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Abstract. Conversational systems have become increasingly popular as a way
for humans to interact with computers. To be able to provide intelligent responses,
conversational systems must correctly model the structure and semantics of a
conversation. We introduce the task of measuring semantic (in)coherence in a
conversation with respect to background knowledge, which relies on the identifi-
cation of semantic relations between concepts introduced during a conversation.
We propose and evaluate graph-based and machine learning-based approaches
for measuring semantic coherence using knowledge graphs, their vector space
embeddings and word embedding models, as sources of background knowledge.
We demonstrate how these approaches are able to uncover different coherence
patterns in conversations on the Ubuntu Dialogue Corpus.

1 Introduction

Conversational interfaces are seeing a rapid growth in interest. Conversational systems
need to be able to model the structure and semantics of a human conversation in order
to provide intelligent responses. The requirement conversations be coherent is meant
to improve the probability distribution over possible dialogue states and candidate re-
sponses.

A conversation is an information exchange between two or more participants.7 An
essential property of a conversation is its coherence; De Beaugrande and Dressler [9]
describe it as a “continuity of senses.” Coherence constitutes the outcome of a cogni-
tive process, and is, therefore, an inherently subjective measure. It is always relative
to the background knowledge of participants in the conversation and depends on their
interpretation of utterances. Coherence reflects the ability of an observer to perceive
meaningful relations between the concepts and to be critical of the new relations being
introduced. Meaning emerges through the interaction of the knowledge presented in the
conversation with the observer’s stored knowledge of the world [24]. In other words,

7 We use the terms “dialog” and “conversation” interchangeably, while “dialog” refers specifi-
cally to a two-party conversation.
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a conversation has to be assigned an interpretation, which depends on the knowledge
available to the agent.

In this paper we focus on analyzing semantic relations that hold within dialogues,
i.e., relations that hold between the concepts (entities) mentioned in the course of the
same dialogue. We call this type of relation semantic coherence. We focus on semantic
relations but ignore other linguistic signals that make a text coherent from a grammatical
point of view. A classic example to illustrate the difference is due to Chomsky [4]:
“Colorless green ideas sleep furiously” – a syntactically well formed English sentence
that is semantically incoherent.

Our hypothesis is that, apart from word embeddings, recognizing concepts in the text
of a conversation and determining their semantic closeness in a background knowledge
graph can be used as a measure for coherence. To this end, we propose and evaluate sev-
eral approaches to measure semantic coherence in dialogues using different sources of
background knowledge: both text corpora and knowledge graphs. The contributions that
we make in this paper are threefold: (1) we introduce a dialogue graph representation,
which captures relations within the dialogue corpus by linking them through the seman-
tic relations available from the background knowledge; (2) we formulate the semantic
coherence measuring task as a binary classification task, discriminating between real
dialogues and generated adversary samples,8 and (3) we investigate the performance of
state-of-the-art and novel algorithms on this task: top-k shortest path induced subgraphs
and convolutional neural networks trained using vector embeddings.

The main challenge in applying structural knowledge to natural language understand-
ing becomes apparent when we do not just try to differentiate between genuine conver-
sations and completely random ones, but create adversarial examples as conversations
that have similar characteristics compared to the positive examples from the dataset.
Then, the results achieved using word embeddings are usually best and suggest that
knowledge graph (KG) embeddings would potentially be an efficient way to harness
the structure of entity relations. However, KG embedding-based models rely on entity
linking being correct and cannot easily recover from errors made at the entity linking
stage compared to other graph-based approaches that we use in our experiments.

2 Related Work

Several lines of research are relevant to our work: discourse analysis, dialogue systems
and knowledge graphs.

2.1 Discourse analysis

Previous work on discourse analysis demonstrates good results in recognizing discourse
structure based on lexical cohesion for specific tasks such as topic segmentation in
multi-party conversations [12]. Term frequency distribution on its own already provides
a strong signal for topic drift. A more sophisticated approach to assess text coherence is
based on the entity grid representation [2], which represents a text as a matrix that cap-
tures occurrences of entities (columns) across sentences (rows) and indicates the role

8 As there is no standard corpus available for this task, we test against 5 ways to generate artifi-
cial negative samples.
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entity plays in the sentence (subject, object, or other). This approach relies on a syntactic
(dependency) parser to annotate the entity roles and is, therefore, also targeted at mea-
suring lexical cohesion rather than semantic relations between concepts. The de facto
standard testbed for discourse coherence models is the information (sentence) ordering
task [16]; it was recently extended to a convolutional neural network-based model for
coherence scoring [22]. The best results to date were demonstrated by incorporating a
fraction of semantic information from an external knowledge source (entity types clas-
sification) into the original entity grid model [10]. Cui et al. [7] push the state-of-the-art
on the sentence ordering task by incorporating word embeddings at the input layer of a
convolutional neural network instead of the entity grid.

