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1
Introduction

Information seeking systems [8, 31, 178] aim to provide precise answers to natural
language questions. Such systems are ubiquitous in digital assistants and in everyday
devices that engage users to meet their information needs, such as smart speakers
and chatbots that provide goal-oriented customer service [62] or chit-chat [18, 140].
Information seeking systems are comprised of two main constituent components [19]:
a retriever [230] and a reader [6, 93, 198]. The retriever focuses on fetching relevant
knowledge sources with respect to the user question which are then used by the reader
to localize precise answers from the top-k retrieved sources. This retriever-reader
approach allows complementary exploration directions to achieve the user-goal. The
user-goal of the retriever-reader framework is to provide a natural and immersive user
experience while providing a precise answer to the user question [228]. To create a
natural and effective experience, user interfaces must accommodate various input and
output modalities based on user preferences, such as structured lists or tables in addition
to unstructured text. Moreover, support for diverse modalities of the retrieved context,
responses in an extractive or generative manner, and the ability to cater for closed-
domain question answering (QA) [4] versus open-domain QA [164] are necessary for
an immersive experience in an unconstrained setup. This thesis studies these challenges
with a specific focus on the retriever and reader over structured and unstructured
contexts.

Although research in information seeking systems has advanced rapidly in recent
years, the focus has mostly been concentrated on unstructured text [34]. Heterogeneous
sources of information such as relational databases, spreadsheets [78], charts [135] etc.
have been under-explored. This thesis aims to narrow the research gap with respect to
one such structured information source: tables. Tables are collections of facts, entities
and numbers, and are not grammatically well-formed sequences [55, 137]. Recent
advances in information seeking systems that handle unstructured text are mostly due to
the introduction of pre-trained language models [1, 10, 40, 120, 136]. However, pre-
trained language models experience a distribution shift [50] when handling tables, as
they are typically trained on unstructured text data. Additionally, tables introduce novel
challenges [226] to language models that are absent in text-based knowledge sources,
such as structure perturbations [76, 223], structure understanding [201], and table
manipulation [219]. The challenges of free-flow text become even more pronounced
when applied to tables. For instance, fact-verification [23, 137] is pivotal to table
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1. Introduction

processing instead of the fluency of the language model. Furthermore, long-tail entities
are common in tables, such as polysemic [134] entities that have the same surface-
form but different semantic forms. This leads to difficulties in word and phrase sense
disambiguation [177] of entities [229]. For example, the Wikipedia table on Mayors
in Amsterdam, New York1 lists John Carmichael as elected mayor in 1885, which is
ambiguous with the Australian pianist, composer, and music therapist John Carmichael,2
due to a similar surface-form. A table with only the lexical mention of John Carmichael
without additional contextual information of the surrounding text or without the meta-
data from entity linking [182, 183] makes disambiguation challenging for language
models. Moreover, many tables store temporally evolving data, such as a relational
database of students’ grades in a course. These aspects of tables make it difficult for
language models pre-trained on unstructured text to reason on tabular data.

This thesis proposes to close this research gap by investigating structured tables
as the source of knowledge for the reader to address user information needs. Table
question answering (tableQA) is the task of addressing user information needs by
providing precise answers to user questions by reasoning over tabular data. Research on
tableQA is under-studied with recent work [64, 207, 220, 227] based on a single tabular
context and answer-span classification of factoid questions [14, 81, 180]. To address
this limitation, this thesis investigates generative approaches by studying different
output modalities of tableQA, such as generative answer generation [42, 187], table
generation [109, 197] and summary generation [53, 96, 100]. In addition, multiple table
contexts are introduced to improve the breadth and complexity of queries that can be
answered by existing tableQA models. Lastly, a low-resource [133] tableQA setting is
investigated, focusing on the challenges of dataset/model scarcity and poor alignment
of language models to culturally relevant facts in a low-resource language.

The last part of this thesis explores the retriever module of an information seeking
system. Specifically, a sparse neural retriever [47] as a first-stage retriever is studied
from the point of view of parameter-efficient adaptation on various text corpora.

The next section describes the research questions that are answered in this thesis.
The research questions highlight some of the contributions of this thesis in addressing
important challenges of tableQA discussed above and investigating first-stage retrievers
in a parameter-efficient setting.

1.1 Research Outline and Questions
This thesis focuses on the two components of information seeking systems: the reader
or the machine comprehension module (Chapter 2, 3, 4, 5) and the retriever (Chapter
6) which focuses on retrieval from text-based inputs. The thesis contains two broad
research themes:

How to design and develop machine comprehension reader over semi-
structured tables to aid the information needs of users?

and
1https://en.wikipedia.org/wiki/Amsterdam,_New_York#Mayors
2https://en.wikipedia.org/wiki/John_Carmichael_(composer)
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1.1. Research Outline and Questions

How to design an efficient and effective retriever to aid question answering
on textual data?

Our research questions are grouped under these two themes. The first, “reader” theme
is addressed through four related research questions.

(RQ1) How do language models compare on the generative question answering task
when the context is unstructured text or semi-structured tables?

Prior work on generative QA has only focused on textual contexts [42], while QA over
structured tables has been explored primarily for span classification of factoid-based
answers [64, 227]. As a result, there is little research [141] on tableQA with generative
answers. To address this research gap, Chapter 2 investigates the task of question
answering on structured tables or unstructured text with generative answers. With
the usage of parameter-efficient adapters [68], this chapter studies the effectiveness-
efficiency trade-off of using different modalities in the input context of QA.

(RQ2) How can we leverage multiple tabular contexts to perform complex tabular
reasoning to address user needs?

Real world questions over tables span across multiple tabular contexts [16, 208, 209],
such as relational tables in a database, related web tables in a Wikipedia page, etc.
However, prior work [64, 121, 207, 227] has only focused on reasoning over single
tables for meeting the information needs of a user. This limits the complexity and
scope of questions and operations that can be addressed by the reader model. Chapter 3
addresses this limitation by introducing the task of multi-table QA. As there exists no
dataset or model for this task, a methodology for scalable dataset creation and effective
model training is designed. Further, metrics to evaluate the trained models are also
proposed. Experimental results show the efficacy of the proposed training scheme and
dataset on different datasets and domains.

(RQ3) How to generate summaries over multiple tables for conversational agents?

While RQ2 introduces the multi-table QA task, the tabular output modality is incon-
venient for real-world information seeking agents such as chatbots and conversational
agents [92]. Further, text-based summaries provide a more human-readable description
than large output tables. This motivates the exploration of query-focused multi-table
summarization in Chapter 4. Specifically, two different prompting methodologies are
investigated for this task: direct summarization and reason-then-summarize. Moreover,
different aspects of generation quality such as faithfulness, completeness, and fluency
are explored. A comparison of different automatic evaluation metrics for summarization
is done with human evaluation to investigate a structure-compatible evaluation technique.
Experimental results on fine-tuned and prompt-based in-context learning demonstrate
the effectiveness of our proposed summarization methodology over state-of-the-art
baselines.

(RQ4) How to adapt tableQA for low-resourced languages?

3



1. Introduction

Chapter 5 introduces the task of low-resource tableQA focusing on two Indo-Aryan
languages: Bengali and Hindi. Prior work [85] on low-resource tableQA has only been
limited to one language, Korean, where the authors provide a dataset and describe the
dataset creation methodology for Korean. There is a lack of general methodology for
low-resource tableQA that can be applied to any language. In addition to well-known
challenges that come with working in low-resource settings [61, 84, 176], such as data
scarcity and the poor alignment of neural models, semi-structured tables introduce
new challenges that further complicate machine reading comprehension. As tables
are a collection of facts, long-tailed entities and culturally relevant facts are often
under-represented in high-resource datasets and models. To address all these challenges,
Chapter 5 investigates an automatic dataset generation methodology for low-resource
languages that can be applied to any language with a Wikipedia presence. The result of
this methodology is a large-scale tableQA dataset for Bengali and Hindi. Additionally,
large language models (LLMs) and small encoder-decoder models are trained on the
generated dataset to explore various architectures and training processes. Experimental
results on manually annotated test sets demonstrate the models’ effectiveness while
an analysis on different mathematical operations and a zero-shot cross-lingual transfer
setting demonstrate the generalizability of the trained models.

Under our second, “retriever” theme, we address the following research question:

(RQ5) How can we balance the efficiency-accuracy trade-off to leverage efficient sparse
neural models as first-stage rankers?

Prior work on efficient neural retrieval models has focused only on dense bi-encoder [71]
models, which are often used for second-stage ranking [124, 144]. There has been
little attention to studying sparse neural models [47] often used as a first-stage ranker.
Chapter 6 is a first study of the use of parameter-efficient adapters on sparse neural
models. This study investigates whether parameter-efficient transfer learning performs
comparable to memory-heavy fine-tuning for efficient adaptation of the sparse neural
model SPLADE [47]. Specifically, the efficiency-accuracy trade-off of full fine-tuning
is compared to parameter-efficient adapter-tuning. In addition, the effectiveness of
adaptation to new domains is explored. Further, analysis of the different adapter-
layers is performed to investigate their effect on performance. Lastly, experiments are
conducted to transfer knowledge between cross-encoder [172] re-rankers and bi-encoder
first-stage rankers.

1.2 Main Contributions
The main contributions of this thesis are arranged into different categories: datasets,
models, and methods, analyses, and assessments. We list the contributions of each
category below as follows:

1.2.1 Dataset Contributions
• Multi-table question answering (MultiTabQA): Chapter 3 develops a collection

of datasets to aid the task of question answering over multiple tables. As Chapter
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1.2. Main Contributions

3 introduces the multi-table QA task, there were no existing datasets available for
the task. Chapter 3 addresses this research gap and follows a curriculum learning
paradigm and designs two types of pre-training datasets: single table pre-training
datasets and multi-table pre-training datasets. The pre-training datasets help in
table generation and understanding of complex formal queries and structured
input tables. Further, fine-tuning datasets are developed to aid the language
models in understanding complex natural language questions. To summarize, the
following datasets are produced:

– Pre-training datasets: A single-table pre-training dataset focusing on table
generation for SQL query answering over a single table and a multi-table
pre-training dataset comprising of 132, 645 samples focusing on SQL query
answering over multiple tables, are available at the Hugging Face model
hub. Each sample comprises of a formal SQL query, the corresponding
table(s), and an answer table.

– Fine-tuning datasets: A collection of multi-table QA datasets is publicly
available at the Hugging Face model hub. Each sample in the datasets com-
prises a natural language question, the associated tables and an answer table.
The datasets are built over existing relational databases and span across
different domains such as airlines information system (ATIS [30, 165]),
geography facts (GeoQuery [212]), and cross-domain facts (Spider [208]).
The Atis multi-table QA dataset comprises 384 training samples, 45 evalua-
tion samples and 86 test samples. The GeoQuery multi-table QA dataset
comprises 530 training samples, 49 validation samples and 253 test samples.
The Spider multi-table QA dataset comprises 6, 715 training samples and
985 validation samples.

• QFMTS: Chapter 4 develops a query-focused multi-table summarization dataset
over the MultiTabQA fine-tuning dataset [151] for the task of query-focused
multi-table summarization. The dataset comprises 4, 909 query-summary pairs
and the corresponding context tables.

• Bengali table question answering (BanglaTabQA) and Hindi table question an-
swering (HindiTabQA): Chapter 5 creates two low-resourced tableQA datasets
over Wikipedia tables for the two Indo-Aryan languages Bengali and Hindi. The
BanglaTabQA dataset comprises 19K Wikipedia tables, 2M training, 2K vali-
dation, and 165 test samples. The HindiTabQA dataset contains 2K Wikipedia
tables, 643K training, 645 validation, and 125 test samples. Each sample in the
dataset comprises a natural language question, the corresponding Wikipedia table,
and the answer table.

1.2.2 Model Contributions
• MultiTabQA: Chapter 3 develops a collection of models for the task of question

answering over multiple tables.

– Multi-table query answering: Models that answer an SQL query over multi-
ple tables.
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1. Introduction

– Multi-table question answering: Models that answer a natural language
question over multiple tables. These fine-tuned models have been trained
on datasets created and discussed in Chapter 3.

• BanglaTabQA and HindiTabQA: Chapter 5 introduces low-resourced tableQA
models for the two Indo-Aryan languages Bengali and Hindi. Each model was
trained on a natural language question, the corresponding Wikipedia table, and
the answer table in the respective language.

1.2.3 Methods, Analyses, and Assessments
• Analysis of the effectiveness of QA models with a new modality of semi-structured

tables: Chapter 2 introduces tables as a new input modality that comes with
a massive input domain shift to language models performing generative QA
task. Prior works [42, 98, 101] on generative QA focused only on unstructured
text-based context.

• Analysis of trade-off between efficacy and efficiency: Chapter 2 also analyzes
the effects of ablating adapter layers in both the encoder and the decoder in
a generative setup. This analysis shows that comparable effectiveness can be
achieved using only 1.5% trainable parameters and with only the last few encoder
layers.

• Metrics for multi-table QA: Chapter 3 introduces table generation metrics to
evaluate multi-table QA task. Previous work [64, 113] used text QA metrics
such as denotation accuracy as the output modality were either factoids or sum-
maries. The proposed task over complex questions often leads to tables as output,
necessitating metrics that evaluate table generation.

• Analysis of summarization metrics for query-focused multi-table summariza-
tion: Chapter 4 analyzes existing text-based summarization metrics and shows
that these are insufficient for query-focused table summarization as they do not
evaluate the factuality of the summaries and focus only on fluency.

• Budget-friendly scalable dataset generation methodology: Chapter 5 introduces a
methodology for large-scale automatic generation of low-resource tableQA data
in a budget-constrained manner. As one of the challenges of the low-resource
setting is data scarcity, designing an automatic dataset generation methodology is
crucial. Chapter 5 is the first work to introduce such a method for salable data
creation for any low-resource language for tableQA.

• Analysis of trade-off between fine-tuning and adapter-tuning for sparse retriever
model SPLADE: Chapter 6 analyzes the efficiency-accuracy trade-off of parameter-
efficient fine-tuning with adapters on the sparse retriever model SPLADE. Further,
exploration is done on how much each adapter layer ablation affects retrieval
effectiveness.

• Generalizability of sparse retriever model: Chapter 6 also studies whether
parameter-efficient adapters are effective for improving generalizability of neural
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1.3. Thesis Overview

sparse neural retriever to out-of-domain datasets. Additionally, studies on whether
adapters can share knowledge between re-rankers and sparse first stage rankers
are also conducted.

1.3 Thesis Overview
This thesis comprises various chapters studying the two broad themes of table question
answering systems: the retriever and reader.

Chapter 2 explores techniques for addressing question answering from multiple
modalities such as unstructured text or semi-structured tables. This chapter compares
training techniques such as full fine-tuning and parameter-efficient adapter-tuning on
the different data modalities and analyzes the trade-off different trainable parameter
sizes have on efficiency and efficacy.

Chapter 3 introduces the task of question answering over multiple tables. This
chapter describes the task, discusses a scalable dataset creation methodology, a training
mechanism for better convergence, and introduces evaluation metrics suitable for the
task.

Chapter 4 explores multi-table summarization over user queries. This chapter ex-
plores data creation with large language model (LLM), effective prompting mechanisms
over different LLMs and studies different evaluation metrics.

Chapter 5 discusses table question answering over low-resourced languages. This
chapter discusses challenges introduced by low-resourced languages such as the under-
representation of cultural entities and facts, and a dearth of resources such as datasets
and trained models. This chapter studies two Indo-Aryan languages, Hindi and Bengali,
and explores potential solutions to address some of the issues of the low-resourced
setting.

Chapter 6 explores retrievers and re-rankers using parameter-efficient adapters.
Specifically, this chapter deviates from the reader module and focuses on the retriever
module of an information seeking system. This chapter explores the sparse retriever
SPLADE [46] and studies the trade-off between fine-tuning and adapter-tuning on
retrieval effectiveness, out-of-domain adaptation, and knowledge sharing between re-
rankers and first-stage rankers.

All of the chapters are self-contained and can be read in any order.

1.4 Origins
The research chapters in this thesis are built upon previously published work. Below
we list the origins of the chapters in the thesis as well as the contributions made by the
authors involved.

Chapter 2 is based on the following paper:

• V. Pal, E. Kanoulas, and M. de Rijke. Parameter-efficient abstractive question
answering over tables or text. In Proceedings of the Second DialDoc Workshop
on Document-grounded Dialogue and Conversational Question Answering, pages
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41–53. Association for Computational Linguistics, May 2022. URL https:
//aclanthology.org/2022.dialdoc-1.5.

VP: Conceptualization, Investigation, Methodology, Resources, Validation, Vi-
sualization, Writing – Original Draft Preparation, Writing – Review & Editing.
EK: Supervision, Writing – Review & Editing. MdR: Funding Acquisition,
Supervision, Writing – Review & Editing.

Chapter 3 is based on the following paper:

• V. Pal, A. Yates, E. Kanoulas, and M. de Rijke. MultiTabQA: Generating
tabular answers for multi-table question answering. In Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 6322–6334, Toronto, Canada, July 2023. Association
for Computational Linguistics. doi: 10.18653/v1/2023.acl- long.348. URL
https://aclanthology.org/2023.acl-long.348.

VP: Conceptualization, Data Curation, Investigation, Methodology, Resources,
Software, Validation, Visualization, Writing – Original Draft Preparation, Writing
– Review & Editing. AY: Writing – Review & Editing. EK: Supervision, Writing
– Review & Editing. MdR: Funding Acquisition, Supervision, Writing – Review
& Editing.

Chapter 4 is based on the following paper:

• W. Zhang, V. Pal, J. Huang, E. Kanoulas, and M. de Rijke. QFMTS: generating
query-focused summaries over multi-table inputs. In U. Endriss, F. S. Melo,
K. Bach, A. J. B. Diz, J. M. Alonso-Moral, S. Barro, and F. Heintz, editors,
ECAI 2024 - 27th European Conference on Artificial Intelligence, 19-24 October
2024, Santiago de Compostela, Spain - Including 13th Conference on Prestigious
Applications of Intelligent Systems (PAIS 2024), volume 392 of Frontiers in
Artificial Intelligence and Applications, pages 3875–3882. IOS Press, 2024. doi:
10.3233/FAIA240951. URL https://doi.org/10.3233/FAIA240951.

VP and WZ share first authorship. WZ: Data Curation, Resources, Methodology,
Conceptualization, Validation, Writing – Original Draft Preparation, Writing –
Review & Editing. VP: Methodology, Model training, Validation, Visualization,
Software, Conceptualization, Investigation, Visualization, Writing – Original
Draft Preparation, Writing – Review & Editing. JH: Supervision, Writing – Orig-
inal Draft Preparation, Writing – Review & Editing, EK: Supervision, Writing –
Review & Editing. MdR: Funding Acquisition, Supervision, Writing – Review &
Editing.

Chapter 5 is based on the following paper:

• V. Pal, E. Kanoulas, A. Yates, and M. de Rijke. Table question answering
for low-resourced Indic languages. In Y. Al-Onaizan, M. Bansal, and Y.-N.
Chen, editors, Proceedings of the 2024 Conference on Empirical Methods in
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Natural Language Processing, pages 75–92, Miami, Florida, USA, Nov. 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.5.
URL https://aclanthology.org/2024.emnlp-main.5.

VP: Conceptualization, Data Curation, Formal Analysis, Investigation, Method-
ology, Resources, Software, Validation, Visualization, Writing – Original Draft
Preparation, Writing – Review & Editing. AY: Writing – Review & Editing.
EK: Supervision, Writing – Review & Editing. MdR: Funding Acquisition,
Supervision, Writing – Review & Editing.

Chapter 6 is based on the following paper:

• V. Pal, C. Lassance, H. Déjean, and S. Clinchant. Parameter-efficient sparse
retrievers and rerankers using adapters. In J. Kamps, L. Goeuriot, F. Crestani,
M. Maistro, H. Joho, B. Davis, C. Gurrin, U. Kruschwitz, and A. Caputo, editors,
Advances in Information Retrieval, pages 16–31, Cham, 2023. Springer Nature
Switzerland. ISBN 978-3-031-28238-6.

VP: Conceptualization, Formal Analysis, Investigation, Methodology, Software,
Validation, Visualization, Writing – Original Draft Preparation, Writing – Re-
view & Editing. CL: Supervision, Formal Analysis, Investigation, Methodology,
Software, Validation, Writing – Original Draft Preparation, Writing – Review
& Editing. HD: Investigation, Methodology, Software, Writing – Original Draft
Preparation, Writing – Review & Editing. SC: Supervision, Investigation, Writing
– Review & Editing.

The writing of the thesis also benefited from work on the following publications:

• G. Penha, S. Vakulenko, O. Dusek, L. Clark, V. Pal, and V. Adlakha. The sev-
enth workshop on search-oriented conversational artificial intelligence (SCAI
2022). In Proceedings of the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’22, page 3466–3469,
New York, NY, USA, 2022. Association for Computing Machinery. ISBN
9781450387323. doi: 10.1145/3477495.3531700. URL https://doi.org/
10.1145/3477495.3531700.

• Y. Luo, F. Lu, V. Pal, and D. Graus. Enhancing resume content extraction in
question answering systems through T5 model variants. In RecSys in HR’23: The
3rd Workshop on Recommender Systems for Human Resources, CEUR Workshop
Proceedings, 2023.

• E. Kanoulas, P. Eustratiadis, Y. Li, Y. Lyu, V. Pal, G. Poerwawinata, J. Qiao, and
Z. Wang. Agent-centric information access. arXiv preprint arXiv:2502.19298,
2025. URL https://arxiv.org/abs/2502.19298 (under review).

9

https://aclanthology.org/2024.emnlp-main.5
https://doi.org/10.1145/3477495.3531700
https://doi.org/10.1145/3477495.3531700
https://arxiv.org/abs/2502.19298




2
Parameter-Efficient Abstractive Question

Answering over Tables or Text

In this chapter, RQ1 is addressed with studying the generative question answering task
over either unstructured text or structured tables. Previous work on generative QA
does not process structured tables and only processes an unstructured textual context.
This chapter aims to reduce this research gap by exploring both modalities of context
in generative question answering, structured tables, and unstructured text. To enable
processing of both modalities, two task-adapters, text adapter and table adapter, were
used to process the unstructured textual context and the structured tabular context,
respectively. Further, detailed experimentation and analysis was done not only to
compare the performance of full fine-tuning with adapter-tuning, but also to compare
the importance of each adapter-layer with adapter ablation.

2.1 Introduction
Information seeking systems over diverse contexts require model capabilities to reason
over unstructured and structured data such as free-form text, tables, and images [3, 34,
70, 193, 216, 227]. Such systems might have the additional requirement of generating
natural language responses if deployed as task-oriented conversational agents [17, 168,
170, 195]. Recent work on open-domain question answering (QA) predominately
addresses these challenges by fine-tuning massive pre-trained language models on
different modalities such as tables and text [64, 65, 91, 141, 207]. However, each model
trained on a specific input type is incompatible with other modalities and requires
modality-specific fine-tuning. For example, in tabular QA [64], the structure of the
table is learnt by training additional position embeddings (row and column identifiers)
to identify which row and column a table cell belongs to. This renders such modality
specific models incompatible with free-form text-based models. Multi-modal models
[227] can reason over both tables and text by concatenating the textual context and the
flattened table, leading to longer input sequences and limiting the length of the context

This chapter was published as V. Pal, E. Kanoulas, and M. de Rijke. Parameter-efficient abstractive
question answering over tables or text. In Proceedings of the Second DialDoc Workshop on Document-
grounded Dialogue and Conversational Question Answering, pages 41–53. Association for Computational
Linguistics, May 2022. URL https://aclanthology.org/2022.dialdoc-1.5.
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Figure 2.1: Parameter-efficient transfer learning using modality-specific (table/text)
adapters for abstractive question answering.

that can be encoded.
To address these challenges, we study parameter-efficient transfer learning for

abstractive QA over tables and over text. We are motivated to use adapter-layers that
inject small bottle-neck layers between frozen pre-trained transformer layers as they
achieve comparable performance to fine-tuning on a variety of tasks such as multilingual
translation [54, 161, 162], classification [68], text-to-text generation [116], domain-
adaptation in dialogue state tracking, and response generation [72].

Ablation studies on adapter layers [175] on masked language models such as BERT-
base and RoBERTa over the GLUE benchmark demonstrate that removing beginning
adapter layers leads to a minimal drop in performance. Extending adapter layer ablation
over separate encoder and decoder modules is non-trivial as the conventional approach
of sequential pruning of layers does not extend to consecutive encoder and decoder
modules. Our work explores the interaction of adapter layers from both modules in the
context of abstractive QA.

Lin et al. [116] explore the impact of the adapter bottle-neck dimension for various
language generation tasks over an auto-regressive model such as GPT-2 [166]. They
do not study tabular data nor ablate adapter layers, which is crucial in understanding
impact of individual adapters in sequential transformer module architectures such as
encoder-decoder. Our analysis is complementary to [116] as we ablate adapter layers
to study parameter-performance trade-off whereas they only focus on adapter bottle-
neck size. Also, we generalize beyond the text-to-text setting and explore language
generation from structured or unstructured input such as tables and text. This introduces
domain-shift in both the task and structure of the downstream data.

We propose a system, named Parameter, Efficient, Abstractive Question Answering
(PeaQA), shown in Figure 2.1, which learns to reason over unstructured and structured
input using a shared pre-trained language model and modality-specific adapter layers.
We automatically transform hierarchical tables to regular tables to have a uniform
representation without breaking associations between table cells. In addition, we extend
the study of ablating adapter layers over both encoder and decoder modules.
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Our main contributions are summarized as follows:

(1) We perform parameter-efficient abstractive question answering over multi-modal
context using only additional 1.5% of trainable parameters for each modality.
Our adapter-tuned model outperforms existing work by a large margin on tabular
QA datasets and achieves comparable performance on a textual QA dataset.

(2) We study tabular QA as a new modality that introduces massive input domain
shift to pre-trained language models. We propose a 2-step transformation of
hierarchical tables to sequences, which produces a uniform representation to be
used by a single, shared pre-trained language model and modality-specific adapter
layers. To the best of our knowledge, this is the first work that explores tabular
QA question answering in a parameter-efficient manner.

(3) We ablate adapter layers in both encoder and decoder modules to study their
impact and show that beginning layers from both encoder and decoder can be
eliminated without significant drop in performance. We also demonstrate that the
last encoder adapter layers are indispensable and have a greater contribution than
the decoder layers at the same level.

2.2 Related Work
Tabular question answering Tabular QA systems aim to answer questions from
structured tables, which can be regular or hierarchical. Hierarchical tables can have
header cells and body cells spanning across multiple rows and columns [25]. In most
tabular QA systems [64, 91, 227], the structure of the table is encoded in the embedding
layer of large language models by introducing table-specific position information such
as row id and column id. Concurrent to our work, abstractive QA over tables [25, 141]
poses additional challenges of generating natural answers by reasoning and aggregating
discontinuous facts from the table.

Textual question answering Question answering over text measures a system’s ability
to comprehend free-form text in the user question and context passage(s) and predict an
answer. The predicted answer can be extractive in nature, where the system identifies
short text spans in the context passage to answer the user query [106, 159, 167, 179], or it
can be abstractive, where it is required to generate a free-form answer [7, 138, 171, 206].

Transfer learning Transfer learning techniques, such as fine-tuning pre-trained mod-
els for downstream tasks, require a new set of parameters to be learnt for each new task.
To avoid such memory-intensive transfer learning methods, adapters have been pro-
posed as a parameter-efficient method of adapting to new domains [68, 161]. Adapters
have been extended to language generation in a variety of generative tasks such as
translation, summarization, multi-turn dialogue, and task-oriented natural language
generation [116].

Our work combines all the aforementioned aspects to generate abstractive answers
from both tables and text with only 0.7%–1.0% trainable parameters without compro-
mising performance.
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2.3 Model
We focus on encoder-decoder models for the task of abstractive question answering.
We use a BART [107] encoder-decoder architecture which comprises a bidirectional
encoder and an auto-regressive decoder. The input sequence consists of the question,
the context title and context sequence preceded with prompts indicating the beginning
of each sub-sequence. Formally, the input sequence is represented as <question> q0 q1
. . . qm <title> t1 t2 . . . tp <context> c0 c1 . . . cn, where qi is the ith question token,
tj is the jth title token, and ck is the kth context token. The context can either be a
text passage or a flattened table. The parameters of the pre-trained BART model are
frozen during training. Modality-specific adapter layers added to the model are trained
on either tabular context or textual context to generate natural answers.

2.4 Textual Question Answering
To study multi-modal abstractive QA, we first focus on free-form text as context to the
system. We train adapter layers for textual context on the NarrativeQA dataset [98].
NarrativeQA is a complex abstractive question answering dataset over stories. The
dataset contains 32, 747 samples in the training set, 3, 461 samples in the validation set,
and 10, 557 samples in the test set. For our task, we have selected the input context
passage to be the human annotated summary of each sample, which is the Wikipedia
page summary of the story and represented as a paragraph. The input to the model is
the question, title and summary of each passage, and the target is the abstractive answer.

