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ABSTRACT
Two products are substitutes if both can satisfy the same consumer
need. Intrinsic incorporation of product substitutability—where
substitutability is integrated within latent vector space models—is
in contrast to the extrinsic re-ranking of result lists. The fusion of
text matching and product substitutability objectives allows latent
vector space models to mix and match regularities contained within
text descriptions and substitution relations. We introduce a method
for intrinsically incorporating product substitutability within la-
tent vector space models for product search that are estimated
using gradient descent; it integrates flawlessly with state-of-the-art
vector space models. We compare our method to existing meth-
ods for incorporating structural entity relations, where product
substitutability is incorporated extrinsically by re-ranking. Our
method outperforms the best extrinsic method on four benchmarks.
We investigate the effect of different levels of text matching and
product similarity objectives, and provide an analysis of the effect
of incorporating product substitutability on product search rank-
ing diversity. Incorporating product substitutability information
improves search relevance at the cost of diversity.
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1 INTRODUCTION
Revenue from online retail is growing with an average of 15% on a
yearly basis [47]. Online retail has become a fundamental part of so-
ciety [31]. Compared to brick-and-mortar stores, online stores typi-
cally carry many more products as physical aisles and promotional
posters are replaced by their virtual counterparts: ranked lists and
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banner ads. E-commerce search engines are a crucial component
of web stores that allow online shoppers to effortlessly navigate
the extensive product catalogs [18]. To navigate the large numbers
of available products, users formulate e-commerce search queries
using traits of the product they are interested in [38]. When ranking
products according to relevance w.r.t. the user’s query, (product)
search engines combine different signals in a learning to rank frame-
work [40, 46]. The signals include, among others, the degree of text
matching between the query and different product/document fields
or attributes, and product-specific attributes, such as sales rating or
price. One important source of product relevance that is often over-
looked, however, is product substitutability. Henderson and Quandt
[16, p. 29] state that “two goods (i.e., products) are substitutes if
both can satisfy the same need to the consumer” [23]. Consequently,
the question we address in this paper is whether the incorporation
of product entity substitutability can improve the effectiveness of
relevance ranking within product search.
The substitutability relation among products ea and eb can be

determined in multiple ways. Cross-price elasticity, the change in
demand for product ea w.r.t. the change in price of product eb [23],
is a method from economics that measures the relation between
pairs of products [15]. A positive cross-price elasticity indicates that
raising the price of product eb , all else unchanged, caused a rise in
the demand for product ea and vice versa for price decreases. Given
that the world is dynamic and thus cross-price elasticity is hard to
estimate, Lattin and McAlister [23] proposed alternative methods
where products are represented by a set of features. Another source
of information regarding product relations is the Commodity and
Food Elasticities database of the U.S. government [35]. However, on
e-commerce platforms, product substitutability can be inferred from
user purchasing behavior [30]. For example, if multiple users view
product ea before purchasing product eb , then the substitutability
of product ea and eb can be determined empirically.

The key idea of this paper is that product substitutability relations
can facilitate the retrieval of relevant products that are impacted
most by the vocabulary gap [25]. That is, we postulate that prod-
uct substitutability relations can help bring products—with textual
representations that do not match very well with the query—up
higher in the ranking. Product substitutability can be integrated
into product search either extrinsically or intrinsically. Extrinsic
methods perform a re-ranking of text retrieval model rankings
[45]. Consequently, these methods can be applied to any existing
retrieval model that generates a ranking of products. However, ex-
trinsic methods are unable to use regularities shared between text
and product substitutability to their advantage as the text matching
component is abstracted away by the underlying retrieval model.
That is, if products ea and eb are deemed substitutable and the tex-
tual representation of product eb is semantically similar to that of
product ec , then existing external methods fail to recognize the sim-
ilarity between products ea and ec that arises due to the transitive
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relation that operates across text descriptions and product sub-
stitutability. With intrinsic incorporation, product substitutability
relations are embedded within the retrieval models. Consequently,
the retrieval models can take into account signals from both text
matching and product substitutability to improve product search
effectiveness. The framework we present in this paper directly and
intrinsically incorporates entity similarity within state-of-the-art
latent vector space models [48, 53] that are learned using gradi-
ent descent. Our approach has the following benefits. First, and to
address the limitation of existing work we raised previously, the
fusion of a text matching objective and our novel entity similarity
objective allows the latent vector space model to mix ’n match both
signals within the vector space. Consequently, transitive similarity
across text and substitutability is modeled. Second, as the incorpo-
ration of entity similarity relations occurs during model estimation
only, few changes need to be made to existing production search en-
gines based on latent vector space retrieval in order to benefit from
improved effectiveness with only a slight increase in model training
time. This is contrary to a re-ranking approach that requires an
additional step to be implemented in the retrieval pipeline.

We answer the following research questions: (1) How does the in-
trinsic incorporation of product similarity into latent vector space
models compare to the extrinsic combination of text matching
and product similarity signals in terms of retrieval effectiveness?
(2) What is the effect of mixing different levels of the product sim-
ilarity and the text matching signals within latent vector space
models? (3) Can we explain what the incorporation of entity simi-
larity contributes to the latent vector space models compared to a
vector space that was constructed using only text?

We contribute: (1) A framework to integrate entity similarity
signals within state-of-the-art neural vector space models, with an
application to product search. (2) An extension to the C++/CUDA
implementation of LSE and NVSM that allows one to incorporate
entity similarity while training latent vector spacemodels.1 (3) Com-
parisons of extrinsic and intrinsic methods to incorporate entity
similarity using various retrieval models (BM25, QLM, word2vec,
LSE and NVSM). (4) Insight in the effect of mixing text matching
and entity similarity on retrieval effectiveness within latent vector
space models. (5) A better understanding of domain-specific reg-
ularities within product departments. (6) Analysis of the effect of
incorporating entity similarity on the product search rankings.

2 RELATEDWORK
2.1 Product search
Users often navigate e-commerce websites through product search
engines [18]. Santu et al. [40] note that product search requires spe-
cialized solutions and discuss practical challenges that arise when
learning to rank products. Nurmi et al. [34] introduce a system
that ranks products w.r.t. a natural language grocery list. Duan
et al. [13] focus on the structured aspects of product entities and
propose a mixture model for attribute-level analysis of search logs
in e-commerce websites. Later, Duan et al. [12] extend their ap-
proach to enable filtering based on product attributes. Vandic et al.
[55] propose several algorithms for automatic facet selection where
they aim to minimize the number of facet selection steps needed
to find a desired product. Duan and Zhai [11] learn a query in-
tent representation for structured product entities. McAuley et al.