In summary, background knowledge has been found to be able to provide a strong
signal for measuring coherence in discourse.

2.2 Dialogue systems
In contrast to previous research focused on measuring coherence in a monologue, we
consider the task of evaluating coherence in a written dialogue setting by analyzing the
largest multi-turn dialogue corpus available to date, the Ubuntu Dialogue Corpus [17].

Research in dialogue systems focuses on developing models able to generate or select
from candidate utterances, based on previous interactions. Lowe et al. [18] evaluated
several baseline models on the Ubuntu Dialogue Corpus for the next utterance classifi-
cation task. Their error analysis suggests that the models can benefit from an external
knowledge of the Ubuntu domain, which could provide the missing semantic links be-
tween the concepts mentioned in the course of the conversation. This work motivated us
to consider evaluating whether relations accumulated in large knowledge graphs could
provide missing semantics to make sense of a conversation.

2.3 Knowledge graphs
Knowledge graphs (KGs) were successfully applied for disambiguating natural lan-
guage text in a variety of tasks, such as information retrieval [3, 13] and textual en-
tailment [26]. They serve an important role by providing additional relations that help
to bridge the lexical gap and gain a more complete understanding of the context in
comparison with shallow approaches based on lexical features alone. There was also a
recent surge in development of question answering interfaces to KGs [1, 19, 28].

Our work is orthogonal to these lines of work, as it seeks to discover the potential
and limitations of KGs to support natural language understanding beyond single search
queries or factoid question answering towards a holistic interactive experience, which
recognizes and supports the natural (coherent) flow of a conversation.

3 Measuring Semantic Coherence
In this section, we describe several approaches to modeling a conversation and mea-
suring its coherence. We use dialogues, i.e., a two-party conversation to illustrate our
approaches. Our approaches could also be applied to multi-party conversations.

We propose to measure dialogue coherence with a numeric score that indicates more
coherent parts of a conversation and provides a signal for topic drift. Our approach is
based on the assumption that naturally occurring human dialogues, on average, exhibit
more coherence than their random permutations.
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3.1 Dialogue graph

We model a dialogue as a graph D, which contains 4 types of nodes P,U,W,C and
edges E between them. P refers to the set of conversation participants, U – the set of
utterances, W – the set of words and C – the set of concepts.

The words w in a conversation are grouped into utterances ∀w ∈ W, ∃(u,w) ∈
E such that u ∈ U ,9 which belong to one of the conversation participants ∀u ∈
U∃(p, u) ∈ E such that p ∈ P . Every utterance can belong to only one of the par-
ticipants, while the same words can be re-used in different utterances by the same
or different participants. Words may refer to concepts from the background knowl-
edge (w, c) ∈ E, where w ∈ W, c ∈ C. Several words may refer to a single con-
cept, while the same concept may be represented by different sets of words. The se-
quence in which words appear in a conversation is given by the consecutive set of edges
T = {(w1, w2), (w2, w3), . . .} such that T ⊂ E, indicating the dialogue flow.

The first three types of nodes P , U , and W together with their relations are available
from the dialogue transcript itself, while the set of concepts C and relations between
them constitute the semantic representation (meaning) of a dialogue. The meaning is
not directly observable, but is constructed by an observer (one of the dialogue partici-
pants or a third party) based on the available background knowledge. The background
knowledge supplies additional links, which we refer to as semantic relations. They link
words to concepts they may refer to: (w, c) (see footnote 9) and different concepts to
each other (ci, cj). These external relations provide the missing links between words,
which explain and justify their co-occurence. The absence of such links gives an impor-
tant signal to the observer, and may indicate a topic switch or discourse incoherence.
However, some of the valid links may also be missing from the background knowledge.

An example dialogue graph is illustrated in Fig. 1. The dialogue consists of four
utterances represented by nodes u1–u4. In the graph we also illustrate a subgraph ex-
tracted from the background knowledge, which links the concepts c1 dbr:Gedit and
c4 dbr:Ubuntu(OS) to the concept c∗ dbr:GNOME, which was not mentioned in
the conversation explicitly. This link represents semantic relation between the dialogue
turns: (u1, u2) and (u3, u4), indicating semantic coherence in the dialogue flow. In this
example, the semantic relation extracted from the background knowledge corresponds
to the shortest path of length 2, i.e., the distance between the concepts mentioned in
the dialogue was two relations introducing one external concept from the background
knowledge. c∗ can consist of more than one entity, but encompass a whole subgraph
summarizing various relations, which hold between entities, and are represented via al-
ternative paths between them in a knowledge graph. In the next section, we describe
our approach to empirically learn semantic relations that are characteristic for human
dialogues, using different sources of background knowledge and different knowledge
representation models.