2.5 Tabular Question Answering
We study tabular QA as a new modality which introduces massive input domain shift to
pre-trained language models. Tables enforce structural constraints in their representation,
which is incompatible with the expected input format of pre-trained language models.
To achieve our goal of parameter efficiency by utilizing a uniform pre-trained language
model, we only train table-specific adapter layers while keeping the pre-trained model
frozen. However, this necessitates a uniform input representation for both tables and
text. An additional challenge is introduced to maintain uniformity across different table
types (regular, hierarchical).

For our task, we explore two tabular QA datasets, namely, Tablesum [216] and
FeTaQA [141]. Tablesum consists of 200 unique Wikipedia tables on which questions
and abstractive answers are manually annotated; 40% of the samples are questions over
hierarchical tables, but the tables in their released data are missing information in the
hierarchical cells, and their work does not handle hierarchies. We address this issue
by extracting the wikitables from the respective Wikipedia pages and release a clean
version of the dataset.1

FeTaQA [141] is a larger abstractive tabular QA dataset consisting of question and
free-form answers over 10, 330 regular tables. The dataset consists of 7, 326 samples in

1The cleaned data and code can be found at https://github.com/kolk/Pea-QA
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Figure 2.2: Table representation.

the training set, 1, 001 in the validation set, and 2, 003 in the test set. FeTaQA consists
of human-annotated answers containing explanations involving entities and relations.

2.5.1 Table Representation
For our work, we choose to represent all tables uniformly in a two-step process:
(1) Transformation of a hierarchical table into a regular table; and (2) Linearization of a
regular table into a flattened sequence which can be encoded with a language model.

Linearize hierarchical table headers Hierarchical table headers are linearized into
a single row of headers by the following process. A header cell spanning multiple
columns is duplicated and split into multiple cells. The cell values over which this
header spans are then concatenated with the entire split. Repeating this process over
all header rows flattens the hierarchical header into a sequential one. We depict this
process in Figure 2.2a, which yields a linear header a(d), a(d), b, e(f).

Linearizing table body Multi-span table body cells are parsed differently from
headers. Each table body cell is replicated with one or multiple header cells depending
on its span across columns. Cells that span across multiple rows are replicated with all
the spanned rows. This process leads to a regular table. We flatten the regular table in
row-major form, concatenating rows sequentially. Each row is a sequence of (key, value)
pairs where a key is a column header and the value is the cell value of that column as
depicted in Figure 2.2b.

2.6 Experimental Setup
We seek to answer the following research questions with our experiments: (RQ1) How
does adapter-tuning perform compared to fine-tuning in the context of multi-modal
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Dataset Params Adapter-Tuning Fine-Tuning

All

scheduler linear linear
batch size 32 32
seed 6 6
max epochs 15 15

Tablesum learning rate 6e-4 4e-5
input length 200 200

FeTaQA learning rate 6e-4 8e-4
input length 100 100

NarrativeQA learning rate 1e-4 2e-5
input length 50 50

Table 2.1: Hyper-parameters for training. All indicates all 3 datasets.

input? (RQ2) Do all adapter layers across the encoder and decoder contribute equally to
performance across tasks/modalities?

2.6.1 Fine-Tuning
We perform all our experiments on the large variant of the BART model. We fine-tune
the BART-large model over the 3 datasets as the state-of-the-art fine-tuned models utilize
different architectures for different datasets making comparison with adapter-tuning
difficult. We treat our fine-tuned BART models on the 3 datasets as baselines. We sweep
learning rates from {8e→4, 6e→4, 3e→4, 1e→4, 5e→5, 4e→5, 3e→5, 2e→5, 1e→5} and
select the best-performing learning rate for each dataset. We select 4e→5 for fine-tuning
on Tablesum, 8e→4 on FeTaQA datasets and 2e→5 to fine-tune NarrativeQA. We use a
batch size of 4 and a gradient accumulation of 8 to emulate an effective batch size of 32.
The maximum target sequence length is set to 200 for tabular QA datasets and to 100
for the textual QA dataset. On the Tablesum dataset, we follow 5-fold cross validation
as described in the original work to evaluate our models. On FeTaQA and NarrativeQA,
we utilize the test split for evaluating our models. We train the model on each dataset
for 15 epochs and evaluate on Rouge-2, Rouge-L and sacreBLEU metrics.

2.6.2 Adapter-Tuning
We perform adapter-tuning as a parameter-efficient alternative to adapt BART-large
model to the abstractive question answering task in different modalities. We first freeze
all layers of the pre-trained BART-large model which was trained on text reconstruction
as mentioned in the original BART paper [107]. We add bottle-neck adapter layers from
the Houlsby adapter configuration [68] which are trained to adapt to the downstream
abstractive question answering task and also to the modality-specific input context.
Each adapter layer has a bottle-neck embedding size of 64. As mentioned in Section
2.6.1, we sweep the learning rates and select the best performing learning rate for each
dataset. We select 6e→4 for the tabular QA datasets Tablesum and FeTaQA, and select
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Dataset Model Training Rouge-1 Rouge-2 Rouge-L BLEU

Tablesum
[216]

GPT2 fine-tune 0.272 0.073 0.200 5.35
T5 0.362 0.143 0.276 10.43

Ours (Pea-QA) fine-tune 0.400 0.186 0.316 6.30
Adapter-tune 0.393 0.186 0.312 6.75

FeTaQA
[141]

T5-small
fine-tune

0.550 0.330 0.470 21.60
T5-base 0.610 0.390 0.510 28.14
T5-large 0.630 0.414 0.530 30.54

Ours (Pea-QA) fine-tune 0.632 0.415 0.534 30.81
Adapter-tune 0.651 0.436 0.553 33.45

NarrativeQA
[98]

Masque [143] fine-tune – – 0.547 –

Ours (Pea-QA) fine-tune 0.518 0.268 0.515 21.07
Adapter-tune 0.510 0.270 0.500 20.08

Table 2.2: Results: Scores obtained on the Tablesum, FeTaQA and NarrativeQA
datasets.

1e→1 to train the textual QA dataset NarrativeQA. We use the same batch size and
maximum target sequence length as fine-tuning for effective comparison. A summary
of hyper-parameters is mentioned in Table 2.1.

2.6.3 Ablation Study: Adapter Pruning

Adapter-layer pruning has been explored on the GLUE benchmark in [175], which
demonstrates that removing adapter layers from the beginning of BERT-base and
RoBERTa models leads to minimal performance drop. We extend adapter layer abla-
tion to encoder-decoder architectures and hypothesize that this phenomenon should
be observed on both the encoder and decoder modules. However, it is non-trivial how
the adapter-layers in the encoder and decoder interact with each other and contribute
to performance. Previous studies [175] on adapter ablation prune consecutive adapter
layers in masked language models. This approach does not extend directly to sequen-
tial modules of encoder-decoder where intra-module adapters not only contribute to
their respective objective of encoding and decoding but also contribute to intermodule
interaction and performance. To measure the impact of the adapter layers in different
modules, we perform adapter ablation in both the encoder and the decoder. First, we
uniformly remove adapter layers from both encoder and decoder modules starting from
the beginning layers of both modules and finally deleting all layers. This leads to 12
experiments, corresponding to the elimination of 12 encoder and 12 decoder adapter
layers. To study interaction across inter-module adapters at different levels, we conduct
36 experiments of different configurations of adapter elimination from the last 6 levels
of encoder and decoder. We analyze the performance of each configuration in Section
2.7.3.
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2.7 Results
We compare the results of our baseline fine-tuned models with the state-of-the-art fine-
tuned models in Section 2.7.1. We address (RQ1) “How does adapter-tuning perform
compared to fine-tuning in the context of multi-modal input?” in Section 2.7.2 and
(RQ2) “Do all adapter layers across the encoder and decoder contribute equally to
performance across tasks/modalities?” in Section 2.7.3.

2.7.1 Fine-Tuned Models
We study the results of our baseline fine-tuned models with the state-of-the-art fine-
tuned models for the 3 datasets. The results of the experiments are shown in Table 2.2.
We observe that for the Tablesum dataset, our fine-tuned model outperforms the best
state-of-the-art T5 model in Rouge-1 by 3.8%, Rouge-2 by 4.3%, and Rouge-L score
by 4%. This can be attributed to fine-tuning our model on the clean version of the
dataset. Our fine-tuned models perform comparably to the state-of-the-art T5-large on
the FeTaQA dataset, i.e., 0.2% on Rouge-1, 0.01% higher on Rouge-2 and 0.04% higher
on Rouge-L. Our fine-tuning results on NarrativeQA are lower than state-of-the-art
models trained with sophisticated reasoning architecture. The focus of this work was
primarily on comparing fine-tuning and adapter-tuning and hence we leave explicit
reasoning as part of future work.

2.7.2 Adapter-Tuned Models
We address (RQ1) by comparing the performance of the adapter-tuned models to
our baseline fine-tuned models. For Tablesum, as observed in Table 2.2 fine-tuning
(baseline) marginally outperforms adapter-tuning with 0.7% higher Rouge-1 and 0.4%
higher Rouge-L scores while having the same Rouge-2 score. For FeTaQA, adapter-tune
shows a larger performance gain with 1.9% on Rouge-1 and Rouge-L and 2.1% on
Rouge-2 compared to fine-tuning. The insignificant gains in fine-tuning over adapter-
tuning for tabular QA can be attributed to catastrophic forgetting [21, 48, 95] induced
by differences in the distribution of downstream tabular data format from the original
text data format of pre-training.

To explore this phenomenon further, we analyze examples from FeTaQA dataset in
Table 2.3 where adapter-tuning outperforms fine-tuning. We observe that the fine-tuned
model is unable to disambiguate surface-form similarities from the column semantics in
the first example. The intended semantics of the named-entity Akhila Kishore in the
question is Actor. While the surface-form is similar to the column value Akhila, the
intended semantics is that of the column header Role. The fine-tuned model wrongly
predicts the second and third rows of the tabular context as correct grounding of
information, while adapter-tuning is able to disambiguate and predicts information from
the first 2 rows as answer. We observe that the fine-tuned model also predicts information
from the wrong column Director instead of Cast in the second example. Adapter-tune
correctly identifies the column, but partially generates the required information in the
prediction. The third example depicts both non-factual and non-fluent prediction by the
fine-tuned model.
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Question: What and when were Akhila Kishore’s first two films?
Target: akhila kishore made her debut in the kannada film padhe padhe (2013), and
appeared in kathai thiraikathai vasanam iyakkam (2014).

Table:
Year Film Role Language
2013 Padhe Padhe Kanchana Kannada
2014 Kathai Thiraikathai Vasanam Iyakkam Daksha Tamil
2015 Inimey Ippadithaan Akhila Tamil
... ... ...

Adaper-tune: akhila kishore made her debut in the kannada film padhe padhe (2013)
and kathai thiraikathai vasanam iyakkam (2014).
Fine-tune: kathai thiraikathai vasanam iyakkam (2014) and inimey ippadithaan
(2015) were kannada films.

Question: Who is the starring actor of Aastik?
Target: aastik is a 1956 hindi film starring shahu modak, paro devi and meenakshi.

Table:
Title Director Cast
... ... ...
Aastik S. P. Kalla Shahu Modak, Paro Devi, Meenakshi, B. M. Vyas, Praveen Paul
Alam Ara Nanubhai Vakil Daljeet, Chitra, Tiwari, Niranjan Sharma, Minu Mumtaz,...
... ... ...

Adaper-tune: aastik is a 1956 bollywood film starring shahu modak.
Fine-tune: a directed by s. p. kalla.

Question: What were the three films directed by Yakub and when were they released?
Target: yakub directed three films: sagar ka sher in 1937, uski tamanna in 1939,
and, in 1949, aiye.

Table:

Year Film Director
... ... ...
1937 Sagar Ka Sher (Lion of Sagar) Yakub
... ... ...
1939 Uski Tamanna (Her Last Desire) Yakub
... ... ...
1949 Aiye Yakub
... ... ...

Adaper-tune: yakub directed three films: sagar ka sher (lion of sagar) in 1937, uski
tamanna (her last desire) in 1939 and aiye in 1949.
Fine-tune: y directed by yakub.

Table 2.3: Samples where adapter-tuning outperforms fine-tuning.

We demonstrate an example of a hierarchical table of Tablesum in Table 2.4. The
question requires aggregation on the table cells and has various summary-like targets
associated with it. The hierarchical table mentions Ed Sheeran 3 times, but the actual
number of occurrences is 10 times, from Week 3 to Week 9, Week 31 and from Week 42
to Week 43. Our table transformation process handles this to produce a regular table with
10 cells containing Ed Sheeran as a value. The models can simply aggregate over the
mentions. As shown in Table 2.4, both models generate long answers summarizing the
information from the context table. However, since the models do not explicitly handle
cell aggregation, we observe factual mistakes in both adapter-tuned and fine-tuned
models. The models find Tablesum samples challenging, even though the generated

19



2. Parameter-Efficient Abstractive Question Answering over Tables or Text

Question: how many times was ed sheeran listed as the performer?
Targets:
• Ed Sheeran was listed as a performer twice in the table documenting the top

hits of 2014 in Sweden. Other English-Language top performers included Bruce
Springsteen, Sam Smith, and Coldplay, implying that English-Language music
has significant success in Sweden.

• According to the table, in 2014, Ed Sheeran was only listed as the performer one
time. It was for the song that he performed that is called “I See Fire”, which was
out in January and February of 2014

Table:

Week Date Song title Performer Album title Performer
1 3 Jan 2014 ”Timber” Pitbull feat. ... True Avicii2 10 Jan 2014
3 17 Jan 2014

”I See Fire” Ed Sheeran

High Hopes Bruce ...4 24 Jan 2014
5 31 Jan 2014 True Avicii
6 7 Feb 2014 Christer Sjögren

sjunger Sinatra Christer Sjögren7 14 Feb 2014
8 21 Feb 2014

True Avicii9 28 Feb 2014
... ... ... ...
31 31 July 2014

Prayer in C... Lilly Wood &...
X Ed Sheeran

32 7 Aug 2014 Honky Tonk Rebels Lasse Stefanz
... ... ... ...
42 16 Oct 2014

”The Days” Avicii X Ed Sheeran43 23 Oct 2014
44 30 Oct 2014 Songs for Daddy Jill Johnson... ... ... ...

Adapter-tune: I found a table of the year 2014. It shows the week of the week, the
song title, the artist, the title of the song, the album title, and the performer. There
are 11 times that Ed Sheeran was listed as the performer in the year. The song title is
“Timber” and the album is True.
Fine-tune: I found a table of Ed Sheeran’s year in 2014. He was listed as the
performer 14 times in the year 2014. The first time he was listed was on 3 January
2014 with the song “Timber” and the last time was on 4 April 2014 with “I See
Fire”.

Table 2.4: Example from the Tablesum dataset.

language is fluent and readable.
For textual QA, on the NarrativeQA dataset, adapter-tuning performs comparable to

fine-tuning with the adapter-tuned model achieving 0.8% lower Rouge-1, 1.8% higher
Rouge-2 and 1.5% lower Rouge-L scores than fine-tuning.

We conclude that adapter-tuning performs better than fine-tuning for out-of-domain
tabular data and comparable performance on in-domain text.

2.7.3 Ablation of Adapter Layers
We study (RQ2) by ablating adapter layers in both encoder and decoder modules. We
uniformly eliminate successive adapter layers from both encoder and decoder starting
from the first layer in both modules and finally deleting all layers. This leads to 12
experiments corresponding to 12 encoder and 12 decoder adapter layers. We number
the encoder adapter layers from 0–11 and the decoder adapter layers from 12–23. We
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(a) FeTaQA Rouge-L scores (b) Tablesum Rouge-L scores

(c) NarrativeQA Rouge-L scores (d) FeTaQA sacreBLEU scores

(e) Tablesum sacreBLEU scores (f) NarrativeQA sacreBLEU scores
Figure 2.3: Adapter layer ablation scores. The X-axis represents range of encoder
adapter layers deleted, the Y-Axis represents range of decoder adapter layers deleted.
x-y implies all adapter layers from x to y inclusive. There are 36 model ablation
configurations displayed. The ablation starts from 0 to 6 encoder adapter layers removal
and 12 to 18 decoder adapter layer removal represented by the bottom left cell ((0–6),
(12–18)) and progressively increases deletion of encoder adapter layers along the X-axis
and decoder adapter layers along the Y-axis.
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(a) Adapter layer ablation Rouge2 F-scores.
The X-axis depicts encoder-adapter layers (0–
11) and decoder adapter layers (12–23) deleted
progressively. Each (x→y)

(r→s) represents F-score
with encoder layers p to q deleted and decoder
layers r to s deleted.

(b) Adapter layer ablation Rouge-L scores. The
X-axis depicts encoder-adapter layers (0–11)
and decoder adapter layers (12–23) deleted pro-
gressively. Each (x→y)

(r→s) represents F-score with
encoder layers p to q deleted and decoder lay-
ers r to s deleted.

(c) Adapter layer ablation sacreBLEU F-scores.
The X-axis depicts encoder-adapter layers (0–
11) and decoder adapter layers (12–23) deleted
progressively. Each (x→y)

(r→s) represents F-score
with encoder layers p to q deleted and decoder
layers r to s deleted.

Figure 2.4: Ablation of adapter layers.

measure the performance of the models using Rouge-2, Rouge-L2 and sacreBLEU3

scores. The F-scores for each dataset (NarrativeQA, Tablesum, FeTaQA) are shown
in Figure 2.4a, 2.4b and 2.4c, respectively. We observe that as more adapter layers
are eliminated, performance drops across all datasets. However, the performance drop
is minimal until the last adapter layers are also deleted. The inflection point varies

2https://pypi.org/project/rouge-score/
3https://github.com/mjpost/sacreBLEU
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Adapter-tune
#Trainable
parameters

Encoder
adapters
removed

Decoder
adapters
removed

– – 6, 343, 680 (1.56%)
0–2 12–14 4, 757, 760 (1.17%)
0–4 12–16 3, 700, 480 (0.91%)
0–6 12–18 2, 643, 200 (0.65%)
0–8 12–20 1, 585, 920 (0.39%)

0–10 12–22 528, 640 (0.13%)
0–11 12–22 264, 320 (0.07%)

fine-tune 406, 291, 456 (100%)

Table 2.5: Trainable parameters in the encoder and decoder. Encoder adapter layers
are numbered from 0–11 and decoder adapter layers are numbered from 12–22. x–y
implies all adapter layers from x to y inclusive.

across datasets but is limited to the last 2 layers of the encoder and decoder. For the
NarrativeQA dataset, this point is when all layers till the second last adapter layer from
both the encoder and decoder are deleted. For the FeTaQA and Tablesum datasets, the
performance drops sharply only when the last encoder and decoder layers are removed.

To analyze the contribution of the ith adapter layer of the encoder and decoder to the
performance, we perform ablation of the adapter layers (0–6), (0–7), . . . , (0–11) from
the encoder and adapter layers (12–18), (12–19), . . . , (12–23) from the decoder (decoder
layers are numbered 12–23). This leads to 36 configurations where a configuration (p–q,
r–s) represents the removal of all encoder adapters from the pth to qth layer and all
decoder adapters from rth to sth. The results are shown in Figure 2.3. We observe
that performance remains comparable as we progressively remove adapter layers from
encoder and decoder until the last few layers. The performance drops steeply when
we remove the last encoder and decoder adapter layer depicted towards the top-right
corner of the RougeL scores in Figures 2.3a, 2.3b, and 2.3c and the BLEU scores in
Figures 2.3d, 2.3e, and 2.3f. This implies that the last adapter layer learns most of the
domain information.

We also observe that the last encoder and decoder layers contribute differently to
performance. Removing the last encoder layer (column 0–11) leads to a substantial score
drop across all decoder layers. This indicates that the last encoder layer is indispensable.
Keeping only the last decoder adapter (row 12–23) is comparable to keeping the last
two last encoder layers (column 0–10). We also observe that retaining only the last 50%
of adapter layers from both the encoder and decoder increases parameter efficiency by
0.7% of the parameters as summarized in Table 2.5 without significant performance
compromise.
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2.8 Conclusion
We are the first to study parameter-efficient transfer learning over tables and text for
abstractive question answering using adapters. We demonstrate that parameter-efficient
adapter-tuning outperforms fine-tuning on out-of-domain tabular data and achieves
comparable results on in-domain textual data.

We propose a transformation from hierarchical tables to regular ones and further into
a sequential form compatible with pre-trained models. We extend an existing ablation
study of adapter layers to encoder-decoder setting and demonstrate that adapter layers
from the end of the encoder are indispensable to encoding modality-specific information
than decoder adapter layers at the same level.

Our results are useful for exploring the scalability of QA models in memory-
constrained situations with comparable performance while scaling across modalities
using light-weight adapters.

One of the limitations of our work is that our models do not explicitly reason and
aggregate over the table cells. This might lead to fluent but factually incorrect answers
on the challenging Tablesum dataset. Addressing this limitation is left for future work.

Returning to RQ1, How do language models compare on the generative question
answering task when the context is unstructured text or semi-structured tables?, which
motivated the work in this chapter, we find that language models pre-trained on unstruc-
tured text can be adapted to structured tables with either fine-tuning or adapter-tuning,
with adapter-tuning, with a fraction of training parameters, achieves comparable results
compared to fine-tuning. Further, ablation studies demonstrate the impact of each
adapter layer, depicting that further layer-pruning leads to negligible drop in tableQA
performance with significant reduction in trainable parameters.
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Chapter Appendices

We provide further details on the statistics of the datasets used (Appendix 2.A) and on
the Rouge-2 scores for an encoder-decoder adapter layer ablation study (Appendix 2.B).

2.A Dataset Statistics
Statistics of the three datasets, i.e., Tablesum, FeTaQA and NarrativeQA are listed in
Table 2.A.1. Tablesum has the longest answer length. The answers are summary-like,
often, describing aspects of the table contents. The FeTaQA dataset contains answers
of mostly single sentences and targeted towards specific facts asked in the question.
The NarrativeQA dataset focuses on questions from stories. The answer lengths vary
from single words to long sentences. For the tabularQA dataset, Tablesum contains
larger tables than the FeTaQA dataset even though it is limited to 200 unique tables
over which questions are asked. The FeTaQA dataset’s tables contain more columns on
average than Tablesum.

Tablesum
Domain Open
Modality Table
Table-type Regular
Training samples 798
Validation samples 200
Test samples –
Max question length 114
Max target length 1, 579
Max table row 155
Max table column 8

FeTaQA
Domain Open
Modality Table
Table-type Hybrid
Training samples 7, 326
Validation samples 1, 001
Test samples 2, 003
Train max question length 165
Train max target length 338
Train max table rows 34
Train max table columns 30
Val max question length 182
Val target length 325
Val max table rows 34
Val max table columns 22
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Test max question length 193
Test max target length 295
Test max table lows 34
Test max table columns 22

NarrativeQA
Domain Stories
Modality Text
Training samples 65, 494
Validation samples 6, 922
Test samples 21, 114
Train max question length 175
Train max target length 171
Train max context length 6, 045
Val max question length 158
Val target length 187
Val max context length 6, 033
Test max question length 1, 220
Test target length 224
Test max context length 6, 090

Table 2.A.1: Dataset Statistics

2.B Encoder-Decoder Adapter Layer Ablation Rouge-
2 Scores

Ablation results (Rouge-2 F-scores) of 36 configurations of adapter layers deleted from
the later half of the encoder and decoder. Deleting the last encoder adapter layers leads
to massive drop in performance as observed in the last three columns of Figures 2.A.1a,
2.A.1b and 2.A.1c. However, deleting the last decoder adapter layers results in better
performance in comparison to the encoder layers at the same level as observed from the
top 3 rows.
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2.B. Encoder-Decoder Adapter Layer Ablation Rouge-2 Scores

(a) FeTaQA (b) Tablesum

(c) NarrativeQA
Figure 2.A.1: Adapter layer Rouge-2 ablation scores. The X-axis represents range of
encoder adapter layers deleted, the Y-Axis represents range of decoder adapter layers
deleted. x-y implies all adapter layers from x to y inclusive. There are 36 model
ablation configurations displayed. The ablation starts from 0 to 6 encoder adapter layers
removal and 12 to 18 decoder adapter layer removal represented by the bottom left cell
((0–6), (12–18)) and progressively increases deletion of encoder adapter layers along
the X-axis and decoder adapter layers along the Y-axis.
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3
MultiTabQA: Generating Tabular

Answers for Multi-Table Question
Answering

The previous chapter (Chapter 2) discussed the task of answering user questions over
different context types, such as structured tables or unstructured text. This chapter
focuses on answering user questions only over structured tables. Prior work on table
question answering has focused only on single tables for the table question answering
task. However, real-world questions are often complex and over multiple tabular
context; where answering the question requires utilizing the information spanning over
multiple tables. This limits the scope of the questions and reduces the challenge of
the task. To reduce this research gap, this chapter introduces the multi-table question
answering task, i.e., the task of answering questions over multiple tables. As there
are no existing resources for the task, this chapter focuses on formalizing the task
methodology, dataset creation methodology, and model development. Further, detailed
qualitative and quantitative analysis is done to study the impact of multiple tables on
model performance. More specifically, RQ2 is addressed by introducing the task of
question answering over multiple tables.

3.1 Introduction
Question answering (QA) over multiple tables aims to provide exact answers to natural
language questions with evidence from one or more tables [83]. This is in contrast
to single-table QA, which has been the focus of tabular QA research to date [64, 121,
141, 227]. Even though groups of related tables are ubiquitous in real-world corpora,
such as relational databases or tables in a web page, multi-table QA remains a largely
unexplored area.

To address this gap, we propose a new task of answering questions over multiple

This chapter was published as V. Pal, A. Yates, E. Kanoulas, and M. de Rijke. MultiTabQA: Generating
tabular answers for multi-table question answering. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 6322–6334, Toronto, Canada,
July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.348. URL https:
//aclanthology.org/2023.acl-long.348.
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 SELECT zip_code FROM weather GROUP BY zip_code HAVING avg 
( mean_humidity ) < 70  INTERSECT
 SELECT zip_code FROM trip GROUP BY zip_code HAVING count ( * ) >= 200

Weather
cloud_cover min_humidity zip_code

trip
duration end_date zip_code

What is the zip code of trips made which are above 200 with humidity   
        below 70

Multi-Table
QA 97010

92231

zip_code

Figure 3.1: Multi-table QA. The QA model generates a tabular answer from either a
natural language question or an SQL query and one or more tables as input context.

tables. Our multi-table QA model, MultiTabQA,1 addresses the novel challenges
introduced by multi-table context. These include complex queries involving chains of
reasoning, disambiguation of relevant table names at each reasoning step, and generating
a final table as the answer. It also leads to novel question-types that are unnatural in a
single-table setting. For instance, questions involving operations specific to multiple
tables, such as Cartesian products (outer joins, inner joins) and set operations (such as
intersect, union, in), are unique to and common in a multi-table scenario. Furthermore,
such multi-table operations often result in a tabular answer and they necessitate table
generation capabilities of the QA model.

Figure 3.1 depicts an example of a question involving two tables, I would like to know
the zip code of trips taken above 200 with humidity below 70, and its associated input
tables, Weather and trip. A multi-table QA model is expected to disambiguate records
from different tables (the question phrase zip code of trips grounds the column zip code
of Table trip; the question phrase humidity below 70 grounds column min humidity of
Table Weather), learn associations among inter-table columns (zip code in both tables)
and intra-table columns (min humidity and zip code in the Weather table), and finally
compute the required operations (intersect, count) and generate the tabular answer.

Recent work on tabular QA can be categorized into two major directions: (i) Se-
mantic parsing-based techniques [16, 157, 224] which have been the dominant ap-
proach to answering multi-table complex questions. Such methods transform a nat-
ural question to a logical form, which is used to query a relational database to ex-
tract the answer. However, these techniques are restricted to relational databases
and cannot be applied to tables from other sources such over web tables, tables in
text documents, and any non-normalized tables. Additionally, they require expen-
sive and expert human annotations [105, 208] formulating SQL queries from natural
questions. (ii) Modeling the problem as a sequence generation/classification task
[25, 64, 83, 121, 131, 141, 149, 207, 216, 227], where an end-to-end trained neural
model is responsible for not only question/query understanding but also table reasoning.
Existing end-to-end neural models are either classification-based [64, 227], where the
model detects the answer span and classifies one table operator associated with the span,
or they are sequence generation-based [121, 141, 216], where the model generates the
answer as a span of text in an auto-regressive manner.

1Code and data are at: https://github.com/kolk/MultiTabQA
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...

MultiTabQA (Seq2Seq)

question

question/query

input table 1
table 1 name table 1 rows

input table 2

col :

table 1 header table 2 name

...: <table_name>q1 q2 n1 ... col h1 ... row 1 r11| h2: : | r12 row k rk1 | rk2 <table_name> n1 ...

h1 h2| ...| ht row 1 : r11 r12| ... row t rt1 rt2|| r1m ...| rtm...

answer table
row 1 row 2answer table header

col : ...

table 2 header

Figure 3.2: Architecture of MultiTabQA model. Given a natural language question/SQL
query and the associated tables as an input sequence, the seq2seq model performs
tabular reasoning and generates a tabular answer. Start of an input table is identified
with keyword <table name> which also indicates that the next tokens comprises the
table name. col: indicates that the next tokens are table headers. Rows in a table are
identified with keyword row i:, columns are separated by —.

