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Abstract. We study several modal languages in which some (sets of) generalized quantifiers 
can be represented; the main language we consider is suitable for defining any first order 
definable quantifier, but we also consider a sublanguage thereof, as well as a language for 
dealing with the modal counterparts of some higher order quantifiers. These languages are 
studied both from a modal logic perspective and from a quantifier perspective. Thus the issues 
addressed include normal forms, expressive power, completeness both of modal systems and 
of systems in the quantifier tradition, complexity as well as syntactic characterizations of 
special semantic constraints. Throughout the paper several techniques current in the theory of 
generalized quantifiers are used to obtain results in modal logic, and conversely. 
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1. INTRODUCTION 

This paper is motivated mainly by the following question: in the modal system 
$5 the box ('[] ') and diamond ( '~ ' )  may be interpreted as a universal and 
an existential quantifier, respectively (Goranko et al., 1992); how can other 
quantifiers be represented within a modal language? 

We will consider a number of modal languages, each designed to represent 
(a set of) generalized quantifiers. The prime case is the language s 
in which every first order definable quantifier will turn out to be definable; 
a more modest language between the language of $5 and s will 
also be studied. The third language we will consider contains the modal 
counterparts of some higher order quantifiers. Furthermore, techniques used in 
these modal languages will be employed to get some results about 'quantifier 
languages'. 

This paper concentrates mainly on modal topics. Nevertheless, many is- 
sues addressed below find their origin in the theory of generalized quantifiers; 
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and even some of the techniques used are current in the theory of generalized 
quantifiers rather than in modal logic. On the other hand, we will also use 
our modal machinery to contribute some results to the theory of generalized 
quantifiers. 

To be more specific, this paper is organized as follows. In Section 2 we in- 
troduce two modal languages E(QUANT) and E(QUANTk) for dealing with 
(sets of) first order definable quantifiers; a quick normal form theorem for 
these languages is proved, after which we compare them to other languages, 
both modal and classical. Section 3, then, contains completeness and com- 
plexity results for systems in both languages. Next, in Section 4, we ask some 
questions familiar from the theory of generalized quantifiers but now in a 
modal setting. Also, using our modal apparatus we arrive at a complete ax- 
iomatization of the set of quantifiers { m o r e ~  : n E N }, where m o r e ~ X Y  
holds between X, Y if IX n YI > n. Then, in Section 5, we move on to the 
realm of higher order quantifiers. A complete axiomatization is given for a 
modal operator simulating the quantifier t h e r e  a re  a t  l ea s t  as  m a n y  X s  
as  Ys; after that some issues from earlier sections re-occur, and we have an 
exploratory look at modal operators simulating other higher order quantifiers. 
Section 6 rounds off this paper by formulating some conclusions and pointing 
at a number of directions for further research. 

We want to thank Edith Spaan for her kind permission to include a result 
of hers in Section 3.3. We are also grateful to Johan van Benthem who fought 
several battles with text-editors in order to send us his comments on an earlier 
version of this paper. 

2. THE SYSTEMS QUANT and QUANT k 

2.1. Basic Definitions and Examples 

DEFINITION 2.1. Let Prop be a set of proposition letters, and let Un and 
Bin be sets of unary and binary modal operators, respectively. The set of 
well-formed formulas over Prop and Un, Form(Prop, Un, Bin) is given by 

proposition letters: 

unary modal operators: 

binary modal operators: 

formulas: 

p E Prop 

U E  Un 

13 E Bin 

E Form (Prop, Un, Bin) 

Our main concern below are formulas built up using the set of unary operators 
{ Mn, Ln : n E N }. Here, we consider Ln to be an abbreviation for '--,M,~'.  
We will sometimes also use the following abbreviations: M!0~ : :  --,M0~, 
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M!n(p := ( M ~ - l ~  A -,Mn(p) (n > 0). Instead of Form(Prop, { M,~, L~ ' 
n ff N }, 0) we write Form. 

DEFINITION 2.2. A model for the elements of Form is a pair 34 = (W, V) 
with W a non-empty set (called a frame), and V a function that assigns 
subsets of W to proposition letters. Then, M ,  w ~ ~ is defined inductively: 
M ,  w ~ p, for p E Prop, if w E V(p); the Boolean cases are standard, 
while M , w  ~ M , ~  if l{v �9 Ad, v ~ ~}1 > n. Dually, M , w  ~ r n ~  if 
]{ v �9 A.4, v ~: ~ }[ < n. (So L0 is nothing but the usual modal box '[3' with 
the universal relation as its interpretation.) 

A,/ ~ ~ is short for: for all w E W, M ,  w ~ ~; and W, w ~ ~p is short 
for: for all V, (IV, V), w ~ ~. We write W ~ ~ for: for all w it holds that 

Although this is not the first paper in which the operators Mn, Ln are 
being discussed, we believe that the above quantifier interpretation of these 
operators is in fact new. One of the first people to study the operators M~, 
L~ was Fine (1972); he gave the following interpretation to Mn: M ~  is true 
at a world w in a Kripke model (W, R, V) if at least n R-successors of w 
satisfy ~. Our use of these operators is different from this interpretation in two 
respects: we have replaced 'at least n'  in the previous sentence by 'more than 
n' ,  and we only consider the special case in which R is the universal relation. 
In the mid 1980s Kit Fine's operators were rediscovered by several Italian 
logicians, and called graded modalities (Fattorosi-Bamaba et al. 1988). 

Parallel to definition 2.2 we can define a translation of elements of Form 
into monadic first order formulas. To be precise, let s be the language of first 
order logic with identity; s is s plus unary predicate letters P0,/91, P2,. .  �9 
corresponding to the elements of Prop. 

DEFINITION 2.3. Let x be a fixed variable. The standard translation ST(~) 
taking 9) E Form to an s is defined as follows: it maps a proposition 
letter p to Px, and commutes with the Boolean connectives, while 

S T ( M ~ )  = 3yo.. .Eyn( A (Yi ~ Yj) A A [yi/x]ST(~)), 

where the yis are fresh variables. 

Every model for s can be viewed as a model for formulas in Form, 
and conversely. A simple induction establishes that .M, w ~ ~ iff A/t, w 
ST(~), and M ~ ST(~) iff A4 ~ VxST(~), for any ~ E Form. 

Let's pause for a moment, and consider some examples. The binary quan- 
tifier all A a v e  B can be represented as Lo(A ~ B), while some  A are 
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B can be represented as Mo(A A B). Using these representations one can 
easily express syllogistic inferences: 

all  A are  B 

s o m e  C a re  n o t  B 

s o m e  C a r e  n o t  A 

Lo(A B) 
Mo(C A -B) 
Mo(C A ~A). 

Likewise, the generalized quantifier a t  l e a s t  k A a re  B can be represented 
in our modal language by Mk-  ~ (A A B); this gives us the following simulation 
of so-called 'numerical' syllogisms (Atzeni et al., 1988): 

t h e r e  a re  10 As 

at  l e a s t  7 Bs a re  As 

a t  l e a s t  4 Cs a re  As 

a t  l e a s t  1 B is  C 

M!loA 

M6(B A A) 
M3(C A A) 

Mo(B ̂  c). 

The basic principles governing the deductive behavior of the operators 
Mn and Ln are given in the following definition. 

DEFINITION 2.4. We define the modal logic QUANT. As rules of inference 
QUANThas Modus Ponens (% ~ ---+ r162  Necessitation (~/Lo~o), and Sub- 
stitution. Besides those of propositional logic, its axioms are the following: 

A1 L0~ ~ 
A2 Mn~ ~ LoMn~ 
A3 L0(~ ---+ r ~ (Mn~o --+ M~b) 
A4 Lo~(~ m ~p) ~ (M!n~ A M ! m r  "+ Mtn+m(qa V ~p)) 
A5 M,~+I~ ~ Mn~. 

It may amuse the reader to show that QUANT ~- Lo(~ --~ ~) -+ (Lo~ 
L0~P). Thus, the fragment of QUANTwith only L0, M0 as its modal operators 
is precisely $5. For this reason QUANT has been called $5 (van der Hoek, 
1992), or also S5n (Fine 1972). 

It will appear below (cf. 2.16) that in the language of QUANT we can define 
all first order definable quantifiers. Following a suggestion due to Valentin 
Shehtman we will also consider a more modest system called QUANT k that 
is somewhere in between $5 and QUANT. QUANT k has modal operators 
M0, L0 and Mk, Lk, for a fixed k > 0. The move from $5 to QUANT k is 
motivated by a similar move in the literature on axiomatic theories of specific 
quantifiers (cf. also Section 4.1), where pairs of dual quantifiers are not only 
studied in isolation, but also on top of well understood quantifiers like all  
and s o m e  (Westersthhl, 1989). 
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For a fixed k > 0, let Formk abbreviate Form(Prop, { Mo, Lo, Mk, Lk }, 
0). 