3.2 Semantic relations

We collect semantic relations between concepts referenced in a dialogue from our
background knowledge. We consider two common sources of background knowledge:

9 For simplicity, we ignore the role of word order; it can be re-constructed from the order within
the conversation T if needed, see below.
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mdg: gksudo gedit /etc/apt/source.list  
(type from command line) crunchbang666: the text editor has opened the file 

source.list but there is no content 
i typed source instead of sources ... ok so i have it open 
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Fig. 1: Dialogue graph example along with the annotated dialog. We focus specifically
on the layer of concepts in the middle [c1, . . . , c4] attempting to bridge the semantic gap
in the lexicon of a conversation using available knowledge models: word embeddings
and a knowledge graph.

(1) unstructured data: word co-occurrence statistics from text corpora; (2) semi-structur-
ed data: entities and relations from knowledge graphs. In order to be able to use a KG
as a source of background knowledge we need to perform an entity linking step, which
maps words to semantic concepts (w, c), where concepts refer to entities stored in KG.
We consider two approaches to retrieve relations between the entities mentioned in a
dialog, namely vector space embeddings and subgraph induction via the top-k shortest
paths algorithm.

Embeddings. Embeddings are generated using the distributional hypothesis by repre-
senting an item via its context, i.e., its position and relations it holds with respect to
other items. Embeddings are multi-dimensional vectors (of a fixed size), which encode
the distributional information of an item (a word in the a or a node in a graph), i.e., its
position and relations to other items in the same space. This is achieved by comput-
ing vector representations towards an optimality criteria defined with a certain output
function, which depends on the embedding vectors being trained. Thus, embeddings
efficiently encode (compress) an original sparse representation of the relations (e.g., an
adjacency matrix) for each of the items. It provides an easy and fast way to access this
information (relationship structure). Following this approach, every concept ci in our
dialogue graph 1 is assigned to an n-dimensional vector, which encodes its location in
the semantic space, and loses all the edges, which explicitly specified its relations to
other concepts in the space.
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We consider two types of embeddings to represent concepts mentioned in a dialog,
one for each of our background knowledge sources: word embeddings trained on a
text corpus, and entity embeddings trained on a KG. For word embeddings, we use
word2vec [20], in particular the skip-gram variant, which aims to create embeddings
such that they are useful for predicting words which are in the neighborhood of a given
word. GloVe [23] is a word embedding method, with the explicit goal of embedding
analogies between entities. This method does not work directly on the text corpus, but
rather on co-occurrence counts which are derived from the original corpus.

For graph embeddings, we use two methods that can be scaled to large graphs,
such as DBpedia and Wikidata: biased RDF2Vec [5] (using random walks) and Global
RDF Vector Space Embeddings [6]; we refer to the latter ones as KGlove embeddings.
RDF2Vec is based on word2vec. It works by first generating random walks on the graph,
where the edges have received weights which influence the probability of following
these edges. During the walk, a sentence is generated consisting of the identifiers oc-
curring on the nodes and edges traversed. For each entity in the graph, many walks
are performed and hence a large text is generated. This text is then used for training
word2vec. KGlove is based on GloVe, but instead of counting the co-occurrence counts
from text, they are computed from the graph using personalized PageRank scores start-
ing from each node or entity in the graph. These counts (i.e., probabilities) are then
used as the input to an optimization problem that aims to encode analogies by creating
embedding vectors corresponding to the co-occurrences.

Subgraph induction. An embedding (usually) carries a single representation for an
item (word or entity), which is designed to capture all relations the item has regardless
of the task or the context in which the item occurs. For example, an embedding represen-
tation may neglect some of the infrequent relations, which can become more relevant
than others depending on the situation (context). In order to contrast the embedding-
based approach, we also implement a more traditional graph-based approach to rep-
resent entity relations in a KG. Given a sequence of entities, as they appear in a di-
alog, i.e., [c1, c2 . . . cn], we extract relations, as top-k shortest paths, between every
entity ci and all the entities that were mentioned in the same dialogue before ci, i.e.,
(c1, ci), (c2, ci), . . . , (ci−1, ci).