Our work focuses on the latter direction of research. We train a neural model to
mimic a semantic parser and generate the answer. A clear distinction of our work
compared to existing end-to-end models is that our proposed model, MultiTabQA, does
not operate in the constrained setting of a single input table, but can accommodate
one or more tables in the input and the associated multi-table operators. Additionally,
MultiTabQA performs the task of structured table generation, which imposes structure
aspects to the generated output, such as table schemas, alignments of rows and columns,
and relationships between column-headers and column values. Generating structured
tables as output requires table-specific evaluation metrics, which we define and use to
evaluate the generated tables. To effectively train the model, we generate a pre-training
dataset with multi-table SQL queries and tabular answers built over an existing semantic
parsing dataset, Spider [208]. Our dataset consists of 132, 645 samples comprising SQL
queries, associated natural language questions, input tables, and tabular answers. To the
best of our knowledge, this is the first work to address the task of multi-table QA and
generate tabular output.

Our main contributions can be summarized as follows:

(1) We fill in the gap of existing tabular QA methods, which operate only on single
tables, by proposing a new task of answering questions over multiple tables. Our
work increases the breadth of question types that can be handled by single tabular
QA methods.

(2) Our proposed multi-table QA model generates structured tables imposed by
multi-table operations. Table generation introduces generation challenges such as
maintaining row-column alignment, table-header generation, etc.

(3) We release a multi-table pre-training dataset comprising of 132, 645 samples of
SQL queries and tabular answers.

(4) We introduce table generation metrics that capture different levels of granularity
and strictness to evaluate our proposed model.
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3.2 Related Work
Tabular QA is a research direction in the broader topic of table understanding [80, 185]
in natural language processing. Recent advances in table representation [41] and pre-
training [24, 122], table fact verification [52, 226], table numeric reasoning [181, 225],
table-to-text generation [2], text-to-table generation [197], table summarization [20, 77,
216], and table question answering [25, 64, 83, 121, 131, 141, 149, 207, 216, 225, 227]
have shown the adaptability of language models to table processing.

3.3 Methodology
We frame multi-table question answering as a sequence-to-sequence task and train
an auto-regressive transformer encoder-decoder model to generate the tabular answer.
Given a question Q consisting of a sequence of k tokens q1, q2, . . . , qk and a set of
N tables, TN = {t1, t2, . . . , tn}, the goal of the multi-table QA model is to perform
chains of operations over TN , constrained by Q, and generate a table Tout. The model
always generates a table, Tout, which can be single celled for scalar answers, single
rowed or columned for list-based answers, and multiple rows and columns for tabular
answers. In all cases, the model also generates column headers revealing important
semantics associated with the generated values.

Training approach We follow a curriculum learning approach [12] by sequentially
increasing the complexity of tasks to train MultiTabQA. The first stage of training is a
pre-training step where the training objective is two-fold: (i) learn to generate correct
tabular answers from SQL, and (ii) understand the associations between related input
tables. The final training stage is fine-tuning where the model learns to understand
natural language questions with their inherent ambiguity, in addition to retaining its
ability of reasoning over tables and generating a tabular answer. We discuss the training
process in detail in Section 3.5.

Model input/output The input to the model is a sequence consisting of the query
or the natural language question, followed by a sequence of input tables, represented
by the table name and the corresponding flattened table. Table names are important
for disambiguating tables in multi-table QA setting. Specifically, the input sequence is
represented as question [table1 rep] [table2 rep] . . . [tablen rep] where [tablei rep] is
the representation of the ith table. As depicted in Figure 3.2, the ith table is flattened in
row-major format and represented as

<table name>: n1 n2 | col: h1 | h2 | . . . | hk

row 1: r11 | . . . | rm1 . . . row k: r1k | . . . | rmk ,

where n1, . . . , n2 is the sequence of table name tokens, hj is jth column header, rim
is the ith row and mth column cell. The boldface words are keywords specifying the
semantics of the next tokens. The output of the model is also a flattened table in row-
major format, i.e., [tableans rep], but without a table name. As depicted in Figure 3.2,
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the generated table, [tableans rep], is of the form:

col: h1 | h2 | . . . | hk row 1: r11 | . . . | rm1
row 2: r12 | . . . | rm2 . . . row k: r1k | . . . | rmk .

3.4 Dataset
To effectively train a multi-table QA model, the dataset needs to cover three aspects:
(i) multi-table context, (ii) tabular answers, and (iii) natural questions. Given the absence
of large-scale datasets covering all three aspects, we transform existing semantic parsing
and single-table QA datasets to focus on a single aspect before training with samples
covering all three aspects.

3.4.1 Single Table Pre-training Dataset
One of the sub-tasks of pre-training is to generate tabular answers. We hypothesize that
tuning the model to generate tables may lead to a warm-start and better convergence
in a multi-table QA setting. To enable such experiments, we modify the large-scale
single-table QA Tapex pre-training dataset [121] to accommodate tabular answers. The
dataset contains 1, 834, 419 samples of query, input table and factoid answers. The
tables in the dataset are not named, as there is no need for table disambiguation in
a single table setting. The SQL queries are semi-formal (do not contain the FROM
clause with a table name) and cannot be used to query a real SQL database. We insert a
placeholder table name in the queries and the corresponding input tables to extract the
tabular answer from the database. Transforming the factoid answers to tables leads to
single-celled or single-rowed tables. The modified dataset helps the model to understand
simple tables and reason over semi-formal queries to generate simple tables.

3.4.2 Multi-table Pre-training Dataset
We develop a multi-table pre-training dataset over the database of Spider [208]. Spider is
a cross-domain complex semantic parsing dataset for text-to-SQL translation. It consists
of 10, 181 questions and 5, 693 SQL queries. The questions are over 200 databases of
multiple tables covering 138 different domains. The training, development, and test
splits do not contain overlapping databases to test a model’s generalizability to new
databases.

We first adapt the existing samples of Spider for our task. We use the ground-
truth SQL queries of Spider as input query for pre-training over multiple tables. We
automatically extract all input table names from the SQL query and retrieve the input
tables2 from the relational database. The query, extracted table names, and retrieved
tables are inputs to our multi-table QA model. We extract the answer table with the
SQL query by querying the relational database. Answer table headers reveal important
semantics of the associated column values such as the numeric operation (average, sum,
etc.), numeric scales (million, thousand, kms, meters, etc.), or entity facets (name, date,

2We use SQLite3 and pandas for extracting tables.
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etc.). This process generates 3816 samples comprising query, question, table names,
tables, and answer.

We further augment the modified Spider dataset with 132, 645 samples of synthetic
queries. This leads to an augmented multi-table pre-training dataset of 136, 461 unique
training samples comprising of 3816 Spider samples and 132, 645 synthetic samples.
The validation set comprises of 536 samples from the Spider validation set pre-processed
as described above to adapt to our task.

Existing work on semantic parsing [184, 210] has utilized hand-crafted templates to
generate large-scale corpora of synthetic queries, but is constrained in their coverage
with no multi-table operations [184] or limited coverage with no table joins and lacking
diversity in set operations [210]. This motivates us to generate our augmented pre-
training dataset for multi-table QA using multi-table SQL templates.

Our synthetic queries are generated from 45 manually crafted templates over the
Spider database and hand-crafted rules for operation types. The query templates have
placeholders for aggregation, relational operations, table name, and headers that are
randomly assigned during the query generation process. For example, to generate multi-
table join queries, we instantiate the templates by randomly choosing tables from a
database with at least one common header. For set operations, all tables participating in a
multi-table query require all table headers to match. We design SQL templates in increas-
ing order of complexity starting with simple SQL templates and progressively adding
components, increasing its complexity. For example, for single-table queries, we use the
simplest template “SELECT * FROM {table name}” whereas for multi-table templates
such as joins, the simplest template is “SELECT T1.{table1 cols}, T2.{table2 cols}
FROM {table name1} as T1 JOIN {table name2} as T2 ON T1.{common col} =
T2.{common col}”. We progressively add SQL components such as aggregations,
where conditions, group by and having clauses to generate templates of increasing
complexity. This process results in 14 templates for joins, 4 templates for each set
operation: intersect, union and except. To avoid catastrophic forgetting for single table
queries, we also instantiate 14 single-table queries with increasing complexity.

Quality control We ensure the correctness of the synthetic samples by discarding
SQL queries that executes to an error or empty table. We also apply the process on the
modified Spider, Atis and GeoQuery data to discard SQL query and the corresponding
natural language question to ensure that all questions are answerable.

3.4.3 Multi-table QA Dataset
We fine-tune and evaluate our model on the natural language questions of semantic
parsing datasets: Spider, GeoQuery [212], and Atis [30, 165]. GeoQuery is a semantic
parsing dataset to query into a database of United States geography.3 Atis is a semantic
parsing dataset4 with a collection of 4, 379 questions, corresponding SQL queries, and
a relational database to a flight booking system [73]. Similar to the Spider dataset
processing described in Section 3.4.2, we first extract the input table names from the

3This data is made available under under GPL 2.0 license.
4This data is made available under MIT license.
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Figure 3.3: Four stage training procedure. The first three stages are pre-training,
followed by fine-tuning.

available SQL queries and query the relational database for the input tables.5 We also
extract the tabular answers using the SQL queries. We discard any samples that executes
to an error or an empty table. We use the corresponding natural language question for
each SQL query as the user utterance for fine-tuning. This results in 6, 715 training
samples and 985 validation samples for Spider. We also process the 600 GeoQuery
samples provided in [73] to create a subset of 530 training samples, 49 validation
samples, and 253 test samples. We process and generate an Atis subset of 384 training
samples, 45 evaluation samples, and 86 test samples. We discard Atis queries with very
large input tables (with > 10, 000 rows). This restriction enables us to correctly evaluate
question answering capabilities of a model by ignoring samples with truncated input
sequences including entire input tables from the second table onward. The truncation of
tables leads to incorrect answers for any numeric operation such as average, intersect
and the evaluation scores would no longer reflect reasoning capabilities of the model.

3.5 Training
We follow a curriculum learning approach by sequentially training the model on sub-
tasks of increasing complexity as depicted in Figure 3.3. Broadly, we first pre-train
the seq2seq model to mimic a SQL parser and further fine-tune it on the downstream
multi-table QA task. Pre-training the model on unambiguous SQL queries leads to
better convergence and warm-start for the closely related downstream multi-table QA
task. We further segregate the pre-training by first addressing the simpler sub-task of
generating tables from single table queries. This is immediately followed by pre-training
on multi-table query answering where complex SQL queries are utilized to train the
model to learn multi-table associations from unambiguous complex queries, reason over
the tables, and generate tabular answer. The final stage of training is the downstream

5We preprocess the Atis and GeoQuery data samples available at https://github.com/
sriniiyer/nl2sql/tree/master/data.
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multi-table QA from natural language questions. Natural language introduces ambiguity,
ellipses and co-references which increases complexity and is thus the final stage of
training. For each stage, we choose the model with the best table exact match accuracy
on the corresponding validation set, defined in Section 3.6, as the initialization for
training the next stage.

3.5.1 Pre-training
Pre-training of MultiTabQA is conducted in two stages in a curriculum learning fashion:
Stage 1 is single table QA where the model learns to generate tabular answers from
relatively simple SQL queries. Stage 2 is multi-table QA where the model trained in
Stage 1 is further tuned for multi-table SQL QA.

Stage 1 We first train MultiTabQA on the task of generating tables from SQL queries
over single tables. The tabular answer to be generated is simple and single-columned.
For this stage, we use the modified Tapex pre-training corpus described in Section 3.4.1.
We train the model on 1, 834, 419 samples for two epochs. This stage provides a good
initialization for multi-table QA in the next stages.

Stage 2 + Stage 3 We further pre-train the model on multi-table QA. For this, we tune
our model on SQL queries from the modified Spider and synthetic dataset. We tune
with only the modified Spider SQL samples Stage 2, and tuning with only the synthetic
dataset Stage 3. We utilize the larger augmented dataset comprising of the modified
Spider SQL (Stage 2) and our synthetic samples (Stage 3) as described in Section 3.4.2
to train the final pre-trained model for 30 epochs. We call this setting Stage 2+3. We
compare these three multi-table pre-training settings in Section 3.7.

3.5.2 Fine-tuning
The final stage of training is fine-tuning the pre-trained model on natural language
questions. Natural questions are ambiguous compared to formal SQL and used at the
last stage of training. We fine-tune the pre-trained model on the 6, 715 natural questions,
extracted input and output tables for Spider as described in Section 3.4 and evaluate on
985 samples of the validation set. To observe the performance of the pre-trained model
on out-of-domain database tables, we also fine-tune the pre-trained model on Atis and
GeoQuery datasets. For all the fine-tuning datasets, we train for 60 epochs.

3.6 Evaluation Metrics
While denotation accuracy has been widely used in semantic parsing [16, 157, 224],
it is not directly applicable for our task where tabular input encoding, reasoning, and
generation are performed by the same model. Evaluating the answer table requires
matching not only the generated values, but also the table structure. Moreover, tables
store factual information such as named entities, dates, numbers, etc. in an ordered
manner. This makes lexical metrics measuring surface form overlap more suitable
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el Table Row EM (%) Column EM (%) Cell EM (%)
EM (%) P R F1 P R F1 P R F1

Spider T 18.99 17.28 19.83 18.27 19.75 19.39 19.57 23.15 27.71 25.03
M 25.19↑ 22.88† 24.64↑ 23.70↑ 26.86↑ 26.76↑ 26.81↑ 28.07† 31.23↑ 29.55↑

GeoQ T 39.84 22.43 30.74 24.89 39.48 39.76 39.62 21.98 30.88 24.67
M 52.22↑ 72.39↑ 46.90↑ 41.38↑ 52.10↑ 52.22↑ 52.16↑ 37.16† 46.92↑ 41.33↑

Atis T 72.20 57.07† 57.69 55.08 72.20† 72.20 72.20 57.07† 57.69 54.48
M 73.88† 38.29 92.19↑ 54.36 69.55 75.24† 72.29 38.16 92.56↑ 54.16

Table 3.1: Average scores of models fine-tuned on 5 different seeds with Multitable-
Natural Questions (NQ) datasets. T is short for tapex-base, which is used as
baseline while M is short for MultiTabQA, which is our fine-tuned model. Table EM
indicates table exact match accuracy. For all other table units (row, column, and cell),
P is Precision, R is Recall, and F1 is F1 score for exact match metric. A ↑ denotes a
significant difference at p < 0.005 and a † denotes a significant difference at p < 0.05
using a t-test.

than semantic metrics measuring the underlying meaning of paraphrased sequences.
Moreover, table components such as rows, columns, and cells are standalone units
which capture different levels of semantics and relationships with the surrounding table
component. For example, rows capture data records while columns capture the features
of each record. Cells capture the lowest level of self-contained facts and require complete
match with the target. For example, a cell with the entity “United Kingdom” should
not be partially matched with the predictions “United Nation”, “United” or “Kingdom”.
Similarly, a numeric value such as “123.45” should not be partially matched with
“12.45”, “23.45” or “12”. Numeracy poses a challenge to seq2seq models [145, 148],
especially in the extrapolation setting where semantic match of unseen numbers may
not be an ideal. Considering all these factors, we focus on the lexical match to measure
model effectiveness.

Table exact match We define table exact match Accuracy (Table EM) as the per-
centage of predicted tables that exactly matches the target tables. Table exact match
evaluates ordering of rows, columns, and table headers and the exact lexical matching
of the table values. It is a strict binary measure that treats partial matches as incorrect.
However, many queries do not impose ordering among columns or rows, and strict
table exact match may not be the ideal indication of model efficacy. To measure partial
correctness, we treat rows, columns, and cells as units at varying levels of granularity,
which have ordered associations among the values within the unit. We evaluate partial
correctness with exact match of rows, columns, and cells.

Row exact match To relax the strict criterion of table exact match, we first measure
correctness on table rows. Row exact match does not consider the ordering of rows
in the generated table but requires the ordering of values within the row. We define a
correctly generated row to be a predicted row that exactly matches any target rows in
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Figure 3.4: Validation table exact match scores of MultiTabQA vs. tapex-base
on Spider evaluation set natural language questions during fine-tuning. The points are
highest validation scores for each model.

the target table. Row exact match precision is the percentage of correctly generated
rows among all the predicted rows in the evaluation dataset. Row exact match recall is
the percentage of correctly generated rows among all the target rows in the evaluation
dataset.

Column exact match Unlike rows, which represent records in relational databases,
columns represent attributes where column header provides semantic meaning to the
values. Hence, a correct column is defined as a generated column that first exactly
matches a target column header and further the column values. Column exact match
measures the ordering of values within a column. Column exact match precision is
the percentage of columns generated correctly among all columns generated in the
evaluation set. Column exact match recall is the percentage of columns generated
correctly among all target columns in the evaluation set.

Cell exact match Cell exact match is the most relaxed measure of model efficacy
at the lowest level of granularity (cells) where table structure is not measured. A cell
is correct if it matches any cell in the corresponding target table. Cell exact match
precision is the percentage of correctly predicted cells among all predicted cells in the
dataset. Cell exact match recall is the percentage of cells predicted correctly among all
target cells in the dataset.

3.7 Experimental Setup and Results
We use tapex-base [121] as the base model for all our experiments. tapex-base
is a single table question answering model (140M parameters) trained to approximate
table reasoning by pre-training to mimic an SQL parser. For both the pre-training and
fine-tuning process, we use a batch size of 8 and a gradient accumulation of 32 to
emulate an effective batch size of 256, a learning rate is 1e→9. The maximum sequence
length of both the encoder and decoder is set to 1024. We run all our pre-training
experiments on four A6000 48GB GPUs and fine-tuning on one A6000 GPU.

We observe from Figure 3.4 that the three-stage pre-training leads to a warm-
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pe Table Row (%) Column (%) Cell (%)
EM(%) P R F1 P R F1 P R F1

2
SQL

21.46 18.60 18.88 18.74 21.98 21.90 21.94 24.19 25.89 25.01
1+2 20.52 14.13 20.06 16.58 18.87 20.87 19.82 19.24 25.83 22.05
1+2+3 29.10 23.15 25.62 24.32 31.66 31.50 31.58 29.95 32.92 31.36
2

NL
19.41 16.51 19.48 17.87 20.13 20.11 20.12 21.12 26.55 23.52

1+2 20.12 11.67 21.09 15.03 19.54 19.97 19.76 16.26 29.22 20.90
1+2+3 24.49 24.95 24.87 24.91 26.80 26.91 26.86 28.44 31.06 29.69

Table 3.2: Ablation on datasets in our multi-stage pre-training processes for 1 run of
experiments. The two sections show scores for different question types: SQL queries
(top) and natural language (NL) questions (bottom). In a section each row shows a
training process with different stages: Pre-training on Stage 2, pre-training on Stages
1+2, and all pre-training Stages 1+2+3. Table EM is table exact match accuracy; P is
Precision; R is Recall; and F1 is F1 score for exact match of row, column, and cell.

start for fine-tuning and better convergence compared to the baseline tapex-base.
For our experiments, we compare the effectiveness of the MultiTabQA model with
fine-tuned tapex-base on the 6, 715 natural questions from Spider. The fine-tuned
tapex-base acts as a baseline for studying the adaptability of the state-of-the-art
single table model to a multi-table setting. We report the mean scores of 5 training
runs initialized with different seeds in Table 3.1. We conduct statistical significance
test (t-test) on the mean scores of the 5 runs and report the significance with p < 0.05
and p < 0.005. We observe that our multi-stage training process leads to improvement
in scores on all table exact match accuracy across all datasets compared to fine-tuned
tapex-base. The difference in table exact match is highest for GeoQuery where
MultiTabQA outperforms tapex-base by 12.38%, Spider by 6.20% and Atis by
1.68%. For F1 and Recall scores on row, column and cell exact match, a similar
pattern is observed where MultiTabQA outperforms tapex-base on all datasets.
MultiTabQA outperforms tapex-base by 5.43% on row F1, 7.24% on column F1,
and 4.52% on cell F1 for Spider. On GeoQuery, MultiTabQA outperforms by 16.49%
on row F1, 12.54% on column F1 and 16.66% on cell F1 scores. All results on
Spider and GeoQuery are significant with a p-value less than a critical value of 0.05
indicating strong evidence that MultiTabQA is a superior model. On Atis, we observe
that MultiTabQA underperforms on precision but outperforms on recall by a large
margin. The difference in recall is larger than precision, indicating that MultiTabQA
generates more target rows, columns, and cells of Atis correctly (higher recall) and
hallucinates spurious rows and cells (lower precision). However, the F1 scores are
better for MultiTabQA. tapex-base is unable to correctly generate target rows, cells,
and columns (lower recall), but the few generated ones are correct (higher precision).
The low number of test samples (85) of Atis and variations in the hallucinations in
different runs makes the precision scores statistically non-significant. However, the
recall scores provide very strong evidence (p < 0.005) of the superiority of MultiTabQA
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in generating correct table units compared to tapex-base.

Qualitative analysis Multi-table QA models must perform numeric reasoning, un-
derstand multi-table schemas and comprehend natural language. A success case also
depicts this. For the question how many likes does kyle have? with 2 input tables:

highschooler
id name grade

1510 jordan 9
. . . . . . . . .

1934 kyle 12
1661 logan 12

likes
student id like id

1689 1709
. . . . . .

1501 1934
1934 1501

with

target: count(*)
1

and

prediction: count(*)
1 ,

MultiTabQA identifies inter-table association of column id of table highschooler and
column student id of table likes. It correctly disambiguates the lexical occurrence of
1934 in columns like id and student id and correctly performs count.

A failure case also illustrates the challenges: for the question find the average weight
for each pet type with input table:

PetID PetType pet age weight
2001 cat 3 12.0
2002 dog 2 13.4
2003 dog 1 9.3

with

target:
avg(weight) PetType

12.0 cat
11.35 dog

and

prediction:
PetType avg(weight)

cat 12.0
dog 13.4

,

MultiTabQA swaps the ordering of the 2 columns and fails to compute average leading to
an incorrect measure by table exact match. The column, row and cell metrics (precision,
recall and F1) measure correctness of individual table units without measuring the
ordering. Column metrics measure predicted column PetType as correct and avg(weight)
as incorrect without measuring ordering of the 2 columns. Row cat — 12.0 is measured
as correct, while dog — 13.4 is measured as incorrect without measuring the ordering
among them. Out of the 4 target cells, cat, dog, 12.0 are measured as correct.
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Figure 3.5: Evaluation results on Spider evaluation samples segregated by number of
input tables. Acc is the Accuracy and F1 is the F1 score.

Impact of the number of input tables The number of input tables increases the com-
plexity of the questions and directly impacts the effectiveness of the models. We segre-
gate evaluation on Spider validation set on the basis of number of input tables and com-
pare the results to study the impact of input table number. We observe from Figure 3.5
that the effectiveness reduces as the number of tables increases for both MultiTabQA
and tapex-base. However, MultiTabQA fares better than tapex-base when the
number of input tables increases. MultiTabQA generates whole tables, rows, columns,
and cells better than tapex-base as observed in Figure 3.5a, 3.5b, 3.5c and 3.5d.
The gain of MultiTabQA in table exact match for one-table context is around 8.81%,
for two-tables context around 4.37%, and it performs similar to tapex-base for
three-tables context. It also has a significant higher score on rows, columns and cells,
on both single and multi-tabular context.

We also observe that while the column and table EM decreases dramatically when
using several tables (Figure 3.5a and 3.5c), the row and cell EM does not (Figure 3.5b
and 3.5d). This indicates that MultiTabQA can generate rows and cells as effectively in
single and multiple input tables settings but fails to do so for columns and consequently
for the whole table. This is due to the fact that certain columns in the answer, particularly
ones with numbers such as floats, are challenging to generate. The errors from the
incorrect columns propagate and are accumulated in the table EM leading to a significant
drop in performance for multi-table queries.

Ablation on training stages We perform ablation on the pre-training stages to analyze
the contribution of each dataset. The simplest setting is to pre-train with Spider SQL
queries, i.e., Stage 2. To evaluate the effectiveness of single table Tapex pre-training
samples, the next setting comprises stages 1 and 2, i.e., pre-train with Tapex pre-training
and Spider SQL dataset. The final comparison is with the three-stage pre-training as
described in Section 3.5.1. The results for one run of the experiments are displayed
in Table 3.2. We observe that table exact match is highest for both pre-training and
fine-tuning for the three-stage training. Stage 2 fares better than Stage 1+2 on table
exact match, and generally has better precision and F1 scores, but lower recall. The
three-stage pre-training with our synthetic data augmented with Spider outperforms the
other settings and confirms the effectiveness of our synthetic data samples in boosting
model efficacy.
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3.8 Conclusion
In this chapter, we have proposed a new task of multi-table question answering without
intermediate logical forms to fill the gap of existing end-to-end table QA research
which focused only on single-table QA. We release a pre-training dataset of 132, 645
samples to effectively train a seq2seq model. We fine-tune and evaluate our model,
MultiTabQA, on natural language questions of three datasets: Spider, GeoQuery and
Atis, to test the efficacy in a multi-table setting. As many multi-table questions result in
tables, we train the model to generate tables. This necessitates table-specific metrics
at various levels of granularity, which we design to evaluate the effectiveness of our
model. We demonstrate that such metrics are insightful in understanding model behavior.
MultiTabQA outperforms existing state-of-the-art single table QA model fine-tuned to
adapt to a multi-table QA setting.

This chapter answers RQ2 which inquires How can we leverage multiple tabular
contexts to perform complex tabular reasoning to address user needs? The development
of a large-scale pre-training dataset aids in training models capable of handling complex
multi-table questions. The pre-training dataset, the proposed training methodology that
outperforms regular fine-tuning, and the development of task-specific evaluation metrics
completes the multi-tabular question answering setup for addressing user needs. This
setup provides the first step in the direction of reasoning over multi-tabular context and
addresses RQ2.
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Chapter Appendices

3.A Limitations
Our synthetic pre-training dataset was automatically generated from manual templates,
which inspite of dataset creation scalability and low cost, may limit the diversity of the
generated SQL queries. Our model, MultiTabQA, requires improvement in numeracy
understanding and numeric operations. Real numbers are especially challenging, and
the model may not be able to correctly generate all the digits of the number correctly,
rendering the generated cell incorrect. Furthermore, large input tables pose a challenge
as the input sequence may get truncated beyond the model’s maximum sequence length.
This has practical limitation in the size and number of input tables which the model can
accommodate before truncation which leads to incorrect answers.

3.B Ethical Considerations
The task and model proposed in the paper is aimed at broadening the scope of the
TabularQA research. All the datasets used in this research, apart from our synthetic data,
are publicly available in peer-reviewed articles and are referenced in this paper. The
synthetic SQL dataset we release was generated over a standard benchmark database
which has been annotated by 11 Yale students, as mentioned in the original paper. Our
synthetic samples use templates annotated by the authors of this work and do not use any
user-specific data or information. We will be providing open access to our datasets for
use in future research under the MIT License. All datasets, including the synthetic pre-
training dataset and all datasets adapted for multi-table QA will be released. Our model
is built over tapex-base which in turn has been trained over bart-base. Our
work did not explicitly handle any bias which exists in the aforementioned pre-trained
models.
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4
QFMTS: Generating Query-Focused
Summaries over Multi-Table Inputs

The previous chapter (Chapter 3) addresses multi-table question answering task where
the neural model addresses complex queries over multiple tables and generates a
structured table as the user response. In this chapter, we address RQ3 by studying query-
focused summary generation over multiple tables, where the neural model generates
a fluent and factual summary in response to the user query. Prior work on query-
focused summary generation focuses only on single tables as the knowledge source,
whereas real-world queries are often complex spanning across multiple tables. To
address this limitation of prior work and to provide a human-readable summary in
response to the user question, this chapter introduces the task of generating summaries
over multiple tables called QFMTS. In addition to formalizing the task, this chapter
focuses on the creation a dataset to aid the task, designing a methodology for effective
multi-table reasoning, and analyzing summarization metrics to evaluate various aspects
of query-focused multi-table summarization, such as faithfulness, completeness, and
fluency.

4.1 Introduction

Table summarization involves the distillation of information from tabular data into
a succinct format, typically a clear and human-readable description or textual table
summary. This process aims to capture the key insights or trends encapsulated within
the table, allowing for easier comprehension and interpretation by humans [22, 104,
118, 123, 188]. Traditional methods of table summarization take a single table as input
and produce a fixed textual summary [77, 216]. However, the fixed nature of table
summaries generated by these traditional approaches often falls short of meeting users’

This chapter was published as W. Zhang, V. Pal, J. Huang, E. Kanoulas, and M. de Rijke. QFMTS:
generating query-focused summaries over multi-table inputs. In U. Endriss, F. S. Melo, K. Bach, A. J. B.
Diz, J. M. Alonso-Moral, S. Barro, and F. Heintz, editors, ECAI 2024 - 27th European Conference on
Artificial Intelligence, 19-24 October 2024, Santiago de Compostela, Spain - Including 13th Conference on
Prestigious Applications of Intelligent Systems (PAIS 2024), volume 392 of Frontiers in Artificial Intelligence
and Applications, pages 3875–3882. IOS Press, 2024. doi: 10.3233/FAIA240951. URL https://doi.
org/10.3233/FAIA240951.
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There are 5 teachers in total. Anne Walker teaches 2 courses,
and Gustaaf Deloor, Kearsley Brown, Lucy Wong, and Vicente

Carretero teach 1 course.

