Table 4.2 for the counts.

4.5.2 Data augmentation

We augment each dataset to create three settings:

(1) NO-RES: gold evidence is withheld; the correct target is NO-RES.
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(2) Vanilla: all gold evidence is present; queries are answerable.

(3) Distractors: gold evidence is present plus k non-relevant documents sampled
from a retrieval ranking (details below).

Distractor sampling. We sample k distractors per query from a ranked candidate
list (excluding gold), using top-M as the pool, such that each example has n asso-
ciated documents. The ranked candidate lists are built using BM25. To fit within
the model’s context length, we set n € [3,20] and M € [10,40], with k = n —
(number of relevant documents). Both n and M are held constant per dataset.

Refusals. In the refusal setting, all gold documents are replaced with sampled distractor
documents.

4.5.3 Prompt and output template

All models are prompted with a fixed instruction and the evidence block (Documents:),
followed by Question: and arequired output template enforced via the formatting
reward (Section 4.4.5):

<REASONING> ... </REASONING>
<ANSWER> ... </ANSWER>
454 Models

Policy and reference. We fine-tune an instruction-tuned backbone as the policy 7y and
use the same initialization as the reference m.o¢ for KL control (Section 4.4.6). We
report results for LLaMA-3.2-3B.

Alignment reward model. ¢(q,y) is a sequence-level model scoring general quality
(fluency, coherence, helpfulness, etc.). We use the publicly available model checkpoint
Skywork/Skywork-Reward-Llama-3.1-8B-v0.2 [66].

Relevance scorer. Rel(q, -) is a ranking model used to score (g, ) and (g, d;) pairs for
the relevance reward (Section 4.4.2). We use the publicly available model checkpoint
rankllama-v1-7b [69].

Trained models. We use the publicly available, instruction-tuned LLaMA-3.2-3B as the
baseline model for these experiments. We further train this model on the augmented
version of BeerQA (4.5.1) using the PPO algorithm. The PPO - No Rank model is
trained with the standard PPO setup without a relevance-based reward and reward
shaping for robust refusal is trained using the proposed RSRR method which adds
a relevance-based reward to the standard PPO setup (Section 4.4). Both models are
trained using identical hyperparameters specified in Section 4.5.5.

4.5.5 Hyperparameters

All models were trained for one epoch on 8§ x NVIDIA L40 GPUs (48GB), corresponding
to ~2,090 PPO updates. We adopt the Hugging Face tr1 defaults for PPO unless
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otherwise noted. The policy 7y was optimized with AdamW (5, = 0.9, 83 = 0.999,
weight decay 0.01, ¢ = 10~®) at a learning rate of 3 x 10~¢. We run two PPO epochs
with a single mini-batch split, for an effective batch size of 128, and set a maximum
generation length of 500 tokens.

For sequence-level shaping, we use Arj = 1.0 for Ry and Agjign = 0.8 for Ryjign.
The formatting reward R, uses ygme = 1.0, giving a symmetric bonus/penalty for valid
vs. invalid outputs. The correctness reward Rgorect 1S sScheduled linearly from 3.0 to 7.0
between steps 100 and 800 (¢(t)), encouraging exploration early and enforcing refusal
later. A penalty of —2.0 is applied if the output does not end with an end-of-sequence
marker. We retain the tr1 default clipping range of 0.2 for both policy and value
updates.

4.6 Results for Reward Shaping

Overview. We compare the instruction-tuned baseline Llama model, PPO without the
relevance-based reward (PPO - No Rank), and the full RSRR method across three
settings: Vanilla, Distractors, and No-Res. Performance is measured using tagged
accuracy (Table 4.3) and percentage of incorrect refusals (Table 4.4), capturing how
often the model abstains despite sufficient evidence.

Tagged accuracy. Table 4.3 reports tagged accuracy scores. In the No-Res setting, PPO -
No Rank achieves the highest scores, but this is largely due to an over-refusal strategy:
the model learns to abstain excessively, inflating refusal accuracy but undermining
performance on answerable questions. RSRR performs slightly lower in raw accuracy
but achieves more calibrated refusal.

In the Vanilla setting, both PPO variants perform comparably to the baseline. RSRR
improves performance on BioASQ and BeerQA, but shows drops on StrategyQA. Since
StrategyQA often requires implicit multi-step reasoning whose evidence is not always
directly expressed in the retrieved documents, RSRR’s conservative bias can suppress
otherwise valid answers.

In the Distractor setting, RSRR consistently outperforms PPO - No Rank and the
baseline. By rewarding reasoning that is more relevant to the query than any single
distractor document, RSRR achieves better robustness to noisy retrieval, maintaining
higher accuracy even in the presence of irrelevant evidence.

Incorrect refusals. To better diagnose errors beyond tagged accuracy, we report the
percentage of incorrect refusals, i.e. cases where the model abstains despite sufficient
evidence being present (Table 4.4). PPO - No Rank suffers from severe over-refusal,
particularly on PubMedQA and StrategyQA, where it abstains in 40-90% of answerable
cases. reward shaping for robust refusal substantially reduces this failure mode, though
it still exhibits higher incorrect refusal rates than the baseline. The baseline, in contrast,
minimizes refusal errors but, as Table 4.3 shows, this comes at the cost of weaker
robustness in distractor settings.

Summary. Overall, reward shaping for robust refusal improves robustness in distractor
settings and produces more calibrated refusals than PPO - No Rank, with some cost to
raw accuracy. We return to the implications of this trade-off in Section 4.7.
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Table 4.3: Tagged accuracy of PPO-trained models under different QA scenarios (mean
across prompt lengths).

Setting Model BioASQ BeerQA PubmedQA StrategyQA Average Wins
LLaMA-3.2-3B  0.483  0.683 0.723 0.617 0.627 0
No-Res PPO-NoRank 0.834 0.981 0.975 0.994 0.946 4
RSRR 0.699  0.958 0.962 0.993 0903 0
LLaMA-3.2-3B  0.321  0.596 0.464 0.351 0431 1
Vanilla PPO - NoRank 0.497 0.634 0.477 0.332 0.485 1
RSRR 0.610 0.753 0.463 0.351 0.544 3
LLaMA-3.2-3B  0.323  0.542 0.366 0.368 0.400 1
Distractors PPO - No Rank 0.483  0.498 0.489 0.295 0.441 0
RSRR 0.611 0.678 0.507 0.345 0.535 3

Table 4.4: Percentage of incorrect refusals. Lower values are better. Reported across
datasets for the Vanilla and Distractor settings.

Setting Model BioASQ BeerQA PubMedQA StrategyQA Average
LLaMA-3.2-3B  12.31 7.48 10.80 9.17 9.94

Vanilla PPO - NoRank 27.38  11.35 40.60 64.19 35.88
RSRR 17.96  8.76 31.60 54.58 28.22
LLaMA-3.2-3B 11.60  9.87 29.20 17.24 16.98

Distractors PPO - No Rank 30.09  28.70 36.80 92.13 46.93
RSRR 1547 16.24 27.80 85.58 36.27

4.7 Discussion

We have seen that small language models can be explicitly trained to base their answers
on retrieved evidence and to abstain when the available evidence is insufficient. This
is achieved through relevance-based reward shaping, which evaluates the reasoning
process against retrieved documents, combined with scheduled correctness and format
rewards. The method substantially improves refusal in the No-Res setting and robustness
in the presence of distractors, moving beyond mere accuracy improvements toward
more reliable system behavior.

These results provide an answer to the second and third research questions posed in
this chapter, demonstrating that training a small LM with RSRR substantially improves
its refusal accuracy (RQ 3.2) and its robustness to distractor documents (RQ 3.3).