For the top-k shortest path computation, we apply an approach based on bidirectional
breadth-first search [25] using the space-efficient binary Header, Dictionary, Triples
(HDT) encoding [11] of the KG. This approach maps entities discussed in the dialogue
to KG concepts, and then interprets paths between concepts in the KG as semantic
relations between the respective entities. Many such relations are never mentioned in
the conversation and only become explicit through the path enumeration over the KG.
By increasing the number of desired shortest paths k and the maximum path length
`, one can discover more relations, including those that might be omitted or obscured
in the entity embedding representation in the case of a random walk or frequency-
based embedding algorithms. An obvious downside of this increase in recall is reduced
efficiency.

3.3 Dialogue classification

We measure semantic coherence by casting the task into a classification problem. The
score produced by the classifier corresponds to our measure of semantic coherence.
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Since human dialogues are expected to exhibit a certain degree of incoherence due to
topic drift and since relations are missing from our background knowledge, we cannot
assume every concept in our dialogue dataset to be coherent with respect to the other
concepts in the same dialog. However, it is reasonable to assume that on average a rea-
sonably large set of concepts extracted from a human dialogue exhibits a higher degree
of coherence than a randomly generated one. We build upon this assumption and cast
the task of measuring semantic coherence as a binary classification task, in which real
dialogues have to be distinguished from corrupted (incoherent) dialogues. We consider
positive and negative examples for whole conversations, represented as a sequence of
words or entities, which constitute the input for the binary classifier. Effectively, these
examples provide a supervision signal for measuring and aggregating distances between
words/concepts by learning the weights for the neural network classifier.

Negative sampling. To produce negative (adversarial) examples for the binary classi-
fication task we propose five sampling strategies:

– RUf: Random uniform. For every positive example we choose a sequence of en-
tities (or words for training on word embeddings) of the same size from the vo-
cabulary uniformly at random; so, we double the size of the dataset effectively by
supplementing it with completely randomly generated (i.e., presumably incoherent)
counterexamples.

– SqD: Sequence disorder. Randomly permute the original sequence, which is similar
in spirit to the sentence ordering task for evaluating discourse coherence [16]. The
key difference is that we rearrange the order of words (entities), which may also
occur within the same sentence (utterance), rather than permuting whole sentences.

– VoD: Vocabulary distribution. For every positive example choose a sequence of
entities of the same length from the vocabulary using the same frequency distribu-
tion as in the original corpus; so, VoD is very similar to RuF, but tries to emulate
“structure” to some extent by choosing similar term frequencies.

– VSp: Vertical split. Create a negative example by permuting two positive examples
replacing utterances of one of the conversation participants with utterances of a
participant from a different conversation.

– HSp: Horizontal split. Create a negative example by permuting two positive exam-
ples merging the first half of one conversation with the second half of a different
conversation.

Convolutional neural network. To solve the binary classification task we train a clas-
sifier using a convolutional neural network architecture, which is applied to sequences
of words and entities to distinguish irregular semantic drift, which was deliberately in-
jected into conversations, from smooth drift which occur within real conversations.

It is a standard architecture previously employed for a variety of natural language
tasks, such as text classification [14]. The network consists of (1) an input layer, which
appends the pre-trained embeddings for each of the word (entity) from the dialogue se-
quence; (2) a convolutional layer, which consist of filters (arrays of trainable weights)
sliding over and learning predictive local patterns in the previous layer of the input em-
beddings; (3) a max pooling layer, which aggregates the features learned by the neigh-
boring filters; (4) the hidden layer, a fully connected layer, which allows combining
features from all the dimensions with a non-linear function; and (5) the output layer is
a fully connected layer, which aggregates the scores to make the final prediction. See
also Section 4.2 for details.
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4 Evaluation Setup

The source code of our implementation and evaluation procedures is publicly acces-
sible.10 We also release our dataset used in the evaluation, which contains dialogue
annotations with DBpedia entities and shortest paths, for reproducibility and further
references.11

4.1 Dataset
Dialogues. Our experiments were performed on a sample of dialogues from the Ubuntu
Dialogue Corpus12 [17], which contains 1,852,869 dialogues in total, with one dialogue
per file in TSV format, and is the largest conversational dataset to date. There are multi-
ple challenges related to using this corpus, however. The dialogues were automatically
extracted from a public chat using several heuristics selecting two user handles and
segmenting based on the timestamps. The dialogues cannot be considered as perfectly
coherent since some of the related utterances are missing from the dialogues; there can
be several different topics discussed within the same conversation and the asynchronous
nature of on-line communication often results in semantic mismatch in the dialogue se-
quence. While we cannot guarantee local coherence of the real dialogues, we expect
them to be on average more coherent, when comparing to the dialogues randomly gen-
erated by sampling entities (words) from the vocabulary or merging entities (words)
from different dialogues, which we refer to as negative samples, or adversaries, in our
binary classification task.