1 Joseph Huts 32

2 Gustaaf Deloor 29

3 Vicente
Carretero 26

Teacher
ID Name Age

Blackrod Urban District

Bolton County Borough
Farnworth Municipal

Borough

Hometown

4 John Deloor  33 Horwich Urban District 

5 Kearsley
Brownrretero 45 Kearsley Urban District 

6 Anne Walker 41 Little Lever Urban District

7 Lucy Wong 39 Turton Urban District

2 5

2 3 3

3 2 5

Course
ID

4 6 7

5 6 1

10 7

What are the names of the teachers who teach courses and how
many courses do they teach?

Teacher Course Arrange

4

Teacher
ID Grade

1

Figure 4.1: An example of query-focused multi-table summarization. Summarization
models should combine the information from the two tables to produce a summary
tailored to the query.

information and quality requirements adequately. The quality of a summary plays a
pivotal role in its utility. For instance, in business contexts, table summaries often
play a critical role in shaping future business strategies, with their quality directly
influencing the judgments of decision-makers. Poor-quality summaries may fail to
capture essential aspects, leading to a misrepresentation of the data and conveying an
inaccurate perspective.

To enhance the effectiveness of conventional table summarization, Zhao et al. [221]
proposes to leverage textual queries as a starting point to generate query-dependent
table summaries aligned with users’ information needs. Their approach accepts a
single table and a user-specified textual query as inputs, generating a description or
statement tailored to the query’s focus as output. However, in Zhao et al. [221], the
authors presume that fulfilling the information requirements of a given query depends
solely on data from a single table. This assumption overlooks the complexity of real-
world scenarios, which frequently demand information from multiple data sources.
Consequently, the intricate nature of real-world queries highlights the necessity for
integrating information from multiple tables to address them effectively.

Let’s consider a practical scenario depicted in Figure 4.1 to understand how humans
address complex real-world queries. For instance, the query “What are the names of the
teachers who teach courses and how many courses do they teach?” entails two distinct
information requirements – teachers’ names and their course teaching details. While
the Teacher table in Figure 4.1 provides the teachers’ names, relying solely on this
table is insufficient to generate a complete query-focused table summary. To completely
address the query, we require data from another table, such as the Course Arrange
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table in Figure 4.1, which contains information about course arrangements for teachers
listed in the Teacher table. By performing table join (i.e., multi-table reasoning) and
count (i.e., arithmetic reasoning) operations, we can determine the number of courses
taught by each teacher. Thus, addressing such a common real-world complex query
involves employing multi-table reasoning and arithmetic reasoning. This practical and
challenging scenario remains largely unexplored, underscoring the necessity for further
exploration and advancement in this domain.

Motivated by the above observation of how humans handle such a scenario and
aiming to bridge this research gap, we propose a new method designed to tackle
the aforementioned practical and challenging situation: query-focused multi-table
summarization. Our proposed approach involves taking multiple tables and a user-
defined query as inputs, aiming to generate a query-relevant textual summary based on
the inputs. The proposed approach primarily comprises a table serialization module, a
summarization controller, and a large language model (LLM). The flowchart illustrating
our proposed method is provided in Figure 4.2 to aid comprehension. Additionally,
in light of the absence of an existing dataset for our introduced task, and to validate
the effectiveness of our proposed query-focused multi-table summarization method,
we create a query-focused multi-table summarization (QFMTS) dataset. This dataset
comprises 4, 909 query-summary pairs, each pair associated with multiple tables. For
further details about our proposed dataset, please refer to Section 4.4.

In our comprehensive experiments, we assess the effectiveness of the proposed
query-focused multi-table summarization method using our devised QFMTS dataset.
The experimental findings demonstrate the superiority of our approach over baseline
methods, shedding light on the challenges encountered by existing models in performing
complex table reasoning to produce precise table summaries. To the best of our knowl-
edge, we are the first to address the task of query-focused multi-table summarization.

Contributions Our primary contributions in this chapter can be summarized as fol-
lows:

• Introduction of query-focused multi-table summarization: We introduce a
novel method tailored for query-focused multi-table summarization, aiming to
overcome limitations present in current approaches that predominantly target
single-table summarization. Our proposed method comprises a table serialization
module, a summarization controller, and a large language model (LLM), offering
a structured framework to tackle the complexities inherent in the task of query-
focused multi-table summarization.

• Development of a comprehensive dataset: We develop a QFMTS dataset
specifically tailored for the query-focused multi-table summarization task. The
QFMTS dataset consists of 4, 909 query-summary pairs, each intricately linked
with multiple tables. It will serve as a valuable resource for researchers in this
field, facilitating the exploration and validation of proposed methods in the future.

• Extensive experiments: We conduct comprehensive experimental validation of
our proposed query-focused multi-table summarization method using the intro-
duced QFMTS dataset. Our experimental results demonstrate its effectiveness
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over baseline methods and provide insights into the challenges encountered in
complex table reasoning for precise summarization.

4.2 Related Work
In this section, we briefly review recent developments in the related areas of table
summarization and query-focused text summarization. We also highlight our unique
contributions in contrast to these existing studies.

Table summarization Table summarization involves generating a concise and infor-
mative summary from a given table. To address this task, prior research [77, 123, 216]
has primarily focused on summarizing the entire table without explicitly addressing
users’ specific information needs. However, in real-world applications, users frequently
seek targeted information from table segments, underscoring the importance of gener-
ating personalized table summaries. Although Zhao et al. [221] introduced the initial
human-annotated dataset for query-focused table summarization, their study restricts to
single-table scenarios, lacking consideration of multi-table reasoning such as operations
involving table join and union. In contrast, our work presents two primary distinctions:
First, we leverage LLMs to assist in the data annotation; second, our proposed method
addresses complex queries that necessitate the integration of information across multiple
table contexts.

Query-focused text summarization Query-focused text summarization is designed
to generate textual summaries based on a specific query and a collection of relevant
documents. This research field has been extensively investigated with textual inputs [32].
Traditional studies have faced challenges due to the scarcity of large-scale datasets,
often resorting to distant supervision signals from adjacent fields, such as generic
summarization [199, 200] to enhance summarization performance. Additionally, recent
efforts have been directed towards creating synthetic large-scale datasets [99, 102, 126].
Despite these advancements, the application of query-focused summarization to tabular
data remains relatively unexplored [221], especially in scenarios where queries span
multiple tables. This study seeks to bridge this gap by exploring the efficacy of query-
focused summarization in multi-table contexts.

4.3 Methodology
This section formulates the task of query-focused multi-table summarization and details
our proposed approach. As illustrated in Figure 4.2, our approach comprises two
primary components: a table serialization module and a summarization controller.

Task formulation Query-focused multi-table summarization, denoted as QFMTS,
involves generating a coherent and informative summary aimed at addressing a user
query across multiple tables. Specifically, given a natural language query q and a
set of input tables T = t1, . . . , tk, a query-focused multi-table summarization model
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Figure 4.2: Overview of the proposed approach. Our approach integrates a table serial-
ization module with a summarization controller. Initially, a set of tables is transformed
into textual representations through the table serialization module. Subsequently, the
summarization controller directs an LLM to perform table reasoning and produce a
summary specifically tailored to a given query.

systematically engages in table-based reasoning across the contents of T related to q,
aiming to produce a textual summary s that effectively resolves the user query while
maintaining factual accuracy and comprehensiveness.

Table serialization Given that our approach is based on LLMs that process only
textual data, it necessitates a table serialization to transform input tabular data into a
textual format suitable for processing. In this work, we utilize a technique known as table
linearization, which is widely used in table-to-text generation tasks [118, 121, 141, 149].
This technique transforms a table into a textual, sequential format using designated
sentinel words. Specifically, a table identified by its name, name, consisting of m rows
and n columns, is linearized as follows:

<table name>: name col: h1 | . . . | hn

row 1: c1,1 | . . . | c1,n . . . row m: cm,1 | . . . | rm,n.

where hj and ci,j stand for the jth column header and ith row and jth column cell,
respectively.
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Figure 4.3: Two distinct approaches of the summarization controller: (1) Direct Sum-
marization (2) Reason-then-Summarize. The former tackles the proposed task in an
end-to-end manner. In contrast, the latter tackles the task across two independent phases.

4.3.1 Summarization Controller

Given a query and the corresponding linearized tables, our proposed summarization
controller efficiently generates a comprehensive summary. This is achieved by inte-
grating an LLM, such as GPT-3.5 [147], with a carefully designed prompting-based
method. In this work, we explore two distinct methods: direct summarization and
reason-then-summarize, which are depicted in Figure 4.3.

Direct summarization Direct summarization (DirectSumm) enables the LLM to
jointly perform table reasoning and summarization in an end-to-end manner. We first
present the linearized structure of table formats as outlined in Section 4.3, aiming to
improve the LLM’s understanding of tabular data. Given the query and linearized tables,
we then prompt the LLM to perform table reasoning across multiple tables to implicitly
identify query-relevant facts, i.e., these facts are not explicitly generated by the LLM. It
is worth noting that the facts include numerals and entities that address the information
needs of the query. Furthermore, we adopt chain-of-thought (CoT) style prompting
methods [97, 194] using the directive “Let’s think step by step”. This enhances the
LLM’s reasoning ability. Lastly, we instruct the LLM to synthesize the query with
the identified query-relevant facts into a comprehensive summary, while adhering to
constraints such as summary length.
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Dataset
Statistics Reasoning
# Tables # Words

# Examples per example in summary Numeric Multi-table

ROTOWIRE [104] 4,953 1.0 337.1 ✁ ✁
SciGen [139] 1,338 1.0 116.0 ✂ ✁
NumericNLG [188] 1,355 1.0 94.2 ✂ ✁
QTSUMM [221] 7,111 1.0 68.0 ✂ ✁

QFMTS 4,909 1.83 58.5 ✂ ✂

Table 4.1: Comparisons between our dataset and existing table-to-text generation
datasets. Our dataset is the only one tailored for query-focused multi-table summariza-
tion, supporting both numeric and multi-table reasoning.

Reason-then-summarize Inspired by the established retrieve-then-generate paradigm
[75, 108], we introduce a novel approach termed reason-then-summarize (Reason-then-
Summ). This approach tackles the proposed task in sequential phases. The first phase
focuses exclusively on enabling the LLM to perform table reasoning across multiple
tables based on the query and linearized tables. As a result, the LLM identifies and
extracts query-relevant facts from the tables. In the second phase, we prompt the LLM
to synthesize a comprehensive summary based on the query and the previously extracted
query-relevant facts.

4.4 Dataset Construction
In order to validate the effectiveness of our proposed method, we create a novel dataset
specifically tailored for this query-focused multi-table summarization task. This sec-
tion details the dataset construction process, including data annotation and quality
verification.

Source data We built our dataset on top of the Spider dataset [208]. The Spider
dataset, originally designed for semantic parsing and text-to-SQL tasks, comprises
10, 181 natural language queries. These queries are paired with complex SQL queries
and one or more tables from various relational databases. In this work, we construct
input queries and tables from original textual queries and their corresponding tables
to develop our dataset. We utilize SQL queries for data annotation, as detailed in the
following subsection. Additionally, our analysis shows that over 50% of the queries
in the original dataset corresponded to only a single table. This high proportion of
single-table inputs raises concerns about the dataset’s efficacy to provide sufficient
challenges for multi-table scenarios. To address this, we selectively down-sampled these
single-table examples to allow multi-table examples to predominate in the dataset. Since
the test set from the original dataset is not publicly available, we randomly allocated
10% of the original training set to serve as our validation set, with the remaining 90%
forming the new training set. The original validation set was repurposed as our test set.
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This results in 3, 871 training, 430 validation, and 608 test examples, forming the basis
for our dataset.

4.4.1 Data Annotation
LLMs as data annotators The objective of data annotation is to produce high-
quality, comprehensive, and accurate summaries tailored to the associated input queries.
Prior research in the field of query-focused summarization from single tables, such
as QTSUMM [221], has predominantly been dependent on human experts to annotate
summaries based on a input query and a input table. This reliance is primarily due to
complex table reasoning, making summary annotation a challenging task. However,
manual annotations are not only time-consuming but also costly. Recent studies [37, 60,
211, 222] have revealed that LLMs can match the annotation quality of crowd-sourced
workers while being significantly more cost-effective and efficient. Motivated by
these findings, we have employed LLMs as data annotators for our summary annotation,
namely LLMAnno. Although LLMAnno does not yet match the table reasoning capabilities
of human experts, we have designed a simplified table-to-text annotation task avoiding
complex table reasoning. Specifically, for each textual query in our dataset, we follow
Pal et al. [151] to first extract the output table by executing the corresponding SQL query
over the associated rational database. It is worth noting that the execution table contains
the query-relevant facts/entities required to construct a summary. Subsequently, rather
than relying on input tables, we use the execution table as the basis for our annotation.
We also have identified that relying solely on the output table frequently results in
summaries that lack essential contextual information. Our observations indicate that this
missing context can effectively be retrieved directly from the input query. For instance,
consider the example output table below:

semester name semester id
summer 2010 2

It lacks contextual information to confirm that the Summer 2010 semester has the
most registered students in response to the corresponding query “What is the semester
in which most students registered? Show both the name and the id.”. To address this,
we have incorporated the given query as a supplementary input for summary annotation.
This strategy enhances the overall comprehensiveness and relevance of the annotated
summaries. In this work, we employ gpt-3.5-turbo-0613 as LLMAnno via the
public OpenAI API.1

Instruction design The effectiveness of the instruction prompt is crucial in determin-
ing the quality of annotated summaries. To this end, we carefully design the instruction
to ensure the summary quality, in which the structure of the instruction is shown in
Prompt 4.4.1. The prompt comprises three components: a comprehensive annotation
guideline, few-shot demonstrations, and input data. The annotation guideline outlines
the expected discourse structure and the summary’s length requirements. We have found
that a more precise guideline significantly improves generation quality. To provide fur-
ther clarity to LLMAnno, we manually write summaries for a few examples as few-shot

1https://platform.openai.com
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demonstrations (we use 5-shot in our experiments). Lastly, we include both the input
query and the execution table directly in the prompt, specifically requesting LLMAnno
to write a summary based on these inputs. Similarly, we leverage table serialization as
described in Section 4.3 to obtain the linearized execution table.

Prompt 4.4.1: Summary Annotation

Instruction: A comprehensive annotation guideline.

Demonstrations:
Few-shot human-written demonstrations.

Query: {Input query}
Table: {Linearized execution table}

4.4.2 Dataset Analysis
Our dataset comprises a total of 4, 909 examples, segmented into 3, 871 training ex-
amples, 430 validation examples, and 608 test examples. The dataset is composed of
32.8% single-table examples, 52.6% double-table examples, and 14.6% examples that
incorporate three or more tables. Notably, more than 67% of the examples include at
least two tables, highlighting the dataset’s efficacy in facilitating research in multi-table
scenarios. We present a comparative analysis of our dataset against existing table-to-text
generation datasets in Table 4.1. Our dataset averages approximately two input tables
per example, in contrast to the prevailing datasets which predominantly focus on single-
table scenarios. The summaries from our dataset are sufficiently informative, with an
average length of 58.5 words, aligning closely with the norms of existing datasets. Ad-
ditionally, our dataset is characterized by a rich variety of operations. It includes basic
numeric operations such as sum and average, and extends to more complex multi-table
operations like join and union, which are absent in the QTSUMM dataset, as it is tailored
exclusively towards single-table contexts.

4.4.3 Quality Verification and Control
To assess the quality of annotated summaries effectively, we develop a comprehensive
evaluation encompassing both automated and manual evaluations. We define three
primary desiderata for quality verification:

• Faithfulness: Each statement within the summary must be factually consistent
with the facts presented in the execution table.

• Completeness: The summary should address all information needs in the user
query, representing all facts from the execution table.

• Fluency: The summary needs to be articulate, clear, and easily understandable
for human readers.

In our experiments, we utilize standard sequence similarity metrics to evaluate com-
pleteness. Given the lack of definitive metrics for faithfulness and fluency, we rely on
human evaluations to assess these aspects. The results are presented in Table 4.2.
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Split Automated Evaluation Human Evaluation†

Completeness↑ (%) Faithfulness Fluency
Training 91.45 0.98 4.73
Validation 91.75 0.98 4.81
Test 90.75 0.96 4.68
Total 91.48 0.97 4.74

Table 4.2: Quality evaluation of our dataset. ↑ indicates that the completeness is
quantified using average ROUGE-L recall scores. † indicates that we randomly sample
100 examples from the training, validation, and test set to measure faithfulness (0–1)
and fluency (1–5), respectively.

Automated evaluation We initially assess the completeness of the annotated summary
solely based on the execution table. However, as delineated in subsection 4.4.1, the
execution table, by itself, proves inadequate for a comprehensive evaluation of summary
completeness due to its limited contextual information. Consequently, we extend
our evaluation by incorporating the query with the table, thereby enabling a more
robust measure of completeness. Specifically, we extract facts, including numerals
and entities, from the execution table. These facts are then combined with the query
to construct a reference sequence. The completeness of the annotated summary is
estimated against this reference sequence. In this work, we quantify the completeness
using the lexical similarity metric ROUGE-L [111], a standard metric in table-to-text
generation assessments [115, 221]. As our primary focus lies in assessing the presence
of information from the query and the execution table within the summary, we focus
on the recall scores of ROUGE-L. As shown in Table 4.2, the ROUGE-L recall scores
exceed 90, affirming that the annotated summaries proficiently include not only the
facts from the corresponding execution tables but also the contextual information from
the queries.

Human evaluation To assess the faithfulness and fluency of annotated summaries,
we randomly select 100 examples from each of the training, validation, and test sets. We
engage three annotators, each proficient in SQL and English, to evaluate the summaries
in relation to the corresponding SQL queries, input tables, and execution tables. An-
notators assign a binary label to assess faithfulness, a common method in table-to-text
generation tasks [23, 221]. Summaries that accurately represent the execution tables
without any hallucinated content are labeled as 1, while those that do not are labeled
as 0. The annotators are also provided with the query and input tables to enhance their
understanding and judgment of the summaries. Following the methodology described
by Zhao et al. [221], we measured fluency using a 5-point Likert scale, ranging from 1
(least fluent) to 5 (most fluent). The average score from the three annotators determined
the faithfulness and fluency rating for each summary. Table 4.2 presents the results:
the summaries achieved an average faithfulness score of 0.97 and a fluency score of
4.74, indicating that over 97% of the summaries are faithful to the corresponding ex-
ecution tables and are deemed sufficiently fluent by the annotators. To measure the
inter-annotator agreement, we employed the Fleiss Kappa scores [45], achieving Kappa
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scores of 0.97 for faithfulness and 0.80 for fluency. These scores indicate almost perfect
agreement and substantial agreement, respectively.

Human post-correction Despite our quality verification confirming the high quality
of the dataset, we acknowledge the need for further correction of the validation and
test sets to ensure their accuracy, as they play a critical role in selecting optimal model
checkpoints and measuring model performance, respectively. Additionally, biases
may arise from using output summaries produced by LLMAnno to construct these sets.
This risk is particularly pronounced if the same LLMAnno is employed as the baseline
model, potentially leading to artificially enhanced performance results. To address these
concerns, we have implemented a rigorous post-correction process on the annotated
summaries within both sets. This involves a detailed manual review to identify and
rectify any missing information or hallucinated content in the summaries, based on the
corresponding query and execution table. Furthermore, we have undertaken to rephrase
each summary in a manner that more closely resembles human expression, thereby
reducing potential biases.

4.5 Experiment
In this section, we outline baseline models selected for performance comparison. We
then provide the implementation details of the baseline models and our proposed method.
Lastly, we describe the evaluation protocols employed in our experiments.

4.5.1 Baseline Models
In this work, we conduct experiments to evaluate two distinct neural network architec-
tures: encoder-decoder models and decoder-only LLMs. Given that encoder-decoder
models typically have significantly fewer parameters than LLMs, we fine-tune these
models using our training dataset to facilitate a fair comparison. In contrast, we uti-
lize the LLMs as backbone models for our proposed methods without updating their
parameters in the experiments. We benchmarked against the following state-of-the-art
models:
BART [107] represents a pre-trained encoder-decoder architecture known for its efficacy
in text generation tasks. We have fine-tuned two variants of BART, namely bart-base
with 139 million parameters and bart-large with 406 million parameters [107],
which are referred to as BART-base-FT and BART-large-FT, respectively.
TAPEX [121] is a table-to-text generation model, trained using a large-scale synthetic
dataset that includes executable SQL queries and their corresponding outputs. In our
experiments, we employ the version that utilizes bart-large as the backbone.
OmniTab [82] is based on the same architecture as TAPEX but has been additionally
trained on a synthetic dataset designed for table question answering tasks. Like TAPEX,
our implementation leverages bart-large as its backbone.
MultiTab [151] is a table-to-text generation model that has been additionally trained
on a synthetic, multi-table question answering dataset. In our experiments, we uti-
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lize bart-base as its backbone, as the released version exclusively supports this
backbone.
Llama-2 [192] includes a set of open-source LLMs that have been pre-trained across
vast datasets. We explore two adaptations of Llama-2. First, we fine-tune it on our
dataset, namely Llama-2-FT. Second, we utilize llama-2 as the backbone for our
approach.
GPT [146, 147] comprises a family of LLMs developed by OpenAI, demonstrating their
remarkable text generation capabilities across numerous tasks. In our experiments, we
deploy versions gpt-3.5-turbo-0613 and gpt-4-0613, applying these models
as the backbones for our approach.

4.5.2 Implementation Details
Fine-tuning We fine-tune encoder-decoder models on the training set using the
AdamW optimizer [128]. This is conducted over 32 epochs with a learning rate of 1e→4,
batch size of 256, and the maximum sequence length of 1024. For fine-tuning Llama-2
models, we adopt the QLoRA algorithm [35] to fine-tune llama-2-chat-7B due to
the computation restrictions. The maximum sequence length is 4096. Input sequences
for the fine-tuned models were composed by concatenating the query with all linearized
input tables. For instance, the final input sequence for an example with k tables is repre-
sented as query [table1] . . . [tablek], where [tablei] is the linearized representation of
the i-th input table. Model performance is evaluated by selecting the best checkpoints
based on the loss from the validation set. All experiments are conducted on a single
A6000 GPU.

Few-shot prompting We prepend 3-shot demonstrations into the prompts to facilitate
in-context learning [15] for our method. We set the temperature, top-p, and maximum
output tokens to 0.1, 0.95 and 400, respectively. Due to budget constraints, we only
report the results of the Reason-then-Summ method with the backbone of GPT-4. Details
of the prompts can be found in ??.

4.5.3 QFMTS Evaluation
To assess model performance, we employ automated and human evaluations. For
automated evaluation, we measure the quality of the generated summary based on
the corresponding reference summary and the execution table, as detailed in Subsec-
tion 4.4.1. For human evaluation, we focus on evaluating two key aspects: faithfulness
and fluency.

Text-based automated evaluation We first evaluate the quality of a generated sum-
mary w.r.t. the corresponding reference textual summary by estimating the similarity
between them in general aspects, such as fluency and accuracy. Following Zhao et al.
[221], we adopt two lexical-based metrics, SacreBLEU [154] and ROUGE-L (longest
common sub-sequences) [112], along with a semantic-based metric, BERTScore [217].
We report the F1 versions for both ROUGE-L and BERTScore. We use deberta-
xlarge-mnli [59] as the backbone for BERTScore.
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Table-based automated evaluation In contrast to text-based evaluations, table-based
evaluations focus more on specific aspects, such as completeness and faithfulness of
the generated summary. To assess these aspects, we employ two metrics: Sting Exact
Match (STR-EM) [186] and PARENT [36]. STR-EM quantifies the proportion of facts
or entities from the execution table that are accurately represented in the generated
summary. PARENT evaluates summary completeness by integrating both the reference
summary and the execution table. PARENT has demonstrated a significant correlation
with human judgments.

Human evaluation In addition to the automated evaluations, we conduct human
evaluations, specifically targeting faithfulness and fluency. These evaluations follow
the detailed annotation guidelines specified in Subsection 4.4.3. For each model, 100
generated summaries are randomly sampled from the test set, and their quality was
assessed by three expert annotators.

4.6 Results and Analysis
Main results We present the summarization performance of various models in Ta-
ble 4.3. We observe that our Reason-then-Summ methods markedly outperforms the
DirectSumm approach in both text-based and table-based evaluations. For instance,
when we use GPT-3.5 as the backbone, Reason-then-Summ surpasses DirectSumm by
about 5 points regarding BERTScore (64.98 vs. 60.18). This is because the Reason-
then-Summ method tackles the task into sequential phases of table reasoning and
summarization. This specialized focus on multi-table reasoning in the initial phase
enables the generation of more query-relevant facts and entities, thus enhancing the
LLM’s reasoning ability. Consequently, the subsequent summarization task benefits
from generated more relevant facts, yielding superior performance compared to the
DirectSumm approach, which jointly addresses table reasoning and summarization
tasks.

Additionally, our results indicate that baseline models fine-tuned on our training
dataset largely surpass the DirectSumm methods employing GPT-3.5 or Llama-2 as
backbones in text-based evaluations. In comparison, our Reason-then-Summ approach
using GPT-3.5 and GPT-4 as backbones demonstrates competitive performance along-
side the BART-large-FT and MultiTab-FT. This also indicates the effectiveness of
Reason-then-Summ. Furthermore, the Llama-2-FT model achieves the highest perfor-
mance. Particularly in text-based evaluation, when compared to the Reason-then-Summ
with the backbone Llama-2, the fine-tuned Llama-2-FT shows significant improvements,
underscoring our dataset’s efficacy as a robust training resource for query-focused
multi-table summarization scenarios. Conversely, in table-based evaluations, however,
the trend reverses. For instance, our Reason-then-Summ method employing GPT-4 as
the backbone, largely outperforms the leading Llama-2-FT model. This discrepancy
indicates that while smaller, fine-tuned models may produce plausible summaries, they
lack proficiency in table reasoning across multiple tables to gather query-relevant facts,
thereby leading to inferior performance on table-based metrics. In comparison, our
Reason-then-Summ methods produces more facts relevant to the queries, demonstrating
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Text-based metric Table-based metric
Model Backbone SB RL BS STR-EM PARENT

Fine-tuned
BART-base-FT BART-base 39.74 63.14 62.38 24.63 13.51
BART-large-FT BART-large 43.40 64.84 66.06 33.54 18.66
TAPEX-FT BART-large 43.99 65.12 66.43 38.78 22.16
MultiTab-FT↑ BART-base 44.41 65.68 67.13 42.70 24.83
OmniTab-FT BART-large 45.58 67.19 68.76 44.60 26.46
Llama-2-FT Llama-2-7B 54.06 71.82 73.66 61.71 28.69

Our prompting-based
DirectSumm Llama-2-7B 12.49 32.63 21.85 45.32 7.45
DirectSumm GPT-3.5 33.58 57.02 60.18 53.93 22.21
Reason-then-Summ Llama-2-7B 16.45 37.13 25.13 48.16 12.17
Reason-then-Summ GPT-3.5 40.84 62.68 64.98 56.24 24.36
Reason-then-Summ GPT-4 42.32 64.36 67.36 66.83 32.37

Table 4.3: Summarization performance of our approaches with various backbones and
fine-tuned models on the test set of our dataset. “FT” stands for the fine-tuned version
of the corresponding model. “SB” is short for SacreBLEU. “RL” is short for ROUGE-L.
“BS” is short for BERTScore. The best results are highlighted in bold. ↑ indicates that
the released version only supports the backbone of BART-base.

superior performance in terms of table reasoning ability.

Human evaluation Table 4.4 illustrates the results of sampled human evaluation on
the test set. Despite lower scores on automated text-based evaluation metrics such as
SacreBLEU and ROUGE scores, our Reason-then-Summ method, which integrates
GPT-4, significantly outperform the fine-tuned OmniTab-FT in human evaluations,
particularly in terms of faithfulness (0.56 vs. 0.19). This disparity highlights the
superior reasoning ability of our methods over fine-tuned baseline models. Furthermore,
our findings reveal a mismatch between text-based automated metrics and human
evaluations, aligning with the observations made by Zhao et al. [221]. In contrast, our
table-based metrics demonstrate a strong correlation with human judgments concerning
faithfulness. This indicates that table-based evaluations are complementary to text-
based evaluations, enabling a more comprehensive evaluation for system performance
comparison.