DEFINITION 2.5. Let k > 0. The system QUANT k has as inference rules 
Modus Ponens, Necessitation and Substitution. Besides those of propositional 
logic, its axioms are the following (for i E { 0, k }): 

B1 Lo~a ~ 
t32 M~qo ~ L o M ~  
B3 Lo(~ --~ r  ~ (Mi~ ~ Mi~) 
t34 Ao<j~h<k Lo-~(r A Ch) ~ (Ao<_j<_k Mo(r A r ---* M~r 
B5 Mk~ -~ Mog). 

2.2. Normal Forms 

The question whether a modal axiom system allows for a reduction of the 
depth of nesfings of modal operators is well motivated in the literature on 
modal logic. In the present setting this question receives additional motiva- 
tion. Quantifiers express relations between subsets of a given model; this is 
reflected in the standard notation Q X Y  for 'quantifier Q holds of the sets X 
and Y'. In a modal setting sets are typically represented by purely proposi- 
tional formulas. Hence, the proper arguments of modal operators simulating 
quantifiers are the purely propositional formulas, or in any case, those that 
are reducible to such formulas. In this section we will prove a rather general 
normal forms theorem saying that every formula is equivalent to one without 
nestings of modal operators; from this we will be able to derive normal form 
results for a number of modal languages. 

Let s  be a modal language with a set of modal operators O such that 
L0 E O. Elements of O can have arbitrary arity. Let O range over elements 
of O. An element cr of s is called a prenex modal formula if it is of  the 

form ( ~ ) O ~  (note that the formulas ~bi in ~ may still contain modalities). 

DEFINITION 2.6. A logic in the language s  is called neat if it extends 
propositional logic, has a necessitation rule for L0, while the following are 
theorems of that logic: 

1. Lo(~ --~ ~) -~ (Lo~ ~ Lor 
2. o ~ Locr, if a is a pmnex formula; 
3. Lo(~ ~ ~ ' ) ~  ( 0 ( ~ , ~ , ~ ) ~  O(r 

For the remainder of this section we will assume that all operators under 
consideration are in O, and that the logics under consideration are neat in 
c(o). 
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LEMMA 2.7. Let g be a modal formula in prenex form. Then the following 
are derivable. 

1. Log --+ (o(~,o~ v (/3 A g),~) ,--, ( o ( d , ~  v/3, f') A g)); 
2. Long  --* (O(~b,a V (/3 A g) ,~)  ~ (O(~b,a,~) A -~g)). 

Proof We only prove item 1. By propositional logic we have g --+ ((o~ V (/3 A 
g)) *-+ (a V/3)). Thus, since our logic is neat, we have Log --~ (Lo(c~ V (/3 A 

g)) ~ Lo(a V/3)). By 2.6.(3) this gives Log --+ (O(~, c~ V (/3 A g), ~) 

O(~,aV/3 , )~) ) .  Now, by 2.6.(2) we have for any qo, Log ~ (qo ~ (~A g)). 

Thus it follows that Log --+ ( O ( ~ , a  V (/3 A cr),~) +--+ O ( ~ , a  V 3,)~) A g). 

LEMMA 2.8. Let g be a modal formula in prenex form. Then O ( ~b , a V (/3 A 

g),s ,--, ((o(d,~ v/3,s A g) v (o(d,  o~, s A 40-)). 

Proof. By propositional logic and 2.6.(2) we have Log V L0~g.  Now ap- 
ply 2.7. 

Lemma 2.8 may be rephrased as: if g is a prenex formula that occurs in 
~v, then ~ ~ ((g A [T/g]~)  V (--g A [_L/g]~)). 

DEFINITION 2.9. A formula ~ in E(O) is in normal form (NF) if it is a 
disjunction of conjunctions of the general form 

0 ~ A ('m)Ol(~*l A . . .  A ('m)On~n, 
where 6, ~ (1 < i < n) are purely propositional (possibly _L, T). 

LEMMA 2.10. I f  ~ is in NF and has some maximal 1 prenex modal formula 
o- as a subformula, then g must be in NE and there exist a, /3 in f_.(O) such 
that a,/3 are in NF and ~ may be assumed to have the form a V (/3 A g). 

THEOREM 2.11. In any neat logic in E(O) every formula ta is equivalent to 
a formula in NE 

Proof Induction on qo. The only interesting case is qo _= O(~,  "7, 9~), where 
"7 is in NF and contains a prenex modal formula cr _= & ( ~ ' ,  "7~, )~) in NF. 
Use 2.10 to write ~ as O(~,  a V (/3 A g), 9~). Using 2.8 we see that qo is 
equivalent to ( O ( ~ , a  V/3,)~) A g) V (O(~,a , )~)  A --lo-). Repeating this 
argument we can remove all nested occurrences of modal operators from ~. 
-q 

1 Maximal in the sense that it is not a strict subformula of a prenex formula. 
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COROLLARY 2.12. Over QUANT every ~ E Form is equivalent to a for- 
mula ~ E Form without nestings of  modal operators. 

Proof Here O = ( L0, M~ : n E N }. We leave it to the reader to check that 
QUANTis neat. q 

COROLLARY 2.13. Over QUANT k every ~ E Formk is equivalent to a 
formula f~ E Formk without nestings of  modal operators. 

2.3. Connections with Other Formalisms 

When interpreted on models QUANT-formulas become equivalent to a special 
kind of monadic first order formulas. The notion of equivalence involved 
here may be understood in either a local or global sense: a first order formula 
c~(x) E s is locally equivalent to a QUANT-formula ~ if for all .AA, and 
all w E • ,  we have .A4, w ~ p ~ c~(x); o~ E 13 and ~ are called globally 
equivalent if for all AA, AA ~ p iff.AA ~ oL. (Clearly, i f~  is locally equivalent 
to o~(x), then it is globally equivalent to Vx a.) 

From 2.12 we derive 

PROPOSITION 2.14. On models every ~ E Form is (locally) equivalent to 
a Boolean combination of  E~ each of  which has at most one free 
variable. 

It's the converse of this proposition that is more interesting: which monadic 
first order formulas are equivalent to a QUANT-formula on models? We can 
prove every 131-sentence to be equivalent to (the ST-translation of) some 
QUANT-formula by using a special case of the Ehrenfeucht-Fra'iss6 Theorem. 
For full details and a proof of this result we refer the reader to Westersthhl 
(1989: Section 1.7). 

DEFINITION2.15. Fix a finite set of proposition letters Prop = 
(P0, �9 �9 Pk-1 }. Let 131k denote the monadic first order language into which 
the modal language with this restricted set of proposition letters translates via 
the ST-translation; so s only has k unary predicate letters P0, �9 �9 �9 Pk- l -  ff 
X _C W, then X ~ = X,  X 1 = W \ X;  if ~ is a formula, p0 = p, ~1 = ~p.  
For s E 2 ~, we use Ps to denote both the partition set and the partition 
conjunction associated with s: 

, pS(k-1) 
Po (~  andPo ( ~  k- ,  �9 

{/2/}l<i<22k is used both to enumerate all possible unions (including the 

empty one) of partition sets, and to enumerate all possible disjunctions (in- 
cluding the empty one) of partition conjunctions. We use 79{ ~ and/gi 2~t to 
denote the extensions of ~s and L/i in some given model A/I. 
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Let 3d = (IV, Po, . . . ,  Pk-1) and AA' = (W', P ~ , . . . ,  Ps be two 121k- 
models. We write .M - n  3 4 / i f  A/l and 3A / satisfy the same 121k-sentences 
of quantifier rank at most n. For two sets X, Y we write X ~n Y iff IXI = 
IYI < n or ]Xl, [YI Z n; by extension we put .A/[ ,,~,~ Ad' i f ffor  all s E 2 k, 

The two notions =n and ,-,,~ are connected in the following way: for any 
two s 34, 3 s  3,4 =n 34 / iff 3/t "~n 2t#. 

THEOREM 2.16. On models every s is equivalent to a formula 
99 E Form. 

Proof To simplify our argument, assume that a = oz(P0, . . . ,  Pk-1) C 121 
contains only the predicate letters indicated. Let n be the quantifier rank of oz. 

The number of ,-on-equivalence classes is finite. Let 3 4 1 , . . . ,  349 be 
representatives of the ,-~n-classes that contain models of oz. Let 3/l = 
(IV, Po, . . . ,  Pk - 1) E { 341 , . . . ,  34g }. For each of the 2 k partition sets 
79s write down the corresponding partition conjunction preceded by the oper- 
ator M!m in case ]79~ "~r ] = m < n, or preceded by Mn-1 in case lT)s Aa ] >_ n. 
Let ~b~a be the conjunction of these 2 k formulas. It follows that for any 34, 
A,4 ~ o z i f f j t 4  ~ S T ( g M ,  V. . .V tbMg) .  -4 

COROLLARY 2.17. Every first order definable quantifier is definable in 
s 

From the proof of 2.16 we can derive a semantically driven normal form 
for QUANT-formulas and first order ones: each such formula 99 is equivalent 
to a disjunction of conjunctions of the form OT's, where O E { M !k, Mn-1 : 

k <_ rL, n is the quantifier rank of ST(99) }. 