We proceed by annotating a sample of 291,848 dialogues from the Ubuntu Dialogue
Corpus with the DBpedia entities using the DBpedia Spotlight public web service13 [8].
The input to the entity linking API is the text for each utterance in a conversation. Next,
we considered only the dialogues where both participants contribute at least 3 new enti-
ties each, i.e., every dialogue in our dataset contains minimum 6 entities shared between
the dialogue partners. The threshold for entities per conversation was chosen to ensure
there is enough semantic information for measuring coherence. This way, we end up
with a sample of 45,510 dialogues, which we regard as true positive examples of coher-
ent dialogue. It contains 17,802 distinct entities and 21,832 distinct words that refer to
these. The maximum size of a dialogue in this dataset is 115 entities or 128 words re-
ferring to them. We shuffled the dialogues and selected 5,000 dialogues for our test set.
While this procedure means we cannot test our approach on short conversations, with
fewer entities, we consider 45K dialogues to be a representative dataset for evaluating
our approach.

The negative samples for both training and test set were generated using five different
sampling strategies described in Section 3.3. Each development set consists of 81,020
samples (50% positive and 50% negative). We further split it into a training and vali-
dation set: 64,816 and 16,204 (20%) samples, respectively. Our test set comprises the
remaining 5,000 positive examples, and 5,000 generated negative samples.

Knowledge models. We compared the performance on our task across two types of
embeddings models trained on two different knowledge source types: GloVe [23] and
10 https://github.com/vendi12/semantic_coherence
11 https://github.com/vendi12/semantic_coherence/tree/master/data
12 https://github.com/rkadlec/ubuntu-ranking-dataset-creator
13 http://model.dbpedia-spotlight.org/en/annotate

https://github.com/vendi12/semantic_coherence
https://github.com/vendi12/semantic_coherence/tree/master/data
https://github.com/rkadlec/ubuntu-ranking-dataset-creator
http://model.dbpedia-spotlight.org/en/annotate
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Word2Vec [20] for the word embeddings, and biased RDF2vec [5] and KGloVe [6] for
the knowledge graph entity embeddings.

We utilise two publicly available word embedding models: GloVe embeddings pre-
trained on the Common Crawl corpus (2.2M words, 300 dimensions)14 and Word2Vec
model trained on the Google News corpus (3M words, 300 dimensions).15 1,578 words
from our dialogues (7%) were not found in the GloVe embeddings dataset and received
a zero vector in our embedding layer. Thus, GloVe embeddings cover 20,254 words
from our vocabulary (93%). Word2Vec embeddings cover only 73% of our vocabulary.

For RDF2Vec and KGloVe we used publicly available pre-trained global embeddings
of the DBpedia entities (see [5] and [6], respectively). For KGlove we used all different
embeddings, while for RDF2Vec we experimented with the embeddings that gave the
best performance in [5]. KGlove embeddings cover 17,258 entities from our vocabulary
(97%), while Rdf2Vec provides 62–77% due to different importance sampling strategies
of the embedding approaches.

The shortest paths used were extracted from dumps of DBpedia (April 2016, 1.04
billion triples) and Wikidata (March 2017, 2.26 billion triples).16

4.2 Implementation

Our neural network model is implemented using the Keras library with a TensorFlow
backend. The one-dimensional (temporal) convolutional layer contains 250 filters of
size 3 and stride (step) 1. The max pooling layer is global, the hidden layer is set to 250
dimensions. There are two activation layers with rectified linear unit (ReLU) after the
convolutional and the hidden layers to capture also non-linear dependencies between
input and output, and two dropout layers with rate 0.2 after the embeddings and hidden
layers to avoid overfitting. The last ReLU activation is projected onto a single-unit out-
put layer with a sigmoid activation function to obtain a coherence score on the interval
between 0 and 1.

The network is trained using the Adam optimizer with the default parameters [15]
to minimize the binary cross-entropy loss between the predicted and correct value. All
models were trained for 10 epochs in batches of 128 samples and early stopping after 5
epochs if there is no improvement in accuracy on the validation set.

To compute the shortest paths we merged the dumps of DBpedia and Wikidata into
a single 36GB binary file in HDT format [11] (DBpedia+Wikidata HDT), with an ad-
ditional 21GB index on the subject and the object components of triples. We set the
parameters of the algorithm in our experimental evaluation as follows: k for the number
of shortest paths to be retrieved from the graph to 5, the maximum length ` of a path to
9 edges (relations) and a timeout terminating the query after 2 seconds to cope with the
scalability issues of the algorithm. Our top-k shortest paths algorithm implementation
is available via a SPARQL endpoint17 using the syntax shown in Fig. 2.