There is a trade-off between accuracy and conservative behavior. While reward
shaping for robust refusal improves calibrated refusal and distractor robustness, it
sometimes lowers raw tagged accuracy, most clearly on StrategyQA when going from
the vanilla to the distractor setting. This dataset requires implicit reasoning steps whose
supporting evidence is not always explicitly surfaced in the retrieved documents. In such
cases, reward shaping for robust refusal’s conservative bias toward refusal can suppress
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otherwise valid yes/no answers. We view this trade-off as intentional: in high-stakes
domains, avoiding unsupported answers may be preferable to maximizing raw accuracy.
Nonetheless, balancing caution with coverage remains an important challenge for future
work.

4.8 Conclusion

We have introduced RSRR, a reward shaping framework for retrieval-augmented QA
that explicitly trains models to both ground their answers in evidence and refuse when
evidence is missing. By applying a relevance-margin reward on the reasoning process,
combined with scheduled correctness and format shaping, RSRR improves refusal accu-
racy and robustness to distractors. Experiments show that small language models, when
trained with RSRR, can move beyond surface-level accuracy toward more calibrated
and trustworthy behavior. This, taken together with the answers to RQ 3.1, 3.2, and 3.3,
resolves the primary research question posed in this chapter (RQ 3) and demonstrates
that small LMs can be trained to answer based on retrieved evidence and refuse to
answer when evidence is insufficient using RSRR.

Reliable refusal is a critical property for deploying language models in high-stakes
domains such as healthcare and law, where overconfident but incorrect outputs can
lead to harmful consequences. By improving refusal, our approach reduces the risk of
misinformation and helps foster user trust. At the same time, explicit refusal shaping
introduces its own risks: poorly calibrated penalties may lead models to refuse too
often, withholding useful information. We therefore view this work as a step toward
more trustworthy RAG systems, while emphasizing the need for careful calibration and
evaluation in practice.

Our approach has some limitations. First, it relies on a structured output format with
explicit tags and a designated NO-RES string. This makes evaluation straightforward,
but may not fully capture more open-ended or conversational use cases. Second, the
quality of the relevance and alignment rewards is bounded by the underlying reward
models: if these models misjudge relevance, the shaped policy may learn undesired
behaviors. Third, our evaluation is limited to QA datasets with clear gold answers. Real-
world information-seeking often involves multiple valid answers, partially supported
claims, or inherently uncertain evidence. Finally, we focus on tagged accuracy, leaving
the reasoning spans unevaluated; this avoids noisy judgments, but leaves open whether
improvements in reasoning quality extend beyond surface-level answer correctness.

One direction for future research is to extend refusal training to tasks beyond QA,
such as dialogue, summarization, or code generation, where abstention is equally
important. Another is to integrate uncertainty estimation methods (e.g., entropy or
variance-based signals) with reward shaping to provide a richer training signal for
calibrated refusal. Scaling the approach and comparing against prompt-only baselines
would clarify whether reward shaping provides complementary benefits at scale. Finally,
exploring alternative output formats that are less brittle than fixed tags could make
refusal behavior more robust in less constrained settings.
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Appendices

4.A Prompts

We used three prompts (of varying length) tailored to each dataset to evaluate the models
and reported the mean value. The prompts are shown below.

4. A1 BioASQ
Prompt A.

Answer the question using only the given documents. If the answer cannot be
inferred, respond with NO-RES.

Format your response as follows:

<REASONING> Step-by-step reasoning </REASONING>

<ANSWER> Your final answer / NO-RES </ANSWER>

Prompt B.

You are given a question and a set of documents. Your task is to reason through
the information step by step and answer the question based only on what is in the
documents.

Some documents may be irrelevant. If you cannot find enough evidence to answer,
respond with NO-RES.

Follow these steps:

1. Understand the question and identify any supporting facts needed. 2. Review
all documents to find relevant entities and facts. 3. Connect information across
documents using multi-hop reasoning. 4. Derive a final answer that is grounded
in the documents (max 10 tokens). 5. If the documents do not support an answer,
respond with NO-RES.

Your response should follow this format, with no extra text:
<REASONING>Step-by-step reasoning< /REASONING>

<ANSWER> Your final answer / NO-RES </ANSWER>

Prompt C.

You are given: - A question - A set of documents

Your task: 1. Parse the question; note entities and facts required to answer it. 2. Read
all documents; ignore irrelevant content and avoid outside knowledge. 3. Extract
relevant entities/facts and note supports/contradictions. 4. Connect information
across documents with multi-hop reasoning to infer the answer. 5. Decide the final
answer strictly grounded in the documents. Keep the answer concise (< 10 tokens).
If support is missing or conflicting without a clear resolution, output NO-RES.
Your output must be in the following format with no extra commentary:
<REASONING> Step-by-step reasoning </REASONING>

<ANSWER> Your final answer / NO-RES </ANSWER>
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4.A.2 BeerQA

Prompt A.

Answer the question using only the given documents. If the answer cannot be
inferred, respond with NO-RES.

Format your response as follows:

<REASONING> Step-by-step reasoning </REASONING>

<ANSWER> Your final answer / NO-RES </ANSWER>

Prompt B.

You are given a question and supporting documents. Your task is to answer the
question based only on the information in the documents.

Some documents may be irrelevant. If you cannot infer the answer from the provided
documents, respond with NO-RES.

Follow these steps:

1. Understand the question and identify any supporting facts needed. 2. Review
all documents to find relevant facts and entities. 3. Connect information using
multi-hop reasoning. 4. Derive the final answer, grounded in the documents (max
10 tokens). 5. If the documents do not support an answer, respond with NO-RES.
Your response must follow this format, with no extra text:

<REASONING> Step-by-step reasoning </REASONING>

<ANSWER> Your final answer / NO-RES </ANSWER>

Prompt C.

You are given: - A question - A set of supporting documents

Your task: 1. Read the question carefully; note the facts and entities needed to answer.
2. Examine all documents, ignoring irrelevant ones and avoiding outside knowledge.
3. Identify relevant facts and entities. 4. Connect them across documents using
multi-hop reasoning. 5. Produce a concise final answer (leq 10 tokens) strictly
grounded in the documents. 6. If the documents do not contain enough information,
respond with NO-RES.

Your output must be in the following format with no extra commentary:
<REASONING> Step-by-step reasoning </REASONING>

<ANSWER> Your final answer / NO-RES </ANSWER>

4.A.3 PubMedQA

Prompt A.
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Answer the question with yes, no, maybe, or NO-RES, using only the given docu-
ments.

Format your response as follows:
<REASONING> Step-by-step reasoning </REASONING>
<ANSWER> yes / no / maybe / NO-RES </ANSWER>

Prompt B.

You are given a question and a set of documents. Your task is to answer the question
with either yes, no, maybe, or NO-RES, based only on the information in the
documents.

Some documents may be irrelevant. If you cannot infer the answer from the provided
documents, respond with NO-RES.

Follow these steps:

1. Understand the question and identify any supporting facts needed. 2. Review
all documents to find relevant facts and entities. 3. Connect information using
multi-hop reasoning. 4. If the documents support an answer, conclude with yes, no,
or maybe (if the information in the documents is inconclusive). 5. If the documents
do not support an answer, respond with NO-RES.

Your response must follow this format, with no extra text:
<REASONING>Step-by-step reasoning</REASONING>

<ANSWER> yes / no / maybe / NO-RES </ANSWER>

Prompt C.

You are given: - A question - A set of documents

Your task: Decide if the answer is “yes”, “no”, “maybe”, or "NO-RES” (if the
answer cannot be inferred), using ONLY the provided documents.

Detailed steps: 1. Read the question carefully to understand the entities and facts
required. 2. Examine all provided documents, ignoring irrelevant ones. 3. Identify
direct or indirect evidence supporting or contradicting the answer. 4. If needed, com-
bine information from multiple documents using multi-hop reasoning. 5. Decide: -
”yes” if the documents clearly confirm the statement - “no” if they clearly refute it -
“maybe” if evidence is present but inconclusive - "NO-RES” if no relevant evidence
exists in the documents 6. Do not use external knowledge. 7. Your output must be
in the following format with no extra commentary:

<REASONING> Step-by-step reasoning </REASONING>

<ANSWER> yes / no / maybe / NO-RES </ANSWER>

4.A.4 StrategyQA

Prompt A.
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Answer the question using only the given documents. If the answer cannot be
inferred, respond with NO-RES.