We believe the natural setting for the system QUANT to be the realm of 
models rather than that of frames. For, one may understand (binary) quantifiers 
as expressing relations between subsets of some given universe - hence the 
natural surrounding for quantifiers are models of some monadic language, 
e.g., models for QUANT or for a monadic first order language. 

Nevertheless, we do want to state some results on frame related topics. 
First, as far as definability of frames is concerned, the language of QUANT is 
equivalent to the language of first order logic over identity. 

PROPOSITION 2.18. On frames every QUANT-formula is equivalent to a 
sentence of first order logic over identity. 

Proof All first order formulas over identity are equivalent to Boolean com- 
binations of formulas expressing the existence of at least a certain number 
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of elements. These are obviously definable by means of QUANT-formulas. 
Conversely, using the ST-translation QUANT-formulas can be translated into 
equivalent closed second-order formulas containing only monadic predicate 
variables. These are equivalent to first order formulas over identity (Acker- 
mann, 1954). q 

Next, this result gives a connection with the modal language F.,(D) which 
has one unary operator D, whose semantics is based on the relation of inequal- 
ity: .A/l, w ~ D ~  ifffor some v ~ w we have M/l, v ~ ~ (see De Rijke, 1992) 
for more on s In s  we can define the auxiliary operators E,  A, U: 
E ~  := (~ V Dqo) (there exists a point at which ~ holds), Aqo := (~ A ~D~cy) 
(~ holds at all points), and Uc# := E ( ~  A --D~) (~ holds at unique point). 

PROPOSITION 2.19. Let K be a class of frames. Then K is definable by 
means of Q UANT-formulas iff it is definable by means of E (D) -formulas. 

Proof By de Rijke (1992: Theorem 2.3) we have that, on frames, E(D) is 
equivalent to first-order logic over =. By 2.18 the result then follows. -q 

As an aside, on models, the language of QUANT is stronger than s  
every model distinguishable in s is distinguishable in the language of 
QUANT, as is easily verified using the above translation 7-; the converse does 
not hold. Consider for example the following models: 

L �9 �9 I M 2 :  [ o  �9 �9 1, 

where all points have the same valuation; M1 and .A/12 verify the same 
s but not the same QUANT-formulas. 

Admittedly, Propositions 2.18 and 2.19 do not give any explicit informa- 
tion on the classes of frames definable by means of a QUANT-formula. The 
following corollary does give this; it was inspired by a remark of one of the 
anonymous referees. Let 5 r ~ 9 denote that the frames .T, 9 are isomorphic 
(here, this means that there is some bijection 5 t-" --+ G). Let K be a class of 
frames. Then K/-~ denotes the subclass of K that contains exactly one repre- 
sentantive of every ----class in K. We say that a property holds of I< modulo 
isomorphism if it holds of K/-~. 

COROLLARY 2.20. A class of frames K is definable by means of a QUANT- 
formula iff K is closed under isomorphisms and modulo isomorphism either 
K or K c is afinite set of finite frames. 

Proof The direction from right to left is clear. For the converse, let K be 
defined by the QUANT-formula ~. Then K is closed under isomorphisms. 
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For the remainder of the proof we need the following auxiliary definition and 
claim. Let 5cm denote the frame <{ 1 , . . . ,  m }) (so M ! m T  defines 5t-m). 

Claim. If for all k E N there is an I > k such that ~ E K, then for some 
n E N we have -T'ra E K for all m > n. 

Proof of the Claim. Assume that K satisfies the antecedent of the Claim. 
By 2.18 ~ is equivalent to a first order sentence c~. Let n be the quantifier 
rank of a; this will turn out to be the n we are looking for. Choose any 
.Tt E K with 1 > n. Then .T t ~ qo. Now, consider the special case of the 
earlier notions - n  and ~n,  relative, this time, to a first order language 
without unary predicate symbols P0, P1, . . . ,  i.e., in a language with = 
only. Then, the appropriate models are in fact the frames .T for our 
QUANT-language. Moreover, .T "~n 7 boils down to I.TI = [H I <_ n or 
[.TI, [.Tt[ > n. And, of course, in this case without unary predicate letters 
we still have that the relations ~n  and "~n coincide. 

Now, take any .Tin with m > n. Then Y,~ "~n f'z, hence .Tin - n  St), and 
therefore .T,~ ~ c~ and .Tin ~ q~. So .Tin E K. qaairn 

Returning to the main argument, suppose that K/~- is infinite. Then, by the 
Claim .T,~ E K for all m > n, for some n. Then K/-~ must contain all 
(representantives of) infinite frames as well, by arguments similar to those 
establishing the Claim. It follows that Kc/~  can only contain finite frames 
.Tt for l < n; but then KC/--- must be finite. If, on the other hand, K / ~  is 
finite, then K / ~  cannot contain infinite frames, for otherwise it would contain 
arbitrarily large finite ones, and thus be infinite. So, if K / ~  is finite, it must 
be a finite set of finite frames, as required. -q 

3. COMPLETENESS AND COMPLEXITY 

3.1. Prerequisites 

A completeness proof for the system QUANT may be found in Fine (1972). 
There it is shown that QUANT is complete with respect to all frames of the 
form (W, R), where R is an equivalence relation that provides the interpre- 
tation for L0; in this setting the operators M. ,  Ln mean: 'more than n R- 
successors satisfy . . .  ' and 'at most n R-successors falsify . . .  '. However, 
since QUANT-formulas are preserved under generated subframes of such 
'non-standard' frames, we can derive from Fine's completeness result that 
QUANT is complete w.r.t, the standard frames in which the modal operators 
receive their quantifier interpretation. 

In van der Hoek (1992) the finite model property for QUANTis established; 
there, it is shown that the size of the model needed to refute a non-theorem ~p 



GENERALIZED QUANTIFIERS AND MODAL LOGIC 29 

is bounded by g (~) .  2#% Here, g(~), the grade of ~, is defined inductively 
as follows: g(p) = 0, g ( ~ )  = g(~o), g(~ A ~b) = max(g(qo), g(~b)), and 
g(Mn~) = max(n + 1, g(~)); and #~ is simply the number of (occurrences 
of) of symbols in qo, e.g., #M7(p A ~p) equals 5. Adopting an argument due 
to (Ladner, 1977), we can obtain a better upper bound: 

PROPOSITION 3.1. Let ~ E Form. Then ~o is satisfiable iff ~o is satisfiable 
in a model with at most 1 + #qo. g(~) elements. 

Proof  Let ~o be satisfied in a QUANT-model .AA = (W, V). We will use the 
subformulas of ~o as instructions for extracting a set of elements W' from 
W that will serve as the domain of the desired small model. A function 1-" is 
defined inductively on the instances of subformulas of ~o. 

1. Choose some w E W with ~4, w ~ ~; put F(~) = { w }. 
Now suppose that F(~)  has already been defined; then 

2. r ( x )  = r ( r  if r = -~x; 
3. P(XI) = F(X2) = F(r  i r e  = X1 A X2; 
4. F(X ) = F( r  if r -- MnX and .A/l, w ~ r 
5. if r - M~X and M , w  ~ r then choose n + 1 distinct points 

W l , . . . ,W n+l  such that .A4, wi ~ X (1 < i < n + 1), and put 
r ( x )  = { }. 

Define W'  to be the union of all P(r  where ~ ranges over the subformulas 
of ~. Put V' = V I W', and .M' = (W', g ' ) .  Then ]W'] _< 1 + #~o. g(~). 
Also, one may establish inductively that for all subformulas ga of ~, and all 
v E W n W' ,  we have.M,  v D r iff .a/l', v ~ r q 

By 2.16 the above proposition implies that properties of first order defin- 
able quantifiers may be decided on finite models. 

The method used in 3. l may also be used to establish: 

PROPOSITION 3.2. Let qo E Formk,  k E N>0. Then ~ is satisfiable iff it is 
satisfiable in a model with at most 1 + ( k + 1) �9 #~ elements. 

3.2. Completeness o f  QUANT k 

We will prove the completeness of QUANT~ via a Henkin-like construction. 
For a consistent formula g~ we will build a canonical model A/It containing, 
for each maximal consistent set A, at most k + 1 copies of A, together with 
a relation Rc on .Me to interpret the modal operators. To obtain a model in 
which the modal operators receive their intended interpretations, it will then 
be sufficient to show that cp is true in a point in some part of the canonical 
model on which Rc is total. 
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Our completeness proof for QUANT k differs from Kit Fine's complete- 
ness proof for QUANT in the following respect. If we wanted to prove the 
completeness of QUANT using the method just sketched, we would have to 
construct a canonical model that may contain, for each maximal consistent 
set A, infinitely many copies of A. Fine, on the other hand, first introduces, 
for every k, an accessibility relation Rk to interpret Mk. In order to end up 
with a standard model he then maps these relations onto a single one. 