The function at.ac.wu.arqext.path.topk is a user defined extension avail-
able as a Jena ARQ extension.18

14 https://nlp.stanford.edu/projects/glove/
15 https://code.google.com/archive/p/word2vec/
16 http://www.rdfhdt.org/datasets/
17 http://wikidata.communidata.at
18 https://bitbucket.org/vadim_savenkov/topk-pfn

https://nlp.stanford.edu/projects/glove/
https://code.google.com/archive/p/word2vec/
http://www.rdfhdt.org/datasets/
http://wikidata.communidata.at
https://bitbucket.org/vadim_savenkov/topk-pfn
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PREFIX ppf: <java:at.ac.wu.arqext.path.>
PREFIX dbr: <http://dbpedia.org/resource/>
SELECT * WHERE {
?X ppf:topk ("--source" dbr:Directory_service

dbr:Gnome dbr:GNOME
dbr:Desktop_environment

"--target" dbr:Desktop_computer

Fig. 2: k-shortest path query (cf. [25] to extract relevant connections between entities
from the knowledge graph

Table 1: The top 5 most common entities and relations in the Ubuntu Dialogue dataset:
mentioned entities – from linking dialogue utterances to DBpedia entities via Dbpedia
Spotlight Web service; context entities and relations – from the shortest paths between
the mentioned entities in DBpedia.

Top Mentioned entities Context entities Relations

# Label Count Label Count Label Count

1 Ubuntu(philosophy) 1605 Ubuntu(OS) 1058 wikiPageWikiLink 51014
2 Sudo 708 Linux 725 gold/hypernym 319
3 Booting 676 Microsoft Windows 208 ontology/genre 178
4 APT(Debian) 405 FreeBSD 175 operatingSystem 140
5 Live CD 314 Smartphone 171 rdf-schema#seeAlso 116

5 Evaluation Results

Table 1 reports the most common entities and relations, which while not being men-
tioned in the course of a dialogue, were on the shortest paths (in the KG) between
other entities that were explicitly mentioned in the dialogue, i.e., which constitute an
implicit dialogue context. While Dbpedia Spotlight dereferenced “Ubuntu” mentions
to the concept related to philosophy rather than to the popular software distribution,
the graph-based approach succeeds in recovering the correct meaning of the word by
extracting this concept from the shortest paths that lie between the other entities men-
tioned in dialogues. Almost all relations obtained from the KG correspond to the links
between the corresponding Wikipedia web pages (wikiPageWikiLink).

5.1 Semantic distance

The length of the shortest path (number of edges, i.e., relations on the path) is a stan-
dard measure used to estimate semantic (dis)similarity between entities in a knowledge
graph [21]. We observe how it correlates with a standard measure to estimate simi-
larity between vectors in a vector space, cosine distance, defined as: 1 − cos(x, y) =

1− xyᵀ

||x||||y|| Fig. 3 showcases different perspectives on semantic similarity (coherence)
between the entities in real and generated dialogues as observed in different semantic
spaces (w.r.t. the knowledge models), alignments and differences between them. The
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Fig. 3: Distribution of cosine distances for different data splits using Word2Vec and
GloVe word embeddings (left), and RDF2Vec KG embeddings (top right), compared
with the distribution of shortest path lengths in DBpedia+Wikidata KG (bottom right).
Words in real dialogues (True positive) are more related than frequent domain words
(Vocabulary distribution), and much more than a random sample (Random uniform).

barplots reflect the distributions of the semantic distances between entities in dialogues.
The semantic distances are measured using cosine distances between vectors in the
vector space for word (Word2Vec and GloVe) and KG (RDF2Vec) embeddings, and
in terms of the shortest path lengths in the DBpedia+Wikidata KG. We observe that
the real dialogues (True positive) tend to have smaller distances between entities: 1–2
hops or at most 0.3 cosine distance, while randomly generated sequences are skewed
further off. Embeddings produce much more fine-grained (continuous) representation
of semantic distances in comparison with the shortest path length metric. Distributions
produced by different word embeddings are very similar in shape, while the one from
KG embeddings is steeper and skewed more to the center, there are only a few entities
further than 0.7, while this is the top for the random distances in word embeddings.