1https://github.com/cvangysel/cuNVSM

[30] learn to recommend complementary and alternative prod-
ucts based on image similarity features and infer a network of
substitutable/complementary products [29]. Van Gysel et al. [48]
learn unsupervised latent product representations from unstruc-
tured product descriptions and customer reviews on Amazon data
[26, 29, 30]. Ai et al. [3] introduce a supervised approach to learn
personalized latent representations of products, users and queries.
Our work differs from the works listed above in that it incorpo-

rates product substitutability relations to improve relevance ranking
within latent vector space models of products, contrary to models
that incorporate text matching only [48] or personalize retrieval
based on historical user interactions [3]. Compared to learning to
rank e-commerce systems [3, 40], we make use of relations amongst
products instead of query/product relevance pairs.

2.2 Incorporating entity similarity to improve
retrieval effectiveness

Incorporating similarity between retrievable objects, such as enti-
ties or documents, is not a new idea [7]. The cluster hypothesis states
that “closely associated documents tend to be relevant to the same
requests” [54]. Product substitutability and the cluster hypothesis
are related, but the latter is subordinate to the former. Typical appli-
cations of the cluster hypothesis [20] cluster documents based on,
sometimes dimensionality-reduced [14], bag-of-word features. Re-
trieval effectiveness can then be improved by performing retrieval
on the cluster level [21] and inducing an importance prior amongst
documents [22], among others. In the context of product search,
the difference between product substitutability and the cluster hy-
pothesis lies in the directionality of both statements. That is, while
the cluster hypothesis assumes that similar documents will have
similar relevance w.r.t. an information need, product substitutabil-
ity mandates that two goods that can satisfy the same consumption
need are similar. Consequently, the cluster hypothesis can serve
as a way to infer similarity between entities, whereas product sub-
stitutability assigns explicit semantics to pairs of similar products.
Szummer and Yilmaz [44] incorporate textual similarity when learn-
ing to rank documents. In this paper, however, we take a different
approach where we wish to incorporate prior knowledge of entity
(i.e., product) similarity, which is not based on textual similarity, to
improve product search effectiveness. Raviv et al. [36] show that
the clustering hypothesis can hold for entity retrieval up to a sub-
stantial extent. More closely related to this paper, Tonon et al. [45]
combine text matching and structured search over a knowledge
graph to improve entity search effectiveness.

Parallel to information retrieval, there has been significant work
with regard to the fusion of multi-modal information sources in
multimedia [4]. In particular, Snoek et al. [42] compare early and
late fusion of information sources for the task of semantic concept
detection in videos and find that late fusion generally performs
better. Compared to our work, early and late fusion correspond
to intrinsic and extrinsic incorporation of product substitutability,
respectively. Contrary to Snoek et al. [42] in the context of multi-
media, we find that early fusion performs better for product search
when fusing text matching and product substitutability.

2.3 Latent representations for information
retrieval

Semantic matching, provided by latent semantic vector space mod-
els, is needed to bridge the vocabulary gap [25]. Latent semantic
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spaces gained attention with the introduction of Latent Semantic
Indexing [10] and its probabilistic variants [17]. Blei et al. [6] in-
troduce Latent Dirichlet Allocation, an unsupervised probabilistic
topic model that generalizes to documents unseen during train-
ing. Salakhutdinov and Hinton [39] introduce semantic hashing for
finding similar documents. Mikolov et al. [32] introduce word2vec,
a popular set of models for learning latent word representations
based on a language modeling objective. Vulić and Moens [56]
propose a methodology for using word-based representations to
construct query and document representations for vector space re-
trieval. Kenter and de Rijke [19] employ word2vec representations
to determine whether two short texts are paraphrases of each other
(i.e., short text similarity rather than full text matching). Le and
Mikolov [24] introduce doc2vec, an extension to word2vec where
a representation for the document is learned as well. Ai et al. [2]
integrate the doc2vec representations within a language model for
information retrieval, but note several issues with the representa-
tions learned using doc2vec [1]. Van Gysel et al. [48, 49] introduce
a representation learning model for product finding and they later
extended it to ad-hoc retrieval [53]. Ai et al. [3] personalize the
product vector space model so that, besides representations for
queries and products, representations for users are learned as well.

Our proposed approach differs from the works listed above as it
is complementary to document/entity representation models that
are learned from scratch using gradient descent. We are the first
to integrate entity relations within the estimation of latent vector
space models for text-based entity ranking. The core idea here is
that relations amongst entities can be used to push entities with
little associated text closer to their related text-rich counterparts.
More specifically, this allows low-text entities to piggy back on
the rich textual relation learned for the text-rich entities that these
low-text entities are related to. Moreover, our framework integrates
flawlessly with existing latent vector space models for information
retrieval [3, 48, 50, 52, 53] and improves their retrieval effectiveness
as we demonstrate in the results section (§5).

3 INCORPORATING PRODUCT SIMILARITY
First, we discuss existing work that consists of extrinsic methods to
incorporate product similarity signals that use retrieval models to
obtain an initial product ranking and then re-rank the results by
taking into account product similarity. We then proceed with an
intrinsic incorporation of product similarity—the contribution of
this paper—into the optimization objective of state-of-the-art latent
vector space models for information retrieval.

3.1 Background
Viewed abstractly, the focus of this paper is on a ranking scenario
where we wish to rank a set of entities E in accordance to a user-
issued unstructured textual query q consisting of |q | terms. In e-
commerce search, entities are products where every product is
characterized by an unstructured body of text [48] (title, descrip-
tion and reviews). On top of that, we consider an additional signal
of entity similarity that indicates that one entity is a semantic al-
ternative for another entity. In the case of general-purpose entity
knowledge bases (such as Wikipedia), these relations could be the
<owl:sameAs> [5, 5.2.1] or <dbpedia:redirect> [57] edges in the
knowledge graph that indicate semantic identity between entities.
In e-commerce search, the focus of this paper, products can be sub-
stitutes (e.g., pairs of shoes) or complements (e.g., tooth paste and a

tooth brush) of each other [28, p.184]. These notions of similarity
are captured in product relations based on user interaction [30].
For example, in the case of the popular e-commerce website Ama-
zon.com [26], product substitutability [30] is characterized by two
relations: (a) users who viewed product X also viewed product Y ,
and (b) users who viewed product X eventually bought product Y .
Consequently, the main question we ask in this paper is whether
the incorporation of product substitutability (i.e., the product simi-
larity signal explored in this paper) can improve product retrieval
effectiveness.