DEFINITION 3.3. The canonical model h4c for QUANTk is a triple 
(We, Re, Vel such that 

Wc = { ( F , j / :  F is maximal QUANTk-consistent, 0 < j < k }; 
(F,j)Re(A,h) i f fh  = 0 and (t5 E A ::~ Mot5 E r) ,  or 1 < h < k a n d  
( 6 E A  ~ M~tsEP) ;  
We(p) = { (F, j ) "  p E F }. 

LEMMA 3.4. QUANTk ~ (Mkqv A -~Mk~P) --+ Mo(qa A -,r 

Proof. We have 

Mk~ --* (-~Mo(~ A -~)  ~ Lo(~ --+ r 
--* (--,Mo(qO A--,~) ---+ (Mk~ ~ Mkr B3 

A-,C) Mkr 

So A -,Mkr Mo(V/x 

LEMMA 3.5. Let j ,  h, 1 E { 0 , . . . ,  k }. Then 
1. (F,j)Re(A,h) iff (F,l)Rc(A,h); 
2. (P, j)Re(A, h) implies (F, j)Rc(A, 0); 
3. (F,j)Rc(A, 1) implies (F,j)Rc(A, h}. 

Proof By definition of R~, Re-successors of (F , j )  don' t  depend on j - 
this proves item 1. To prove item 2, if h # 0, and {F,j)R~(A, h), then we 
have that t5 E A implies Mkt5 E F. So by axiom B5, M0t5 E F, but then 
(F , j )Rc{A,  0) holds. Finally, to prove item 3, assume (F,j)Rc{A, 1). Then 
(F , j )Rc{A,  h) for any h E { 1 , . . . ,  k }, and by item 2 also {F,j)Rr 0). 
-4 

Next comes our main lemma. In it we use a notion of truth ~ n  based on a 
relation R, whose important clause is: (W, R, V), w ~,, Mi~ iff I{ v �9 w r y  
and (W,R, V),v ~n ~}1 > i( i  E {0, k }). 

LEMMA 3.6 (Truth Lemma). Let qo E F ormk, let F be a maximal QUANT k- 
consistent set, andassumej E { 0 , . . . ,  k }. ThenAAc, (P,j} ~,~ qo iff~ E F. 
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Proof. As usual the proof is by induction on ~. The cases ~ _= p, ~ _= ~1/~ ~2, 
= -'~1 are straightforward. 
Assume ~ -- M0~b. If Me,  (F,j)  ~n  M0% then for some (A, h) we have 

(F, j )Rc(A,  h) and, by the induction hypothesis, ~b E A. By 3.5.(2) it follows 
that (F,j)Rr 0). But then Mo~b E F. 

Conversely, ifM0~b E P, then the set {~b} U {7 : LoT E F} can 
be extended to a maximal QUANTk-consistent set A by standard modal 
arguments. Then (P, j/_R~(A, 0/; hence, by the induction hypothesis we have 

(r,j) Mor 
Next, assume that ~ _=- Mkr and let .A4~, (r,  j)  ~,~ Mkr We distinguish 

two cases. The first one is that for some A, ~ E L and (F,j)Rc(A, k). Then, 
by definition of Re, Mkr E F. The second case is that there is no ~ such 
that ~ E A and (F,j)Rr k). By 3.5.(2) and (3) this means that there is 
no single A containing ~ that occurs more than once as the first component 
of an Rc-successor of (r, j) .  But then, there must be pairwise different sets 
& o , . . . ,  Ak such that ~b E Ai and (r , j)Rc(Ai,  O) (0 < i < k). So there are 
formulas 6ih (0 <_ i 7s h <_ k) such that ~h E Ai \ Ah. Putting 

0 < h < k  0 < h < k  
h # i  h r  

we have 6i E Ai, and QUANT k ~- Lo-,(6i A 6h), for i r h. Also, since 
(F, j)Rc(Ai,  O) and & A r E A~, we have that Mo(~ A ~) E P. Using axiom 
B4 we find that Mkr E F. 

Conversely, if Mkr E F, then, by axiom B1, M0r E F. Reasoning as in 
the case o f M o r  E P we find a Ao such that ~p E Ao and (F,j)Rr 
Now, if there is such a Ao with the additional property that (r, j)RdAo, k), 
then we are done by 3.5 and the induction hypothesis. Otherwise, there is some 
6o E Ao with -,Mk6o E F. Hence, by 3.4, Mo(r A -,5o) E F - but this implies 
the existence of a A1 for which (r,j)Rc(A~, 0), Ao r A1, and ~bA-~o E A1. 
By assumption we don't have (r,  j)R~ (A~, k). Repeating this argument, we 
find pairwise different sets Ao , . . .  ,A~ with (I',j)R~(/xg,O) and r E 2x~ 
(0 < i < k). Hence, by the induction hypothesis, A4~, (r, j)  ~n  Mkr -q 

LEMMA 3.7. 
1. Rc is serial (i.e., it satisfies VxSy xRy); 
2. R~ is euclidean (i.e., it satisfies Vxyz (xRy A xRz  --* yRz)). 

Proof. Item 1 is immediate: ~p E F implies MoW E P by axiom B1; 
hence, we have (F, j)R~(F, 0). To prove item 2, suppose (F,j}Rr 
and (F,j)Rc(2, m}. If m = 0 then ~ E ~ implies Moor E P which implies 
LoMo~r E r (axiom B2), hence Moor E A. But then {A, I)R~(E, m). If 
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rn ~ 0 then cr C E implies Mko" E F, hence LoMk~r E F. Thus Mko- E"A, 
whichmeans tha t  (A, I)Rc(E, rn). q 

To prove that a consistent formula qo has a model, it suffices to find a model 
All = ( W , R , V )  such that for some w E W, AA,w ~ ~, and such that R is 
total on .M. Now, a relation R that is euclidean and serial need not be total. 
However, for our purposes it suffices that such an R is 'almost total' in the 
following sense: Vxyz (xRny A xRraz --~ yRz). The proof that any serial, 
euclidean relation is almost total is left to the reader. 

THEOREM 3.8. Let qa E Forrn~. Then QUANT k P ~ iff QUANT k ~ ~. 

Proof Proving soundness is left to the reader. To show completeness, assume 
is QUANTk-consistent. Then, by axiom B1, so is M0~. Thus for some 

maximal QUANTk-consistent set F we have M0~ E F. Lemma 3.6 gives 
.Me, (F, 0) ~ M0~. We may of course assume that .Me is R~-generated by 
(F, 0); by 3.7 A/I~ is serial and euclidean. 

Me,  (P, 0} ~ n  M0~ implies that for some (A, i) we have (P, 0)Re(A, i) 
and .Me, (A, / )  ~ qo. Let .hA be the submodel Re-generated by (A, i}. Then, 
we have .M, (A, i) ~ n  (P, and on A/l, R~ is the universal relation, so the modal 
operators receive their intended interpretations in .M, i.e., .M, (A, i) ~ ~. 
-q 

Note that, by Lemma 3.6, Theorem 3.8 generalizes to strong completeness, 
i.e., to the case of deductions from arbitrary sets of sentences. 

COROLLARY 3.9. Let k > O, and ~ E Formk. Then QUANT ~- ~ iff 
Q UANT k ~- ~. 

3.3. Complexity 

Recall that in w we gave upper bounds for the size of the model needed 
to satisfy a consistent formula ~ in terms of #~ (the number of symbols in 
~) and g(~): 1+ the highest n occurring as subscript in an operator Mn in 
~. From a computational point of view it is more natural to have a bound in 
terms of the length of the representation of ~p. (So IMnl is the length of 
the representation of n.) 
PROPOSITION 3.10. The problem of determining whether a formula qo E 
Forrn~, k E N>0, is satisfiable is NP-complete. 

Proof It suffices to show that the problem is in NP. But this follows from 3.1. 
First guess a model with at most 1 + (k + 1) �9 [qo[ elements. Then determine 
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the validity of each subformula in each element, starting with the proposition 
letters occurring in ~. This can be done in polynomial time. -~ 

What about QUANT-satisfiability? By an argument due to Edith Spaan 
QUANT-satisfiability is in PSPACE. Below, an algorithm is given that tests 
for QUANT-satisfiability, and is in PSPACE. The main idea behind this algo- 
rithm is that the truth-value of a QUANT-formula (possibly containing modal 
operators) in a model, is completely determined by Boolean combinations of 
proposition letters, and the number of occurrences of such combinations in 
the model. This idea will be implemented in our test for QUANT-satisfiability 
as follows. 