Format your response as follows:

<REASONING> Step-by-step reasoning </REASONING>

<ANSWER> true / false / NO-RES </ANSWER>

Prompt B.

You are given a question and a set of documents. Your task is to answer the question
with either yes, no, maybe, or NO-RES, based only on the information in the
documents.

Some documents may be irrelevant. If you cannot infer the answer from the provided
documents, respond with NO-RES.

Follow these steps:

1. Understand the question and identify any supporting facts needed. 2. Review
all documents to find relevant facts and entities. 3. Connect information using
multi-hop reasoning. 4. If the documents support an answer, conclude with true or
false. 5. If the documents do not support an answer, respond with NO-RES.

Your response must follow this format, with no extra text:

<REASONING> Step-by-step reasoning </REASONING>

<ANSWER> true / false / NO-RES </ANSWER>

Prompt C.

You are given: - A question - A set of documents

Your task: 1. Parse the question; identify entities and supporting facts needed.
2. Read all documents; ignore irrelevant content and avoid outside knowledge.
3. Extract relevant entities/facts and note supports/contradictions. 4. Connect
information across documents using multi-hop reasoning. 5. Conclude with true
or false, strictly grounded in the documents. If evidence is insufficient, output
NO-RES.

Your output must be in the following format with no extra commentary:
<REASONING> Step-by-step reasoning </REASONING>

<ANSWER> true / false / NO-RES </ANSWER>

4.B Input and Output Examples

In this appendix we show a few examples of the input and output formats.
Example 1. Correct response from RSRR.

Prompt

You are given a question and supporting documents. Your task is to answer the
question based only on the information in the documents. Some documents may be
irrelevant. If you cannot infer the answer from the provided documents, respond
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with NO-RES.

Follow these steps: 1. Understand the question and identify any supporting facts
needed. 2. Review all documents to find relevant facts and entities. 3. Connect
information using multi-hop reasoning. 4. Derive the final answer, grounded in
the documents (max 10 tokens). 5. If the documents do not support an answer,
respond with NO-RES.

Your response must follow this format, with no extra text: <REASONING>
Step-by-step reasoning </REASONING> <ANSWER> Your final answer /
NO-RES </ANSWER>

Documents

[0] (Title: Edwin Thomas Smith) Sir Edwin Thomas Smith (6 April 1830 — 25
December 1919) was an English-born South Australian brewer, businessman,
councillor, mayor, politician and benefactor.

[1] (Title: South Australian Brewing Company) Provisional directors were Sir
E. T. Smith, W. K. Simms, MLC., W. B. Rounsevell, MP., R. A. Stock, Alfred
Simms, Charles H. T. Hart, and Frank Rymill of Adelaide, and Hon. N. Fitzgerald,
MLC., John Robb, JP., M. D. McEacharn, John B. Watson, and John Mcllwraith,
of Melbourne.

[2] (Title: South Australian Brewing Company) In 1927 T. A. Nation was the
brewer and G. B. Bryant the general manager. His board of directors comprised
S. J. Jacobs (later Managing Director), Sir Lancelot Stirling, K.C.M.G., Edward
Fitzgerald, LL.D., and H. W. Morphett.

Model Output

<REASONING> Based on the provided documents, the English-born South
Australian brewer whose brewery was amalgamated with W. K. Simms’s West End
Brewery was Sir Edwin Thomas Smith. According to Document [0], he was born
on 6 April 1830.</REASONING>

<ANSWER> 6 April 1830 </ANSWER>

Gold: 6 April 1830

Example 2. Incorrect response from PPO - No Rank.

Prompt

You are given a question and supporting documents. Your task is to answer the
question based only on the information in the documents. Some documents may be
irrelevant. If you cannot infer the answer from the provided documents, respond
with NO-RES.
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Follow these steps: 1. Understand the question and identify any supporting facts
needed. 2. Review all documents to find relevant facts and entities. 3. Connect
information using multi-hop reasoning. 4. Derive the final answer, grounded in
the documents (max 10 tokens). 5. If the documents do not support an answer,
respond with NO-RES.

Your response must follow this format, with no extra text: <REASONING>
Step-by-step reasoning </REASONING> <ANSWER> Your final answer /
NO-RES </ANSWER>

Documents

[0] (Title: Edwin Thomas Smith) Sir Edwin Thomas Smith (6 April 1830 — 25
December 1919) was an English-born South Australian brewer, businessman,
councillor, mayor, politician and benefactor.

[1] (Title: South Australian Brewing Company) Provisional directors were Sir
E. T. Smith, W. K. Simms, MLC., W. B. Rounsevell, MP., R. A. Stock, Alfred
Simms, Charles H. T. Hart, and Frank Rymill of Adelaide, and Hon. N. Fitzgerald,
MLC., John Robb, JP., M. D. McEacharn, John B. Watson, and John Mcllwraith,
of Melbourne.

[2] (Title: South Australian Brewing Company) In 1927 T. A. Nation was the
brewer and G. B. Bryant the general manager. His board of directors comprised
S.J. Jacobs (later Managing Director), Sir Lancelot Stirling, K.C.M.G., Edward
Fitzgerald, LL.D., and H. W. Morphett.

Question
When was the English-born South Australian brewer whose brewery was
amalgamated with W. K. Simms’s West End Brewery born?

Model Output

There is no information in the provided documents about the English-born South
Australian brewer whose brewery was amalgamated with W. K. Simms’s West End
Brewery. The documents only mention Sir Edwin Thomas Smith, the provisional
directors of the South Australian Brewing Company, and the board of directors
in 1927. Therefore, the answer cannot be derived from the provided documents.
<ANSWER> NO-RES </ANSWER>

Gold: 6 April 1830

Example 2. Incorrect response from LLaMA-3.2-3B.

Prompt
You are given a question and supporting documents. Your task is to answer the
question based only on the information in the documents. Some documents may be
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irrelevant. If you cannot infer the answer from the provided documents, respond
with NO-RES.

Follow these steps: 1. Understand the question and identify any supporting facts
needed. 2. Review all documents to find relevant facts and entities. 3. Connect
information using multi-hop reasoning. 4. Derive the final answer, grounded in
the documents (max 10 tokens). 5. If the documents do not support an answer,
respond with NO-RES.

Your response must follow this format, with no extra text: <REASONING>
Step-by-step reasoning </REASONING> <ANSWER> Your final answer /
NO-RES </ANSWER>

Documents

[0] (Title: Edwin Thomas Smith) Sir Edwin Thomas Smith (6 April 1830 — 25
December 1919) was an English-born South Australian brewer, businessman,
councillor, mayor, politician and benefactor.

[1] (Title: South Australian Brewing Company) Provisional directors were Sir
E. T. Smith, W. K. Simms, MLC., W. B. Rounsevell, MP., R. A. Stock, Alfred
Simms, Charles H. T. Hart, and Frank Rymill of Adelaide, and Hon. N. Fitzgerald,
MLC., John Robb, JP., M. D. McEacharn, John B. Watson, and John Mcllwraith,
of Melbourne.

[2] (Title: South Australian Brewing Company) In 1927 T. A. Nation was the
brewer and G. B. Bryant the general manager. His board of directors comprised
S. J. Jacobs (later Managing Director), Sir Lancelot Stirling, K.C.M.G., Edward
Fitzgerald, LL.D., and H. W. Morphett.

Question
When was the English-born South Australian brewer whose brewery was
amalgamated with W. K. Simms’s West End Brewery born?