3.2 Extrinsic re-ranking using product
similarity

Hybrid retrieval approaches that combine text matching and struc-
tured search have been explored before in the context of linked
data. Tonon et al. [45] propose an approach that combines text
retrieval models and the relations in a semi-structured database
as follows. Let f R (q, e) denote the text matching score between
query q and entity e ∈ E according to retrieval model R. In the
original description, the retrieval model R was fixed to be the Okapi
BM25 [37] retrieval model. However, in this paper we take a more
general approach and assume that any retrieval model can take its
place, such as probabilistic language models [58] or latent vector
space models [48]. An initial ranking r of entities E for query q
is obtained according to retrieval model R, and the top-k ranked
entities are used to determine a set of entities that are related to
the initial entities through similarity relations. The extrinsic re-
ranking approach intuitively works as follows. For a particular
query, we move through the top-k products in the result list from
top to bottom. At every rank position i , we consider all products e
that are alternatives for the product erank(i) at the current rank as
candidate products. Consequently, product erank(i) is the product
that leads to the discovery of product e , if e was not ranked higher
than erank(i) in the same result list. We then rank all products in
the original ranking and the newly-discovered candidate products
based on a retrieval score based on both products erank(i) and e .
More formally, we use Se to denote the set of entities related to
entity e ; the seed entity s (e) that leads to the discovery of entity e
is defined as

s (e) = argmin
e ′∈Ce

rank
(
r , e ′

)
(1)

where rank (r , e) denotes the rank of entity e in ranked list r and
Ce = {e ′ ∈ E | (e ∈ Se ′ ∧ rank (r , e ′) ≤ k) ∨ e ′ = e} is the set of
candidate entities that can lead to the discovery of entity e . That is,
the highest-ranked entity in the top-k that is similar to entity e or,
if no entity in the top-k is similar to entity e , the entity e itself is
the entity that leads to the discovery of entity e .
A final ranking r ′ of entities e ∈ E is then obtained by linearly

combining the retrieval score of the entity s (e) that led to the
discovery of entity e and a re-scoring function д (q, e, e ′) that quan-
tifies the similarity between entities e and e ′ in accordance to query
q:
f inter (q, e) = (2){

λ · f R (q, s (e) ) + (1 − λ) · д (q, e, s (e) ) , if f R (q, s (e) ) ≥ γ

−∞, otherwise

where λ is an interpolation hyperparameter (§4.3.1) that indicates
the amount of structured expansion to be used and γ is a threshold
(§4.3.1) on the retrieval score of seed entity s (e) that led to the



discovery of entity e that filters out noise. The desired ranking r ′ is
then obtained by sorting entities in decreasing order of f inter (q, e).
Next, the re-scoring function д (q, e, e ′) can take several forms.

In the case of Tonon et al. [45], д (q, e, e ′) is an aggregation over
the retrieval score between different entity fields and the query. In
this paper, every entity is represented as an unstructured body of
text. Consequently, we adapt the definition of Tonon et al. [45] to
our setting by introducing structural and text matching variants of
д (q, e, e ′). In the structural definition, the function дstruct (q, e, e ′)
is independent of the discovered entity:

дstruct
(
q, e, e ′

)
= f R

(
q, e ′

)
− ϵ, (3)

where ϵ is a hyperparameter (§4.3.1) that allows for adjusting the
retrieval model score. Using the definition of Eq. 3 in combination
with Eq. 2, discovered entities are ranked at least as high as the
seed entity that led to their discovery. This makes sense if the entity
discovered through structured expansion has only little associated
text. The text matching variant of д (q, e, e ′) provides an alternative:

дmatch
(
q, e, e ′

)
= f R (q, e) − ϵ, (4)

where ϵ has the same semantics as in Eq. 3. Using the definition
of Eq. 4, the final retrieval score becomes a weighted average of
the retrieval scores of both entities (when ϵ = 0). For both variants
of д (q, e, e ′) defined in Eq. 3 and 4, the final ranking remains the
same as the initial ranking if no related entities are discovered.

The hybrid retrieval method originally introduced by Tonon et al.
[45] is targeted at a retrieval setting where structured entities are
characterized by a large number of fields with limited text, contrary
to the unstructured setting we consider in this paper. The method
just introduced differs from that of Tonon et al. [45] as follows:
(1) In [45], the initial retrieval model was limited to BM25 only;
we do not impose this limitation. (2) Tonon et al. [45] considered
Jaro-Winkler (JW) distance to perform text matching on structured
entity attribute fields in addition to BM25; they reported that the
structured variant using BM25 (Eq. 3) performed best and conse-
quently we do not consider JW distance as it is not typically applied
to unstructured text retrieval. (3) Finally, the text matching variant
дmatch (Eq. 4) was introduced as part of this paper to accommodate
unstructured text and thus is a novel contribution over [45].
Both definitions of д (i.e., дstruct and дmatch) make use of substi-

tutability relations as д (q, e, e ′) is evaluated only if e is a substitute
for e ′ and vice versa. Their difference, however, lies in how the
substitutability relation is converted into a score that boosts the
low-ranked substitute to a higher position in the ranked list. For
the explanation that follows, we assume that product e ′ is ranked
highly and its substitute, product e , suffers from the vocabulary gap
and consequently is incorrectly ranked low in the returned prod-
uct ranking. The structural variant of д, дstruct, uses the retrieval
score of the product that is already ranked highly, product e ′, as a
proxy for the retrieval score of the low-ranked substitute, product e .
This variant makes sense if the textual representation of the lower-
ranked substitute, product e , does not match the query at all. The
retrieval score of higher-ranked product e ′ is then used to improve
the ranking by assuming that the textual representation of the
highly-ranked product e ′ is also valid for its lower-ranked substi-
tute e . Thematching variant ofд,дmatch, does not completely ignore
the retrieval score of the lower-ranked substitute product e (as is
the case with дstruct), and instead imposes the assumption that the
lower-ranked substitute product e matches the query somewhat—
but not very well. Thus, the integration of дmatch (Eq. 4) within

f inter (Eq. 2) makes the final retrieval score of the lower-ranked
substitute a combination of the retrieval score of the highly-ranked
product e ′ and the retrieval score of the low-ranked substitute
product e itself.