Given a formula p we first consider certain propositional counterparts 
of ~ and its subformulas; we then guess a number (intuitively, the size of 
the model) and valuations, in the meantime determining how often these 
propositional combinations will occur in the resulting model. Finally, we re- 
consider the original formula p, and show how its truth-value is determined 
by its propositional counterpart. 

Fix some formula ~. We need some preliminary notions. For 0 E Form, 
CI(0) is the smallest set containing 0 and closed under subformulas. To 
determine the propositional counterpart of ~, let/~ be a new symbol. 

* For O E Form define s tr ip(O) as follows: 

- strip(p) := p, for p E Prop, 

- strip(-~r := if strip(C) = • then 

else -~strip( r ), 

- strip(C1 A ~)2) := if strip(C1) = ~ and strip(C2) = A 

then A 

else if strip( ~l ) = A 

then strip(C2) 

else if strip(~2) = ~ then strip(~bl) 

else strip( ~l ) A strip( ~z ), 

- s t r i p ( M ~ )  := A. 

. Put STRIP(p) = { s t r ip(C)  : r E CI(~) } \ { A } O { T, _L }. To give a 
simple example, STRIP(Mzp A q) = { p, q, T, _1_ }. Note that STRIP(p) 
contains propositional formulas only. These will be used to guess a kind 
of table that contains all information relevant to building a model for ~. 
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�9 Here's the A l g o r i t h m :  

- Guess worlds _< 1 + I~1 " 21~t (intuitively, { Wl , . . . ,  Wwortd, } will 
be the domain of the model satisfying ~, if ~ is satisfiable). 

- For ~b E STRIP(~) put count(~) := 0; 
f o r  i := 1 to worlds do 

guess a propositional valuation V~ for wi, 
forall ~b E STRIP(qo) ifwi ~ ~ then count(~b) := c o u n t ( ~ ) + l .  

Since we 'forget' about the valuations, we only need polynomial space 
to store this 'table' containing the counts for ~ E STRIP(~). 

�9 The next step is to check that this works. To this end, let .M be a model that 
is derived from this table, in the sense that for ~ E STRIP(~), the number 
of worlds in 34 that satisfy 0 equals count(~b). (Of course, 34 need not 
be determined uniquely by the table, but for our purposes it suffices to 
have it satisfy the "counts".) Next, we have to check that this model is 
a model for ~ - to this end we connect up the propositional formulas 
in STRIP(~p) with the modal formulas from Cl(~p). This is done using a 
function f .  To be precise, we define a function f : CI(~) ~ STRIP(~) 
for which it is easily seen that the number of worlds satisfying g) in the 
model 34 equals count(f(~)) for every ~ E CI(~): 

- forp  E Prop, f(p) := p 
- f ( - ' r  := -~f(0) (to have range(f) C_ STRIP(~) we take --,-1- ~ •  

and -~3_ ___ T), 
- to define f ( ~ l  A 02) we have to distinguish a number of cases: 

if f (01)  = T then f(~b 1 A ~2) = f(~b2), 
if f ( ~ l )  = • then f ( ~ l  A ~b2) = _1_, 
i f f (~2 )  = T then f(01 A~2) = f ( ~ l ) ,  
if f (~2)  = _1_ then f(~bl A ~bz) = L, 
otherwise f(01 A ~2) = f ( ~ l )  A f(~2).  

(The above definition may seem somewhat laborious, but it really is 
necessary to distinguish the various cases, since f ( ~ l  A ~z) can be 
in STRIP(~) while f ( ~ l )  A f(~2) need not be in it, cf. the example 
below.) 

- if count(f(~O)) > n we define f(Mn~) to be T, otherwise 
f(Mn(O) = _k. 

By simply following the inductive definition of f it is clear that the number 
of worlds satisfying ~b in 34 equals count(f(~)) for any ~ E CI(~). 
To continue our earlier example, let ~/ ___ Map A q, and assume that 
count (~) is known for all ~ E STRIP(~I). Then f (qo I) ----- q if count(p) > 
2, otherwise f(qJ)  = 2_. 
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�9 Finally, eount(f(~)) > 0 iff ~ is satisfiable in AA. 
To conclude our example, since count(l) = 0, we 
count(f(M2p A q)) > 0 iff count(p) > 2 and count(q) > O. 

have that 

To sum up, given a formula ~ as input, run the Algorithm on ~, and 
verify whether count(f(qo)) > 0. Since the Algorithm is in PSPACE and the 
function f is obviously in P, the entire procedure must be in PSPACE. 

THEOREM 3.11. The problem of determining whether a formula 9~ C Form 
is satisfiable is in PSPACE. 

It is still open whether or not QUANT-satisfiability is also PSPACE-hard. 

4. SEMANTIC CONSTRAINTS AND INFERENTIAL PATTERNS 

In this section some topics familiar from generalized quantifier theory are 
addressed in a modal setting; also, some applications are given of the systems 
QUANT and QUANT k to these topics. 

4.1. Semantic Constraints 

In this subsection we consider some well-known semantic constraints on 
quantifiers, and try to match them up with syntactic restrictions on modal 
formulas. On the way we will give some examples of how our modal apparatus 
allows us to translate our semantic (Boolean) intuitions into syntactic ones. 
Most results will be stated for QUANT-formulas only, but they have an 
immediate analogue for QUANTk-formulas. 

Let us fix some terminology first. Following Westersffdal (1989) we define 
a (binary) generalized quantifier to be a function assigning to every set .h4 a 
binary relation QM between subsets of .hi, and we recall that the conditions 
imposed to obtain so-called logical quantifiers are 

1. CONSERV QA4PoP1 iff QMPo(P1 n P0); 
2. ISOM QMPoP1 iff QM,f[Po]f[Pl] for all bijections f "  A4 --* M ' ;  
3. EXT if Po, P1 _C A/[ c .hi t then QAaPoP1 iffQM,PoP1. 

A first order sentence o~(Po, P1 ) satisfies the combined conditions CON- 
SERV (for P0) and EXT iff it is logically equivalent to some sentence with all 
quantifiers P0-restricted (Westerstfihl 1989: Theorem 3.2.3). An obvious ques- 
tion here is whether a similar characterization exists for QUANT-formulas. 

We say that a QUANT-formula qo satisfies CONSERV if (W, Po, P1) ~ ~3 
iff (W, P0, P1 N P0) ~ ~; it satisfies EXT if P0, P1 C W C_ W' implies 
(W, Po, P1) ~ qo iff (W',Po, P1) ~ ~. Note that we only consider global 
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truth of QUANT-formulas in this context; this corresponds to the fact that 
quantifiers are usually defined using sentences rather then with formulas that 
may contain free variables. 

Define a n  E(QUANT)-formula ~(P0,Pl) to be po-restricted if it is a 
Boolean combination of formulas of the form M~(po A ~p), where ~p is a 
purely propositional formula. 

PROPOSITION 4.1. A formula qo(p0, Pl ) E 12(QUANT) satisfies CONSERV 
and EXT iff it is logically equivalent to a formula that is po-restricted. 

Proof. The 'easy' direction may be proved as follows. If qo(po, pl) is Po- 
restricted, then ST(~) may be written as an s in which all quan- 
tifiers are P0-restricted. Thus ST(~) satisfies CONSERV and EXT by the 
result quoted above. But then the same holds for ~ itself. 

To prove the 'hard' direction, assume that cp(p0, Pl) satisfies CONSERV 
and EXT. By our remarks following 2.16 qo has a 'semantic' normal form 

--- ~b0 V . . .  V ~b 9. For a disjunct ~b in ~,  define ~b I to be ~b with the conjuncts 
in which P0 occurs negated left out. Put ~ := ~p~ V . . .  q Cg. Then, for any 
model A4, .M ~ qo iff .M ~ fits. Obviously, .AA ~ ~ implies ~A ~ 9 ' .  
To prove the converse, assume A4 = (W, Po, P1) ~ r for some i. Now 
~bi = ~AOm(-~poApl)AO~(-~poA-~pl), where O, O' E { M, Mt  }. Let.A/ll 
be M with ]P~ N Pll = ra if O ~- M!,  and IP~ N Ptl = m + 1 otherwise. Let 
.M2 be AA1 with IP nPffl = n i f o '  = M!,  and IP~NP~I = n +  1 otherwise. 
Then M 2  ~ r But then A/t2 ~ ~. By EXT this implies .M1 ~ ~, which 
yields M ~ ~p by CONSERV. -q 

An important condition on quantifiers that has figured prominently in the 
literature is monotonicity. A binary quantifier Q is upward monotone in its left 
argument (or TMON) if Q~PoP1 and Po C P~ imply QMP~P1; the modal 
version is: a modal formula is TMON in P0 if (W, Po, . . . )  ~ ~ and P0 C P~ 
imply (IV, P~, . . . )  ~ cp. As an application of the Lyndon Theorem for first 
order logic we have that a first order sentence ~ (P )  is TMON (in P )  iff it 
is equivalent to a sentence in which P occurs only positively (in the usual 
syntactic sense). A similar result holds in s and can be read off 
from the earlier semantically driven normal forms: 

THEOREM 4.2. A formula ~(p) E 12(QUANT) satisfies TMON in p iff it is 
equivalent to a formula in which p occurs only positively. 