Single- vs. multi-table To enhance our understanding of the challenges presented in
multi-table scenarios, we conducted a performance comparison between single-table
and multi-table inputs from our test set, as illustrated in Table 4.5. It is worth noting
that approximately 30% of the examples in our dataset are characterized by single-table
inputs. Our analysis reveals that the presence of multiple input tables significantly
deteriorates the performance across all evaluated metrics for every model tested. This
decline in performance is particularly significant for the smaller OmniTab-FT, whereas
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Model Backbone Faithfulness Fluency
OmniTab-FT BART-large 0.19 4.79
Reason-then-Summ GPT-3.5 0.28 4.72
Reason-then-Summ GPT-4 0.56 4.84

Table 4.4: Human evaluations of representative models on the test set. Three expert
annotators are recruited to evaluate 100 random examples for each model. The best
results are in bold.

Model
Number of tables

Single-Table Multi-Table
R-L BSc PA R-L BSc PA

OmniTab-FT (BART-large) 70.73 72.11 37.73 65.67 67.20 21.56
Reason-then-Summ (GPT-3.5) 64.95 67.04 28.92 61.61 64.18 19.29
Reason-then-Summ (GPT-4) 66.03 69.23 38.11 62.58 64.98 29.87

Table 4.5: Comparisons between single-table and multi-table examples on the test set.
R-L, BSc, and PA stand for ROUGE-L, BERTScore, and PARENT, respectively.

it is least noticeable for our method utilizing GPT-4 as the backbone. For instance,
considering PARENT scores, the decrease observed with OmniTab-FT is approximately
16 points, moving from 37.73 to 21.56. In contrast, our Reason-then-Summ shows a
more modest decrease of about 8 points, dropping from 38.11 to 29.87. This reduction
is nearly half that observed with OmniTab-FT. These findings suggest that while multi-
table reasoning poses greater challenges compared to single-table scenarios, increased
model capacity can effectively narrow this performance gap.

Qualitative analysis To enhance our understanding of the strengths of our approach
and challenges within the task, we conduct a manual analysis of the summaries generated
by Reason-then-Summ with the backbone of GPT-3.5 on the test set, including success
and failure cases. We observe that our method successfully performs arithmetic and
multi-table operations in some cases. A success case illustrates the strengths of our
approach. For the query “Which employee received the most awards in evaluations?
Give me the employee name.” over two input tables:

Employee
ID Name Age

1 George
Chuter 23

2 Lee
Mears 29

... ... ...

Evaluation

ID Year
awarded Bonus

1 2011 3000
2 2015 3200
1 2016 2900
... ... ...

With the reference summary “The recipient of the most awards in evaluations is George
Chuter.”, our method reasons over the 2 tables, performing complex table operations,
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such as count and join. Specifically, the method finds two records of awards of George
Chuter in the table Evaluation and aggregates the total number of awards. After
joining the two tables, the method accurately identifies George Chuter as the person
with the most awards, generating “The employee who received the most awards in
evaluations is George Chuter.”

A failure case illustrates the challenges of multi-table scenarios. Consider the query
“What are the names of all European countries with at least 3 manufacturers?” over
three input tables:

Continents
Cont

Id Continent

1 America
2 Europe
3 Asia
4 Africa
5 Australia

Countries
Country

Id
Country
Name

Cont-
inent

2 Germany 2
3 France 2
1 USA 1
8 Korea 3
... ... ...

Car Makers
Id Maker Full Name Country
2 Volkswagen Volkswagen 2
3 bmw BMW 2
... ... ... ...
7 citroen Citroen 3
... ... ... ...
14 opel Opel 2
15 peugeaut Peugeaut 3
16 renault Renault 3
... ... ... ...
22 kia Kia Motors 8

With the reference summary “There are 2 European countries with at least 3 man-
ufacturers. The names of these countries are France and Germany.”, in which the
correct country names are marked in blue. The method incorrectly generates “There
are 2 European countries that have at least 3 manufacturers. Their names are France
and Korea.”, in which the incorrect country name is marked in red. Even though this
generated summary exhibits a high degree of fluency, it is only partially faithful and
complete due to the incorrect inclusion of Korea, a country which is not located in
Europe. This case exemplifies the complexity and challenges of multi-table operations
since the proposed approach struggles to combine information from the three tables
based on the corresponding column headers, Country ID and Cont Id.

Additional examples of summarization with GPT-4 by the Reason-then-Summ
approach are shown in Table 4.11. In the first example, for the question What are the
names of high schoolers who have a grade of over 5 and have 2 or more friends?,
GPT-4 erroneously counts 15 high school students instead of the correct answer of 5.
The second example with the question Show names of teachers and the courses they
are arranged to teach. is interesting. GPT-4 correctly summarizes the names of the
teachers and the corresponding course taught by the teacher, but counts the total number
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Query Answer Table Reference GPT-4-MS

What are the
names of high
schoolers who
have a grade of
over 5 and have 2
or more friends?

name
Alexis
Kris
Jordan
Gabriel
Andrew

There are 5 high schoolers
who have a grade of over 5
and have 2 or more friends.
Their names are Alexis,
Kris, Jordan, Gabriel, and
Andrew.

There are 15 high school-
ers who have a grade of
over 5 and have 2 or more
friends. These students are
Jordan, Gabriel, Tiffany,
Cassandra, Andrew, Kris,
Brittany, Alexis, Austin,
Gabriel, Jessica, Jordan,
John,Kyle, and Logan.

Show names of
teachers and the
courses they are
arranged to teach.

Name Course
Kearsley Brown Math
Vicente Carretero Math
Gustaaf Deloor Science
Anne Walker History
Anne Walker Bible
Lucy Wong Musi

There are 6 teachers in
total. The names of the
teachers and the courses
they are arranged to teach
are as follows: Kearsley
Brown teaches Math,
Vicente Carretero teaches
Math, Gustaaf Deloor
teaches Science, Anne
Walker teaches History,
Anne Walker teaches Bible,
and Lucy Wong teaches
Music.

There are five teachers in
total and each is arranged
to teach a specific course.
Kearsley Brown and Vi-
cente Carretero are both
arranged to teach Math.
Gustaaf Deloor is arranged
to teach Science. Anne
Walker is arranged to teach
History and Bible. Lastly,
Lucy Wong is arranged to
teach Music.

What are the
names of poker
players in de-
scending order of
earnings?

Name
Maksim Botin
Aleksey Ostapenko
Teodor Salparov
Semen Poltavskiy
Yevgeni Sivozhelez

There are 5 poker play-
ers in total. The names
of the poker players in de-
scending order of earnings
are Maksim Botin, Alek-
sey Ostapenko, Teodor Sal-
parov, Semen Poltavskiy,
and Yevgeni Sivozhelez.

There are 5 poker play-
ers listed in descending
order of earnings. These
players are Maksim Botin,
Aleksey Ostapenko, Se-
men Poltavskiy, Teodor
Salparov, and Yevgeni
Sivozhelez.

For each stadium,
how many con-
certs play there?

Name count(*)
Stark’s Park 1
Glebe Park 1
Somerset Park 2
Recreation Park 1
Balmoor 1

There are 5 stadiums in
total. The number of
concerts played at each
stadium are as follows:
Stark’s Park - 1 concert,
Glebe Park - 1 concert,
Somerset Park - 2 concerts,
Recreation Park - 1 concert,
and Balmoor - 1 concert.

The number of concerts
played at each stadium
varies. Stark’s Park hosts
1 concert, Somerset Park
hosts 2 concerts, while
Bayview Stadium, Hamp-
den Park, Forthbank Sta-
dium, and Gayfield Park
do not host any concerts.
Recreation Park, Balmoor,
and Glebe Park each host 1
concert.

Table 4.11: Selected samples with generated summaries by GPT-4. Note that we omit
input tables since they are too large to display.

61



4. QFMTS: Generating Query-Focused Summaries over Multi-Table Inputs

of unique teachers instead of the total number of teacher listed. Hence, Anne Walker,
teaching two different courses, is counted only once. The reference summary, on the
other hand, counts the total number of teachers listed in the answer table. The third
example demonstrates GPT-4 correctly generating the summary with respect to the user
question What are the names of poker players in descending order of earnings?. The
fourth example with the question For each stadium, how many concerts play there?
demonstrates that GPT-4 generates additional information that is not present in the
reference summary, such as the list of stadiums that do not have any concerts playing in
them.

4.7 Conclusion
In conclusion, this chapter has addressed the shortcomings of current table summariza-
tion techniques through the introduction of an innovative method for query-focused
multi-table summarization. Our proposed method leverages user queries and analyzes
multiple tables to generate summaries that directly cater to users’ information needs.
Additionally, we make a significant contribution to the field by presenting a comprehen-
sive dataset tailored explicitly for this query-focused multi-table summarization task,
thereby enabling further research.

Extensive evaluations conducted demonstrate the superior performance of our
method compared to existing baselines, underscoring the complexities associated with
accurate summarization in the context of intricate table reasoning. Overall, our work
not only propels advancements in query-focused multi-table summarization but also
offers valuable insights to guide future exploration and development in this field.

This chapter answers RQ3, How to generate summaries over multiple tables for
conversational agents?, by introducing the task of query-focused multi-table summa-
rization. To aid the task, a query-focused multi-table summarization (QFMTS) dataset
was created and a summarizer controller designed for generation of fluent and faithful
summaries over multiple tables and the user question. Multiple experimental results
demonstrate the effectiveness of our designed summarizer and dataset.
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Chapter Appendices

4.A Prompts
Complete prompts used in the paper are shown in the Tables 4.A.1, 4.A.2 and 4.A.3.

Appendix 4.A.1: Complete prompt for stage 1

Instruction: You will be given a question along with one or more tables to complete the task below. Each
table contains a name and content with multiple rows and columns, formatted as follows:
col: <column header 1> | <column header 2> | ... | <column header n> row 1: <value 1,1> | <value
1,2> | ... | <value 1,n> row 2: <value 2,1> | <value 2,2> | ... | <value 2,n> ... row m: <value m,1>
| <value m,2> | ... | <value m,n>.

Task: Answering the Question from the Tables.
Your task is to answer the question using only the information from the tables, such as numerical data and
entities. This may involve performing arithmetic calculations and combining data from multiple tables if
necessary. Please begin your response with ’Answers:’ and enumerate all discovered answers one by one,
separating them with commas ’,’. Let’s think step by step.

Demonstrations:
Question: Show the name for regions not affected.
Table 1: Name: region; Content: col : Region id | Region code | Region name row 1 : 1 | AF |
Afghanistan row 2 : 2 | AL | Albania row 3 : 3 | DZ | Algeria row 4 : 4 | DS | American Samoa row 5 : 5
| AD | Andorra row 6 : 6 | AO | Angola row 7 : 7 | AI | Anguilla row 8 : 8 | AQ | Antarctica row 9 : 9 |
AG | Antigua and Barbuda row 10 : 10 | CY | Cyprus row 11 : 11 | CZ | Czech Republic row 12 : 12 |
DK | Denmark row 13 : 13 | DJ | Djibouti
Table 2: Name: Affected Region; Content: col : Region id | Storm ID | Number city affected row 1 : 1 |
1 | 10 row 2 : 2 | 1 | 15 row 3 : 3 | 3 | 30 row 4 : 1 | 4 | 22 row 5 : 12 | 5 | 37 row 6 : 2 | 5 | 12
Answers: American Samoa, Andorra, Angola, Anguilla, Antarctica, Antigua and Barbuda, Cyprus, Czech
Republic, and Djibouti are the names for regions not affected.
. . . . . .

Now follow the instructions and the demonstrated style above to complete the task step by
step for the question and tables provided below:

Question: input question here
Tables: input tables here

4.B Limitations
The summaries on our QFMTS were automatically generated by GPT-3.5, despite
being scalable and cost-effective, which may limit the diversity of the summaries
regarding vocabulary or sentence structure compared to expert annotators. For few-
shot prompting baselines, we used fixed few-shot demonstrations, which are easy
to implement yet sub-optimal. Advanced demonstration selection methods, such as
retrieval-augmented methods [119, 174], have the potential to enhance generation
capabilities. Furthermore, these baselines do not explore re-verifying the correctness of
the answers before summary generation. Such a verification mechanism may boost the
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Appendix 4.A.2: Complete prompt for stage 2

Instruction: You will be given a question along with its one or more answers to complete the task below.
Task: Writing a Summary for the Answers.
Your task is to write a concise, fluent, and accurate summary based on the answers generated in the first
task. This summary should begin with the word ”Summary:” and follow the guidelines as follows: 1)
Introduction: Begin by using a numeral to indicate the total number of answers if there are two or more;
Then, rephrase the question as a declarative statement while retaining all relevant keywords. 2) Body:
Present all discovered answers one by one. The summary should be a standard paragraph format without
using lists, containing a minimum of 5 words but not exceeding 300 words in length.
You can refer to the demonstrations below. Each demonstration consists of a question, tables, and
human-written answers, and a summary.

Demonstrations:
Question: Show the name for regions not affected.
Answers: American Samoa, Andorra, Angola, Anguilla, Antarctica, Antigua and Barbuda, Cyprus, Czech
Republic, and Djibouti are the names for regions not affected.
Summary: There are 9 regions that are not affected. These regions include American Samoa, Andorra,
Angola, Anguilla, Antarctica, Antigua and Barbuda, Cyprus, Czech Republic, and Djibouti.
. . . . . .

Now follow the instructions and the demonstrated style above to complete the task step by
step for the question and answers provided below:

Question: input question here
Answers: generated answers here

faithfulness of the summaries and can be explored in the future.

4.C Ethical Considerations
The source questions and tables in QFMTS are derived from a multi-table QA [151]
dataset, which is openly accessible under the MIT license. This facilitates its usage
for research purposes. The baseline models used in this paper include closed LLMs
accessible via the commercial OpenAI API 2 and publicly available open-source models.
In particular, we leverage Copilot primarily to assist with data processing code. We use
ChatGPT to mainly correct grammatical errors and ensure the paper does not contain
any of the generated text directly from ChatGPT.

2https://openai.com/blog/openai-api
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Appendix 4.A.3: Complete single-stage prompt

Instruction: You will be given a question along with one or more tables to complete two tasks step by
step. Each table contains a name and content with multiple rows and columns, formatted as follows:
col: <column header 1> | <column header 2> | ... | <column header n> row 1: <value 1,1> | <value
1,2> | ... | <value 1,n> row 2: <value 2,1> | <value 2,2> | ... | <value 2,n> ... row m: <value m,1>
| <value m,2> | ... | <value m,n>.

Task 1: Answering the Question from the Tables.
Your first task is to answer the question using only the information from the tables, such as numerical data
and entities. This may involve performing arithmetic calculations and combining data from multiple
tables if necessary. Please begin your response with ”Answers:” and enumerate all discovered answers
one by one, separating them with commas ”,”. Let’s think step by step.

Task 2: Writing a Summary for the Answers.
Your second task is to write a concise, fluent, and accurate summary based on the answers generated
in the first task. This summary should begin with the word ”Summary:” and follow the guidelines as
follows: 1) Introduction: Begin by using a numeral to indicate the total number of answers if there are
two or more; Then, rephrase the question as a declarative statement while retaining all relevant keywords.
2) Body: Present all discovered answers one by one. The summary should be a standard paragraph format
without using lists, containing a minimum of 5 words but not exceeding 300 words in length.
You can refer to the demonstrations below. Each demonstration consists of a question, tables, and
human-written answers, and a summary.

Demonstrations:
Question: Show the name for regions not affected.
Table 1: Name: region; Content: col : Region id | Region code | Region name row 1 : 1 | AF |
Afghanistan row 2 : 2 | AL | Albania row 3 : 3 | DZ | Algeria row 4 : 4 | DS | American Samoa row 5 : 5
| AD | Andorra row 6 : 6 | AO | Angola row 7 : 7 | AI | Anguilla row 8 : 8 | AQ | Antarctica row 9 : 9 |
AG | Antigua and Barbuda row 10 : 10 | CY | Cyprus row 11 : 11 | CZ | Czech Republic row 12 : 12 |
DK | Denmark row 13 : 13 | DJ | Djibouti
Table 2: Name: Affected Region; Content: col : Region id | Storm ID | Number city affected row 1 : 1 |
1 | 10 row 2 : 2 | 1 | 15 row 3 : 3 | 3 | 30 row 4 : 1 | 4 | 22 row 5 : 12 | 5 | 37 row 6 : 2 | 5 | 12
Answers: American Samoa, Andorra, Angola, Anguilla, Antarctica, Antigua and Barbuda, Cyprus, Czech
Republic, and Djibouti are the names for regions not affected.
Summary: There are 9 regions that are not affected. These regions include American Samoa, Andorra,
Angola, Anguilla, Antarctica, Antigua and Barbuda, Cyprus, Czech Republic, and Djibouti.
. . . . . .

Now follow the instructions and the demonstrated style above to complete the two tasks step
by step for the question and tables provided below:

Question: input question here
Tables: input tables here
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5
Table Question Answering for

Low-resourced Languages

Although previous chapters addressed various challenges of table question answering;
such as answering user questions over a table or text source (Chapter 2), answering user
queries over multiple tables (Chapter 3), and generating fluent and factual summary
over multiple tables (Chapter 4), all of them were focused on a high-resource language,
English. This chapter studies the challenge of table question answering in the context of
resource scarcity. Low-resource setting is challenging as there is a dearth of resources
such as datasets and models. To reduce the research gap in a low-resource setting for
the task of table QA, this chapter focuses on designing a generalized dataset generation
methodology and instantiates it on two Indo-Aryan languages: Bengali and Hindi.
Furthermore, as tables introduce novel challenges to question answering models, various
neural models were trained on the generated datasets and studied. Experimental results
further demonstrated the effectiveness of the models. Additionally, detailed analysis
was conducted on various classes of mathematical operations and zero-shot cross-
lingual transfer to explore the efficacy of the trained models in the low-resource setting.
Specifically, this chapter addresses RQ4 by exploring the adaptation of table QA for
low-resourced languages.

5.1 Introduction
Tables are ubiquitous for storing information across domains and data sources such
as relational databases, web articles, Wikipedia pages, etc. [34]. Tables introduce
new challenges in machine comprehension not present in text as they are are not
well-formed sentences but a semi-structured collection of facts (numbers, long-tail
named entities, etc.) [74, 79, 83, 91, 121, 141, 149, 227]. Additionally, tables make
position (rows/columns) bias [114] and entity popularity bias [56] severe. The table
question answering (tableQA) task introduces novel challenges compared to text-based

This chapter was published as V. Pal, E. Kanoulas, A. Yates, and M. de Rijke. Table question answering
for low-resourced Indic languages. In Y. Al-Onaizan, M. Bansal, and Y.-N. Chen, editors, Proceedings of
the 2024 Conference on Empirical Methods in Natural Language Processing, pages 75–92, Miami, Florida,
USA, Nov. 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.5. URL
https://aclanthology.org/2024.emnlp-main.5.
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question answering (textQA) [64, 121, 205, 208, 220]. In addition to the semi-structured
nature of tables, a tabular context leads to a high frequency of fact-based questions,
mathematical and logical operations such as arithmetic [227], set, relational [82, 121],
and table operations such as table joins [151]. Effective tableQA systems not only have
machine comprehension skills, but also numeracy understanding [24, 121, 220, 227],
table reasoning [121, 208], table summarization [218, 221] and answer table generation
ability [151].

Low-resource tableQA aims to answer questions over semi-structured tables storing
cultural and region-specific facts in a low-resource language. Joshi et al. [84] show
that most languages struggle to be represented and are deprived of advances in NLP
research. As manual data collection is slow and expensive, low-resource languages
struggle with large-scale, annotated data for effective transfer learning solutions. The
low-resource setting [61, 176] exacerbates the challenges of tableQA with challenges
of data sparsity, annotated data costs, and lack of trained models. In contrast to textQA,
syntactico-semantic variations such as agreement and morphology are not exhibited
in tables, but the high presence of culturally significant yet long-tail entities makes
adapting existing high resource datasets and trained models challenging. Research
on low-resource table inference [137] shows that standard approaches of translating
English datasets for low-resource data creation are infeasible for tables due to high
translation error as tables are not well-formed sentences.

Challenges This chapter focuses on studying the following core challenges of low-
resource tableQA:

(1) Low-resource tableQA data scarcity and under-representation of cultural facts.

(2) Existing neural models’ poor alignment in low-resource languages and lack of
understanding of table structure.

This motivates us to explore low-resource tableQA by designing a low-cost and large-
scale automatic data generation and quality estimation pipeline. We discuss the process
in detail with a low-resource Indic language, Bengali (spoken extensively in Bangladesh
and India, with over 230 million native speakers [88]), and explore generalizability with
Hindi (570 million speakers).

Contributions Our main contributions in this chapter are as follows:

(1) We introduce the low-resource tableQA task.

(2) We design a method for automatically generating low-resource tableQA data in a
scalable budget-constrained manner.

(3) We release resources to support low-resource tableQA: Large-scale tableQA
datasets and models for 2 Indic languages, Bengali (Bengali table question answer-
ing (BanglaTabQA)) and Hindi (Hindi table question answering (HindiTabQA)).
BanglaTabQA contains 19K Wikipedia tables, 2M training, 2K validation, and
165 test samples. HindiTabQA contains 2K Wikipedia tables, 643K training,
645 validation, and 125 test samples.
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5.2 Related Work

TableQA aims to answer a user question from semi-structured input tables. Prior
work on tableQA in English can be classified as extractive [64, 207] or abstractive
[141, 149, 205, 221]. While extractive tableQA focuses on row and cell selection
[64], abstractive tableQA generates various types of answers, such as factoid answers
[121], summaries [218, 221], or answer tables [151]. The low-resource setting poses
challenges for various NLP tasks. The low-resource corpus creation [13, 33, 58] has used
automatic annotation efforts by synthesizing a large-scale dataset. Das and Saha [33]
train a Bengali QA system by developing a synthetic dataset translated from standard
English QA datasets. Bhattacharjee et al. [13], Hasan et al. [58] create low-resource
datasets by translating English datasets to Bengali using neural models. However,
these methods are unsuitable due to the semi-structured ungrammatical sequential
representation of tables.

5.3 Task Definition

We formulate low-resource tableQA as a sequence generation task. Given a ques-
tion Q of k tokens q1, q2, . . . , qk, and table T comprising of m rows and n columns
{h1, . . . , hn, t1,1, t1,2, . . . , t1,n, . . . , tm,1, tm,2, . . . , tm,n} where ti,j is value of the
cell at the ith row and jth column and hj is the jth column header; the low-resource
tableQA model generates an answer table Tout. The input sequence is the concatenated
question Q and linearized input table T separated by special sentinel tokens. The
answer, Tout, is also a linearized sequence. Henceforth, for concreteness, we will use
Bengali as the example low-resource language. The input to such a model is:

q1 q2 . . . qk < > hi . . . hn < > t1,1 . . . t1,n < i> ti,j . . . ti,n . . . <

m> tm,1 . . . tm,n.

The answer table, Tout, is a linearized sequence:

< >Hi . . . Hq < >o1,1 . . . o1,q < i>oi,j . . . oi,q . . . < m>op,1 . . . op,q

where oi,j is value in the ith row and jth column and Hj is the jth column header of
Tout.

5.4 Methodology for Dataset Generation

Effective training of low-resource tableQA requires creation of large-scale datasets of
questions, input and answers tables, to align a language model to the low-resource
language and adapt it to semi-structured tables and QA task. We address Challenge 1 by
designing an automatic data generation process to generate a large-scale low resource
tableQA corpus of training and validation samples. We follow a three-step pipeline as
follows: (i) table extraction, (ii) question generation, and (iii) answer table extraction.
This pipeline applied on Bengali, as depicted in Figure 5.1, generates the BanglaTabQA
dataset.
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Bengali-English Code-Mixed SQL
select count(`সড়ক খ�`) from `৯ নং রাজ� সড়ক

(প��মব�)` where `সড়ক খ�` = "িসমলাপাল-
কৃ�পুর-রাইপুর-ফুলকু�া-�বনগিরয়া"

SQL template
select count( column_1) from table where

column_1 = value_column_1

Mono-Lingual Bengali SQL
"িনব �াচন ক�ন গণনা(`সড়ক খ�`) �থেক `৯ নং
রাজ� সড়ক (প��মব�)` �যখােন `সড়ক খ�` =
"িসমলাপাল-কৃ�পুর-রাইপুর-ফুলকু�া-�বনগিরয়া" গণনা(`সড়ক

খ�`)
১Mono-Lingual Natural Language Question

'৯ নং রা��য় সড়ক (প��মব�)`�িলেত
"িসমলাপাল-কৃ�পুর-রাইপুর-ফুলকু�া-�বনগিরয়ার

�মাট সংখ�া খুজঁনু।'

Bengali-English Code-Mixed SQL
(Translation)

select count(`road section`) from `9 no. state road
(West Bengal)` where `road section` = "Shimlapal-

Krishnapur-Raipur-Phoolkushma-Bengoria"

Mono-Lingual Natural Language Question
(Translation)

search for the total number of "Shimlapal-
Krishnapur-Raipur-Phoolkushma-Bengoria" in `9 no.

state road (West Bengal)`

Step 1: Wikipedia Table Extraction

Relational
Database

count (`road
section`)

1

Step 3: Answer Extraction

Step 2: Natural Language Question Generation

Answer Table      (Translation)

৯ নং রাজ� সড়ক (প��মব�)

SQL keyword Translation Dictionary
FROM: �থেক,  

WHERE: �যখােন, ....

Bengali SQL2NQ model

Figure 5.1: BanglaTabQA Dataset generation: The SQL elements and table elements
are color-coordinated to represent a single SQL/table element. Dotted rectangles
represent translations for accessibility to non-native readers.

5.4.1 Table Extraction

English Wikipedia with 6, 751, 000+ articles is used for English tableQA datasets
[157], but is insufficient for non-Latin languages with many cultural topics missing.
The standard process [13, 33] of translating English datasets to low-resource languages
is biased due to lack of cultural topic/fact representation in English tableQA datasets.
For example, the named-entity (Adhiraj Ganguly), exists only in Bengali
Wikipedia,1 and not in English. Further, translating English tables with machine
translation models is error-prone [137] as tables are not well-formed sentences, but
collections of facts. To mitigate these issues, we extract tables from the Wikipedia dump
of the low-resource language.

5.4.2 Natural Language Question Generation

The question generation is a two-step process:

Code-mixed SQL query generation We automatically generate SQL queries over
the extracted low-resourced tables with SQL templates from the SQUALL dataset
[184]. These templates have placeholders of table components such as table name,
column names, etc. which are randomly assigned with values from a Wikipedia ta-
ble. For example, the template “select count(c1) from w where c1 =
value” is instantiated by assigning a Bengali table name “

” to w, column header “ ” to c1, and “ ” to value. This results
in an executable code-mixed query “select count( ) from

where ‘ ‘ = " "”, where the SQL keywords are in En-
glish but all table information is in the low-resource language (Bengali). This leads to
13, 345, 000 executable Bengali code-mixed queries.

1https://bn.wikipedia.org/wiki/
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Natural language question generation We formulate question generation as a
sequence-to-sequence task by transforming a code-mixed SQL query into a natural
language question (NQ). To the best of our knowledge, there exist no sequence genera-
tion models that translate code-mixed SQL queries to low-resource natural language
questions. To train a model for this conversion, we first transform the code-mixed SQL
to a monolingual SQL-like query in the low-resource language. As the only linguis-
tic variation exhibited in the SQL templates is polysemy i.e. a dearth of one-to-one
correspondence between English SQL keywords and the corresponding low-resource
language translations, we employ native speakers well versed in SQL to manually
create one-to-one mappings of 27 SQL keywords for linguistic transfer of SQL key-
words to the corresponding low-resource language. All table-specific words are directly
copied into the monolingual query. We discard FROM keyword and table name from
the query as it is associated with a single input table. This leads to a SQL-like mono-
lingual query in the low-resource language, which is a well-formed sentence. For
example, code-mixed Bengali query “select count( ‘ ‘) from

where ‘ ‘ = " "”, results in a monolingual Bengali
query “ ( ‘ ‘) ‘ ‘ = ” ””. In contrast to tables
which are invalid sentences, queries and NQ are well-formed sequences and effectively
transformed (SQL to question) with existing encoder-decoder models. We train a SQL-
to-NQ (SQL2NQ) model (mbart-50-large [125] backbone) by translating 68, 512
training and 9, 996 validation samples from semantic parsing datasets: Spider [208],
WikiSQL [224], Atis [30, 165], and Geoquery [212] to the low-resource language.
We use this SQL2NQ model to transform the queries to NQ. For example, Bengali
SQL2NQ model transforms the aforementioned query to the NQ “

”.
We report the validation scores of the SQL2NQ models in Table 5.1. The Bengali

SQL2NQ model scores are lower than the Hindi SQL2NQ model. Manual inspection
of the generated dataset reveals that the Hindi questions and query have higher lexical
overlap compared to the Bengali questions-query pairs where the questions are more
natural leading to lower lexical overlap with the corresponding SQL query.

Bengali Hindi

Rouge-1 14.63 53.20
Rouge-2 5.83 24.98
Rouge-L 14.28 51.58

Table 5.1: Bengali SQL2NQ model’s validation scores (%).