3.3 Incorporating product similarity within
latent vector space models

Recent advances in entity ranking led to the introduction of latent
vector space models that learn a relation between words and en-
tities using batched gradient descent. Van Gysel et al. introduced
several methods for estimating latent vector space models for tasks
ranging from entity ranking to document retrieval [48, 49, 53]. The
current body of work focuses solely on unsupervised learning of
the word-entity relation and does not take into account additional
sources of relevance. Therefore, in this paper, we extend the loss
function of these latent vector space models such that they intrin-
sically incorporate similarity between entities. In contrast to the
extrinsic method described in §3.2, where existing rankings are
augmented with structured information, the incorporation of struc-
tured information into latent vector space models occurs directly
during parameter estimation. Thus, retrieving entities using latent
vector space models that incorporate entity similarity remains a
matter of ranking entities according to the nearest neighbors of a
query vector based on the user-issued query q.

We present here a generic framework to incorporate entity simi-
larity based on the observation that, within the current latent vector
space models that are learned using gradient descent [48, 53], the
loss function is a weighted sum of sub-loss functions that incorpo-
rate text matching and regularization as follows:

L (θ | Dtext) = Ltext (θ | Dtext) + λreg · Lreg (θ ) , (5)
where θ is the set of parameters of the latent vector space, Dtext is
the training data from which the model is estimated and λreg is a
hyperparameter (§4.3.1) controlling the amount of regularization.
For the text objective Ltext, the data Dtext takes the form of pairs
consisting of an entity and an n-gram extracted from the entity’s
description; we refer to [48, 53] for details. Regularization loss
Lreg is usually the l2 regularization loss (i.e., the sum of squares of
individual parameters [33]). Note that Eq. 5 is optimized using only
the n-grams that occur in the textual content of entities (i.e., product
title, description and reviews in this paper) and does not make use of
query/product relevance information (e.g., clicks, manual relevance
judgments).
We extend the loss function of Eq. 5 by adding an additional

sub-loss function that specifies that entities that are similar (i.e.,
entities ei , e j where ei ∈ Se j and vice versa) should be nearby in
latent vector space. More specifically, we have

L (θ | Dtext,Dsim) = α · Ltext (θ | Dtext) (6)
+ (1 − α) · Lsim (θ | Dsim)

+ λreg · Lreg (θ ) ,

where Lsim denotes the sub-loss function that we will define next,
0 ≤ α < 1 is a hyperparameter (§4.3.1) controlling the trade-off
between the text matching and entity similarity objectives, and
Dsim is a set of similar entity pairs.

The sub-loss function incorporating entity similarity is defined
as follows. We write

®RE
(i)



to denote the ke -dimensional latent vector representation of entity
ei (i.e., a subset of the learned parameters θ of the latent vector
space model); then, we have

Lsim (θ | Dsim) = −
∑

(e i ,e j )∈Dsim

logσ
(
®R
⊺
E

(i)
· ®RE

(j)
)
, (7)

where σ (x) = 1
1+exp(−x ) denotes the sigmoid function. Thus, the

representations of entities that are similar are optimized to be
nearby in the latent vector space. Eq. 6 is then optimized using
batched gradient descent; see [48, 53] for details. Note that Eq. 6
only incorporates information of similar entities, but ignores enti-
ties that are not similar. If wewould rely only on the entity similarity
sub-objective (Eq. 7), then a trivial solution is to learn all entity
representations to be equal to the null vector. However, given that
we defined 0 ≤ α < 1, the text matching sub-objective enforces that
entities that have little semantic overlap in their textual descrip-
tion will have representations that are further apart than entities
with semantically similar texts. Again, we emphasize here that no
query/product relevance labels or data about user interaction are
used during parameter estimation, but instead the combined loss
function (Eq. 6) learns a matching function from (1) n-grams that
occur within the textual representations of products (i.e., Eq. 5 as
defined in [48, 53]), and (2) product substitutability relations (i.e.,
the contribution of this paper).

Over and above existing work on semantic product search [3, 48],
we have just introduced a mechanism to incorporate product sub-
stitutability relations within latent vector space models. Two prod-
ucts are substitutes if they satisfy the same need for the consumer.
Consequently, the incorporation of product substitutability within
retrieval models is expected to improve their effectiveness as in-
formation and consumption needs are two sides of the same coin
within the product search domain.

In §1 we emphasized the importance of effectively utilizing the
cross-modal similarity relations that are established by textual se-
mantics and product substitutability. More specifically, if products
ea and eb are deemed substitutable and the textual representation
of product eb is semantically similar to that of product ec , then
products ea and ec are also similar. This transitivity relation is con-
veniently integrated within the latent vector space models that are
the subject of this section as follows. First, within a latent vector
space model, similarity amongst entities is defined as the cosine
similarity between their vector representations [53]. Cosine similar-
ity corresponds to the chordal length between normalized vectors.
Denoteϕ as the angle between vectorsu,v ∈ Rn , the chordal length
crd (ϕ) = 2cos

(
π−ϕ
2

)
is equal to the Euclidean distance between

the normalized vectors û, v̂ . In particular, the smaller the chordal
length between u,v , the greater their cosine similarity, cos (ϕ), will
be. Imagine now a third vector,w ∈ Rn , and the chordal lengths be-
tweenu,v andw (i.e., ∥û − ŵ ∥ and ∥v̂ − ŵ ∥). The triangle inequality
tells us that ∥(û − ŵ) + (v̂ − ŵ)∥ = ∥û − v̂ ∥ ≤ ∥û − ŵ ∥ + ∥v̂ − ŵ ∥

(note here that we made use of the symmetry of Euclidean dis-
tance, i.e. ∥v̂ − ŵ ∥ = ∥ŵ − v̂ ∥). Consequently, if u,w and v,w are
similar, then u,v will also be similar and thus cosine similarity is
transitive. Secondly, the loss function in Eq. 6 is an additive mix-
ture of cross-modal sub-objectives that encode text/product and
product/product similarity within the model’s representations. Con-
sequently, textual and entity similarity (i.e., product substitutability
in this paper) information will be combined in the resulting model

as to best optimize the loss (Eq. 6). Therefore, if products ea , eb
are substitutes and the texts of products eb , ec are semantically
similar, then products ea , ec will have similar representations as
long as their textual semantics do not differ drastically (trade-off
hyperparameter α above controls what is deemed drastic).

4 EXPERIMENTAL SETUP
4.1 Research questions
In this paper we investigate whether the incorporation of product
similarity signals can benefit product retrieval effectiveness. We
seek to answer the following research questions:

RQ1 How does the intrinsic incorporation of product similarity
into latent vector space models compare to the extrinsic com-
bination of text matching and product similarity signals in
terms of retrieval effectiveness?