Proof. To prove the direction from right to left we first introduce a local 
version of monotonicity. Define a formula ~ to be TLMON (ILMON) if 
(W, P o , . . . ) , x  ~ ~P, Po C_ P~ (P~ C_ Po)implies (W,P~, . . . ) ,x  ~ ~, for any 
model (W, Fo , . . . ) ,  and z E W. One can prove by induction on ~ that if all 
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occurrences of P0 in ~; are positive (negative) then ~ is TLMON (ILMON). 
This implies one half of the theorem. 

Conversely, let ~(p) satisfy TMON. Rewrite the disjuncts in the semantic 
normal form (I) of ~ according to the following recipe. Let N be the maximal 
number occurring as the index of some modal operator in qs. Replace 

MN(p A D) A MN(-~p A D) 

by 

MN(p A D) A M2N+ID, 

where D is the remaining part of the partition conjunction. Then, rewrite 
conjuncts of the form M !q ( (@p A D) according to the definition of M!. The 
resulting conjuncts 

Mk-~(p A D) A ~Mk(p A D) A Mz-1 (-'p A D) A -~Mz(-~p A D) 

should be rewritten as 

Mk-l(p A D) A Mk+l-lD A -,Mk+ID A -,Mt(~p A D). 

Other combinations may be rewritten in a similar way. Let (I) t be the formula 
that arises from �9 by applying the above rewriting recipe. Then all occurrences 
of p in ~51 are positive. By elementary logic we have ~ 4) --+ (I)q To prove 
the converse, assume (W, V) ~ ~/ where ~t is a disjunct in (I)t. Choose 
V'(p) C_ V(p) minimal so as to still have (W, V'} ~ ~. Then, in W, there 
are enough elements left to have (W, V/} ~ $, where ~ is the disjunct 
in ~5 that was rewritten to ~/. But then, by TMON, (IV, V} ~ W - hence 
(w, v) 

A related topic in the theory of generalized quantifiers is the relational 
behavior of quantifiers. A typical result in this area is the following: on 
the finite sets the quantifier all is the only logical quantifier that is both 
transitive (VXYZ, (QXYAQYZ-+QXZ)) and reflexive (VX (QXX)) (van 
Benthem 1984: Theorem 3.1.4). Here, we put our modal apparatus to work to 
characterize the logical (first order) quantifiers that are symmetric, i.e., that 
satisfy VXY (QXY --~QYX). 

Let a(P0,/91) be a first order sentence with quantifier rank q. From our 
remarks following 2.16 we know that a(P0, P1) has a semantic normal form 
(in s (Q UANT)). Using this normal form one can construct a set R~ of 4-tuples 
describing the models of a. Let 

l I I  ,r { .~ Ok(po Apl )  A Oz(po A ~Pl) A O,~(-~po Apl)  A u~ ~-~P0 A ~Pl). 

be a disjunct in the semantic normal form of a. This disjunct gives rise to 
adding a 4-tuple (a, b, c, d) to R~ as follows 
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�9 i f  O = M !  t h e n  a := k else O = M and k must equal q - 1, and we put 
a := q; 

�9 similarly for O ~, 0", 0 m and b, e, and d respectively. 
(Note that the highest number occurring in any 4-tuple in R~ is q, the quantifier 
rank of o~.) A look at the semantic normal form of c~ may lead one to conjecture 
that c~ is symmetric just in case we may swap the arguments of the second 
and third conjunct in any disjunct in the semantic normal form of o~, and still 
retain an equivalent of o~. To see that this is indeed the case, define for a given 
set R,~, the set R* to be { (a, c, b, d} �9 (a, b, c, d) E R~ }. 

PROPOSITION 4.3. Let ~(Po, P1) be an s Then c~ is symmetric 
iff R~ = R*. 

Proof We only prove the direction from right to left. Suppose Rc~ = R~. 
Assume 3/1 ~ a(Po, P1); we want to show that 34 ~ a(P1,Po). 3/1 is 
accounted for in R~ by some tuple (k, l, m, n); by assumption (k, m, l, n} E 
R~. Let A.4' be a model for a(Po, P1) witnessing this: 

3/1: 
?z 

Ad': 

We may assume that 34 and .M I have the same universe W. Choose a bijectmn 
f : M '  ~ .M that maps P~ n P~ to P0 N P1, and p~c N P~C to P~ N P~, 
but P~ N P ~  to P~ n P1, and P ~  N P~ to P0 N P~. Then f [/9(] = P0 and 
f[P~] = Pl. From this and 3A' ~ o~(P0, P1) it follows that A,I ~ c~(P1, P0). 
-q 

The kind of reasoning our modal language has lead us to in the previous 
proof is pretty much the same as the type of argument that is usually employed 
in connection with the the Tree of Numbers (see van Benthem 1986 for details). 

THEOREM 4.4. Let a(P0, P1) define a logical first order quantifier. Then 
c~ is symmetric iff ol is equivalent to a disjunction of formulas of the form 
a t l e a s t  k As a r e  Bs, and exac t l y  k As are  Bs. 

Proof It is obvious that the listed forms are symmetric. So assume that 
is symmetric, and consider R~. Then (a, b, e, d) E R~ iff (a, b, c, 0) C R~ 
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(by EXT) iff (a, b, 0, 0} E R a  (by CONSERV) iff (a, 0, b, 0} E R~ (by 4.3) 
iff (a, 0, 0, 0} C R~ (by CONSERV). So we may assume that R~ consists 
entirely of 4-tuples of the form (a, 0, 0, 0} - but then a must have the desired 
form. -q 

4.2. Inferential Patterns 

The inferential patterns satisfied by some fixed quantifier Q have been stud- 
ied on at least three levels of analysis. A purely relational (or syllogistic) 
level is the minimal one, where the admissible formulas are Boolean com- 
binations of formulas of the form QXY with X, Y without any structure. A 
typical result here says that symmetry and quasi-refexivity (QXY/QXX) 
completely axiomatize the syllogistic theory of some (van Benthem 1984: 
Theorem 3.3.5). On a second level of analysis one adds Boolean structure 
to the arguments X, Y of Q; to give an example: the property CONSERV 
(QAB/QA(B N A) and QA(B A A)/QAB) resides at this level, as well 
as irreflexivity (QAA/W) (Westerst~hl 1989: Section 4). To express even 
stronger properties of quantifiers one can move up to richer languages. For 
example, one might add constants for all and some to the Boolean level, and 
analyze one's favorite quantifier on top of this enriched Boolean language. 
But, the modal approach of the present paper also resides on this third level. 
We obviously allow for more 'types' of formulas than those allowed for in the 
Boolean approach. However, since in principle we can do without nestings 
of modal operators according to 2.16, the modal approach is rather close to 
the Boolean one. 

This close connection between the two approaches suggests at least two 
lines of investigations as far as the inferential theory of specific quantifiers 
is concerned. For a start, we can ask questions familiar from the Boolean 
approach, but now lifted to the modal level. An example of such a question 
concerns the extent to which the syntactic behavior of a quantifier (or a set of 
quantifiers) determines its (their) semantic behavior. The completeness results 
for QUANT and QUANT k given in Section 3 fall under this heading; what 
they amount to is that the respective sets of axioms say all one can say about 
the sets of operators { mn " n _> 0 } and { mn " n = 0, k } in s 
and s Note that these sets of operators are not determined by 
their respective axiomatizations in the sense of Westerstgthl (1989: Section 
4.5). For these axioms are also satisfied by the modal operators ~n,  where 
(W, R , . . . ) ,  v ~ ~ng~ if there are more than n R-successors ofvthat satisfy 9~, 
where R is an equivalence relation. Even if we restrict our attention to models 
for monadic first order logic there is no determination of { Mn " n > 0 } or 
{ M0, Mk } (k > 0) by their respective axiomatizations; to see this one can 



4 0  WIEBE VAN DER HOEK AND MAARTEN DE RIJKE 

adapt the arguments of Westersffthl (1989: Corollary 4.5.10). 

Another option suggested by the close connection between the Boolean 
and modal approach to quantifiers, is to try and solve questions from the 
Boolean level of analysis using our modal intuitions and results. Along this 
line we will present a complete axiomatization of the Boolean counterparts 
m O r e n  of our modal operators Mn; so m o r e n X Y  denotes the quantifier 
IX n Y I > n. 