5.4.3 Answer Table Extraction

We dump low-resource Wikipedia tables in a relation database. The code-mixed SQL
queries are executed with an SQL compiler over a relational database comprising the
low-resourced Wikipedia tables to extract the answer tables. We execute the 13, 345, 000
Bengali code-mixed queries to extract the corresponding answer tables.
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5.4.4 Automatic Quality Control
We employ automatic quality control steps to ensure quality of the synthetic tableQA
data.

Code-mixed query and answer quality control We discard all code-mixed queries
that execute to an error with an SQL compiler. This process follows the quality control
in [151] and discards invalid and erroneous queries and samples.

Figure 5.2: Histogram of similarity scores from fine-tuned Bengali SQL2NQSim model
of 1, 000 random samples.

Natural language question quality control We evaluate the quality of the generated
NQ with a sentence similarity model to discard questions that have a low similarity
score with the corresponding monolingual queries. We found the standard method of
quality evaluation in low-resource languages [13, 169] using the sentence similarity
model, LaBse [44], incompatible for code-mixed SQL-NQ due to low discriminating
ability (0.55 mean similarity score and 0.13 standard deviation for Bengali SQL-NQ).
For example, LaBse assigns low score (0.43) for positive SQL-NQ pair correspond-
ing to the Bengali query “SELECT title ORDER BY year DESC LIMIT 1”
and Bengali NQ “Return the most recent title corresponding to
the most recent year” (translated for non-native readers), while it assigns a
high score (0.8) to negative pair “SELECT count(*) WHERE ‘work‘ = The
World of Saudamini” and the unrelated NQ “How many games scored a
total of 4?”. Table 5.2 shows more examples. This necessitates fine-tuning LaBse
on low-resourced SQL-NQ samples. First, we use the translated semantic parsing
samples (68, 512 training and 9, 996 SQL-NQ pairs), described in Section 5.4.2, as
positive pairs and in-batch negatives with multiple-negatives ranking loss. We call this
the SQL2NQSim model. We select the best checkpoint by evaluating SQL2NQSim
on 1, 000 randomly selected hard-negatives (unrelated/negative SQL-negative question
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pairs for which pre-trained LaBse assigns a high similarity score (> 0.5)). We use that
checkpoint to obtain similarity scores of the low-resourced tableQA SQL-NQ pairs and
discard samples with a similarity score lower than a threshold. We select a good thresh-
old by plotting a histogram of scores assigned by the SQL2NQSim model on 10, 000
randomly selected positives and hard-negatives and selecting the inflection point as the
threshold. Figure 5.2 shows the scores’ histogram for BanglaTabQA. We select a strict
threshold of 0.74 (hard-negatives scores taper-off around 0.7). The final BanglaTabQA
dataset, after quality control, comprises of 2, 050, 296 training and 2, 053 validation
samples.

Comparison of Scores of LaBSE and SQL2NQSim Models We qualitatively com-
pare the sentence similarity models LaBse and SQL2NQSim with examples shown in
Table 5.2. We observe that LaBse scores are low for positive samples of Bengali SQL
queries and the corresponding Bengali question. Further, negative samples, i.e., Bengali
SQL query and an unrelated Bengali question have high similarity scores. This trend is
not observed for the sentence similarity model, SQL2NQSim, trained on Bengali SQL
queries and the corresponding Bengali natural questions.

Bengali SQL Bengali Question LaBse
Scores

SQL2NQ-
Sim Scores

+ve

(SELECT years
GROUP BY years
ORDER BY COUNT(
result) LIMIT 1)

(Which year has the
least number of results?)

0.45 0.94

(SELECT ‘title‘
ORDER BY ‘year‘
DESC LIMIT 1)

(Return the most recent title
of the most recent year?)

0.43 0.98

-ve

(SELECT min(‘year‘)) (In which year (2010,
2016) were the most number
of awards received?)

0.51 0.31

(SELECT count(*) WHERE
‘work‘=”The World of
Saudamini”)

(How many games scored
a total of 4?)

0.80 0.07

Table 5.2: Comparison of sentence similarity scores between LaBse and our trained
SQL2NQSim models.
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5.4.5 Dataset Analysis
In contrast to textQA, tableQA focuses on mathematical questions [121, 151, 227].
Following [121], we analyze BanglaTabQA dataset on question complexity, which
estimates the difficulty of a question based on the corresponding SQL query. As
tableQA enforces mathematical, logical and table reasoning questions, we further
classify tableQA queries into different classes of table operations determined by the
SQL operators present.

Number of SQL keywords
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Figure 5.3: Number of SQL keywords per query histogram in the BanglaTabQA dataset.
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Figure 5.4: Histogram of operator classes in the BanglaTabQA dataset.

Question complexity Recent work on tableQA [121] categorizes SQL queries into
difficulty levels based on the number of SQL keywords. We follow this approach
and count the number of keywords for each query. Figure 5.3 shows that most of
BanglaTabQA queries have 4 SQL keywords. The longest SQL queries are comprised
of 10 keywords, and the shortest ones of 3 SQL keywords.

Mathematical operations We further categorize each sample based on the operators
present in the question. We utilize the SQL query associated with a question to extract
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all keywords for classification. We categorize data samples into 6 operator classes:
arithmetic, sorting, group by, filtering, set operators, and logical operators. Arithmetic
operators comprises of SQL numeric operations such as sum, count, min, etc. Sorting
refers to ordering of the answer values in an ascending or descending order. Group by
is the SQL operator of grouping rows based on a criterion. Filtering corresponds to
SQL operators such as where and having used to filter the input table. Set operators
involve union, intersect, and except. Finally, we classify logical operators
to be conjunction (and) and disjunction (or) to combine filtering conditions. It also
includes membership operators (in, between, etc.) and string matching operator
(like). The classification of the operators is shown in Table 5.5. Figure 5.4 shows the
distribution of the 6 operator classes for the BanglaTabQA dataset.

5.4.6 Test Set

We manually annotate test samples for evaluating low-resource tableQA models on
clean data. We select unique tables not present in the training and validation set to avoid
data leakage. To ensure question diversity, we select code-mixed SQL representing
each of the 6 operator classes (discussed in Section 5.4.5) and distinct from the training
and validation data. Three native annotators well-versed in SQL were employed for
annotation. One annotator was tasked with question generation, given the synthetic SQL
query, input tables, and the answer table, and asked to rewrite the code-mixed query
to a natural language question. The remaining two were tasked with evaluating the
question generated by the first annotator. The evaluator-annotators were provided the
code-mixed query, input table, answer table, and the annotated question and asked to rate
the question based on fluency. We estimate the fluency of the annotated question with a
5-point Likert scale (1-5), where a higher score indicates better fluency. The final score
for each question was computed by averaging the scores of the evaluator-annotators.
For BanglaTabQA, we manually annotate 165 test samples. We estimate inter-annotator
agreement with Fliess’s Kappa score [45] of 0.82, indicating strong agreement among
the annotators. The average fluency score on the test set questions was 4.3, indicating
high fluency.

5.4.7 Generalizability of Dataset Methodology

We study the generalizability of the dataset generation method by repeating the process
on another Indic language: Hindi (Hi) with more than 602 million speakers. To
the best of our knowledge, there are no existing tableQA data for Indic languages.
Hindi text is in Devanagari script, which is different from Bengali written in Eastern-
Nagari (Bengali-Assamese) script. This requires tableQA models to be trained on
large-scale Hindi datasets for good alignment. Following the dataset creation process
in Section 5.4, we extract 1, 921 Hindi tables from the respective Wikipedia dumps.
We generate 82, 00, 000 Hindi code-mixed queries automatically to extract answer
tables and generate the Hindi natural language questions. The final HindiTabQA
dataset comprises 643, 434 synthetic training, 645 synthetic validation samples, and
121 manually annotated test samples.
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5.5 Experimental Setup
We address Challenge 2 by studying the effectiveness of state-of-the-art models (base-
lines) in Bengali table QA. The experimental results (Section 5.6) show the need for
a large-scale BanglaTabQA dataset and model training. We analyze several models’
effectiveness in Bengali language, mathematical/table operations, and generalizability,
thus providing a measure of the dataset quality and consequently the dataset creation
methodology.

Baselines We perform 2-shot in-context learning (ICL) to adapt large language model
(LLM)s to BanglaTabQA task. We further fine-tune an encoder-decoder model. The
demonstrations are the concatenated question and flattened input table with the flattened
answer table. We use the following models as baselines:

(1) En2Bn: We fine-tune an encoder-decoder model, mbart-50-large, with
25, 000 random samples from MultiTabQA’s [151] pre-training data translated to
Bengali using Google translate. MultiTabQA used SQUALL templates to generate
their queries and have the same distribution as BanglaTabQA queries. However,
the input tables of MultiTabQA are English wiki-tables from WikiTableQuestions
dataset [157] and are not representative of Bengali cultural topics/facts.

(2) OdiaG [156] is Llama-7b [192] adapter-tuned (LoRA [69]) on 252k Bengali
instruction set.2

(3) GPT: GPT-3.5 [15] performs well on English tableQA [213]. GPT-4 [146]
outperforms other LLMs (Chinchilla [66], PaLM [26]) in low-resource languages,
including Bengali and Hindi, on various tasks (14, 000 multiple-choice problems
on 57 subjects in a translated MMLU benchmark [63]).

BanglaTabQA models Bengali tableQA models must understand both Bengali script
and numerals, crucial for mathematical operations. However, Bengali numbers are not
present in many state-of-the-art Indic models’ [29, 49]3 vocabulary. To the best of our
knowledge, there is no open-access generative model which understands both the table
structure and Bengali. We train the following models on BanglaTabQA as they support
Bengali and Hindi numbers and text:

(1) BnTQA-mBart: mbart-50-large [125] is a multi-lingual encoder-decoder
model with support for 50 languages.

(2) BnTQA-M2M: m2m100 418M [43] is a multi-lingual encoder-decoder model
with support for 100 languages.

(3) BnTQA-llama: We train Llama-7B, on BanglaTabQA dataset with parameter-
efficient fine-tuning (PEFT) on LoRA adapters.

2OdiaGenAI/odiagenAI-bengali-lora-model-v1
3ai4bharat/IndicBART

76



5.5. Experimental Setup

Model
Validation Set scores (%) Test Set scores (%)

Bengali

Tab Row Col Cell Tab Row Col Cell

En2Bn 0.05 3.06 0.20 3.07 0.00 4.73 0.00 4.73
OdiaG 0.00 3.89 0.00 3.89 0.69 1.77 0.69 1.42
GPT-3.5 1.14 4.81 1.67 5.14 6.04 10.06 9.12 9.84
GPT-4 0.00 13.57 5.43 14.65 26.83 38.67 26.74 36.51

BnTQA
-llama 60.08 68.30 60.47 68.30 9.41 12.35 9.85 11.87
-mBart 56.63 64.10 56.79 64.31 35.88 33.16 35.88 33.16
-M2M 45.31 58.07 45.29 58.04 28.05 34.55 28.05 34.55

Model
Validation Set scores (%) Test Set scores (%)

Hindi

Tab Row Col Cell Tab Row Col Cell

En2Hi 0.00 3.37 0.47 3.43 0.00 5.03 8.26 5.03
OpHathi 0.00 0.00 0.00 0.00 0.00 0.11 0.37 0.74
GPT-3.5 4.81 8.94 4.99 9.71 8.20 10.29 7.10 9.81
GPT-4 15.53 22.60 16.02 22.25 11.11 21.49 11.76 20.84

HiTQA
-llama 14.76 9.92 14.13 7.29 13.11 9.71 11.11 7.66
-mBart 92.09 87.97 92.02 87.97 33.06 43.35 33.88 43.35
-M2M 89.55 85.32 89.34 85.15 28.93 33.11 28.92 33.10
-BnTQA 92.40 88.10 92.42 88.12 41.32 47.26 41.32 47.26

Table 5.3: Baseline, BnTQA-X and HiTQA-X models’ scores. -X represents the
backbone architecture of a fine-tuned model and → entries are for incompatible models
in a low-resourced language (Bengali or Hindi).

We train BnTQA-mBart and BnTQA-M2M with 128 batch size and BnTQA-llama
with 16 batch size, and 4-bit quantization. All models are trained with 1e→ 4 learning
rate on a single A6000 48GB GPU for 5 epochs with 1024 maximum sequence length.

5.5.1 HindiTabQA
We assess the generalizabiltiy of our data generation process by training and evaluating
HindiTabQA models. All hyper-parameters and experimental setup are the same as
Bengali.

Baselines We use the following baselines:

(1) En2Hi: Similar to En2Bn, we fine-tune mbart-50-large with 25, 000 ran-
dom samples from MultiTabQA, translated to Hindi.

(2) GPT: We perform 2-shot ICL on the best LLMs on Bengali, GPT-3.5 and
GPT-4.
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(3) OpHathi: We perform 2-shot ICL on OpenHathi-7B-Hi-v0.1-Base, an
open-source LLM based on llama-7b and trained on Hindi, English, and
Hinglish text.

HindiTabQA models We train the following models on the HindiTabQA dataset:

(1) HiTQA-llama: Similar to Bengali, we fine-tune Llama-7b on HindiTabQA
dataset.

(2) HiTQA-M2M: Similar to Bengali, we fine-tune m2m100 418M on HindiTabQA
dataset.

(3) HiTQA-mBart: Similar to Bengali, we fine-tune mbart-50-large, on Hin-
diTabQA.

(4) HiTQA-BnTQA: BnTQA-mBart, trained on BanglaTabQA provides a warm
start. We fine-tune it on HindiTabQA for better convergence.

5.5.2 Evaluation Metrics
The answer table requires both the table structure and content evaluation, rendering
standard text similarity metrics (Rouge, BLEU, etc.) inappropriate. We instead evaluate
with tableQA evaluation metrics [151]. Henceforth, F1 scores are the harmonic mean
of the precision and recall scores.

(1) Table Exact Match Accuracy (Tab) measures the percentage of generated
answer that match exactly to the target answer tables.

(2) Row Exact Match F1 (Row): Row EM precision is the percentage of correctly
predicted rows among all predicted rows. Row EM recall is the percentage of
correctly predicted rows among all target rows.

(3) Column Exact Match F1 (Col): Column EM precision is the percentage of
correctly predicted columns and corresponding headers among all predicted
columns. Column EM recall is the percentage of correctly predicted columns
among all target columns.

(4) Cell Exact Match F1 (Cell) is the most relaxed metric. Cell EM precision is the
percentage of correctly generated cells among all predicted cells. Cell EM recall
is the percentage of correctly predicted cells among all target cells.

5.6 Results
Baselines As reported in Table 5.3, GPT-4 performs the best on our test set with a
table EM accuracy of 26.83%. GPT-3.5 under-performs GPT-4 but is better than
open-sourced LLMs. Open-source LLMs, OdiaG is pre-trained on Bengali text data
but not on structured table data. The low accuracy of OdiaG (0.69%) can be attributed
to the models’ lack of table understanding and table specific question which differs
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Model No post-processing With post-processing

BnTQA Tab Row Col Cell Tab Row Col Cell
-llama 0.00 0.00 0.00 0.26 5.74 17.59 5.69 15.49
-mBart 0.00 8.70 10.74 8.70 19.01 20.74 19.01 20.74
-M2M 0.00 0.00 0.00 0.00 18.18 35.80 18.18 35.80

Table 5.4: Zero-shot cross-lingual transfer scores of BnTQA models on Hindi test data.

significantly from text-based tasks on which it has been pre-trained on as shown in
examples in Section 5.7. Baseline encoder-decoder model, En2Bn, fine-tuned on
translated tableQA data, correctly generates 4.73% of rows and cells and under-performs
OdiaG, but is better than TableLlama. Although fine-tuning improves Bengali
understanding, the low scores can be attributed to the erroneous translations of English
tables in the MultiTabQA dataset which corroborate with [137] that table translation
leads to error-propagation to down-stream QA task. Further, a lack of culture-specific
tables in the MultiTabQA pre-training dataset leads to downgraded performance on
topics in the BanglaTabQA test set. In conclusion, GPT-4 is able to perform table
reasoning in low-resourced Bengali, but is very expensive and closed-source, limiting
it’s accessibility and utility. GPT-3.5’s and all open-access baseline models’ low
scores demonstrates the need for both task and language adaptation with a large-scale
dataset for training accessible open-source language models for low-resourced tableQA.

BanglaTabQA models Parameter-efficient fine-tuned Llama models, BnTQA-llama,
achieves comparable results to GPT-3.5. Table 5.3 shows that fine-tuned encode-
decoder models, BnTQA-mBart and BnTQA-M2M, outperforms GPT-4 on table
exact match accuracy (EM) and column EM F1, but not for row and cell EM F1.
This can be attributed to incorrect header generation of GPT-4 reflecting in column
and subsequently table EM scores. Apart from GPT-4, all other baseline models un-
derperform BanglaTabQA encoder-decoder models by a large margin on all metrics.
BnTQA-llama overfits to the validation set and does not generalize well to the test
set. The low scores of PEFT compared to full fine-tuning (FT) can be attributed to
insufficient alignment of the frozen parameters of the backbone Llama model and sub-
optimal tokenization of Bengali which has been observed in SentencePiece tokenizers
in non-Latin languages [5, 28]. The results establish the quality of the BanglaTabQA
dataset and its effectiveness in adapting neural models to both language and table
understanding.

HindiTabQA models We follow an experimental setup similar to the one discussed in
Section 5.5. We report the results in Table 5.3. We observe that HiTQA-BnTQA, initial-
ized with with BnTQA-mbart, outperforms all HindiTabQA models and achieves a test
score of 41.32%. Similar to BanglaTabQA, HiTQA-mBart outperforms HiTQA-M2M
with a table EM test score of 33.06% and 28.93% respectively. HiTQA-llama un-
derperforms compared to the encoder-decoder models. All models trained on the
HindiTabQA dataset outperform the two-shot in-context learning baseline models. The
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Operator class Operations

arithmetic (A) count, sum, average, max, min
sorting (So) ascending, descending
groupBy (G) table column/row grouping
filtering (F) where, having
set (Se) union, intersect, except
logical (L) and, or, not, in, not in, between

Table 5.5: Classification of tableQA operations.

Operator class
Bengali Hindi

Tab Row Col Cell Tab Row Col Cell

arithmetic (A) 39.66 55.64 39.67 55.64 35.06 41.71 35.07 41.71
sorting (So) 25.00 25.00 25.00 25.00 39.05 42.74 39.05 42.74
groupBy (G) 50.00 76.92 50.00 76.92 33.33 35.96 33.33 35.96
filtering (F) 37.78 35.86 37.77 35.86 23.23 26.35 23.23 21.67
set (Se) 36.11 49.10 36.11 49.10 5.00 11.11 5.00 11.11
logical (L) 34.38 13.23 34.38 13.23 25.58 27.38 25.58 27.38

Table 5.6: XTQA-mBart test set scores (%) on Operator Class (Op); X is a low-resourced
language (Bn or Hi).

results follow a similar trend to BanglaTabQA models and prove that our data genera-
tion process is generalizable and the HindiTabQA dataset is able to align neural models
for the tableQA task in Hindi.

5.6.1 Zero-shot Cross-lingual Transfer
We further study generalizability, by selecting the best performing language, Bengali,
and evaluating the BanglaTabQA models on Hindi test set in a zero-shot setting without
training on Hindi data. This setup allows us to study the cross-lingual transfer of
BanglaTabQA models to Hindi with a different script, and evaluate how well the models
generalize to new out-of-distribution input tables. BanglaTabQA models are able
to perform table reasoning in Hindi indicating semantic information transfer across
languages. We demonstrate some examples in the Appendix 5.8. Table headers and
numbers generated from math operations are often in Bengali instead of Hindi (Example
7). The extractive questions are generated correctly (Example 8). Table 5.4 lists the zero-
shot cross-lingual scores using the original predictions (named “No Post-Processing”)
of the BanglaTabQA models on the Hindi test set defined in Section 5.4.7. Additionally,
we perform post-processing of the predictions to translate the predicted tables’ values
to Hindi. As translating tables, composed of numbers and entities, with machine
translation systems is unreliable [137], we follow an automatic post-processing pipeline
to transform the predicted answer tables to Hindi. First, all lexical occurrence of Bengali
digits in predictions are replaced with Hindi digits using a dictionary. Next, all lexical
occurrences of SQL keyword in Bengali in the prediction headers are replaced with
a Bengali-to-SQL keyword mapping and subsequently with a SQL-to-Hindi mapping
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described in Section 5.4. This fixes most of the Bengali presence in the predictions.
Finally, we translate the predicted column names/values in Bengali to Hindi with Google
translate. Table 5.4 shows that post-processing increases the scores, demonstrating the
generalizability of BanglaTabQA models’ table reasoning capabilities on out-of-domain
Hindi tables with unseen cultural entities. This further demonstrates the quality and
utility of the BanglaTabQA dataset and our proposed data generation method and quality
of the trained models.

5.6.2 Mathematical Operator Classes

We study how BanglaTabQA and HindiTabQA datasets aid in Bengali and Hindi nu-
meracy and math understanding by evaluating BnTQA-mBart and HiTQA-mBart
on 6 categories of operator classes (Section 5.4.5). We observe in Table 5.6 that
BnTQA-mbart performs best on groupBy (G) operators with a table EM accuracy of
50.00% and HiTQA-mBart on Sorting (So) operators with a table EM accuracy of
39.05%. Both models are able to generalize to unseen tables in the respective languages’
test sets. This affirms that BanglaTabQA and HindiTabQA dataset aids mathematics rea-
soning of the trained models and enhances numeracy understanding in the low-resourced
language.

5.7 BnTabQA Models Qualitative Analysis

We analyze the output of each model with an example to identify error patterns and
factors that impact model predictions. The test set question

(Who has the position of Futsal Coordinator or
Technical Director?), involves logical operator or after extracting values for

(Fulsal Coordinator) and (Technical Director) from the
column (Position). The input table is shown in Table 5.8 (translation of each
table cell is italicized and in parentheses for non-native readers) with target (English
translation italicized and in parentheses) shown in Table 5.7:

(Name))
(Michael Skubala)

(Les Reed)
Table 5.7: Example: BnTabQA Target Table. (English translation of each cell is
italicized and in parenthesis)

Example 1 Baseline encoder-decoder model, En2Bn, fine-tuned on the translated
MultiTabQA dataset, correctly extracts (Michael Skubala) as the

(Fulsal Coordinator), but wrongly assigns it as the table header instead of
(name). Moreover, it generates the same entity twice instead of generating (Les
Reed):

81



5. Table Question Answering for Low-resourced Languages

(Position) (Name)
(Chairman) (Greg Clark)

(Co-Chairman) (David Gil)
(General Secretary) (Mark Bullingham)

(Treasurer) (Mark Burroughs)
(Media And Communications Director) (Louisa Fiennes)

(Technical Director) (Les Reed)
(Futsal Coordinator) (Michael Skubala)

(National Team Coach (Male)) (Gareth Southgate)
(National Team Coach (Female)) (Phil Neville)

(Referee Coordinator) (Neil Barry)

Table 5.8: Example: BnTabQA Input Table. (English translation of each cell is italicized
and in parenthesis)

(Futsal Coordinator)
(Michael Skubala)
(Michael Skubala)

Example 2 OdiaG also overfits to the demonstrations with (count) operator to
generate incorrect value and header:

(count(Name))
(1)

Example 3 GPT-3.5 with 2-shot in-context learning (ICL) extracts
(Michael Skubala) correctly but generates an incorrect table header over-fitting to the
demonstrations:

(count(Name))
(Michael Skubala)

Example 4 GPT-4 with 2-shot in-context learning (ICL) correctly generates the an-
swer table:

(Name)
(Michael Skubala)

(Les Reed)

Example 5 Both encoder-decoder models, BnTQA-mBart and BnTQA-M2M, fine-
tuned on BanglaTabQA dataset, correctly generate both answer table headers and
values:

(Name)
(Michael Skubala)

(Les Reed)

Example 6 BnTQA-Llama, fine-tuned on BanglaTabQA dataset, is partially correct
in its predictions by generating (Fulsal Coordinator) in the first row,
but incorrectly repeats the same entity instead of (Les Reed) in the second row:
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(Name)
(Fulsal Coordinator)
(Fulsal Coordinator)

We observe from the examples that all baselines except GPT-4 generate incorrect table
headers and overfits and mimics the demonstrations, showing a lack of understanding
of table structure and reasoning. The BanglaTabQA models perform table reasoning,
reflecting the utility and quality of the large-scale BanglaTabQA dataset.

5.8 Zero-Shot Cross-Lingual Transfer Examples

!"# (year) $%"#& (Title) '&()*( (Character)

2005 +,*i-।*/ (Flight Plan) e'(& (Eric)
... ... ...
2011 i/ -*i0 (In Time) 12/(% 13'04-/ (Henry Hamilton)
2011 i/ -*i0 (In Time) 12/(% 13'04-/ (Henry Hamilton)
2011 i/ -*i0 (In Time) 12/(% 13'04-/ (Henry Hamilton)
2011 i/ -*i0 (In Time) 12/(% 13'04-/ (Henry Hamilton)
... ... ...
2014 5627 5-2$/ 76 (Space Station 76) -38 (Ted)
... ... ...
2014 '!9-7# -2, (Winter’s Tale) 6%-( ,2& &2 '6:* (Peter Lake’s Father)

Table 5.9: Example: HiTabQA Input Table (English translation of each cell is italicized
and in parenthesis)

Example 7 The Hindi question, !"# 2011 $%& '()*% +,"#( -।&? (How many titles are
there in year 2011?), with Hindi input table, Table 5.9 (English translation is italicized
and in parentheses) and target table:

/0*1 (+,"#( ) (count(Title))
(4)

BnTQA-mBart correctly performs table reasoning but generates the answer in Bengali
script instead of Devnagari (Hindi) script:

(count(Title))
(4)

Example 8 However, for Hindi extractive questions like (2*3% 415()1# a'6()$
718 a19% -।&? (Which recipient occurs the maximum number of times?), with Hindi
input table:

31: (year) 415()1# (Recipient)

2016 '!*॥< => (Vinod Bhatt)
2016 '!*॥< => (Vinod Bhatt)
2017 )18( $-%)1 [ 1 ] (Tarak Mehta[1])
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and target table:

415()1# (Recipient)
'!*॥< => (Vinod Bhatt)

BnTQA-mBart correctly generates the answer in Hindi:

415()1# (Recipient)
'!*॥< => (Vinod Bhatt)

5.9 Conclusion
Our work in this chapter introduces tableQA for the low-resource languages. We
propose a methodology for large-scale dataset development on limited budget and
automatic quality control which can be applied over any low-resource language with a
web-presence. We discuss in detail the application of the methodology with an Indic
Language, Bengali, for which we release a large-scale dataset, BanglaTabQA. We
further demonstrate generalizability of the process with another language, Hindi. We
assess the datasets’ quality by effectively training different Bengali and Hindi tableQA
models and conducting various experiments on model efficacy.

Our studies on different operator classes and zero-shot cross-lingual transfer demon-
strate that models trained with our dataset generalize well to unseen tables. Our proposed
methodology can promote further research in low-resource tableQA, while our released
dataset and models can be used to further explore tableQA for Bengali and Hindi.

Our answer to RQ4, How to adapt tableQA for low-resourced languages?, the
research question at the heart of this chapter, is that large-scale synthetic dataset gen-
eration and models trained on the generated datasets are effective in addressing the
low-resource problem and outperform existing multilingual baseline models. Further,
cross-lingual transfer in a zero-shot setup demonstrates that by fine-tuning models in
one low-resource language transfers reasoning capabilities and knowledge to another,
reducing the need to generate large-scale datasets on languages of the same language
family.
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Chapter Appendices

5.A Limitations

We design a scalable automatic tableQA data generation method and apply it on with
two low-resourced languages: Bengali and Hindi. We release two tableQA datasets:
BanglaTabQA and HindiTabQA and several models as outcome. Our main results in
Table 5.3 demonstrate successful adaptation of neural models to low-resourced tableQA
task. Our extensive experimentation on generalizability in Section 5.6.1 and 5.6.2 shows
that models trained on the BanglaTabQA dataset performs well across all operator
classes and generalize to unseen languages and tables, proving generalizability of the
datasets and methodology.

Our dataset methodology is generalizable, but it is limited to languages for which
unlabelled tables are available online. For very-low resource languages with low web
presence, our method has only limited impact. Also, we used SQUALL templates for
query generation, which do not support multi-table operations or complex queries. We
leave addressing these challenges to future work.

5.B Ethical Considerations

The task and models proposed in the paper is aimed at closing the gap of resource
scarcity in low-resource languages. To do so, we have used existing open-source
resources publicly available in the web under MIT, CC-BY-SA-3.0 and MIT, CC-
BY-SA-4.0 licenses. Our dataset is generated synthetically data and will be released
under MIT, CC-BY-SA-4.0 license. Our synthetic samples use templates from the
SQUALL dataset also released under MIT, CC-BY-SA-4.0 license. Our test data splits
are manually annotated. We pay each annotator C13.27/hour for their efforts. Further,
we have utilized Wikipedia tables from the Huggingface Wikipedia dataset. Wikipedia
tables contain information about named-entities, facts and events in the public domain.
We do not use any user-specific data or sensitive information. Our models are built over
open-source encoder-decoder models and closed-source GPT-3.5. Our work did not
explicitly handle any bias which exists in the aforementioned pre-trained models or
Wikipedia.