In particular, does the intrinsic incorporation (§3.3) of these signals
yield a significant improvement over the extrinsic approaches (§3.2)
for latent vector space models? What is the impact of applying the
extrinsic re-ranking methods to retrieval models where the intrinsic
incorporation of similarity signals (e.g., BM25 and non-neural latent
vector space models) does not come naturally?

RQ2 What is the effect of mixing different levels of the product
similarity and the text matching signals within latent vector
space models?

Within latent vector space models, the entity similarity objective
is auxiliary to the text matching objective. After all, a ranking is
obtained w.r.t. a textual query and thus the query cannot be taken
into account if only entity similarity is learned. How important
is the entity similarity signal and what is the effect of different
levels of mixing it with the text matching objective on retrieval
effectiveness?

RQ3 Can we explain what the incorporation of entity similarity
contributes to the latent vector space models compared to a
vector space that was constructed using only text?

If the incorporation of entity similarity improves retrieval effective-
ness, can we explainwhy? Can we find any recurring patterns when
we examine the set of newly-discovered relevant documents that
are ranked highly when product similarity is taken into account,
but are ranked low otherwise?

4.2 Product search benchmarks & experiments
To answer our research questions regarding the potential of entity
similarity to improve retrieval effectiveness, we follow the experi-
mental setup of [3, 48], where Amazon products are represented
by their title, description and reviews from Amazon customers.

4.2.1 Benchmarks. We evaluate the extrinsic and intrinsic methods
(§3) using various retrieval models (§4.3) on product domains of
increasing size: Pet Supplies (32,768 products), Sports & Outdoors
(65,536 products), Toys & Games (131,072 products) and Electronics
(262,144 products); see Table 1 for an overview. The two smaller
benchmarks (Pet Supplies, Sports & Outdoors) are identical to the
largest benchmarks released as part of [48]. To show that our find-
ings scale to retrieval settings of ∼100k products and more, we
constructed two larger benchmarks (Toys & Games, Electronics) in
exactly the same way as [48] for this paper. That is, products are
represented by the concatenation of their title, description and user



Table 1: Overview of the product search benchmarks. T and V denote the test and validation sets, respectively. Mean and stan-
dard deviation are reported wherever applicable. Product text length statistics are computed on the concatenated textual title,
description and customer reviews associated with the products. The two smaller collections (Pet Supplies, Sports & Outdoors)
are the ones released as part of [48], whereas the larger collections (Toys & Games, Electronics) were constructed in the same
fashion as [48] for the purpose of this paper (see §4.2.1 for details).

Pet Supplies Sports & Outdoors Toys & Games Electronics

Collection (training)
Products 32,768 65,536 131,072 262,144
Product text length 986.03± 5,116.09 555.85± 2,549.72 542.16± 2,076.78 1,541.15± 8,518.67
Unique terms 2.75 × 105 3.94 × 105 5.67 × 105 2.23 × 106
Substitutes per product 7.69± 14.53 2.62± 6.29 13.28± 21.42 8.46± 18.99

Queries and relevance (testing)
Queries (T) 385

(V) 42
(T) 1,879
(V) 208

(T) 394
(V) 98

(T) 601
(V) 150

Query terms 4.73± 1.62 5.64± 1.68 6.00± 2.47 5.55± 1.55
Relevant products (T) 75.96± 194.44

(V) 57.40± 88.91
(T) 29.27± 61.71
(V) 38.25± 157.34

(T) 258.92± 1,041.68
(V) 188.56± 493.11

(T) 324.26± 776.65
(V) 412.85± 1,414.43

reviews. Specific to this paper, product substitutability relations
are obtained from user interaction behaviour as first introduced by
McAuley et al. [30]. The product substitutability relations are then
used as the product similarity signal in this paper. More specifically,
on Amazon.com, product substitutability between product X and
product Y is characterized by two relations: (a) users who viewed
productX also viewed productY , and (b) users who viewed product
X eventually bought product Y [30]. These relations are extracted
from user interaction logs by counting interaction co-occurrences
as described in detail by Linden et al. [26, algorithm on p. 79].
Rowley [38, p. 24] describes directed product search as users

searching for “a producer’s name, a brand or a set of terms which
describe the category of the product.” Based on this observation
[3, 48], test queries are extracted from category hierarchies and
query/product relevance is determined based on category member-
ship. Category hierarchies of less than two levels are ignored, as
the first level in the category hierarchy is often non-descriptive for
the product. Products can be relevant for multiple queries. Textual
queries are extracted from a category hierarchy by concatenating
the names of the hierarchy levels and removing duplicate and stop
words. We refer to [3, 48] for more details and examples. Note
that in this paper—similar to [48], but unlike [3]—queries and their
relevant products are used for hyperparameter selection (§4.3.1)
and testing only. None of the methods in this paper make use of
any training queries or relevance labels to estimate their trainable
parameters. For the existing collections (Pet Supplies, Sports &
Outdoors) we use the validation and test splits as released as part
of [48]. For the collections we constructed for the purpose of this
paper (Toys & Games, Electronics), we randomly create a split of
validation (20%) and test (80%) queries.2

4.2.2 Experimental design. We answer RQ1 by comparing extrin-
sic and intrinsic methods to incorporate product similarity using
lexical and semantic retrieval models (§4.3). In particular, we focus
on the relative increase in retrieval effectiveness for each retrieval
model individually when product similarity is incorporated. To ad-
dress RQ2, we perform a parameter sensitivity analysis where we
measure the effect of the interpolation hyperparameter α (Eq. 6) on

2A list of product identifiers, queries, query/product relevance pairs and test/validation
query splits is available at https://github.com/cvangysel/cuNVSM.

retrieval effectiveness. For RQ3, we construct maximum-likelihood
unsmoothed categorical language models [58] of the textual con-
tent associated with the top-100 products ranked by latent vector
space models that are estimated using (a) text only and (b) text and
product similarity signals. We then measure the per-query differ-
ences in ranking language perplexity for both language models, and
consequently make inferences about the predictability and diversity
of the language contained within the respective rankings.

4.3 Retrieval models & baselines for
incorporating similarity

The product collection is indexed by Indri3 [43] using pyndri [51];
every product is represented by a single document that consists
of the concatenation of its title, description and customer reviews.
Non-Indri retrieval models (i.e., latent vector space models) access
the underlying tokenized document representations to ensure con-
sistent tokenization. The hyperparameters mentioned below are
optimized on the validation set (Table 1) according to MAP@1000.