Model Output
<REASONING> Step-by-step reasoning </REASONING>
<ANSWER> 6 April 1830 </ANSWER>

Gold: 6 April 1830
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Simple Transformers

5.1 Introduction

Many of us see the goal of research as the improvement of people’s lives everywhere.
As researchers, we have the opportunity to make new discoveries and create innovations
that help advances in dealing with challenges in climate change, education, healthcare,
media, mobility, culture, government, and business [102] — language technology in
general, and information retrieval in particular, is likely to impact all of these areas.
In an open society, technology with such a wide and pervasive reach should be in
the hands of many, not of a few [106]. For us, this point of view entails three things:
(i) a focus on shared innovation, where the knowledge and technology being created
and examined is shared and owned by multiple, and multiple types of, stakeholders
— academic, industrial, governmental, and societal [73]; (ii) a focus on empowering
people, equipping them with new tools, rather than replacing them [2, 103]; and (iii) a
focus on getting many voices around the table, as the technology is likely to affect
many [13, 105].

In our view, open-source software is key in each of those three dimensions. Clearly,
open-source software feeds and is fed by shared innovation ecosystems, thereby fos-
tering collaboration [104]. By fostering accessibility, open-source software empowers
people, not just by code, data, and tool sharing but also by reducing the need for repeated
large-scale investments [36]. Finally, open-source software drives transparency, which
helps to build trust, which in turn helps to increase engagement.

None of the points that we have made so far is new. The open-source community
has made impressive, valuable contributions towards advancing the goal of shared
innovation (i). For example, in language technology, the BLOOM initiative [129]
organized by the BigScience-community produced the first multilingual large language
model (LLM) trained in complete transparency as a result of the largest collaboration
of Al researchers ever involved in a single research project [129]. And in information
retrieval, Lucene, the open-source search engine software library, has been in active
usage for over 25 years [33].

In this chapter, we draw attention to the second focus we outlined: empowering

This chapter was published as T. C. Rajapakse, A. Yates, and M. de Rijke. Simple Transformers: Open-
source for all. In Proceedings of the 2024 Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval in the Asia Pacific Region, pages 209-215, 2024.
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people by equipping them with new (information retrieval and language technology)
tools, not just specialists and people who focus on language technology. We hope
that by providing people with accessible tools to experiment with and use information
retrieval and language technology, we can also advance on the third focus, i.e., getting
many voices around the table to discuss and make decisions about information retrieval
language technology that will impact the lives of many.

This chapter describes one instance of this idea: Simple Transformers. Trans-
formers [115] and transformer-based architectures have found usage across, and far
beyond, information retrieval and language technology. Simple Transformers is an
open-source library for training, evaluating, and using transformer models. The core
design philosophy for the library is that using these transformative technologies should
not be restricted to only those with expertise in the field. Instead, the library is designed
to be accessible to and used by as broad a community as possible.

Simple Transformers has a special focus on information retrieval (IR) techniques
and other use cases of transformer models. It provides an easy interface to train, test,
and use neural IR methods such as dense retrieval. For example, building a dense
vector index of a document collection (using Faiss [28, 48]) is encapsulated to reduce
complexity for the user. We demonstrate how to train a dual-encoder dense retrieval
model [50] in Section 5.4.3.

The remainder of this chapter focuses on the Simple Transformers library. We
introduce the library in Section 5.3, elaborate on the design, and provide code examples
in Section 5.4. In Section 5.6, we look at instances where Simple Transformers has
been used outside the core information retrieval and language technology communi-
ties, demonstrating our contributions towards empowering people with new language
technology tools. Finally, we discuss some limitations and our commitments for future
work and reflect on our ambition of “open-source for all” in Section 5.7.

5.2 Related Work

The IR community has a long tradition of foundational open-source. In addition to
Apache Lucene (mentioned in the introduction), prominent examples include the Terrier
IR platform that implements state-of-the-art indexing and retrieval functionalities, with a
focus on the rapid development and evaluation of large-scale retrieval applications [81].
Furthermore, Pyserini [61], Tevatron [30], the LSR library [77], and Sentence Trans-
formers [94] are among popular libraries supporting the training and evaluation of IR
methods and models.

These libraries are valuable tools widely used in the IR community. Our goal
with Simple Transformers, however, is to reach a broader audience. As we describe in
Section 5.6, and as evidenced by the popularity of the Hugging Face suite of libraries [34,
58, 128], NLP methods have been adopted in many fields beyond language technology.
By integrating IR techniques alongside NLP methods with similar design principles
and a familiar interface (as described in Section 5.4), we aim to make IR methods
and techniques more accessible to users who may not possess expert knowledge of IR.
While the Huggingface libraries support the architectures of the models used in IR, they
do not provide methods of directly training or evaluating dense retrieval models, which
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can be a significant barrier to users unfamiliar with the (often complex) pipelines used
in IR tasks. On the other hand, Simple Transformers provide accessible functions to
directly implement IR pipelines as we discuss in Section 5.4.

5.3 Simple Transformers

Transformer models have become the most ubiquitous neural network architecture for
natural language processing, eclipsing previous architectures like convolutional neural
networks (CNNs) and recurrent neural networks (RNNs) [128]. The typical process
for using a transformer model on a new task involves identifying a suitable pre-trained
model (e.g., BERT, RoBERTa, BART), preprocessing the training data and converting
the text into input tokens that can be processed by a transformer (tokenization), training
the transformer on new data starting from the pre-trained weights (finetuning), and
finally making predictions on similarly preprocessed test data.

While transformers can be trained to perform exceedingly well on many IR and
NLP tasks, the finetuning process can be complicated depending on the specific models
used and the task at hand. The Simple Transformers library was created to simplify
this process and offer a streamlined and straightforward way to train, finetune, and
perform predictions with many different transformer models on various IR and NLP
tasks. Building on top of the Hugging Face Transformers library [128], thereby enabling
access to the vast collection of Transformer models available on the Hugging Face
Hub,! Simple Transformers provides an interface that is both easy to use and easy to
understand (see Section 5.4.3 for examples).

As of 2024, the Simple Transformers library has accumulated over 4,000 stars
on GitHub and has been downloaded over 3 million times, with an average of nearly
50,000 downloads per month according to PePy. Additionally, over 1,500 other GitHub
repositories use the Simple Transformers library. These statistics bear testament to the
usability and popularity of Simple Transformers, both within and without the core IR
and NLP communities.

Simple Transformers is primarily designed for ease of use and accessibility for users
who may not be familiar with IR, NLP or Deep Learning in general. We believe that
this focus makes Simple Transformers a valuable resource for communities outside IR
and NLP, such as researchers from other scientific disciplines and industry practitioners
with broader software development skill sets, e.g., software engineers who are not
specialized in IR and NLP.

The fields of IR and NLP encompass various tasks such as similarity search, text
classification, question answering, and language generation. All these tasks and more
are supported in the Simple Transformers library (see Table 5.1), with each task mapped
to its own class for convenience. While the task-specific classes follow the same pipeline
of training, evaluation, and prediction, there are necessary differences between different
classes (e.g., data formats). The following section elaborates on this pipeline approach.

https://huggingface.co/models
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Table 5.1: Overview of tasks and corresponding model classes in the Simple Transform-
ers library.

Task Model Class

Information retrieval (dense retrieval) RetrievalModel
(Large) language models (training, fine-tuning, LanguageModelingModel
and generation)

Encoder model training and fine-tuning LanguageModelingModel
Sequence classification ClassificationModel
Token classification (NER) NERModel

Question answering QuestionAnsweringModel
Language generation LanguageGenerationModel
Sequence to sequence (incl. Mono-T5 [80]) T5Model, Seg2SegModel
Text representation RepresentationModel

5.4 Design and Implementation

5.4.1 Setup

Simple Transformers is available as a Python package on PyPi? and can be installed
through pip.

5.4.2 Design

Data. Simple Transformers defines input and output data formats according to each
task. For example, the RetrievalModel class expects input data to contain the columns
query_text, gold_passage, and an optional title column, while the LanguageModeling-
Model class expects the input data to contain a single column zext. Data may be passed
as a path to a file containing the required columns or as an in-memory Pandas dataframe.
The specific input and output data formats for each task is defined in the documentation?
of the Simple Transformers library.