5.C Bengali SQL2NQSim (LaBse fine-tuning) Results

We evaluate semantic similarity of the LaBse model trained on the translated semantic
parsing datasets comprising of Bengali SQL and it corresponding Bengali question
(Section 5.4.4) and report the validation set results in Table 5.C.1. Both datasets show
high semantic similarity among query-question pairs. However, BanglaTabQA have a
higher semantic similarity on various distance metrics indicating higher similarity of the
query-question pairs compared to HindiTabQA. HindiTabQA lower semantic scores
can be attributed to the lower recall scores among query-question pairs leading to lower
F1 similarity scores.
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Scores Bengali Hindi

Accuracy with Cosine-Similarity 91.99 98.67
F1 with Cosine-Similarity 92.30 72.16
Precision with Cosine-Similarity 94.55 77.68
Recall with Cosine-Similarity 90.15 67.36
Avg Precision with Cosine-Similarity 97.79 75.32
Accuracy with Manhattan-Distance 91.97 98.62
F1 with Manhattan-Distance 92.31 70.96
Precision with Manhattan-Distance 93.73 77.15
Recall with Manhattan-Distance 90.94 65.69
Avg Precision with Manhattan-Distance 97.80 74.41
Accuracy with Euclidean-Distance 91.99 98.67
F1 with Euclidean-Distance 92.30 72.16
Precision with Euclidean-Distance 94.55 77.68
Recall with Euclidean-Distance 90.15 67.36
Avg Precision with Euclidean-Distance 97.79 75.32
Accuracy with Dot-Product 91.99 98.67
F1 with Dot-Product 92.30 72.16
Precision with Dot-Product 94.55 77.68
Recall with Dot-Product 90.15 67.36
Avg Precision with Dot-Product 97.79 75.32

Table 5.C.1: Bengali SQL2NQSim validation scores (%).

5.D GPT Prompts
The 2-shot in-context learning prompt with demonstrations to GPT is shown in Prompt 5.D.1
on the next page:
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5.E. Llama-based Model Prompt

Prompt 5.D.1: 2-Shot ICL Prompt for GPT-3.5/4

m n
< > < > ... n < >

... < m> m, m, ... m,n

< > < > 2006
...< > 2016 < > 2016
< > 2016

< > < >

< > < >

2006 < > 2006
< > 2006 ...

< > < >

The English translation of the 2-shot prompt for in-context learning (ICL) of GPT-
3.5/4 is shown in Prompt 5.D.2:

Prompt 5.D.2: 2-Shot ICL Prompt for GPT-3.5/4 (English translation)

You are a helpful assistant who answers Bengali questions from Bengali tables by generating an answer
table. A table of m rows and n columns is written in the following pattern: <column> table header <row
1> value 1,1 | value 1,2 | ... value 1,n <row 2> value 2,1 | ... <row m> value m,1 | value m,2 | ... |
value m,n
Examples:
1) Question: How many titles are Countdown? <column> year | Title | Role <row 1> 2006 | See No
Evil | Jacob Go ... <row 13> 2016 | Countdown | Le Trunin <row 14> 2016 | Countdown | Le Trunin
<row 15> 2016 | Countdown | Le Trunin
Answer: <column> count(‘Title‘) <row 1> 3
2) Question: How many years have See no Evil as titles? <column> year | Title | Role <row 1> 2006 |
See No Evil | Jacob Good Night <row 2> 2006 | See No Evil | Jacob Good Night |<row 3> 2006 | See
No Evil | Jacob Good Night ...
Answer: <column> count(‘year‘) <row 1> 3

5.E Llama-based Model Prompt

The 2-shot in-context learning prompt with demonstrations to the Llama-7B based
model, OdiaG, is shown in Prompt 5.E.1 on the next page:
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Prompt 5.E.1: 2-Shot ICL Prompt for odiagenAI-bn

### Instruction:

###Input:

< > < > 2014
< > 2016

< > 2016
### Response:
< > < >

###End
###Input:

< > <

> 2014 < > 2016
< > 2016

### Response:
< > < >

###End

###Input:
{input}

### Response:

The English translation of the 2-shot in-context learning prompt with demonstrations
to the Llama-7B based model, OdiaG, is shown in Prompt 5.E.2 on the next page:
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Prompt 5.E.2: 2-Shot ICL Prompt for odiagenAI-bn (English translation)

### Instruction:
You are a helpful assistant who generates answers Bengali table to answer Bengali
questions. Examples:
###Input:
How many titles are Countdown? <column> year | Title | Role <row 1> 2014 | See
No Evil 2 | Jacob Goodnight <row 2> 2016 | Countdown | Le Trunin <row 3> 2016 |
Countdown | Le Trunin
###Response:
<column> count(Title) <row 1> 2
### End
###Input:
How many years have See no Evil as titles? <column> year | Title | Role <row 1> 2014
| See No Evil 2 | Jacob Goodnight <row 2> 2016 | Countdown | Le Trunin <row 3>
2016 | Countdown | Le Trunin
### Response:
<column> count(year) <row 1> 1

###Input:
{input}

###Response:
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6
Parameter-Efficient Sparse Retrievers and

Re-rankers using Adapters

While the previous chapters focused on the reader module of information seeking
systems, this chapter focuses on the retriever module. This chapter addresses RQ5 by
studying how to balance the efficiency-accuracy trade-off to leverage efficient sparse neu-
ral models as first-stage rankers. As prior work focused only on dense bi-encoder [71]
models as second stage rankers, this chapter explores the usage of adapters for sparse
neural first-stage rankers and re-rankers. Next, domain-adaptation with adapters is ex-
plored on the BEIR benchmark to study the effectiveness of adapter-tuning compared to
fine-tuning to domain-shift in datasets. Finally, knowledge sharing between rankers and
re-rankers is explored to study whether adapters can be utilized effectively to transform
a sparse first stage ranker to a re-ranker.

6.1 Introduction
Information Retrieval (IR) systems often aim to return a ranked list of documents
ordered with respect to their relevance to a user query. In modern web search engines,
there is, in fact, not a single retrieval model, but several ones specialized in diverse
information needs such as different search verticals. To add to this complexity, multi-
stage retrieval considers effectiveness-efficiency trade-off where first stage retrievers
are essential for fast retrieval of potentially relevant candidate documents from a large
corpus. Further down the pipeline, re-rankers are added focusing on effectiveness.

With the advent of large Pretrained Language Models (PLM), recent neural retrieval
models have millions of parameters. Training, updating, and adapting such models
implies significant computing and storage cost calling for efficient methods. Moreover,
generalizability across out-of-domain datasets is critical and even when effectively
adapted to new domains, full fine-tuning often comes at the expense of large storage
and catastrophic forgetting. Fortunately, such research questions have already been
studied in the NLP literature [9, 11, 68, 69] with parameter-efficient tuning. In spite

This chapter was published as V. Pal, C. Lassance, H. Déjean, and S. Clinchant. Parameter-efficient
sparse retrievers and rerankers using adapters. In J. Kamps, L. Goeuriot, F. Crestani, M. Maistro, H. Joho,
B. Davis, C. Gurrin, U. Kruschwitz, and A. Caputo, editors, Advances in Information Retrieval, pages 16–31,
Cham, 2023. Springer Nature Switzerland. ISBN 978-3-031-28238-6.
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of very recent work exploring parameter-efficient techniques for neural retrieval, the
use of adapters in IR has been overlooked. Previous work on dense retriever had mixed
results [86] and successful adaptation was achieved for cross-lingual retrieval [117]. Our
study aims to complete the examination of adapters for neural IR and investigates it with
neural sparse retrievers. We study ablation of adapter layers to analyze whether all layers
contribute equally. We examine how adapter-tuned neural sparse retriever SPLADE [46]
fares on benchmark IR datasets MS MARCO [142], TREC DL 2019 and 2020 [27]
and out-of-domain BEIR datasets [191]. We explore whether the generalizability of
SPLADE can be further improved with adapter-tuning on BEIR and out-of-domain
dataset, such as TripClick [173]. In addition, we examine knowledge transfer between
first stage retrievers and re-rankers with full fine-tuning and adapter-tuning. To the
best of our knowledge, this is the first work which studies adapters on sparse retrievers,
focuses on sparse models’ generalizability and explores knowledge transfer between
retrievers in different stages of the retrieval pipeline. In summary, we address the
following research questions:

(1) RQ1: What is the efficiency-accuracy trade-off of parameter-efficient fine-tuning
with adapters on the sparse retriever model SPLADE?

(2) RQ2: How does each adapter layer ablation affect retrieval effectiveness?

(3) RQ3: Are adapters effective for adapting neural sparse neural retrieval in a new
domain?

(4) RQ4: Could adapters be used to share knowledge between re-rankers and first
stage rankers?

6.2 Background and Related Work
Parameter efficient transfer learning techniques aim to adapt large pretrained models
to downstream tasks using a fraction of training parameters, achieving comparable
effectiveness to full fine-tuning. Such methods [68, 69, 110, 161, 175] are memory
efficient and scale well to numerous downstream tasks due to the massive reduction in
task-specific trainable parameters. This makes them an attractive solution for efficient
storage and deployment compared to fully fine-tuned instances. Such methods have
been successfully applied to language translation [161], natural language generation
[116], Tabular Question Answering [149], and on the GLUE benchmark [57, 175], In
spite of all its advantages and a large research footprint in NLP, parameter-efficient
methods remain under-explored in IR.

A recent comprehensive study [39] categorizes parameter-efficient transfer learn-
ing into 3 categories: 1) Addition based 2) Specification based 3) Reparameterization
based. Addition based methods insert intermediate modules into the pretrained model.
The newly added modules are adapted to the downstream task while keeping the rest
of the pretrained model frozen. The modules can be added vertically by increasing
the model depth as observed in Houlsby Adapters [68] and Pfeiffer Adapters [161].
Houlsby Adapters insert small bottle-neck layers after both the multi-head attention
and feed-forward layer of each transformer layer which are optimized for NLP tasks
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on GLUE benchmark. Pfeiffer Adapter inserts the bottle-neck layer after only the feed-
forward layer and has shown comparable effectiveness to fine-tuning on various NLP
tasks. Prompt-based adapter methods such as Prefix-tuning [110] prepend continuous
task-specific vectors to the input sequence which are optimized as free-parameters. Com-
pacter [89] hypothesizes that the model can be optimized by learning transformations
of the bottle-neck layer in a low-rank subspace, leading to less parameters.

Specification based methods fine-tune only a subset of pretrained model parameters
to the task-at-hand while keeping the rest of the model frozen. The fine-tuned model
parameters can be only the bias terms as observed in BitFit [11], or only cross-attention
weights as in the case of Seq2Seq models with X-Attention [51]. Re-parameterization
methods transform the pretrained weights into parameter efficient form during train-
ing. This is observed in LoRA [69] which optimises rank decomposition matrices of
pretrained layer while keeping the original layer frozen.

Recent studies exploring parameter-efficient transfer learning for Information Re-
trieval show promising results of such techniques for dense retrieval models [86, 117,
132, 190]. Jung et al. [86] study parameter efficient prefix-tuning [110] and LoRA [69]
on bi-encoder and cross-encoder dense models. Additionally, they combine the two
methods by sequentially optimizing one method for m epochs, freezing it and optimiz-
ing the other for n epochs. Their studies show that while cross-encoders with LoRA
and LoRA+(50% more parameters compared to LoRA) outperform fine-tuning with
TwinBERT [129] and ColBERT [94], parameter-efficient methods do not outperform
fine-tuning for bi-encoders across all datasets. Litschko et al. [117] use parameter-
efficient techniques such as Sparse Fine-Tuning Masks and Adapters for multilingual
and cross-lingual retrieval tasks with re-rankers. They train language adapters with
Masked Language Modeling (MLM hereafter) task and then task-specific retrieval
adapters. This enables the fusion of reranking adapter trained with source language
data together with the language adapter of the target language. Concurrent to our work,
Tam et al. [190] study parameter-efficient prompt tuning techniques such as Prefix
tuning and P-tuning v2, specification-based methods such as BitFit and adapter-tuning
with Pfeiffer Adapters on late interaction bi-encoder models such as Dense Passage
Retrieval [90] and ColBERT. They are motivated by cross-domain generalization of
dense retrievals and achieve better results with P-tuning compared to fine-tuning on the
BEIR benchmark. Ma et al. [132] study various parameter-efficient tuning procedures at
both retrieval and re-ranking stages. They conduct a comprehensive study of parameter-
efficient techniques such as BitFit, Prefix-tuning, Adapters, LoRA, MAM adapters
with dense bi-encoders and cross-encoders with BERT-base as the backbone model.
Their parameter-efficient techniques achieve comparable effectiveness to fine-tuning on
top-20 retrieval accuracy and marginal gains on top-100 retrieval accuracy.

Compared to prior works, our experiments first study the use of adapters for state-
of-the-art sparse models such as SPLADE, contrary to previous work that studied
dense bi-encoder models.1 Furthermore, our results show improvements compared
to the previous studies. We also studied the case of using distinct adapters for query
and document encoders in a “bi-adapter” setting where the same pretrained backbone

1To the best of our knowledge the only work involving SPLADE and adapters/freezing layers is [202],
which found that freezing the embeddings improves effectiveness.
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model is used by both the query and the document encoder but different adapters are
trained for the queries and documents. Secondly, we address another research questions
ignored by previous work, which is efficient domain adaptation2 for neural first-stage
rankers. We start from a trained neural ranker and study adaptation with adapters on
a different domain, such as the ones present in the BEIR benchmark. Finally, we also
study parameters sharing between re-rankers and first-stage rankers using adapters,
which to our knowledge has not been studied yet.

6.3 Parameter-Efficient Retrieval with Adapters
In this section, we first present the self-attention used in transformers and how the
adapters we use for our experiments interact with them. We then introduce the models
used for first stage ranking and reranking.

6.3.1 Self-Attention Transformer Layers
Large pretrained language models are based on the transformer architecture composed
of N stacked transformer layers . Each transformer layer comprises of a fully connected
feed-forward module and a multi-headed self attention module. Each attention layer
has a function of query matrix (Q ↑ RnXdk), a key matrix and a value matrix. The
attention can be formally written as:

A(Q,K, V ) = softmax

(
QKT

↓
dk

)
V, (6.1)

where the query Q, key K and value V are parameterized by weight matrices Wq ↑
RnXdk , Wk ↑ RnXdk , and Wv ↑ RnXdv , as Q = XWq, K = XWk and V = XWv.
Each of the N heads has its respective Qi, Vi and Ki weights and its corresponding
attention Ai. The feed-forward layer takes as input a transformation of the concatenation
of the N attentions as:

FFN(x) = ω(XW1 + b1)W2 + b2 (6.2)

where ω(.) is the activation function. A residual connection is further added after each
attention layer and feed-forward layer.

6.3.2 Adapters
In this paper, we focus on the Houlsby adapter [68], which as described in Section 6.3
can be considered an additive adapter and is depicted in Figure 6.1. An additive adapter
inserts trainable parameters in addition to the aforementioned transformer layers. The
added modules form a bottle-neck architecture with a down-projection, an up-projection
and a non-linear transformation. The size of the bottle-neck controls the number of
training parameters in an adapter layer. Additionally, a residual connection is applied

2Here we use adaptation as further fine-tuning on the target domain.
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Figure 6.1: Houlsby Adapter, image from the original paper [68].

across each adapter layers. Finally, a layer normalization is added after each transformer
sublayer. Formally, this is defined as:

x = f(hWdown)Wup + x (6.3)

where x ↑ Rd is the input to the adapter layer, Wdown ↑ RdXr is the down projection
matrix transforming input x into bottle-neck dimension d, Wup ↑ RrXd is the up
projection matrix transforming the bottle-neck representation back to the d-dimensional
space. Each adapter layer is initialized with a near-identity weights to enable stable
training.

6.3.3 Neural Sparse First-stage Retrievers
Neural sparse first stage retrievers learn contextualized representations of documents and
queries in a sparse high-dimensional latent space. In this work, we focus on SPLADE
sparse retriever [46, 103], which uses both L1 and FLOPS regularizations to force
sparsity. We freeze the pretrained language model while training the adapter layers.
SPLADE predicts term weights of each vocabulary token j with respect to an input
token i as:

wij = transform(hi)
TEj + bj j ↑ 1, ..., |V | (6.4)

where Ej is the jth vocabulary token embedding, bj is it’s bias, hi is ith input token
embedding, transform(.) is a linear transformation followed by GeLU activation
and LayerNorm. The final term importance for each vocabulary term j is obtained by
taking the maximum predicted weights over the entire input sequence of length n, after
applying a log-saturation effect:

wj = max
n

log(1 +ReLU(wij)) (6.5)

Given a query qi, the ranking score s of a document d is defined by the degree to which
it is relevant to q obtained as a dot product s(q, d) = w(q).w(d). The learning objective
is to discriminate representations obtained from Equation 6.5 of a relevant document d+
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and non-relevant hard-negatives d→ obtained from BM25 and in-batch negatives d→i,j by
minimizing the contrastive loss:

L = → log
es(qi,d

+)

es(qi,d
+
i ) + es(qi,d

→
i ) +

∑
j e

s(qi,d
→
i,j)

. (6.6)

SPLADE can be further improved with distillation. The learning objective here is to
minimize the MarginMSE [46] loss: mean-squared-error between the positive negative
margins of a cross-encoder teacher and the student:

L = MSE(Ms(qi, d
+)→Ms(qi, d

→),Mt(qi, d
+)→Mt(qi, d

→)), (6.7)

where MSE is mean-squared error, Mt is the teacher’s margin and Ms is the student’s
margin. The final objective optimizes either of the objective in Equation 6.6 or 6.7 with
regularization losses:

The Flops regularizer is a smooth relaxation of the average number of floating-point
operations necessary to compute the score of a document, and hence directly related to
the retrieval time. It is defined using as a continuous relaxation of the activation (i.e. the
term has a non zero weight) probability aj for token j, and estimated for documents d
in a batch of size N by â2j .

Retrieval flops SPLADE also reports the retrieval flops (noted R-FLOPS), i.e., the
number of floating point operations on the inverted index to return the list of documents
for a given query. The R-FLOPS metric is defined by an estimation of the average
number of floating-point operations between a query and a document which is defined
as the expectation Eq,d

[∑
j↓V p(q)j p(d)j

]
where pj is the activation probability for token

j in a document d or a query q. It is empirically estimated from a set of approximately
100k development queries, on the MS MARCO collection. It is thus an indication of
the inverted index sparsity and of the computational cost for a sparse model (which is
different from the inference, i.e. forward cost of the model)

6.3.4 Cross-Encoding Re-rankers

Another way to use PLMs for neural retrieval is to use what is called “cross-encoding”
[204]. In this case, both query and document are concatenated before being provided
to the network and the score is directly computed by the network. The cross-encoding
procedure allows for networks that are much more effective, but this effectiveness
comes with a cost on efficiency as the retrieval procedure now has to go through the
entire network for each query document pair, instead of being able to precompute
document representations and only go through the network for the query representation.
The models are trained with a contrastive loss as seen in Equation (6.6) that aims to
maximize the score of the true query/document pair compared to a BM25 negative
query/document pair, without using in-batch negatives.
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6.4 Experimental Setting and Results

We use the SPLADE github repository3 to implement our modifications and followed
the standard procedure to train SPLADE models. We implement our SPLADE models
using an L1 regularization for the query, and FLOPS regularization for the document
following [103]. Unless otherwise stated, the document regularization weight εd is
set to 9e→5 and the query regularization weight εq to 5e→4 to train all variants of
Adapters-SPLADE. In order to mitigate the contribution of the regularizer at the early
stages of training, we follow [155] and use a scheduler for ε, quadratically increasing
ε at each training iteration, until the 50k step. We use a learning rate of 8e→5, a
batch size of 128, a linear scheduler and warmup step of 6000. We set the maximum
sequence length to 256. We train for 300k iterations and keep the best checkpoint
using MRR@10 on the validation set. We use a bottle-neck reduction factor of 16
(i.e. 16 times smaller) for all adapter layers. We use PyTorch [158], Hugging Face
Transformers [196] and AdapterHub [9] to train all models on 4 Tesla V100 GPUs with
32GB memory. We compute statistical significance with p ↔ 0.05 using the Student’s
t-test and use superscripts to identify statistical significance for almost all measures safe
for metrics related to BEIR.4

6.4.1 RQ1: Adapters-SPLADE
We study two different settings of encoding with adapters. The first called adapter, is
a mono-encoder setup where the query and document share a single encoder. The adapter
layers are optimized with both the input sequences keeping the PLM frozen. The second
setting inspired by the work on [103], is a bi-encoder setup which separates query and
document encoders by training distinct query and document adapters on a shared frozen
PLM. We call this setting bi-adapter. This setting not only benefits from optimizing
exclusive adapters for input sequence type (different lengths of query/document, etc.), it
is also possible to use smaller PLMs for the queries instead of sharing PLM weights. We
explore different backbone PLMs: DistilBERT and CC+MLM Flops, a pretrained
PLM of cocondenser trained on the masked language model (MLM) task using the
FLOPS regularization in order to make it easier to work with SPLADE, introduced
in [103]. We trained and evaluated Adapter-SPLADE models on the MS MARCO
passage ranking dataset [142] in full ranking setting. The results for fine-tuning with
BM25 triplets are available in Table 6.1, whereas in Table 6.2 we make available the
results of training models with distillation. For distillation, we use hard-negatives and
scores generated by a cross-encoder reranker5 and the MarginMSE loss as described in
[46] and set εd to 1e→2 and εq to 9e→2.

To study efficiency-effectiveness trade-off of Adapters-SPLADE, we compare ef-
fectiveness, R-FLOPS size and number of training parameters of adapter-tuned models
with their baseline fine-tuned counterparts having the same backbone PLM. [155] first
showed that R-FLOPs reduction is a reasonable measure of retrieval speed. R-FLOPS
measure the average number of floating-point operations needed to compute a document

3https://github.com/naver/splade
4Due to a lack of standard procedure.
5https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2
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TREC DL

R
-F

lo
ps

Model # Method MS MARCO dev 2019 2020 Training
paramsMRR@10 R@1000 N@10 N@10

Distil-
BERT

a fine-tuning 0.346 0.963 0.692 0.677 1.43 100%
b adapter 0.351 0.968a 0.711 0.676 1.44 2.23%
c bi-adapter 0.352 0.967a 0.690 0.666 0.74 2.23%

CC +
MLM FLOPS

d fine-tuning 0.366abc 0.977abc 0.712 0.684 1.09 100%
e adapter 0.376abcd 0.980abcdf 0.712 0.688 0.8 2.23%
f bi-adapter 0.372abc 0.976abc 0.701 0.700 0.37 2.23%

Table 6.1: Fine-tuning and adapter-tuning comparison using BM25 triplets for training.
N@10 is short for NDCG@10.

TREC DL

R
-F

lo
ps

Model # Method MS MARCO dev 2019 2020 Training
ParamsMRR@10 R@1000 N@10 N@10

DistilBERT a fine-tuning 0.371 0.979b 0.727 0.711 3.93 100%
b adapter 0.373 0.975 0.728 0.716 1.86 2.16%

CC +
MLM FLOPS

c fine-tuning 0.388ab 0.982ab 0.734 0.732 4.38 100%
d adapter 0.390ab 0.983ab 0.740 0.729 2.34 2.16%

Table 6.2: Fine-tuning and adapter-tuning comparison using distillation training. N@10
is short for NDCG@10.

score during retrieval. A sparse embedding and subsequently lower FLOP achieves a
retrieval speedup of the order of 1/p2 over an inverted index where p is the probability
of each document embedding dimension being non-zero.

Overall, we observe, from Table 6.1 and 6.2, all variants of adapter-tuned SPLADE
outperform all baseline fine-tuned counterparts on MS MARCO and TREC DL 2019.
The distilled cocondenser with MLM mono-encoder model is the highest performing
with an MRR@10 score of 0.390 and R@100 of 0.983. The difference in effectiveness
between the mono-encoder and bi-encoder adapter-tuning is marginal and depends on
the PLM. Most noteworthy, we also observe that the R-FLOPS are lower for adapter-
tuned models indicating sparser representation than the fine-tuned counterparts. This is
more pronounced in the adapter-tuned models with distillation. Finally, the bi-adapter
models have even lower R-FLOPS than the mono-encoder settings, which shows that
for the same effectiveness the bi-adapters models are more efficient and sparse. We
also observe that the number of training parameters is only 2.23% of the total model
parameters for triplets training (1.5M/67M for mono-adapter DistilBERT, 3M/135M
for bi-adapter DistilBERT, 2M/111M for CC + MLM FLOPS) and 2.16% for the
distillation process (1.5M/67M for mono-adapter DistilBERT, 2M/111M for CC +
MLM FLOPS). This has a direct consequence in low-hardware setting where adapters
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Datasets
Triplets training Distillation training

DistilBERT CC + MLM DistilBERT CC + MLM

FT AD FT AD FT AD FT AD

arguana 0.298 0.364 0.427 0.388 0.513 0.443 0.463 0.433
climate-fever 0.167 0.172 0.180 0.187 0.202 0.197 0.229 0.202
dbpedia-entity 0.379 0.392 0.388 0.401 0.419 0.417 0.438 0.432
fever 0.730 0.734 0.724 0.722 0.773 0.757 0.792 0.773
fiqa 0.295 0.289 0.317 0.320 0.332 0.314 0.342 0.337
hotpotqa 0.626 0.647 0.650 0.603 0.687 0.670 0.687 0.629
nfcorpus 0.318 0.321 0.331 0.333 0.335 0.335 0.340 0.344
nq 0.481 0.482 0.506 0.523 0.522 0.508 0.539 0.544
quora 0.819 0.810 0.821 0.806 0.825 0.722 0.841 0.552
scidocs 0.143 0.150 0.151 0.153 0.154 0.147 0.152 0.153
scifact 0.614 0.611 0.658 0.669 0.687 0.658 0.690 0.673
trec-covid 0.694 0.684 0.668 0.689 0.703 0.728 0.700 0.713
webis-touche2020 0.270 0.255 0.277 0.274 0.260 0.258 0.294 0.290

mean 0.449 0.455 0.469 0.467 0.493 0.473 0.500 0.467
Table 6.3: NDCG@10 score comparison on the BEIR zero-shot evaluation. “FT” is
short for “fine-tuning,” “AD is short for “adapter.” “CC+MLM” is short for “CC+MLM
FLOPS.”

with lower number of number of training parameters and gradients can be trained on
a smaller GPU(such as 24GB P40) but full fine-tuning is infeasible. Overall, there is
a clear advantage in using Adapter-SPLADE over fine-tuning, which differs from the
previous results on dense adapters [86].

We also evaluate with the full BEIR benchmark [41] comprising of 18 different
datasets to measure generalizability of IR models with zero-shot effectiveness on out-
of-domain data. The results are listed in Table 6.3. We observe from that in the
mono-adapter Triplets training, adapter outperforms fine-tuning on mean nDCG@10
with the highest gap in arguana. With CC+MLM Flops as the backbone model, fine-
tuning and adapter-tuning performs similarly. However, adapter scores drop on models
trained with distillation. This can be attributed to the adapter representations being
sparser compared to the fine-tuned models. As depicted by the R-FLOPS in Table
6.1, adapter-tuned DistilBERT has less than half the number of R-FLOPS than its
fine-tuned counterpart whereas CC+MLM Flops finetuned model has approximately
1.87 times the number of R-FLOPS of the adapter-tuned model. This reflects in model
representation capacity in 0-shot setting in Table 6.3. However, as discussed in Section
6.4.3, adapters are well suited for domain adaptation when trained on out-of-domain
datasets keeping the backbone retriever intact and free from catastrophic forgetting.
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# MS MARCO dev 2019 2020 BEIR
MRR@10 R@1000 N@10 N@10 N@10

a None 0.351cdefg 0.968defg 0.711fg 0.676g 0.455 1.44 2.23% 34.42

b 0 0.348defg 0.967efg 0.708fg 0.674g 0.458 1.27 2.01% 32.23
c 0-1 0.344efg 0.968efg 0.709fg 0.699abdefg 0.459 1.34 1.80% 28.55
d 0-2 0.341efg 0.966efg 0.703fg 0.665g 0.459 1.36 1.59% 26.70
e 0-3 0.325fg 0.962fg 0.689 0.660g 0.455 1.50 1.37% 24.18
f 0-4 0.318g 0.956 0.659 0.663g 0.455 1.27 1.15% 22.51
g 0-5 0.312 0.955 0.660 0.617 0.449 2.78 0.90% 21.35

Table 6.4: Adapter layer ablation with adapters on DistilBERT PLM.