4.3.1 Retrieval models. We evaluate the following retrieval models
(based on the experimental setup of [53]): (1) Okapi BM25 [37] with
the default Indri hyperparameter values (k1 = 1.2,b = 0.75 andk3 =
7), (2) QLM [58] with Dirichlet smoothing with hyperparemeter
µ ∈ {125, 250, 500, 750, 1000, 2000, 3000, 4000, 5000}
optimized on the validation set. (3) word2vec (w2v) [32] with Skip-
Gram. We follow the methodology of Vulić and Moens [56], where
query/document representations are constructed from the words
contained within them by taking (a) the unweighted sum of the
word representations (add), or (b) the sum of word representations
weighted by the words’ self-information (si), a quantity similar to
Inverse Document Frequency (IDF) [9]. Vocabulary filtering and
frequent word subsampling was disabled such that the input to all
algorithms is the same. The word embedding size is set to 256. The
one-sided window size ({x/2 | x = 4, 8, 16}) and the number of
training epochs (between 1 and 15) is optimized on the validation
set. All other parameters are configured with their default values
(Gensim4 implementation). (4) LSE [48] and NVSM [53] where we

3The out-of-the-box Indri normalization was applied and the standard Indri stop word
list was used to remove stop words.
4https://github.com/RaRe-Technologies/gensim

https://github.com/cvangysel/cuNVSM
https://github.com/RaRe-Technologies/gensim


mostly follow default hyperparameter values; see [53]. The entity
representation size is set to 256 [53, §6] and the batch size to 8,192.
Similar to word2vec, the window size ({x | x = 4, 8, 16}) and
number of training epochs (between 1 and 15) are optimized on
the validation set. For word2vec, LSE and NVSM, the vocabulary is
limited to the top-60k words to avoid data sparsity issues [48, 53].

4.3.2 Methods to incorporate similarity. We compare the extrinsic
and intrinsic methods from §3: (1) For the extrinsic re-ranking meth-
ods we compare both variants based on structural (Eq. 3) and text
matching (Eq. 4) information sources. The interpolation hyperpa-
rameter λ = 0.1, 0.2, . . . , 1.0 (Eq. 2), the number of top-k = 1, 3, 5, 10
products used to discover similar products, score-adjusting hyper-
parameter ϵ and threshold γ are optimized on the validation set. For
the score-adjusting hyperparameter ϵ and threshold γ , the set of
values we consider for optimization is different for every retrieval
model as their value ranges differ and 5 uniformly-spaced values
are selected in the following ranges: (a) for the log-probability of
QLM, −10 ≤ x ≤ 0, (b) for the BM25 score, 0 ≤ x ≤ 9, and (c) for
the cosine similarity of word2vec, LSE and NVSM, −1 ≤ x ≤ 1. The
above grid search over hyperparameters λ, k , γ and ϵ is performed
by first selecting the per-model configuration that performs best
on the validation set and then performing the 4-dimensional hy-
perparameter search for the extrinsic methods. (2) We incorporate
product similarity intrinsically within the loss functions (Eq. 6) of
LSE/NVSM, where α = 0.0, 0.1, . . . , 1.0 is optimized on the vali-
dation set together with all other hyperparameters of LSE/NVSM
mentioned above as the entity similarity signal is integrated within
the learning algorithm.

4.4 Evaluation measures & statistical
significance

Mean Average Precision at rank 1000 (MAP@1000) is our principal
evaluation measure that we use to addressRQ1,RQ2 andRQ3. For
RQ1, we additionally report Normalized Discounted Cumulative
Gain at rank 100 (NDCG@100) and precision at rank 10 (P@10).
Evaluationmeasures are computed using the official tool released by
TREC, trec_eval.5 Significance of observed differences between
the obtained results is determined using a two-tailed paired Stu-
dent’s t-test [41] (∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1).

5 RESULTS
5.1 Extrinsic vs. intrinsic methods
RQ1 Table 2 shows the product retrieval effectiveness for various

retrieval models (§4.3.1) using different methods to incorpo-
rate product similarity (§4.3.2).

We observe that the extrinsic дstruct method [45] does not perform
well on the product search setting. This can be explained by the
fact that the method was originally introduced for retrieving multi-
fielded entities where text is scarce and relies only on the text
matching score of entities part of the original ranking. In our setting,
where products are represented as an unstructured body of text, it
is sensible to rely on the text matching score of the entity that was
discovered through similarity relations (дmatch) instead.
For each of the lexical models (BM25, QLM) individually, we

observe that the extrinsic method using дmatch yields an increase in
effectiveness over the text-only variants. The re-ranking of results

5https://github.com/usnistgov/trec_eval

using similarity relations likely incorporates a semantic matching
signal within the result list. However, the increase in effectiveness
using the extrinsic дmatch quickly fades away if we examine the
latent methods based on word2vec. Among the word2vec-based
models, we observe a negligible increase (never more than 2 · 10−3
difference in MAP@1000) in effectiveness when extrinsic expan-
sion of the result list is used. The same observation (albeit with
a maximum increase of 3 · 10−3 in MAP@1000) holds for the use
of the extrinsic method (дmatch) when used to re-rank the neural
latent vector space models (LSE, NVSM) results.
Examining the effectiveness of incorporating entity similarity

intrinsically (Eq. 6) within latent vector space models, we observe
disappointing results for LSE. More specifically, LSE is only able
to outperform the extrinsic methods for 2 out of 4 benchmarks
(Pet Supplies and Electronics). In the case of NVSM, however, we
observe a significant (p < 0.05) increase in MAP@1000 on all
product search benchmarks over the extrinsic re-ranking methods.
The product substitutability signal that was added in Eq. 6 only
pertains to the relation amongst products and thus only indirectly
influences the relation between text and products (Eq. 5). While the
text/product relation clearly benefits from the added substitutability
relations—as can be seen in Table 2—this increase in performance
is because the representations of substitutable products are pushed
closer together in latent space, only if there is no strong textual
signal that this should not be the case. Consequently, the difference
in performance between LSE and NVSM can be explained due to
the fact that LSE simply has inferior text matching capabilities
compared to NVSM (as was already pointed out in [53] to be due
to the lack of term specificity within LSE).

5.2 Trade-off between text and similarity
RQ2 The effect of the trade-off parameter α between text matching

and product similarity signals within latent vector space
models (§6) is shown in Fig. 1.