Configuring models. Each Simple Transformers class associated with a task has a
configuration class (named after the task class, e.g., ClassificationArgs ) that controls
all hyperparameters and configuration options for that task. Crucially, the configu-
ration class for each task comes with reasonable defaults that a novice user (a user
unfamiliar with the task and/or model) can rely on to provide good results even without
hyperparameter tuning. On the other hand, a more experienced user can perform hyper-
parameter tuning or otherwise change the configuration to improve the final performance
of the model. Again, the documentation of the library details the configuration options
available for each task.

Training models. Each Simple Transformers model class (task) has a train_model ()
method that accepts a dataset (in the correct input format) and initiates the train-

Zhttps://pypi.org/project/simpletransformers/
3https://simpletransformers.ai/docs/installation/
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ing loop for the model. The hyperparameters for training can be configured when
initializing the model class or alternatively can be passed to the train_model () func-
tion itself to update the initial configuration. Simple Transformers also has a built-in

evaluate_during_training option to facilitate model training progress tracking by per-
forming evaluation (optionally on a separate validation set) at set intervals as well as
out-of-the-box early stopping functionality.

Evaluating models. Similar to training, a model can be evaluated by calling the
eval_model () function that accepts an evaluation dataset (in the correct input format).
This method will compute a set of default metrics chosen to fit a particular task (e.g.,
classification models report accuracy, F1, etc., while retrieval models report nDCG,
recall, etc.), but a user may also pass any additional metric functions that they wish to
compute in addition to the default metrics. The eval_model () function also gets called
internally when using the evaluate_during_training feature.

Predicting with models. The predict () function of each model is called to make
predictions on input data passed to the function. Unlike the eval_model () function, the
predict () function does not compute metrics (and therefore does not require labels)
and instead outputs the predictions from the model.

Visualization. The Simple Transformers library integrates two open-source visual-
ization libraries, Weights & Biases* and Tensorboard.’ These integrations can be
used to track training and evaluation metrics easily. For example, simply setting the
wandb_project option to a non-null value will automatically track training and evalua-
tion metrics using the Weights & Biases library.

5.4.3 Examples

This section demonstrates two minimal examples of training and using transformer
models with the Simple Transformers library. Example code for other models can be
found in the Simple Transformers GitHub repository, and minimal start examples can
be found in the documentation. Advanced configuration and techniques, such as custom
parameter groups and hyperparameter tuning, are described in the documentation (and
omitted from the thesis for brevity).

Dense retrieval

This example shows how to train a simple dense retrieval model like the dense passage
retriever (DPR) [50] on the MSMARCO dataset [76]. The full code can be found in the
Simple Transformers repository.

Data format. The format for the training data can be seen in Table 5.2. Note that
the hard_negative column is optional, but using hard negatives typically yields better
performance [131]. When the column is not present, in-batch negatives are used.

4https://github.com/wandb/wandb

Shttps://github.com/tensorflow/tensorboard

Shttps://github.com/ThilinaRajapakse/simpletransformers/tree/master/
examples/retrieval
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Table 5.2: Data format to train a dense retrieval model.

query_text gold_passage hard_negative

what are the liberal arts?  liberal arts. 1. the Liberal Education: An
academic course of approach to college
instruction at a college learning that empowers
intended to. .. individuals. ..

what is the mechanism of ~ Bailliere’s Clinical Be able to diagram the

action of fibrinolytic or Haematology. 6 coagulation and

thrombolytic drugs? Mechanism of action of fibrinolytic pathways and
the. .. the. ..

Training. To train a dense retrieval model with Simple Transformers, the Retrieval Args
configuration class is instantiated and the preferred hyperparameter values are set.

# Path to the training data
train_data_path = “msmarco—train.tsv”

model_args = RetrievalArgs ()
model_args.use_hard_negatives = True
model_args.num_train_epochs = 40
model_args.train_batch_size = 16
model_args.learning_rate = le-6

Then, we define the pretrained model to be used for initializing the weights and initialize
the RetrievalModel with the pretrained weights and the configured hyperparameter
values.

model_type = “custom”

model_name = None

context_name = “bert-base—cased”
question_name = “bert-base—cased”

# Instantiate RetrievalModel
model = RetrievalModel (
model_type ,
model_name ,
context_name ,
question_name ,
args=model_args,

)

The train_model () function is called as shown below to initiate the training of the dense
retriever.

model . train_model (train_data)
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Evaluation. Simple Transformers can be used to perform evaluation on datasets in
TREC or BEIR [111] formats, as well as Pandas dataframes containing query_text and
gold_passage columns. Simple Transformers automatically builds and stores a dense
vector index, using Faiss, to perform retrieval.

When save_as_experiment is enabled, Simple Transformers will save per query met-
rics to facilitate easy statistical testing. Furthermore, the built-in analyze_experiment ()
function can be used to automatically perform statistical tests and generate latex table
code for results saved with save_as_experiment .

model . eval_model (

eval_data_path ,

save_as_experiment=True,

pytrec_eval_metrics=[
“recip_-rank”,
“recall_100”,
”ndcg_cut_10”,

1,

Adapter tuning a LLaMA model for retrieval augmented generation

This example demonstrates how to easily adapter tune [41] a LLaMA 7B7 model [113]
for retrieval augmented generation [57, 93]. Simple Transformers uses the Hugging
Face PEFT [72], bitsandbytes, and accelerate [34] libraries to enable adapter tuning
a LLaMA 7B model on consumer-grade GPUs (this example requires a GPU with
~12 GB of memory). Again, the full code can be found in the Simple Transformers
repository.?

We use the pretrained DRAGON dense retriever model [63] and the MSMARCO
collection as the dense retriever and document collection for retrieval, respectively.

Data format. The data format for adapter tuning a large language model (LLM) is
shown in Table 5.3. The text column contains the text that the language model will
be (adapter) trained on, while the rag_query column contains the questions that will
be passed to the retriever model. Note that the data format is identical for training or
finetuning a language model without retrieval augmentation, except that the rag_query
column is not required in this scenario.

Training. Following the same procedure as in Section 5.4.3, we instantiate the
LanguageModelingArgs object and set the preferred hyperparameter values.

# Path to the training data
train_data_path = “train.jsonl”

model_args = LanguageModelingArgs ()
model_args.peft = True

"https://huggingface.co/meta-1lama/Llama-2-7b-hf
8https://github.com/ThilinaRajapakse/simpletransformers/tree/master/
examples/1lms
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Table 5.3: Data format to adapter tune a retrieval-augmented large language model
(LLM).

text rag_query

Question: To whom did the Virgin To whom did the Virgin Mary allegedly
Mary allegedly appear in 1858 in  appear in 1858 in Lourdes France?
Lourdes France? Answer: Saint

Bernadette Soubirous

Question: What is in front of the What is in front of the Notre Dame Main
Notre Dame Main Building? Building?

Answer: a copper statue of Christ

model_args.nf4 = True
model_args.loftq_bits = 4
model_args.lora_config = {"r”: 8}
model_args.data_format = ”jsonl”
model_args.optimizer = “Adam8bit”

model_args. max_seq-length = 500

Then, we define the LLM to adapt and the retriever we will use. Note that retrieval_model
here has been instantiated similarly to the example in Section 5.4.3, and we omit its
instantiation for brevity.

model_type = “causal”
model_name = “meta—llama/Llama-2-7b—hf”

model = LanguageModelingModel (
”causal”,
“meta—l1lama/Llama-2-7b—hf”,
args=model_args,
retrieval_model=retrieval_model ,

)

Adapter tuning of the LLM is initiated by calling the train_model () function, again
identical to the procedure followed to train the dense retrieval model earlier.

model . train_model (train_data)

Language generation. The predict () function of the model class can be used to
generate the LLM responses to an input, as shown below.

responses , - = model.predict(
to_predict ,
rag_queries=rag_queries ,

)

Here, to_predict is a list of input prompts to the LLM, and the rag_queries is a list of
queries used by the retriever to retrieve documents relevant to the question from the
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document collection. In practice, rag_queries are essentially the question itself without
the prompt for the LLM (i.e., “What is in front of the Notre Dame Main Building”
without the surrounding “Question: ... Answer:” found in the LLM prompt).