We also discover the bottleneck of our shortest path algorithm at length 5. Since the
set of relevant entities for which the paths are computed grows proportionally to the
dialogue length, depending on the degree of the node the number of expanded nodes
quickly reaches the limit on the memory size. In our case, the algorithm retrieved the
paths of length at most 5 due to the 2-second timeout, while the parameter for the
maximum length of the path ` was set to 9.
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5.2 Classification results

Our evaluation results from training a neural network on the task of measuring (in)cohe-
rence in dialogues are listed in Table 2. It summarizes the outcomes of models trained
on different embeddings using different types of adversarial samples (negative sampling
strategies are described in Section 3.3). For the KG embeddings, we report only the
approaches that performed best across different test splits.19

From the results we observe that the easiest task was to distinguish real dialogues
from randomly generated sequences. When the model was trained with randomly gen-
erate dialogues, accuracies often reach close to 100%. However, this same model per-
forms poorly when used for any other type of non-genuine messages we created. In
the best case (KGloVe Uni), still only 10% of messages randomly sampled from the
vocabulary distribution were correctly detected. This indicates that there is a need to
experiment with the other types as well. We also observe that the models that are trained
with specific adversarial examples are best in separating that type. However, even when
the model is not explicitly trained to recognize a specific type of dialogue, but instead
trained on other types of adversarial examples, it is sometimes still able to classify mes-
sages correctly. This happens, for example, in the case of KGloVe Uniform where the
adversarial messages are sampled from the Vocabulary distribution and the model is
still able to detect around 70% of randomly generated messages.

The dialogues generated by permuting the sequence of entities (words) in the original
dialogues (the sequence ordering task) were harder to distinguish (The best performing
model resulted in an accuracy of 0.79). Finally, the hardest task was to discriminate the
adversarial examples generated by merging two different dialogues together (vertical
and horizontal splits). This was expected as these dialogues have short sequences of
genuine dialogue inside, making them hard to classify.

The best performance across all test settings was achieved using the word embed-
dings models, especially GloVe performed well. KG embeddings, while performing
reasonably well on the easier tasks (RUf and VoD), fell short to distinguish more sub-
tle changes in semantic coherence. For the KG embedding weighting approaches, we
noticed that the ones which performed well in earlier work, also worked better in this
task. In particular, it was noticed that the weighting biased by PageRank computed on
the Wikipedia links graph results in better results in machine learning tasks.

As discussed in Section 4, RDF2vec has fewer entity embeddings than KGloVe, when
trained from the same original graph (DBpedia). KGloVe will provide an embedding,
even when not much is known about a specific entity. In case of a node that does not
have any edges, KGloVe will assign a random vector to it. In contrast, RDF2Vec will
prune infrequent nodes. Another problem that affects KG embeddings are incorrectly
recognized entities. There is no linking required for needed word embeddings since it
represents different meanings of the word in a single vector.

Overall, we want to be able not only to tell to which degree a dialogue is (in)coherent
but also to identify the regions in the dialogue where coherence was disrupted, or to par-
tition the dialogue into coherent segments indicating the shifts between different topics.
Visualization of the activations in the output of the convolutional layer of the Glove
word embeddings-based model exhibits distinct vertical activation patterns, which can
be interpreted as traces of local coherence the model is able to recognize (See Fig. 4).

19 The full result table is available on-line: https://github.com/vendi12/semantic_
coherence/blob/master/results/results.xls

https://github.com/vendi12/semantic_coherence/blob/master/results/results.xls
https://github.com/vendi12/semantic_coherence/blob/master/results/results.xls
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Table 2: Accuracy on the test set across different embedding and sampling approaches.
The table shows for 7 different embedding strategies (4 types), how the embedding
performs when trained with data from different generated adversarial examples. For
example, the underlined value in the table (0.92), means that GloVe word embeddings,
when trained with genuine and Vertical split (VSp) adversarial examples, is able to
correctly find 92% of the Vocabulary distribution (VoD) adversarial examples in the
test set. In the same row, in the TPos column, it can be seen that 60% of the genuine
messages were correctly identified. Hence, this results in an average accuracy of 0.76.
In blue highlight, we indicate the results where the adversarial examples for training
the model where of the same type as for testing the model. In bold, we indicate the
best result for each adversarial example type. Abbreviations: TPos – True Positive,
TNeg – True Negative, RUf – Random uniform, VoD – Vocabulary distribution, SqD –
Sequence disorder, VSp – Vertical split, HSp – Horizontal split, Avg – Average, PRS –
PageRank Split, PR – PageRank, Uni – Uniform, PrO – Predicate Object.