Different behavior is observed for both vector space models: while
NVSM shows stable behavior w.r.t. the trade-off parameter α , and
generally reaches a maximum MAP@1000 for high values of α ,
the performance of LSE, on the other hand, reaches a optimum
for relatively low values of α (≈ 0.3) and then degrades quickly
to a MAP@1000 level below the effectiveness of text-only rank-
ing (i.e., α = 0.0). Interestingly enough, NVSM does not exhibit
this behavior as it seems to converge back to the text-only perfor-
mance as α approaches 1. If we look at the different benchmarks,
we observe similar behavior except for the smallest domain (Pet
Supplies). Surprisingly, in the Pet Supplies department, we observe
that MAP@1000 remains stable for values of α close to 0.9 for both
LSE and NVSM. This is likely due to a very specific characteristic
of pet supplies. That is, the department is itself divided in mostly
mutually-exclusive sub-departments based on animal species and
the product substitution relations are very likely to encode this
disjoint property. Fig. 2 provides a visualization of the product rep-
resentations that shows the formation of sub-classes according to
the animal taxonomy in the Pet Supplies department. In particu-
lar, we see that—while there is some overlap between cat and dog
supply products—there are exclusive clusters for bird, fish, horse
and small animal supplies. Consequently, queries that semantically
correspond to a particular animal species are likely to be directly
projected into the cluster corresponding to that animal. The stable
increase in retrieval effectiveness visible in Fig. 1a is obtained as

https://github.com/usnistgov/trec_eval


Table 2: Comparison of extrinsicmethods (дstruct andдmatch) to incorporate entity similarity within product search for various
retrieval models (§4.3.1) and the intrinsic incorporation (Eq. 6) of entity similarity within neural vector space models (LSE,
NVSM). The framework we present in this paper—where entity similarity is incorporated intrinsically—is not compatible
with the BM25, QLM and w2v retrieval models. Performance is reported on the test set, for the hyperparameter configuration
(§4.3) optimized on the validation set (§4.2.1) in terms ofMAP@1000. Significance (§4.4) is computed between extrinsic (дmatch)
and intrinsic incorporation of entity similarity for NVSM.

Pet Supplies Sports & Outdoors Toys & Games Electronics
MAP NDCG P@10 MAP NDCG P@10 MAP NDCG P@10 MAP NDCG P@10

BM25
Text-only 0.139 0.270 0.219 0.119 0.237 0.165 0.089 0.201 0.181 0.070 0.186 0.201
Extrinsic (дstruct) 0.124 0.258 0.200 0.118 0.235 0.163 0.084 0.192 0.153 0.067 0.180 0.179
Extrinsic (дmatch) 0.139 0.275 0.220 0.122 0.241 0.166 0.091 0.203 0.182 0.076 0.191 0.203
QLM (d)
Text-only 0.131 0.260 0.212 0.106 0.225 0.153 0.080 0.190 0.181 0.069 0.187 0.202
Extrinsic (дstruct) 0.114 0.237 0.169 0.100 0.217 0.143 0.076 0.176 0.138 0.067 0.179 0.172
Extrinsic (дmatch) 0.135 0.263 0.209 0.109 0.227 0.154 0.083 0.186 0.184 0.076 0.194 0.201
w2v (add)
Text-only 0.134 0.246 0.186 0.098 0.198 0.134 0.080 0.183 0.170 0.065 0.167 0.187
Extrinsic (дstruct) 0.126 0.236 0.164 0.096 0.197 0.132 0.079 0.180 0.164 0.064 0.166 0.179
Extrinsic (дmatch) 0.131 0.241 0.184 0.098 0.198 0.134 0.081 0.184 0.170 0.067 0.171 0.189
w2v (si)
Text-only 0.141 0.258 0.191 0.122 0.233 0.155 0.107 0.221 0.207 0.085 0.196 0.203
Extrinsic (дstruct) 0.136 0.251 0.180 0.121 0.231 0.151 0.104 0.215 0.194 0.084 0.194 0.197
Extrinsic (дmatch) 0.142 0.258 0.191 0.122 0.233 0.155 0.108 0.220 0.207 0.086 0.197 0.203
LSE
Text-only 0.128 0.249 0.201 0.097 0.197 0.137 0.080 0.180 0.165 0.059 0.160 0.172
Extrinsic (дstruct) 0.122 0.240 0.188 0.096 0.195 0.135 0.077 0.170 0.143 0.058 0.148 0.126
Extrinsic (дmatch) 0.129 0.249 0.201 0.097 0.197 0.137 0.081 0.180 0.165 0.062 0.161 0.170
Intrinsic 0.134 0.259 0.206 0.082 0.165 0.109 0.077 0.173 0.172 0.069 0.162 0.168
NVSM
Text-only 0.205 0.344 0.272 0.176 0.308 0.211 0.145 0.267 0.232 0.105 0.225 0.235
Extrinsic (дstruct) 0.197 0.333 0.253 0.174 0.306 0.207 0.140 0.257 0.205 0.103 0.220 0.217
Extrinsic (дmatch) 0.205 0.343 0.272 0.176 0.308 0.211 0.145 0.267 0.232 0.107 0.226 0.235
Intrinsic 0.233∗∗∗ 0.379∗∗∗ 0.307∗∗∗ 0.201∗∗∗ 0.331∗∗∗ 0.223∗∗∗ 0.155∗∗ 0.274 0.239 0.117∗∗∗ 0.234∗∗ 0.249∗∗
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Figure 1: The effect of the trade-off parameter α between text matching and product similarity signals (§6) within latent vector
space models. Retrieval effectiveness is reported in terms of MAP@1000 on the test set. For every value of trade-off parameter
α , we choose the remaining hyperparameters (§4.3) based on the validation set (§4.2.1) in terms of MAP@1000 (§4.2.2).

mixing the product substitutability relations with the text objective
further encourages the clustering behavior that follows the animal
classification system. This is because product substitution relations
in the Pet Supplies department typically relate only products that
are applicable to a particular animal species (i.e., supplies that ap-
ply to multiple species are rare). That is, within the Pet Supplies
benchmark used in this paper (Table 1), 82.47% of all relations are
between pet supply products meant for the same species.

Following these observations, we make the following recommen-
dations. First of all, we confirm that NVSM is a superior neural
vector space model over LSE [53]. Secondly, when using NVSM,
a non-optimal choice of trade-off parameter α does not seem to
considerably impact retrieval effectiveness negatively (Fig. 1). Con-
sequently, we recommend setting the trade-off parameter α as 0.8.