5.5 Experiments

In this section, we replicate the results from DPR [50] by training and evaluating a
DPR dense retrieval model® '° using the Simple Transformers library. Following [50],
we train the model on the Natural Questions (NQ) [54] dataset and evaluate on NQ,
TriviaQA [49], WebQuestions (WQ) [10], CuratedTREC (TREC) [9], and SQuAD [91].
Following Karpukhin et al. [50], we train the model using a learning rate of 1e >, and a
batch size of 128 for 40 epochs, without early stopping.

Table 5.4: Top-20/Top-100 accuracy on the five evaluation datasets used in DPR [50].

Framework NQ TriviaQA  WQ TREC SQuAD

DPR [50] 78.4/85.4 79.4/85.0 73.2/81.4 79.8/89.1 63.2/77.2
Tevatron  79.8/86.9 80.2/85.5 75.4/82.9 84.0/90.7 62.3/77.0
ST 76.9/85.6 79.5/85.2 72.2/80.7 84.2/91.6 61.9/77.1

Table 5.4 shows the top-20 and top-100 accuracy metrics obtained by DPR models
trained using the original DPR repository [50], the Tevatron library [30], and the Simple
Transformers library. Overall, the top-k metrics are comparable for all three frameworks,
indicating that the results were replicated successfully.

5.6 Adoption

This section looks at the adoption of Simple Transformers in research areas other than
information retrieval and NLP. We believe this to be an important benefit of open-source
libraries and technologies.

Materials science. Cruse et al. [23] use transformer models via the Simple Transformers
library to build a publicly available dataset of codified gold nanoparticle synthesis
protocols and outcomes extracted from nearly 5 million existing nanoparticle materials
science publications. They suggest that this data could help understand the underlying
mechanisms controlling the size and shape of gold nanoparticles.

Environmental social sciences. Coan et al. [21] study the role of misinformation
in shaping the debate on climate change. They used Simple Transformers to build a
model to detect specific contrarian claims regarding climate change, as opposed to
broad topics or themes [21]. They specifically note that interdisciplinary approaches
are required to combat online misinformation efforts at the required scale. We believe
that this highlights the need for accessible open-source tools that could be employed by
researchers less familiar with IR and NLP tools and methods.

https://huggingface.co/thilina/dpr-ng-st-query-encoder
Onttps://huggingface.co/thilina/dpr-ng-st-context—encoder
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Healthcare. Owen et al. [82] observe that key symptoms of major depressive disorder
can manifest in the structure of written language and that early diagnosis is critical for
achieving accurate diagnosis and improving patient outcomes. Therefore, they find that
automatic analysis of rich and regular written communications, such as social media or
web forums, may provide opportunities for early intervention. They employ various
transformer models, through Simple Transformers, for the purpose of text analysis to
detect symptoms of major depressive disorder.

Economics. Trust et al. [114] study the potential of NLP and machine learning methods
to understand how decision-making in society is influenced by news. They propose
a transformer-based method using weak supervision for the identification of news
articles about economic uncertainty and adapt to the calculation of the economic policy
uncertainty (EPU) index [8] to their proposed strategy. The transformer-based method
proposed by Trust et al. [114] yields significant improvement over the existing keyword
search based method. Simple Transformers was used to train the transformer models.

Human resources. Robson et al. [96] explore the use of Al in bridging the gap between
workforce reskilling demands and the offerings of local college training programs.
Their project, SkillSync™, uses Al technologies, including a variation of the Siamese
Multidepth Transformer-based Hierarchical Encoder (SMITH) [135] and other natural
language understanding methods, to facilitate the alignment of job descriptions and
course information with skills taxonomies.

5.7 Limitations, Future Work, and Reflections

5.7.1 Limitations

The primary limitation of the Simple Transformers library is that we do not focus on the
deployment of transformer models once they are trained and tested. While this is less of
a concern for researchers, industry users need to deploy, scale, and maintain transformer
models in production. The predict () function of Simple Transformers models can be
used to perform ad hoc predictions but integrating this with, e.g., web servers is beyond
the scope of the library. However, any model trained with Simple Transformers is fully
compatible with any tools that work with Hugging Face models.

Furthermore, Simple Transformers does not support the full range of models avail-
able on Hugging Face, but instead focuses on the most commonly used tasks such
as information retrieval, classification, and language generation. These tasks are also
commonly found in other fields of research, and we believe that the ease of use for
these core tasks is crucial to democratize access to powerful IR and NLP capabilities
without overwhelming users with the complexity required to manage and deploy a
wider array of models. By streamlining the process for these key IR and NLP tasks,
the Simple Transformers library aims to lower the barrier to entry, enabling more re-
searchers and developers to use the power of transformer models. We believe that both
general-purpose, large-scale tools like the Hugging Face suite of libraries and more
specialized, beginner-friendly tools such as Simple Transformers play a crucial role in
driving shared innovation. These tools empower a diverse community to benefit from
open-source language technology, and their continued popularity highlights their impact
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and importance.

While this focus limits the library’s scope in terms of model variety and deploy-
ment capabilities, it ensures that users can quickly and effectively train, test, and use
transformer models without requiring extensive expertise in IR and NLP. This approach
allows the Simple Transformers library to maintain its simplicity and accessibility while
offering users pathways to deploy their models in real-world applications through full
compatibility with Hugging Face libraries.

5.7.2 Future work

We aim to keep the Simple Transformers library up to date with the latest developments
in information retrieval and natural language processing and to democratize access to
the latest models and methodologies to a broader audience beyond the deep learning
community.

5.7.3 Reflections on “Open-source for All”

We reflect on the three key focuses we outlined in Section 5.1 and how the Simple
Transformers library contributes towards them.

(1) Shared innovation: We believe that most of the progress by the open-source
community has been made towards this focus. The pace of advances in IR and
NLP over the past few years bears testament to this fact. Simple Transformers
is part of a large and growing movement, based on open-source developments
and open science, dedicated to shared innovation in both industry and academia.
However, we believe that there is still ample room to involve governmental and
societal stakeholders, sectors where IR and language technology are less prevalent
and even less understood, in this focus.

(2) Empowering people: The adoption of the Simple Transformers library, partic-
ularly outside the IR and NLP communities, and the research being conducted
in other fields powered by IR and NLP technologies is evidence of progress
towards the focus of empowering people with new tools. We believe that further
progress can be made by increasing the availability of accessible tools, as well as
increasing access to training materials and educational resources.

(3) Diversity: While it is difficult to directly estimate the impact of Simple Trans-
formers on our third focus, we believe that bringing more people and diverse
opinions to the discussion starts with empowering people to use language tech-
nology in the first place. Therefore, we hope that by pushing towards the second
focus, we indirectly move towards the third focus as well.
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Conclusions

In this chapter, we first recall the research questions that formed the basis of this
thesis and summarize the answers to the research questions, along with findings and
conclusions. In the second section of the chapter, we discuss possible future research
directions.

6.1 Main Findings

RQ 1 How do negative sampling strategies affect the generalization of dense retrievers
under distribution shift across domains and languages?

RQ 1 investigates how negative sampling strategies shape the generalization of dense
retrievers under domain and language shift. Chapter 2 compares a range of negatives,
lexical (e.g., BM25), in-batch and mined “hard” negatives, clustering-based variants,
and iterative/ICT-style procedures, across in-distribution, out-of-distribution, and multi-
lingual settings. The main findings are: (i) lexical negatives tend to yield the strongest
in-distribution performance and provide a stable starting point; (ii) iterative clustered
training (ICT-style) consistently improves robustness under distribution shift, delivering
the best balance for cross-domain and multilingual generalization; and (iii) the general
principle observed in English retrieval, that the inclusion of hard negatives is essential,
extends to multilingual retrieval, with the exception of TAS-style (external teacher)
clustering methods, which generalize less effectively.