6.4.2 RQ2: Adapter Layer Ablation

Furthermore, we perform extensive adapter layer ablation by progressively removing
adapter layers from the early layers of the encoder. Doing so results in n separate models
for each layer ablation setting. The frozen pretrained model for our ablation studies is
DistilBERT in a mono-encoder setting where the same instance of the encoder is
used to encode both the document and the query, which is the same configuration as the
adapter method in Table 6.1. This results in a total of 6 configurations for the ablation
study corresponding to the 6 adapter layers after each pretrained transformer layer. The
final experimental setting removes all 6 adapter layers (0–5) and fine-tunes only the
language model head.

We note that such an experiment (dropping adapter layers from transformer models)
has been studied in NLP [175] and was shown to improve both training and inference
time while retaining comparable effectiveness. We report the effectiveness of each
adapter ablation setting on MS MARCO, TREC DL 2019 and TREC DL 2020 in Table
6.4. We actually observe a gradual performance drop for MS MARCO and TREC DL
datasets as the training parameters decrease with the progressive removal of adapter
layers as shown in Table 6.4. The drop is significantly higher (a drop of 0.25 MRR score)
when layers are removed from the second half of the model (↗ 0–3). This phenomenon
is consistent with studies in NLP [149, 175] that task-specific information is stored in
the later layers of the adapters. For the BEIR datasets, this effectiveness drop is not as
evident until all adapters but the language model head are removed (configuration 0–5).
The last configuration also has less sparsity as observed from the R-FLOPS size of
2.78 compared to the other configurations. We also observe that the training time drops
proportional to the drop in adapter layers. The training time for adapter-tune without
any drop in adapter layers is 34.42 hours on 4 Tesla V100 GPUS for 150, 000 iterations,
and it drops to 26.70 hours with only 1% drop in MRR with the first 0–2 adapter layers
dropped. The lowest training time is 21.35 hours with a drop of 3.2% in MRR for the
configuration with all adapters dropped but the language model head.
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6.4. Experimental Setting and Results

Dataset Training Zero Shot 1st Round 2nd Round
NDCG
@10

Recall
@100

NDCG
@10

Recall
@100

NDCG
@10

Recall
@100

Fever fine-tuning 0.793 0.954 0.692 0.866 0.851 0.959
adapter 0.841 0.960 0.881 0.964

FiQA fine-tuning 0.348 0.632 0.371 0.678 0.356 0.694
adapter 0.373 0.675 0.393 0.711

NFCorpus fine-tuning 0.348 0.285 0.384 0.466 0.403 0.484
adapter 0.362 0.435 0.371 0.428

Table 6.5: Domain adaptation comparison on the BEIR datasets.

6.4.3 RQ3: Out-of-Domain Dataset Adaptation
For the next research question, we want to check how adapters compare to full fine-
tuning when adapting a model trained on MSMARCO on a smaller out-of-domain
dataset. We evaluate this question under two scenarios: i) BEIR and ii) TripClick.

BEIR On the BEIR benchmark we use 3 datasets (FEVER, FiQA and NFCorpus)
that have training, development and test sets and aim for very different domains and
tasks (fact checking , financial QA and bio-medical IR). We start from a pre-fine-tuned
SPLADE model called “splade-cocondenser-ensembledistil” made available in [46].
We verify the effectiveness of the models in zero shot and get a first set of hard negatives.
These hard negatives are then used to train either via fine-tuning of all parameters or
via the introduction of adapters. The networks are trained for either 10 (FEVER) or
100 epochs (FiQA and NFCorpus), and at the end of each epoch, we compute the
development set effectiveness. We use the models with the best development set to
compute the 1st round test set effectiveness and generate hard negatives that are used for
another round of training that we call 2nd round (which repeats the 1st round, starting
from the best network of the 1st round and using negatives from the 1st round).

Results are available in Table 6.5. While fine-tuning is not always able to improve
the results over the zero-shot, mostly due to overfitting on the training/dev sets. For
example, on fever fine-tuning first makes all representations as it can easily overfit to
the training even without using many words and only on the second round of training
started using more dimensions. On the other hand, adapter tuning is able to consistently
improve the effectiveness over the zero shot and first rounds (even if it does not always
perform the best, as is the case on NFCorpus). Overall, we conclude that adapters are
more stable than fine-tuning when fine-tuning on these specific domains.

TripClick Given that in the BEIR benchmark the adapters underperformed fine-tuning
on bio-medical data, we decided to further experiment on a larger bio-medical dataset
called TripClick. The TripClick collection [173] contains approximately 1.5 millions
MEDLINE documents (title and abstract), and 692,000 queries. The test set is divided
into three categories of queries: Head, Torso and Tail (according to their decreasing
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# Training HEAD (dctr) HEAD Torso Tail
N@10 R@100 N@10 R@100 N@10 R@100 N@10 R@100

a Fine-tuning 0.218 0.579 0.302 0.523 0.219 0.679 0.238 0.722
b Adapter 0.219 0.578 0.299 0.526 0.229a 0.679 0.253a 0.720

Table 6.6: Performance of mono-encoder on the out-of-domain Tripclick dataset.
“N@10” is short for “NDCG@10.” “R@100” is short for “Recall@100.”

frequency), which contain 1,175 queries each. For the Head queries, a DCTR click
model was employed to created relevance signals, otherwise raw clicks were used. We
use the triplets released by [67]. Similarly to the BEIR experiments, we start from the
“splade-cocondenser-ensembledistil” SPLADE model and fine-tune or adapt-tune it over
100,000 iterations (batch size equal to 100). As shown in Table 6.6, adapter-tuning
shows very competitive results, on par with fine-tuning for head categories (frequent
queries), and achieving even better results for the less frequent queries (torso and tail).

6.4.4 RQ4: Knowledge Sharing between re-rankers and First-
stage Rankers

The final research question explores sharing knowledge between re-rankers and first-
stage rankers. We explore this with transforming first stage rankers into re-rankers.
First, we tune the pretrained DistilBERT for reranking task as a baseline for both
fine-tuning and adapter-tuning. We then test transforming both sparse (splade-
cocondenser) and dense (tct colbert-v2-msmarco) first stage rankers into
re-rankers, using either fine-tuning or adapter-tuning. The cross-encoder is initialized
with the weights of the aforementioned first stage models, but the reranker classification
head on the CLS token is randomly initialized. Note that we rerank the top-1k returned
from “splade-cocondenser-ensembledistil” (represented by “first stage” on table).

We compare adapter-tuning with fine-tuning and display the results in Table 6.7.
We observe that fine-tuning the baseline model (DistilBERT) is better than adapter-
tuning. When using first stage rankers, results are varied. Dense first stage re-rankers
were able to learn similarly with both adapter and fine-tuning. However, this was not the
case for sparse first stage rankers (splade-cocondenser-ensembledistil).
We posit that this may come from two different reasons: i) The SPLADE model does
not focus on the CLS representations, but on the MLM head representations of all
tokens, thus needing more flexibility; ii) The model has been trained multiple times
(initial BERT training, then condenser, then cocondenser and finally SPLADE), while
not always using the same precision (fp16 or fp32), which under preliminary analysis
seems to have made some parts of the model unusable for cross-encoding without full
fine-tuning. Overall, there is slight gain in using the first-stage model for the reranker.
However, there’s no increase in effectiveness of using adapters, we actually see worse
effectiveness on all settings.
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6.5. Conclusion

TREC DL

Base Model # Training MS MARCO dev 2019 2020
MRR@10 NDCG@10 NDCG@10

First Stage a None 0.383e 0.732 0.721

DistilBERT b fine-tune 0.396ace 0.764e 0.736
c adapter 0.388e 0.737 0.727

SPLADE++
d fine-tune 0.408abceg 0.753 0.743
e adapter 0.358 0.723 0.707

TCT Colbert v2
f fine-tune 0.404abce 0.749 0.731
g adapter 0.400ace 0.740 0.739

Table 6.7: Knowledge Sharing between first stage rankers and rerankers comparison
between fine-tuning and adapter-tuning.

6.5 Conclusion
Retrieval models, based on pre-trained language models, require fine-tuning millions of
parameters which makes them memory inefficient and non-scalable for out-of-domain
adaptation. This motivates the need for efficient methods to adapt them to information
retrieval tasks. In this chapter, we examine adapters for sparse retrieval models. We
show that with approximately 2% of training parameters, adapters can be successfully
employed for SPLADE models with comparable or even better effectiveness on bench-
mark IR datasets such as MS MARCO and TREC. We further analyze adapter layer
ablation and see a further reduction in training parameters to 1.8% retains effectiveness
of full fine-tuning. For domain adaptation, adapters are more stable and outperform
fine-tuning, which is prone to over-fitting, by a large margin on most BEIR datasets.

On the Tripclick dataset, adapters outperform on precision metrics Torso and Tail
queries and performs comparably on Head queries. We explore knowledge transfer
between first stage rankers and re-rankers as a final study. Adapters underperform
full fine-tuning when trying to reuse sparse model to re-rankers. Dense first-stage
rankers perform similarly for adapters and fine-tuning while sparse first stage rankers
is less effective compared to fine-tuning. We leave this to future work. As memory-
efficient adapters are effective for SPLADE, we leave for future studying larger sparse
models and their generalizability. Finally, an interesting scenario could also be to tackle
unsupervised domain adaptation with adapters.

Returning to RQ5, How can we balance the efficiency-accuracy trade-off to leverage
efficient sparse neural models as first-stage rankers?, which motivated this chapter, our
answer is that adapters are effective in balancing the efficiency-accuracy trade-off for
the sparse-retriever model, SPLADE. The experimental results demonstrate the efficacy
of adapters compared to fine-tuning on benchmark IR datasets. Adapters also perform
better on out-of-domain adaptation compared to fine-tuning. However, transforming
the first-stage ranker, SPLADE, to re-ranker produced mixed results with fine-tuning
outperforming adapter-tuning on both IR datasets, MS MARCO and TREC DL.
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Chapter Appendices

6.A Limitations
Our experiments demonstrated that adapter-tuning is not only more stable and generaliz-
able to out-of-domain datasets compared to fine-tuning, but also outperforms fine-tuning
on in-domain data. However, parameter-efficient adapters could not be transformed
to a re-ranker successfully while maintaining sparsity. Adapters thus perform poorly
compared to fine-tuning for re-ranking.

6.B Ethical Considerations
We use publicly available datasets for all our experiments such as the datasets in the
BEIR benchmark and Tripclick. BEIR benchmark contains datasets from various
domains and were created in previous research. All these datasets are available under
the MIT, CC-BY-SA-3.0 and MIT, CC- BY-SA-4.0 licenses. Our work did not explicitly
handle any bias which might exist in the pre-trained models or existing datasets.
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7
Conclusions

This chapter concludes the thesis by revisiting the research questions listed in Sec-
tion 1.1, and summarizing the main findings and considerations in Section 7.1. Further,
limitations and future directions are discussed in Section 7.2.

7.1 Main Findings
We summarize the main findings in response to the research questions introduced in
Section 1.1 by theme. We start with the the first theme, the reader:

How to design and develop a machine comprehension reader over semi-
structured tables to aid the information needs of users?

Our first research question under this theme was:

(RQ1) How do language models compare on the generative question answering task
when the context is unstructured text or semi-structured tables?

RQ1 was answered by studying the effectiveness of state-of-the-art fine-tuned models
with adapter-tuned models. To assess the effect of the introduction of structured input,
two table question answering (tableQA) datasets and one text question answering
(textQA) dataset were used with both training schemes. Additionally, adapter-layer
ablation was performed to investigate whether the adapter layers across the encoder
and decoder contribute equally to performance. The main finding of the experimental
studies was that for textQA, the adapter-tuned models perform comparably to fine-tuned
models, with adapter-tuning achieving only marginally lower scores.

However, the adapter-tuned models outperformed fine-tuned models on one tableQA
dataset and achieved very similar scores on the other dataset. The insignificant gains of
fine-tuning over adapter-tuning in tableQA can be attributed to catastrophic forgetting
induced by differences in the distribution of the downstream tabular data format from
the original text data format of pre-training. Further analysis of the adapter-layers was
performed by eliminating successive layers from both encoder and decoder modules.

The main observation from this investigation was that as more adapter layers are
eliminated, the performance drops across all datasets. However, the performance drop
was minimal until the last adapter layers were also deleted. The inflection point varies
across datasets but is limited to the last 2 layers of the encoder and decoder.
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Next, we turn to:

(RQ2) How can we leverage multiple tabular context to perform complex tabular
reasoning to address user needs?

RQ2 was answered by designing a scalable dataset creation methodology and an effec-
tive training scheme to leverage the large-scalable dataset created. This process led to
the release of a multi-table pre-training dataset comprising 132, 645 samples of SQL
queries and tabular answers. Additionally, three multi-table QA fine-tuning datasets
were created and released from the existing semantic parsing dataset. This results in
6, 715 training and 985 validation samples from the Spider semantic parsing dataset;
530 training, 49 validation, and 253 test samples from the GeoQuery semantic parsing
dataset; and 84 training, 45 validation, and 86 test samples from the Atis semantic
parsing dataset.

Further, to assess the language models trained on the generated dataset, table
generation evaluation metrics were designed to evaluate the different levels of granularity
and strictness of a structured table.

The experimental results demonstrated that such metrics are insightful in understand-
ing model behavior. Ablation experiments on the proposed curriculum learning training
scheme showed the efficacy of the methodology, which outperforms fine-tuning by a
large margin. Further, analysis on the impact of the number of input tables showed that
as the number of multi-tables increases, question complexity increased and subsequently
the models’ performance degrades.

Next, we turn to:

(RQ3) How to generate summaries over multiple tables for conversational agents?

We answered RQ3 by introducing the query-focused multi-table summarization task.
A two-stage methodology was designed to address the task, that comprised of a table
serialization module and a summarization controller. Further, a dataset comprising
of 4, 909 query-summary pairs was developed. A comprehensive experimental setup
was created for supervised fine-tuning, adapter-tuning and prompt-based in-context
learning to investigate the efficacy of various models on the task. Additionally, automatic
evaluation metrics such as text-based evaluation metrics were analyzed and compared
with table-based evaluation metrics.

Human evaluation of the generated summaries on faithfulness and fluency demon-
strated a strong correlation of the automatic table metrics with human judgments.

The final research question addressed under the first theme of the thesis was:

(RQ4) How to adapt tableQA for low-resource languages?

RQ4 was answered by introducing the task of low-resourced tableQA and studying
two Indo-Aryan languages: Bengali and Hindi. An automatic dataset generation
and quality control methodology was designed for large-scale development of low-
resource tableQA datasets in a budget-constrained environment. This led to Bengali
table question answering (BanglaTabQA), a Bengali tableQA dataset comprising of
19K Wikipedia tables, 2M training, 2K validation and 165 test samples; and Hindi
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table question answering (HindiTabQA), a Hindi tableQA dataset comprising of 2K
Wikipedia tables, 643K training, 645 validation and 125 test samples.

Various models were trained on the generated data with supervised fine-tuning and
few-shot in-context learning, and the models’ performance was analyzed and compared.

The findings showed that the full fine-tuned small language models outperform
on the low-resource languages compared to LLMs such as GPT-3.5/GPT-4 with in-
context learning or Llama with parameter-efficient fine-tuning. Further analysis on
zero-shot cross-lingual transfer and on various mathematical operations demonstrates
the generalizability of the trained models.

After RQ4, we turned to the second theme of the thesis, the retriever:

How to design an efficient and effective retriever for question answering
(QA) on textual data?

Under this second theme, we addressed the following research question:

(RQ5) How can we balance efficiency-accuracy trade-off to leverage efficient sparse
neural models as first-stage rankers?

RQ5 was addressed by investigating two setups of sparse encoding: a mono-encoder
setup with shared weights and a bi-encoder setup with distinct weights between the
query and document encoders. To investigate the effectiveness-efficiency trade-off, the
number of training parameters and R-FLOPS [150] size was compared with the retrieval
scores. The experiments showed that the effectiveness between the mono-encoder and
bi-encoder was similar, with marginal difference between the two setups. However,
the efficiency varies with fully fine-tuned models having larger R-FLOPS compared
to adapter-tuned efficient models. Further experiments on distillation of the models
demonstrated a higher difference in R-FLOPS. The bi-encoder setup also demonstrated
lower R-FLOPS and subsequently was more efficient compared to the mono-encoder
setup.

All the experimental results demonstrated the advantage of the proposed Adapter-
SPLADE over fine-tuned models. Extensive analysis on adapter layer ablation showed
that a significant loss in performance occurs when layers are removed from the later
half of the retrieval models. Further, removing all layers, but the last one, also resulted
in a loss of sparsity and efficiency.

Investigating the generalizability of the trained sparse retrievers on out-of-domain
dataset adaptation showed that adapters are superior and more stable than full fine-tuning
on specific domains. Finally, an investigation on knowledge sharing between re-rankers
and first-stage rankers was performed by transforming the first-stage rankers into cross-
encoder re-rankers. Experimental results showed that while dense first-stage rankers
were successfully transformed into a re-ranker for both adapter-tuned and fine-tuned
models, the same is not true for sparse first-stage rankers with fine-tuning outperforming
adapter-tuning.
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7.2 Future Work

Our ideas for potential future work are organized following the chapter and research
question structure.

7.2.1 Parameter-efficient Generative QA over Structured Tables
and Unstructured Text

Although the study and comparison of fine-tuned and adapter-tuned models across
the two input modalities, unstructured text and structured tables, demonstrated the
superiority and utility of parameter-efficient tuning for generalizability on structured
data, explicit reasoning capabilities of the language models or training schemes were
not explored. Further research on reasoning patterns with chain-of-thought needs to
be explored to investigate the faithfulness or factuality of the generated answers in
addition to the fluency. Additionally, only one table representation has been studied
that transforms the structured table into a sequence to be compatible with the expected
input format of language models. This disrupts the two-dimensional structure of tables.
Further representation of tables is left for future work to investigate the implications of
a linearized format.

7.2.2 Multi-table Question Answering
As the first work introducing the multi-table question answering task, the proposed
dataset generation methodology from Chapter 3 was aimed for a fully automatic large-
scale and low cost dataset generation. This led to the usage of SQL templates from
existing semantic parsing datasets that may limit the diversity of the generated SQL
queries. More work is needed to compare other dataset creation methodologies, such as
query creation from context-free grammar [210]. Additionally, the released multi-table
QA models are trained with supervised fine-tuning with no explicit supervision on
reasoning patterns. Explicit reasoning supervision with chain-of-thought [194], agentic
frameworks and tool [231] usage might help the complex reasoning.

7.2.3 Query Focused Multi-table Summarization
As the first work on multi-table summarization, the study reported in Chapter 4 suc-
cessfully addressed the handling of complex user queries over multiple tabular contexts.
However, human evaluation and analysis established the need for more exploration on
better evaluation of summaries from structured inputs. Existing evaluation metrics such
as ROUGE [111], BLEU [154, 163], BertScore [217], etc. are insufficient as faithfulness
measures and focus on fluency instead. Further, the proposed and released dataset from
Chapter 4 was generated using GPT-3.5 for scalability and cost-efficiency. This may
limit lexical diversity of the generated answers. Alternative methods such as employing
human annotators may improve lexical diversity with syntactic variations. Further, our
proposed methodology in Chapter 4 uses in-context learning with fixed prompt using
the same few-shot demonstrations. Advanced prompting techniques such as variable
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demonstration with retrieval [108], prompt learning [38], tree of thought [127, 203], etc.
can be used for better complex reasoning and faithful summary generation.

7.2.4 Low-resourced TableQA
The proposed dataset generation methodology in Chapter 5 to address low-resourced
tableQA is language-agnostic and thus generalizable to any low-resourced language
with a web presence and is fully automatic and scalable. However, the methodology
in Chapter 5 has been applied to only two languages: Hindi and Bengali, and further
analysis is required to study phrasal and lexical alignment to other low-resourced
languages. The large-scale Bengali and Hindi tableQA datasets developed from the
proposed dataset generation methodology are built by instantiating SQL templates from
existing semantic parsing datasets. This limits the scope of the queries to the templates
and does not handle multi-table operations and very complex queries. More complex
datasets are necessary to handle real-world queries. Additionally, the trained models in
Chapter 5 show zero-shot cross-lingual transfer between Bengali and Hindi that belong
to the same language family. More detailed experiments are required to study this
phenomenon in languages from different language families. Further, complex reasoning
in tableQA is a challenge and sophisticated techniques such as tree of thought [203],
agentic frameworks [231] are necessary to improve mathematical and logical reasoning.

7.2.5 Parameter-efficient Sparse Retrievers and Re-rankers
While the exploration of parameter-efficient first-stage rankers demonstrates the effi-
ciency, effectiveness, and generalizability of Adapter-SPLADE over fine-tuned models,
the experimental results of re-rankers showed that dense first-stage re-rankers perform
similarly for adapters and fine-tuning while sparse first-stage re-rankers are less ef-
fective than fine-tuning. More research is needed to explore cross-encoder re-rankers
for sparsity without sacrificing effectiveness. Further, all experimental setups were
done on small language models. Larger language models with better generalization
capability [15] may address some of the domain-specific adaptation challenges of the
smaller models and need to be explored further. Lastly, chapter 6 does not study tables
and focuses only on unstructured text. Table retrieval [153, 189, 214, 215] is an essential
component of the retriever-reader framework of tableQA. Current work on neural table
retrieval focuses on dense retrieval [65], while neural sparse retrieval over tables is an
open challenge. The lessons learned in Chapter 6 on parameter-efficient sparse retrieval
over text need to be investigated on structured tables and are left for future work.
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Summary

Information seeking systems are usually designed with two main components: a Re-
triever which retrieves a small subset of relevant information sources that is utilized
by a Reader which provides a precise answer to the user’s query to satisfy the user
requirement. Although the Web contains different modalities of information, focus
has been primarily on unstructured text with little attention to various heterogeneous
information sources. This motivates the investigation of information seeking systems
from heterogeneous sources of information, such as structured tables in addition to
unstructured text. This thesis inquires two broad research themes: developing a ma-
chine comprehension reader on semi-structured tables to aid the information needs of
users and designing an efficient and effective retriever to aid question answering on
unstructured text?. Most of this thesis focuses on the first aspect, with the last chapter
focusing on the second aspect.

Chapter 2 studies generative question answering with either structured tables or
unstructured text. Additionally, Chapter 2 investigates how supervised fine-tuning
compares with adapter-tuning on text-based pre-trained models. Quantitative analysis
such as adapter layer ablation and qualitative analysis studies the effectiveness-efficiency
trade-off and the effect that the structured input modality and subsequent domain shift
have on the model performance.

Chapter 3 introduces the task of QA over multiple table contexts. To effectively train
language models for the task, a curriculum learning approach was designed with first
training the language model on simple SQL queries over single tables, then training on
complex SQL queries but over multiple tables, and finally training on natural language
questions over multiple tables. Multiple datasets were developed to aid in all the training
stages. Further, automatic evaluation metrics were designed to assess the performance
of the trained models. Extensive experiments and ablation studies demonstrate the
effectiveness of the proposed methodology, datasets, and trained models.

Chapter 4 introduces the query-focused multi-table summarization task. A two-stage
prompting methodology was developed and datasets created to aid the task. Extensive
experiments with various training strategies were explored, such as supervised fine-
tuning, LoRA adapter-tuning, and in-context learning. Lastly, automatic evaluation
metrics were analyzed and compared with human judgments.

Chapter 5 introduces the task of low-resourced tableQA and studies two Indo-Aryan
languages: Bengali and Hindi. As the tableQA task over low-resource setting is severely
resource-scarce, an automatic dataset generation methodology was developed to aid in
large-scale dataset creation over any language with Wikipedia presence. This process
led to the creation of two large-scale datasets, for Bengali and Hindi, respectively. The
models trained on these datasets were superior in performance to existing multi-lingual
baseline models and state-of-the-art large language models. Further, analysis on the
performance of various mathematical operator classes and experiments on zero-shot
learning showed the generalizability of the trained models.

Chapter 6 investigates the efficiency-accuracy trade-off by introducing a parameter-
efficient sparse encoding mechanism with first-stage neural retriever SPLADE called
Adapter-SPLADE. Adapter-SPLADE was explored in two setups, the mono-encoder
and the bi-encoder setup. Experimental results demonstrate the superiority of Adaper-

133



7. Summary

SPLADE compared to full fine-tuning. Additionally, other training techniques such as
distillation were conducted, showing higher variance in the flops which captures the
sparsity of the encodings. Additionally, analysis on adapter layer ablation and out-of-
domain generalizability was performed. Finally, investigation on whether knowledge
can be shared between re-rankers and first-stage rankers was conducted.
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Samenvatting

Informatiezoeksystemen worden meestal ontworpen met twee hoofdcomponenten: een
retriever die een kleine subset van relevante informatiebronnen ophaalt, die wordt
gebruikt door een reader die een nauwkeurig antwoord geeft op de vraag van de
gebruiker om aan de gebruikersbehoefte te voldoen. Hoewel het web verschillende
informatiemodaliteiten kent, ligt de focus voornamelijk op ongestructureerde tekst met
weinig aandacht voor diverse heterogene informatiebronnen. Dit motiveert het onder-
zoek naar informatiezoeksystemen met heterogene informatiebronnen, zoals gestruc-
tureerde tabellen naast ongestructureerde tekst. Dit proefschrift onderzoekt twee brede
onderzoeksthema’s: het ontwikkelen van een machine-comprehension reader met semi-
gestructureerde tabellen om te voldoen aan de informatiebehoeften van gebruikers en
het ontwerpen van een efficiënte en effectieve retriever om het beantwoorden van vragen
in ongestructureerde tekst te ondersteunen. Het grootste deel van dit proefschrift richt
zich op het eerste aspect, terwijl het laatste hoofdstuk zich richt op het tweede aspect.

Hoofdstuk 2 bestudeert generatieve vraag-antwoord systemen met gestructureerde
tabellen of ongestructureerde tekst. Daarnaast onderzoekt hoofdstuk 2 hoe gesuper-
viseerde fine-tuning zich verhoudt tot adapter-tuning op tekstgebaseerde, vooraf ge-
trainde modellen. Kwantitatieve analyse, zoals ablatie van de adapterlaag en kwali-
tatieve analyse, bestudeert de afweging tussen effectiviteit en efficiëntie en het effect
van de gestructureerde invoermodaliteit en de daaropvolgende domeinverschuiving op
de modelprestaties.

Hoofdstuk 3 introduceert de vraag-antwoordtaak over meerdere tabelcontexten. Om
taalmodellen effectief voor deze taak te trainen, werd een curriculumleeraanpak ontwor-
pen, waarbij het taalmodel eerst werd getraind met eenvoudige SQL-query’s over enkele
tabellen, vervolgens met complexe SQL-query’s maar over meerdere tabellen, en tot
slot met vragen in natuurlijke taal over meerdere tabellen. Er werden meerdere datasets
ontwikkeld ter ondersteuning van alle trainingsfasen. Verder werden automatische
evaluatiemetrieken ontworpen om de prestaties van de getrainde modellen te beoordelen.
Uitgebreide experimenten en ablatiestudies tonen de effectiviteit van de voorgestelde
methodologie, datasets en getrainde modellen aan.

Hoofdstuk 4 introduceert de querygerichte multi-tabelsamenvattingstaak. Er werd
een tweestaps prompting-methodologie ontwikkeld en datasets gecreëerd om de taak te
ondersteunen. Er werden uitgebreide experimenten met verschillende trainingsstrate-
gieën uitgevoerd, zoals supervised fine-tuning, LoRA-adapter-tuning en in-context leren.
Ten slotte werden automatische evaluatiemetrieken geanalyseerd en vergeleken met
menselijke oordelen.

Hoofdstuk 5 introduceert de taak van tableQA met beperkte middelen en bestudeert
twee Indo-Arische talen: Bengaals en Hindi. Omdat de tableQA-taak in een omgeving
met beperkte middelen zeer schaars is, werd een methodologie voor automatische
datasetgeneratie ontwikkeld ter ondersteuning van grootschalige datasetcreatie voor
elke taal met een aanwezigheid in Wikipedia. Dit proces leidde tot de creatie van
twee grootschalige datasets, respectievelijk voor het Bengaals en Hindi. De modellen
die op deze datasets werden getraind, presteerden beter dan bestaande meertalige
basismodellen en state-of-the-art grote taalmodellen. Verder toonden analyses van de
prestaties van verschillende wiskundige operatorklassen en experimenten met zero-shot
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learning de generaliseerbaarheid van de getrainde modellen aan.
Hoofdstuk 6 onderzoekt de afweging tussen efficiëntie en nauwkeurigheid door de

introductie van een parameterefficiënt sparse-encodingmechanisme met de neurale re-
triever SPLADE in de eerste fase, genaamd Adapter-SPLADE. Adapter-SPLADE werd
onderzocht in twee opstellingen: de mono-encoder en de bi-encoder. Experimentele
resultaten tonen de superioriteit van Adaper-SPLADE aan ten opzichte van volledige
finetuning. Daarnaast werden andere trainingstechnieken, zoals distillatie, toegepast,
wat een hogere variantie in de flops aantoonde, wat de schaarste van de coderingen
weergeeft. Daarnaast werd analyse uitgevoerd op de ablatie van de adapterlaag en
generaliseerbaarheid buiten het domein. Tot slot werd onderzocht of kennis gedeeld
kan worden tussen re-rankers en first-stage rankers.
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