The language EB is built up as follows. It has p rimitives (X, ]/",...) built up 
from unary predicate letters P0, P1, �9 �9 �9 using (.)c n; below we will often pre- 
tend that primitives are propositional formulas built up from the 'proposition 
letters' P0, P1, . . . .  The atomic formulas of s have the form m o r e n X Y ,  
where n E N, and X, Y are primitives. From these, formulas are built up in the 
usual way. Some useful abbreviations are a l l bu t , *X Y  := -~raOrenXY c, 
and p r e c i s e l y , * X Y ,  which is defined as - ~ m o r e o X Y  if n = 0, and as 
m o v e n _ l  X Y  A -~more ,*XY  otherwise. 

Loosely speaking, s corresponds to a fragment of s in which 
every formula is a Boolean combination of formulas of the form Mn~, where 

is purely propositional. So given the fact that the axioms A1-A5  axiomatize 
the complete theory of the operators Mn, an obvious conjecture for a complete 
set of axioms in EB is arrived at by deleting from the list of QUANT-axioms 
those by which the number of nestings of operators may be altered, i.e., 
leave out A1 and A2. Apart from one additional axiom governing the way 
in which the operators m o r e , ,  combine with Boolean operators inside their 
arguments, this is in fact all we will need! 

DEFINITION 4.5. The logic B - Q U A N T  (for the Boolean counterpart of 
QUANT) is defined as follows. Its rules of inference are Modus Ponens, 
Substitution, and a restricted version of Necessitation: if the primitive X 
(considered as a propositional formula) is derivable in propositional logic, 
then allbutoTVX is a theorem of B - QUANT. Besides those of propositional 
logic its axioms are: 

A3' a l lbutoXY -* ( m o r e ~ T X  -+ more~TY) ;  

A4' a l lbutoXY c -~ 

(precisely~ T X A pr eciselym T Y  -~ p~ecisely~+~ T ( X U Y)); 

A5' m o r e n + l X Y  -~ m o r e ~ X Y ;  

A6 m o r e ~ X Y  ~-+ m o r e ~ T ( X  N Y). 

Here's a result we will need later on: 
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PROPOSITION 4.6. Let n E N. The following are derivable in B-QUANT." 
1. -~more~XY --+ prec i se lYoXY  V . .. V p rec i se l ynXY;  
2. a l lbu t~T(X  N Y)~ ~ a l lbu t~XY  ~ ~ allbut~YX~; 

3. a l lbu toXY c ~ (more,~ZX A m o r e m Z Y  --* raore~+m+tZ(X U Y)]. 
\ / 

Proof We only prove item 1; item 2 is straightforward, and item 3 follows 
from item 1. By definition we have - ~ p v e c i s e l Y o X Y  --+ m o r e o X Y  and 

~ p r e c i s e l Y l X Y  -~ - ~ ( m o r e o X Y  A ~ m o r e l X Y ) .  

Putting this together g i v e s - ~ p r e c i s e l y o X Y  --~ ( - ~ p r e c i s e l y i X Y  --* 
m o r e l X Y ) .  Continuing in this fashion, we end up with 

- ~ p r e c i s e l y o X Y  A . . .  A - ~ p r e c i s e l y n X Y  -+ m o r e n X Y ,  

the contrapositive of which is item 1. (By applying axiom A5' one can in fact 
show that the disjunctions in the consequence of the formula in item 1 are 
exclusive), q 

DEFINITION 4.7. The models for s are pairs .A4 = (W, V} where W is as 
usual, and V is a function assigning subsets of W to unary predicate letters, 
and thus, by extension, to all primitives. The only interesting case in the truth 
definition is the atomic one: 

M  o,..XY iff IV(X) V(Y)i > 

We say that ~ is valid iff for all AA, .M ~ ~. 

As with QUANT-formulas we can define a notion of grade for s 
formulas: gr(~) = 1 + max{ n : m o r e ~ X Y  occurs in ~ }. A formula 

C s is said to be in disjunctive normal form (DNF) if it is a disjunc- 
tion of literals (i.e., of (negated) atomic formulas). Using the fact that every 
propositional folxnula has a DNF, we have that every ~ E s  has a DNF. 

To prove the completeness of B - Q U A N T  we assume that ~ E s is 
consistent, and try to find a model for ~. To this end it suffices to find a model 
for a disjunct ~ in the DNF of ~. For the time being we fix r to be such a 
conjunction of literals in s 

Let P 0 , . . . ,  Pk-1 be the proposition letters occurring in r Recall from 
Section 2.3 that Ps (s E 2 k) denotes a partition set, and b/i (1 < i < 22k) a 
(possibly empty) union of partition sets. For the remainder of this section we 
write L for the empty union of partition sets, and 7- for the union of all partition 

sets. Define MORE(C) = { (-~)morenlgilgj �9 1 <_ i , j  <_ 22k,n < gr(r  
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2k+l So IMORE@) I = 2. gr(~).  2 . Define a subset 9 of  MORE(~b) as follows. 
First of  all, it contains all conjuncts occurring in % and secondly, it is maximal 
consistent in MORE(~b). 

DEFINITION 4.8. The canonical model 3de = (We, Vc) is defined as fol- 
lows. To each partition set 7"s (s E 2 k) associate a set of  primitives IIs in such 
a way that 7"s E I I s ,  and H~ is maximal consistent (in propositional logic, 
and in the fragment containing only the 'proposition letters' P0, �9 �9 �9 Pk-1).  

W~ is a set pairs (Us, n) such that (II~, n) E W c  iff morenT7"s E 9; Vc 
is defined by putting (II~, n) E V~(P) iff P E I I s  (0 < n _< gr(r  s E 2k). 

L E M M A  4.9 (Truth Lemma). Let X E MORE(C) .  Then X E 9 iff .Mc ~ X. 

Proof. Assume X - morenblilgj. Then for some 7"1 , . . . ,  7"s we have k 
(/di n b/j) ~ (7'1 U . . .  U 7"~) in propositional logic. 

Assume Adc ~ morenbliblj, i.e., Ale  ~ morenT(7"l U.. .  UT's), by the 
soundness of  axiom A6. Then there are n l , . . . ,  n~ such that (1-It, nt - 1 ) E W~ 
(1 < t < s), and nl  + " "  + ns = m > n. By the definition of  Wc we have 
morent - lTT ' t  E �9 (1 < t < 8). Now obviously, if u r v (1 < u < v <_ 
8 - 1) then ~- ((791 V . . .  V 7",,) A 7"~) ~ _1_ in propositional logic; hence 
~- allbuto(7"l V . . .  V 7",,)(7"~)~ in B-QUANT. By repeated applications 
of  4.6.(3) this yields more,n_lT(7"l U . . .  U 7"s) E 9 .  But m - 1 > n, hence 
axiom A5' gives morenT(7"l U . . .  U 7"~) E 9 ;  but then, more~blilgj E 9, 
by the maximal consistency of  9 .  

For the converse we have to do a little more work. Suppose X E 9 .  By 
A6 and Substitution we have more~T(7"l U . . .  U 7"s) E 9 .  We distinguish 
two possibilities. 

1. For some t, 1 <_ t <_ s, mOrenTT't E 9 .  Then, by axiom 
A5 ~, the fact that 9 is deductively closed, and the definition of  Wc, 
we have ( I I t , 0 ) , . . .  (Ht,n) E Ado. Hence, A4~ ~ rnore~TT't; thus 
A,t~ ~ morenT(7"l U . . .  U 7"~), and so JMc ~ more~LtiLlj. 

2. For no t (1 < t <_ s), morenTT' t  E 9 .  Then, by 4.6.(1), we can 
conclude that there are n l , . . . ,  ns-1 such that prec ise lymTT' t  E 9 (1 < 
t < s - 1). Put m = nl  + " �9 + ns-1. If m > n, we are done. For then we 
have 7"l U . . .  U 7"~ occurring in nt copies of  IIt for each t E { 1 , . . . ,  s - 1); 
this implies 3A~ ~ morenT(7"| U. . .  UPs) and A/lc ~ movejAiLtj .  If, 
on the other hand, rn _< n, then we argue as follows. We first show that over 
B -  Q UANT we have that m o t  e~LliLtj implies 

pr eciselYnl TT'l A . . .  A preaiselyn,_ 1TT's- 1 --~ moren-mTT's .  

Reason 'inside' B-QUANT. Assume rnorenLliLtj, and preciselyn~T T'l, 
. . . .  prec i se Iym_ ~ T7"~-1. Note that by 4.6.(1) we have 

-~moren-m TT's ~ preciselYoTT's V ...  V prec ise lyn_m T79s. (1) 
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Since u r v implies k- allbutoT)~(7)~) c, axiom A4' gives that for 
r E { 0 , . . . ,  n - m }, the conjunction of the formulas p r e e i s e l y ~  T7)1 A 
.. .  A preciselyn,_~TT)s_l and preeisely~TT)s implies the formula 
precisely,~+~T(7)l U . . .  U 7)s). Together with (l) and our assumptions 
this yields 

-~moren_m T ~s -+ 

preciselymT(7) l  U. . .  U 7)s) V . . .  V prec ise lynT(7)  1U. . .  U 7)s). 