Implications. Negative sampling is a primary driver of robustness. For production or
evaluation scenarios that must handle unseen domains or languages, ICT-style negatives
should be preferred; for purely in-domain workloads with abundant relevance signals,
lexical negatives remain competitive and simpler to maintain.

Limitations and scope. The observed gains depend on corpus characteristics (topic
granularity, language coverage) and mining budgets; extremely low-resource languages
or highly specialized domains may require re-tuned mining curricula. We also note that
improvements saturate when negatives become too adversarial relative to the model’s
capacity.

Conclusion. Careful choice of negative sampling materially affects dense retriever
generalization: iterative/ICT-style negatives offer the most reliable improvements under
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domain and language shift, whereas lexical negatives are strongest in-distribution.
Consequently, sampling should be selected to match the deployment regime, i.e., robust
ICT-style for shift-prone settings, lexical for stable in-domain retrieval.

RQ 2 Does training a dense passage retriever (DPR) model on data containing multiple
queries per passage improve the generalizability of the model?

RQ 2 investigates whether training a dense passage retriever on data containing multiple
queries per passage improves the model’s generalizability. Chapter 3 introduces a data
generation pipeline that uses query generation to create synthetic datasets where most
passages are paired with multiple diverse queries. Models trained on these datasets are
evaluated in both out-of-distribution and out-of-domain settings.

The main findings are: (i) DPR models trained on multiple-queries-per-passage
data consistently outperform baselines trained on single-query datasets in five out of
six out-of-distribution and twelve out of thirteen out-of-domain benchmarks; (ii) these
improvements hold across heterogeneous domains and corpora, indicating that the
gains are not dataset-specific; and (iii) the approach increases generalization without
substantially increasing training cost or reducing in-domain performance.

Implications. Training with multiple queries per passage increases the diversity of
passage—query alignments seen during learning, encouraging the model to encode
more general semantic representations. This broader coverage mitigates overfitting to
individual phrasings and improves robustness to unseen query formulations; an essential
property for real-world retrieval systems deployed across dynamic or evolving domains.

Limitations and scope. The quality of generated queries depends on the underlying
generation and filtering models. Weak filtering can introduce noise, potentially diluting
the intended effect.

Conclusion. Training dense retrievers on datasets containing multiple queries per
passage improves generalization across domains and distributions while maintaining
in-domain performance. By exposing the model to a wider range of query-passage
relationships during training, datasets with multiple queries per passage yield more
robust retrieval models without significant computational or architectural changes.

RQ 3 How can relevance-based rewards be used in reward shaping to train small
language models to answer based on retrieved evidence and to refuse when
evidence is insufficient?

RQ 3 investigates how relevance-based rewards can be used in reward shaping to train
small language models (LMs) to answer questions based on retrieved evidence and to
refuse when evidence is insufficient. Chapter 4 introduces the reward shaping for robust
refusal (RSRR) framework, which extends proximal policy optimization (PPO) with
task-specific reward components designed for retrieval-augmented question answering.
These components include relevance-based ranking rewards, correctness and refusal
rewards, formatting rewards, and a KL-divergence penalty for stability.

The main findings are: (i) instruction-tuned small LMs struggle to reliably distin-
guish between answerable and unanswerable queries, frequently hallucinating answers
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even under explicit refusal prompts; (ii) applying RSRR substantially improves both
correct refusals and answer accuracy, yielding a relative gain of over 40% in correct
refusals and a similar improvement in robustness to distractor documents; and (iii) the
framework generalizes across multiple QA datasets (BEERQA, BIOASQ, PUBMEDQA,
and STRATEGYQA), demonstrating that explicit reward shaping can reliably induce
grounded answering and appropriate refusal behavior in small LMs.

Implications. RSRR shows that refusal behavior and answers based on retrieved ev-
idence can be trained for explicitly rather than emerging implicitly from large-scale
instruction tuning. By rewarding evidence-grounded reasoning and penalizing un-
supported answers, small open-source LMs can be aligned for high-stakes retrieval-
augmented applications where correctness and caution are equally important.

Limitations and scope. Improvements depend on the quality and diversity of retrieved
evidence. Reward balance is also sensitive: excessive refusal penalties can lead to over-
conservatism, while overly generous relevance rewards can reintroduce hallucinations.
Scaling RSRR to larger models or longer reasoning chains may require adaptive or
hierarchical reward scheduling.

Conclusion. Explicit relevance-based reward shaping enables small language models
to reason over retrieved evidence and to refuse when that evidence is insufficient. The
RSRR framework improves robustness to distractor documents and correct refusal,
demonstrating that fine-grained reward design can make small LMs both more useful
and more trustworthy in retrieval-augmented generation tasks.

RQ 4 Can an open-source framework like Simple Transformers lower the technical
barriers to training and reproducing transformer-based retrieval and QA models?

RQ 4 investigates whether an open-source framework like Simple Transformers can
lower the technical barriers to training and reproducing transformer-based retrieval and
question-answering models. Chapter 5 presents the design and implementation of Simple
Transformers, an open-source library that abstracts the complexity of model training,
evaluation, and deployment through a unified interface and standardized configuration
schema.

The main findings are: (i) modular task classes, covering retrieval, question an-
swering, and related transformer applications, allow users with limited engineering
expertise to train and evaluate models with minimal code; (ii) consistent configuration
management and sensible defaults reduce friction in experimental workflows, promoting
reproducibility across setups; and (iii) evidence of adoption, thousands of GitHub stars,
millions of downloads, and widespread downstream use, indicates that the framework
has had a measurable impact on accessibility and open experimentation in language
model research.

Implications. Simple Transformers demonstrates that accessible open-source infrastruc-
ture can democratize the use of advanced transformer architectures beyond specialized
research groups. Lowering the engineering threshold expands participation, accelerates
iteration, and strengthens reproducibility practices across both academia and industry.

Limitations and scope. While Simple Transformers simplifies the process of training and
evaluating models, it does not replace the need for expertise in model selection, dataset

85



6. Conclusions

design, and evaluation methodology. Its abstraction layers also trade off some flexibility,
making highly customized architectures or distributed setups less straightforward to
implement. Future work can address these limitations through modular extensions and
tighter integration with emerging retrieval-augmented and evaluation pipelines.

Conclusion. Open-source frameworks like Simple Transformers can substantially lower
the technical barriers to transformer-based retrieval and question answering. By abstract-
ing routine engineering details and standardizing workflows, such frameworks foster
more inclusive and reproducible research ecosystems, enabling a wider community to
build, evaluate, and share transformer models effectively.

6.2 Future Work

Future work arising from this thesis spans three broad directions, specifically, advanc-
ing retrieval robustness, improving grounded answering and correct refusal in small
language models, and broadening accessibility through open infrastructures.

Retrieval robustness and generalization

Chapters 2 and 3 focused on data-centric strategies for improving retriever robustness:
negative sampling and training data composition. Several extensions remain open.
First, while iterative clustered training (ICT) and training data containing multiple
queries per passage improve zero-shot and cross-lingual generalization, their joint effect
has not yet been studied. Combining diverse negatives with the data augmentation
introduced in Chapter 3 could further reduce overfitting and improve transfer to unseen
domains. Second, future work can explore adaptive sampling strategies that respond
to the model’s evolving uncertainty during training, selecting negatives or additional
queries in a curriculum fashion. Such adaptive pipelines would better reflect real-world
retrieval, where data availability and relevance signals change over time. Finally, scaling
these analyses to larger multilingual or multimodal corpora, where passages may contain
images, tables, or structured data, would test the limits of current retriever architectures
and highlight how retrieval robustness interacts with modality alignment.