Accuracy

Data TNeg

Embeddings split TPos RUf Avg VoD Avg SqD Avg VSp Avg HSp Avg Avg

Word2Vec RUf 0.99 0.99 0.99 0.02 0.50 0.02 0.50 0.01 0.50 0.01 0.50 0.60
VoD 0.89 0.62 0.75 0.90 0.89 0.53 0.71 0.18 0.54 0.20 0.54 0.69
SqD 0.75 0.65 0.70 0.88 0.81 0.81 0.78 0.27 0.51 0.29 0.52 0.66
VSp 0.59 0.50 0.55 0.82 0.71 0.41 0.50 0.59 0.59 0.61 0.60 0.59
HSp 0.62 0.39 0.50 0.71 0.66 0.38 0.50 0.55 0.58 0.63 0.63 0.58

GloVe RUf 0.99 0.99 0.99 0.00 0.50 0.01 0.50 0.00 0.50 0.00 0.50 0.60
VoD 0.93 0.38 0.66 0.93 0.93 0.39 0.66 0.19 0.56 0.08 0.51 0.66
SqD 0.76 0.71 0.73 0.91 0.84 0.82 0.79 0.16 0.46 0.15 0.45 0.66
VSp 0.60 0.25 0.42 0.92 0.76 0.43 0.51 0.65 0.62 0.66 0.63 0.59
HSp 0.71 0.34 0.52 0.81 0.76 0.30 0.50 0.55 0.63 0.66 0.68 0.62

rdf2vec PRS RUf 0.98 0.99 0.99 0.02 0.50 0.02 0.50 0.02 0.50 0.01 0.50 0.60
VoD 0.79 0.68 0.73 0.83 0.81 0.34 0.57 0.36 0.57 0.35 0.57 0.65
SqD 0.59 0.48 0.54 0.72 0.66 0.67 0.63 0.43 0.51 0.40 0.50 0.56

rdf2vec PR HSp 0.57 0.59 0.58 0.72 0.64 0.43 0.50 0.59 0.58 0.67 0.62 0.58

KGloVe Uni RUf 0.92 0.97 0.94 0.11 0.51 0.09 0.50 0.08 0.50 0.07 0.50 0.59
VoD 0.54 0.88 0.71 0.73 0.64 0.61 0.58 0.51 0.52 0.52 0.53 0.60
SqD 0.55 0.62 0.58 0.64 0.59 0.63 0.59 0.47 0.51 0.45 0.50 0.56

KGloVe PrO HSp 0.31 0.81 0.56 0.75 0.53 0.69 0.50 0.77 0.54 0.70 0.51 0.53
KGloVe PR HSp 0.47 0.69 0.58 0.61 0.54 0.54 0.50 0.57 0.52 0.65 0.56 0.54

6 Conclusion

We considered the task of measuring semantic coherence of a conversation, which in-
troduces an important and challenging problem that requires operating vast amounts of
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Fig. 4: Heatmap of the activations on the output of the word embeddings layer. Notice
the vertical-bar pattern indicating a stronger semantic relation between the words in a
real dialogue (top) in comparison with a random word sequence (middle). The topic
drift effect can be observed when two different dialogues are concatenated (horizontal
split – bottom): the bars at the top are shifted in comparison with the bars in the sec-
ond half of the conversation, comparing to the coherence patterns observed in the real
dialogue (top).

heterogeneous knowledge sources to infer implicit relations between the utterances, i.e.,
bridging the semantic gap in understanding natural language. We proposed and evalu-
ated several approaches to this problem using alternative sources of background knowl-
edge, such as structured (knowledge graph) and unstructured (text corpora) knowledge
representations. These approaches detect semantic drift in conversations by measuring
coherence with respect to the background knowledge. Our models were trained for di-
alogs but the approach does not restrict the number of conversation participants. The
model’s performance depends to a large extent on the choice of background knowledge
source, with respect to the conversation domain. The conversation needs to contain a
sufficient number of recognized entities to signal its position within the semantic space.

Our results indicate promising directions as well as challenges in applying structural
knowledge to analyse natural language. We show that the use of word embeddings in
text classification is superior to some existing knowledge graph embeddings. This is
an important insight, advancing research by uncovering limitations of state-of-the-art
knowledge graph embeddings and indicating directions for improvements.

Knowledge graph embeddings constitute a potentially powerful method to efficiently
harness entity relations for tasks that require estimates of semantic similarity. However,
their use relies on the correctness of the entity linking performance. Errors made at
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this stage in the pipe-line approach do propagate into the classification results, but we
noticed that they are rather consistent, which partially mitigates the problem. Our exper-
iments showed that graph-based approaches are more robust to errors in entity linking
than knowledge graph embeddings, which is an important insight for future work: this
effect can likewise be expected with other existing entity linking approaches.

More research is needed on how to make a knowledge graph embeddings-based
model more robust to uncertainty in entity linking, such as end-to-end learning on
graphs [29]. Also, combining evidence from both structured (knowledge graphs) and
unstructured (text) data sources has a great potential to mitigate knowledge sparsity,
increase support and interpretability of semantic relations [27]. We provide a test bed
for the semantic coherence task, which can be used to compare word- and entity-based
representation approaches, and their combinations, whereupon others can build.
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