This recommendation, however, only holds if the incorporated
similarity relations correlate with relevance, as is the case with sub-
stitutable products. One question that remains is how the intrinsic
incorporation of product similarity influences the product rankings
shown to the users. We address this question in the next section.

5.3 Effect on product rankings
RQ3 Table 3 shows the difference in perplexity of language models

(§4.2.2) estimated on rankings generated by latent vector
space models estimated using only the text objective (α =
0.0) and using a mixture of text and similarity objectives (α
optimized on validation set).

We observe that rankings generated by similarity-incorporating
vector space models have less uncertainty in their language models



Figure 2: Visualization of learned product representation in
the Pet Supplies department using t-SNE [27]. Product repre-
sentations cluster by animal taxonomy: dogs (purple circle),
cats (blue square), fish (cyan left-arrow), birds (green right-
arrow), small animals (yellow up-arrow), reptiles & amphib-
ians (orange down-arrow) and horses (red diamond). While
there is some overlap between cat and dog supply products,
we can see that there are exclusive clusters for bird, fish,
horse and small animal supplies. Best viewed in color.

Table 3: Average differences in perplexity on a categori-
cal language model estimated on the top-100 documents re-
turned by latent vector space models with and without the
intrinsic incorporation of product similarity. Note that here
we report only the effect size and not the perplexities of the
individual systems. Significance (§4.4) is computed between
the rankings with and without the intrinsic incorporation
of product similarity.

LSE NVSM
Pet Supplies −0.149 −4.162∗∗∗
Sports & Outdoors −1.734∗∗∗ −2.147∗∗∗
Toys & Games −0.691 −1.717∗∗∗
Electronics −5.554∗∗∗ +0.181

than rankings generated by vector space models estimated on text
only. For NVSM, this trend is significant (p < 0.05) for three out of
four benchmarks. For the largest benchmark, Sports & Outdoors,
we observe a slight increase in language model perplexity when
using NVSM. A significant difference, however, was not observed in
this case (p ≥ 0.05). As the language of product rankings becomes
easier to predict (i.e., less entropy) when incorporating product
substitutability, we conclude that the incorporation of a notion
of product similarity that encodes substitutability generates less
diverse rankings. In effect, this finding relates back to the trade-
off between relevance and diversity discussed in the literature [8].
This finding is not surprising. In fact, it follows directly from the
definition of product substitutability that we discussed in the intro-
duction, namely: “two goods (i.e., products) are substitutes if both
can satisfy the same need to the consumer” [23]. Consequently,
within product search, information and consumption needs are two
sides of the same coin.

6 CONCLUSIONS
We introduced a framework for incorporating product substitutabil-
ity within latent vector space models. In particular, we investigated
whether the incorporation of product entity substitutability can

improve relevance ranking effectiveness within product search.
We also investigated the trade-off between text matching and en-
tity similarity objectives and provide insights within the product
search domain. Finally, we performed an analysis of the effect of
incorporating product substitutability on product search rankings.

We found that the incorporation of product substitutability rela-
tions within latent vector space models improves the relevance of
product rankings w.r.t. to a user-issued query, albeit at the cost of
product diversity. The trade-off between text matching and entity
similarity objectives has a different effect depending on the text
matching objective that is used. For LSE, an optimal MAP@1000 is
achieved when more weight is put on the text objective, whereas
for NVSM, more reliance on the similarity objective yields better
rankings. In fact, NVSM shows stable retrieval effectiveness when
more reliance is put on the similarity objective and performance
rarely degrades under the performance level that was achieved
when estimating NVSMs with text only (Fig. 1). For one particular
product department, Pet Supplies, we found that retrieval effec-
tiveness kept improving when more reliance was put on entity
similarity. We found that this is because the domain is naturally
divided in mutually-exclusive sub-departments that correspond
to the taxonomy of animals. Consequently, incorporating product
substitutability caused the creation of tightly-connected clusters
that correspond to animal species. Furthermore, product rankings
obtained by querying latent vector space models with incorporated
product substitutability relations use more predictable language
than vector space models estimated without the similarity relations.
We conclude that improvements in search relevance come at the
cost of ranking diversity. This observation is not unexpected, as it
is the exact embodiment of product substitutability. More precisely,
“two goods (i.e., products) are substitutes if both can satisfy the same
need to the consumer” [23] and, within product search, information
and consumption needs are two sides of the same coin.
The broader implications of our work are three-fold. First, we

verified the substitutability principle from economics within e-
commerce search and confirm the findings of McAuley et al. [30]
who suggest that e-commerce product substitutability can be in-
ferred from user interactions. Second, we showed that the incor-
poration of similarity within latent retrieval spaces can improve
retrieval effectiveness. This raises further questions regarding what
types of similarity can yield improvements for which retrieval sce-
narios and how the semantics of these similarity relations tie back
into the particular retrieval domain. For example, similarity be-
tween entities can be computed from non-textual data (e.g., images)
and then be used to incorporate image similarity within the re-
trieval stage. Finally, on the topic of latent vector space models,
Fig. 2 reveals more than meets the eye. Current latent vector space
models work well when user queries correspond to a single coher-
ent topic. This comes as little surprise, as every query is projected
into a single point within the retrieval space that is surrounded
by documents of a particular topic. Consequently, one can wonder
whether projecting a single query to multiple points in the retrieval
space can further improve retrieval effectiveness.

Our work is limited by the fact that we only considered product
substitutability relations. In the case of product search, product
complementarity might provide a good source to improve rank-
ing diversity. The question remains whether similarity can be in-
corporated for ad-hoc document retrieval and how this similarity
should be obtained. The cluster hypothesis [54] might be of use



here. Another limitation of our work over extrinsic methods is
that, as product substitutability relations are incorporated during
model estimation, models need to be re-trained from scratch as
more similarity information becomes available.
Future work includes the investigation of (a) complementary

product relations and in what way they influence ranking relevance
and diversity. Unfortunately, the Amazon product data lacks prod-
uct diversity ground-truth, (b) pseudo similarity feedback where
latent vector space models are iteratively trained and the simi-
larity between entities/documents within the current iteration is
constructed using their vector space similarity of the previous iter-
ation, (c) the effect of incorporating lexical vector space similarity
into latent vector space models for ad-hoc document retrieval, and
(d) multiple projections of queries into latent retrieval spaces so as
to capture the multi-topicality of queries.
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