Grounded reasoning and calibrated refusal

Chapter 4 introduced reward shaping for robust refusal (RSRR), demonstrating that
small language models can be explicitly trained to balance correctness and abstention.
Future work can extend this in several ways. First, scaling RSRR to larger open
models or multi-turn reasoning tasks will require dynamic reward scheduling and better
credit assignment across reasoning steps. Second, integrating retrieval uncertainty
directly into the reward function, so that the model learns to reason not only over
evidence but also over confidence, could yield more stable refusal calibration. Another
promising direction is cross-domain transfer: examining whether models trained to
refuse unsupported answers in scientific QA also generalize to safety-critical domains
such as healthcare, finance, or law. In these settings, nuanced refusal (distinguishing
lack of evidence from lack of knowledge) remains largely unexplored. Lastly, RSRR can
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be paired with human feedback or preference modeling to refine its refusal thresholds,
bridging reinforcement learning with alignment research.

Open-source infrastructure and reproducibility

Chapter 5 emphasized lowering technical barriers through the Simple Transformers
framework. Future work can extend this mission by improving interoperability with
existing evaluation frameworks and retrieval-QA benchmarks, ensuring that experiments
can be reproduced end-to-end with minimal configuration effort. Further development
could focus on modular extensions for emerging transformer architectures, lightweight
adapters for multilingual or low-resource settings, and tighter integration with experi-
ment tracking and version control tools to enhance transparency. Another promising
direction lies in usability research: studying how accessible tooling influences adoption,
collaboration, and reproducibility across institutions. Understanding these effects empir-
ically would help quantify the scientific and societal impact of open-source infrastructure
in information retrieval and language modeling.

Towards unified retrieval-generation systems

Taken together, the chapters of this thesis suggest a broader agenda: moving from iso-
lated retrieval and generation components toward unified, grounded reasoning systems.
Future work can explore reinforcement learning setups that jointly optimize retrieval
selection, reasoning quality, and refusal calibration. Future research in this direction
may yield systems that know when to search, when to reason, and when to abstain,
aligning robustness, faithfulness, and responsibility within a single framework.
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Summary

Information retrieval increasingly relies on systems that must find evidence, reason
over it, and avoid answering when support is lacking. This thesis studies how to train
and evaluate such systems across three strands: (i) making dense retrievers robust
under distribution shifts, (ii) training small language models to ground answers and
refuse when evidence is insufficient, and (iii) improving accessibility and reproducibility
through open-source tooling.

Part I: Robust retrieval under distribution shifts. Chapter 2 investigates negative
sampling for multilingual dense passage retrieval and introduces iterative clustered
training (ICT), which refreshes hard negatives by clustering query or passage repre-
sentations during training. In multilingual experiments, BM25-based negatives yield
the strongest in-distribution effectiveness, while ICT, especially the passage-clustered
variant (ICT-P), provides the best out-of-distribution and zero-shot performance, with
lower resource demands than full-corpus iterative mining. Chapter 3 further shows that
data composition matters: training on synthetically generated datasets with multiple
queries per passage improves zero-shot and out-of-domain generalization compared to
single-query training with all other factors controlled.

Part II: Robust refusal and evidence-based answering. Chapter 4 studies retrieval
augmented QA with small instruction-tuned models in three evidence conditions: (i)
Vanilla (gold evidence present), (ii) Distractors (gold evidence plus irrelevant passages),
and (iii) No-Res (gold evidence removed; correct behavior is refusal). Baselines tend
to over-answer in noisy contexts and under-refuse when evidence is absent. Chapter 4
introduces reward shaping for robust refusal (RSRR), a PPO-based approach that com-
bines a relevance reward (comparing reasoning to retrieved documents) with scheduled
correctness, formatting, and KL terms. Across BioASQ, BeerQA, PubMedQA, and
StrategyQA, RSRR improves robustness under distractors and produces more calibrated
refusals than PPO without relevance, with a conservative trade-off that can reduce raw
accuracy on some tasks.

Part III: Accessibility and shared practice. We present the Simple Transformers
library, which standardizes training and evaluation for transformer models across tasks
(e.g., dense retrieval, classification, QA) with minimal configuration. The library’s
adoption across domains underscores its role in lowering the engineering burden and
supporting reproducible experimentation.

Across retrieval, reasoning, and refusal, the findings highlight that robustness emerges
not from scale alone but from careful design of negatives, data, and rewards. The thesis
provides a reproducible foundation for retrieval-augmented systems that generalize
broadly and respond with grounded, reliable behavior.
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Samenvatting

Het opzoeken van informatie (information retrieval) steunt in toenemende mate op
systemen die bewijs moeten vinden, dit bewijs moeten kunnen interpreteren, en moeten
afzien van antwoorden wanneer er onvoldoende onderbouwing is. Dit proefschrift
onderzoekt hoe dergelijke systemen getraind en geévalueerd kunnen worden langs drie
lijnen: (i) het robuuster maken van dense retrievers onder distributieverschuivingen, (ii)
het trainen van kleinere taalmodellen om antwoorden te onderbouwen met bewijs en om
te weigeren wanneer dat bewijs ontbreekt, en (iii) het verbeteren van toegankelijkheid
en reproduceerbaarheid via open-source hulpmiddelen.

Deel I: Robuuste retrieval onder distributieverschuivingen. Hoofdstuk 2 onder-
zoekt negatieve sampling voor meertalige dense passage retrieval en introduceert it-
erative clustered training (ICT), een methode die harde negatieven vernieuwt door
query- of passage-representaties te clusteren tijdens het trainen. In meertalige exper-
imenten leveren BM25-negatieven de beste prestaties binnen de trainingsdistributie,
terwijl ICT, en met name de passage-geclusterde variant (ICT-P), de beste prestaties
behaalt buiten de distributie en in zero-shot scenario’s, met een lager rekenverbruik dan
volledige iteratieve mijnbouw. Hoofdstuk 3 toont bovendien aan dat de samenstelling
van trainingsdata belangrijk is: trainen op synthetische datasets met meerdere queries
per passage verbetert de generalisatie naar nieuwe domeinen ten opzichte van training
met slechts één query per passage, bij verder identieke omstandigheden.

Deel II: Robuuste weigering en bewijs-gebaseerd antwoorden. Hoofdstuk 4 on-
derzoekt retrieval-augmented vraag-antwoordsystemen met kleine, instructie-getunede
taalmodellen onder drie bewijssituaties: (i) Vanilla (gouden standaard aanwezig), (ii)
Distractors (gouden standaard plus irrelevante passages), en (iii) No-Res (gouden stan-
daard verwijderd; het juiste gedrag is weigering). Basismodellen neigen ertoe om te
vaak te antwoorden in ruisachtige contexten en te weinig te weigeren wanneer bewijs
ontbreekt. Hoofdstuk 4 introduceert reward shaping for robust refusal (RSRR), een
PPO-gebaseerde aanpak die een relevantiebeloning (vergelijking tussen redenering
en opgehaalde documenten) combineert met geplande correctheid-, opmaak- en KL-
componenten. Over de datasets BioASQ, BeerQA, PubMedQA en StrategyQA verbetert
RSRR de robuustheid bij afleidende documenten en zorgt het voor beter gekalibreerde
weigeringen dan PPO zonder relevantiebeloning, met een voorzichtige afruil die soms
tot lagere ruwe nauwkeurigheid leidt.

Deel III: Toegankelijkheid en gedeelde praktijk. Het proefschrift presenteert de
Simple Transformers-bibliotheek, die training en evaluatie van transformermodellen
voor uiteenlopende taken (zoals dense retrieval, classificatie en het beantwoorden van
vragen) standaardiseert met minimale configuratie-inspanning. De brede adoptie van
de bibliotheek onderstreept haar rol in het verlagen van de technische drempel en het
bevorderen van reproduceerbare experimentatie.

Over retrieval, redenering en weigering heen laat dit werk zien dat robuustheid niet
enkel voortkomt uit schaal, maar uit zorgvuldige ontwerpkeuzes in negatieve voor-
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beelden, data en beloningen. Het proefschrift biedt zo een reproduceerbare basis voor
retrieval-augmented systemen die breed generaliseren en reageren met onderbouwd en
betrouwbaar gedrag.
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