But the latter disjunction implies -~morenT(7)l U ... U 7)s), i.e. 
-~more~UiLtj, which is a contradiction. Hence, we have moren_,~T7)s as 
required. It follows that moren_mT7)s E ~. All in all we have 7)1U.. .  U 7)s 
occurring in nt copies of IIt (1 < t < s - 1); this gives m elements of Wc 
'verifying' 0Ol U . . .  U 7)~. The fact that moren_mTT)s E �9 adds more than 
n - m copies of 1-Is to We, in each of which 7)1U.. .  U 7)s occurs. This implies 
]Mc ~ morenT(7)l  U . . .  U 7)s), and hence, 2t4c ~ morenlgiblj. 4 

THEOREM 4.10. Let ~ E I:B. Then B-QUANT F- ~ iff B -QUANT ~ ~. 

Proof As before, proving soundness is left to the reader. To prove com- 
pleteness, assume that B-QUANT ~/g). So - ~  is B-QUANT-consistent. 
But then, some disjunct ~ in the DNF of -,g) has a model by 4.9. Hence, 
B-QUANT ~ ~. 4 

COROLLARY 4.11. Let ~ E s Then B-QUANTa- ~ iff QUANT~ ~. 

COROLLARY 4.12. B-QUANT is strongly complete. 

Proof Let A be an arbitrary set of sentences. Then A F- ~ in B-QUANTi f f  
A ~ ~ in QUANT, by 4.12, i f fA  ~ q) in QUANT, by the strong completeness 
of  QUANT (cf. Fine (1972)), iff A ~ qa in B-QUANT. 4 

The method used to prove B-QUANT complete in 4.10 may also be 
used to give an alternative completeness proof for QUANT or QUANT k. We 
preferred to prove the completeness of QUANT k the way we did it in Section 
3.2, simply because the method used there is somewhat closer to the modal 
tradition. 

The question settled by Theorem 4.10 is related to a question due to 
Johan van Bentbem, who asked for a complete axiomatization of the schemes 
common to all quantifiers somen  (n E N>0). A6 and 4.6.(2) are two such 
schemes; and, in the richer language where one has all and s o m e  available, 
A3 ~ is a further example. 
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5. BEYOND THE FIRST ORDER BOUNDARY 

In this section we will consider some higher order quantifiers as modal opera- 
tors. The leading character in this section will be the quantifier t h e r e  a r e  a t  
l e a s t  as  m a n y  X s  as  Ys.  The choice to consider this particular quantifier 
is motivated by the fact that we can use an existing calculus to axiomatize the 
valid inference patterns that hold of this quantifier. Also, using the quantifier 
t h e r e  a r e  a t  l e a s t  as  m a n y  X s  as  Ys, a number of other higher order 
quantifiers can be defined and studied. 

The plan for this section is as follows. We first introduce some notation and 
an axiom system Q M  for a modal operator a t l eas t ( . , . ) .  After that we prove 
a completeness theorem for this system. Then, some themes from sections 2.2 
and 4.1 re-emerge when we prove a normal form theorem, characterize the 
QM-formulas satisfying CONSERV and EXT, and prove a (partial) Lyndon 
Theorem for the modal language with a t l eas t .  We complete this section by 
taking an exploratory look at some modal operators representing other higher 
order quantifiers. 

5.1. Axioms and Notation 

First, let us set up our language. Let Form > abbreviate Form (Prop, 
~, { a t I e a s t  }). Here are some useful abbreviations we will use: 

LoV - a t l e a s t ( v ,  T) 

m o r e ( v ,  r  = a t l e a s t ( ~ ,  r A -~at leas t (r  V) 

m o s t ( ~ , r  =-- m o r e ( ~  A ~ , v A - ~ r  

e q u a l ( v  , ~b) =_ a t l e a s t ( v ,  r A a t l e a s t ( r  ~). 

Given that the intended reading of a t l e a s t ( ~ ,  ~b) is: there are at least as many 
~s as ~bs, the intended interpretations of the above abbreviations should be 
obvious from the notation. 

Before plunging into axiomatics, let us briefly answer two questions that 
may arise at this point. First, is t h e r e  a r e  a t  l e a s t  as  m a n y  X s  as  Y s  
indeed higher order? Suppose it is not; then it has a first order definition 
c~(X, Y), say of quantifier rank n, Let AJ = (W, P , . . . }  be a model for 
monadic first order logic with IW] = 2n + 3, IP[ = n + 1. Then AA 
t h e r e  a r e  a t  l e a s t  as  m a n y  Ps as  -~Ps, hence Ad ~: o~(P, ~P) .  Let 
M '  = (W', P ' , . . . )  with ]W'] = 2n + 4, ]Pt] = n + 2. Then Ad ~"n M '  
(for the restricted fragment containing only the predicate letter P). But then 
M '  ~: ~(P,  ~P) ,  by our remarks preceding Theorem 2.16, and so A/[' ~= 
t h e r e  a r e  a t  l e a s t  as  m a n y  Ps as  ~Ps  - a contradiction. 
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Second, one might well wonder why we don't use a unary modal operator 
to simulate t h e r e  are  at  l eas t  as m a n y  Xs  as Ys, - j u s t  like we used 
the unary operator L0 to simulate the quantifier all X Y .  An obvious candidate 
would be the operator Oa with Oaqo true at a world in a model iff there are 
at least as many worlds that verify p as there are worlds verifying -,~. But, 
although Oa is certainly definable in terms of at leas t ,  the latter can not 
be defined in terms of the former; to see this one can adapt a result due to 
Barwise and Cooper saying that the binary quantifier m o s t  is not definable 
using the Rescher quantifier QR (Westerstfihl 1989: Section 1.7). 

DEFINITION 5.1. We define the logic Q M  (for Qualitative Modalities). Like 
QUANT, Q M  has Modus Ponens, Necessitation (~/Loqa) and Substitution as 
rules of inference. Besides those of propositional logic, its axioms are 

C1 Lo(~ ~ ~') A Lo(r ~ r --* (a t leas t (~ ,  r ~ a t leas t (~ ' ,  r  
C2 a t leas t (~ ,  ~b) V a t l eas t (% ~o) 
C3 a t l eas t (  ~, _k ) 
C4 m o r e ( T ,  J_) 
C5 Lop -+ 

C6 (a t leas t (~ ,  r ~ Loat leas t (~ ,  r  
A (~at leas t (~ ,  r  ~ no-~atleast(~, r 

D(m) for sequences of formulas ~, ~ both of length m + 1, 

qYg~ --+ (atleast(qoo, gao) A . .. A atleast(~om_l, ~bm_,) --+ 

a t l eas t (  r ~m ) ) . 

Here, for m E N, qSg~7 expresses a kind of generalized equivalence. It is 
defined as follows. For a sequence -7 = (70,. �9 �9 %~) of m + 1 formulas, let 
Ti(~7) be a statement that is true iff exactly i elements in ~ are true. E.g. if 

~/= (Po,Pl) then T1 ('~) = (Po A -~Pl) V (--'Po Apl) ,  and T2('7) = (Po Apl) .  
Then 

CEd := L0 V A (2) 
0 < i _ m + l  

Loosely speaking, when interpreted on a model, the right-hand side of (2) 
says that every point of the model is balanced in the sense that i formulas 

from the sequence ~5 are true in a point iff i formulas from the sequence 
are true in that point (0 < i < m + 1). Hence, what D(m) expresses is that if 
each point is balanced, and if, in addition, for each of the first m components 
of q5 we have that their extension is at least as big as the extension of the 
corresponding components of ~7, - then the extension of the last component 
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of ~ should not be smaller than the extension of the last component of 93. At 
least for finite models D(m) is a perfectly sound principle; that it is not sound 
on infinite models is shown in our remarks preceding 5.3. 

Let's see this system in action. We will derive a formula expressing addi- 
tivity of t h e r e  a r e  at  l eas t  as  m a n y  As as  Bs: L0-~(~ A X) A L0-~(r A 
X) ~ (a t l eas t (~ ,  (;) --+ a t l e a s t ( ~  V X, 0 V X)). (We use 93g-~ to denote 

~ g ~  with the operator L0 left out; PL is short for propositional logic.) 
Obviously we have, 

(~0 ~ ~ )  A.. .  A (~,~ ~ ~ ' )  -~ 00 , . . . ,  ~ , 0 c -  @~,..., ~ ' ) ,  (3) 
-,(~ A X) A -~(~ A X) '~ -~X V ( -~  A - ~  A X), (4) 

Now, by PL, ~X implies (qo ~ (~ v X)) A ((~b V X) ~ tb), so by (3) we have 

--+ @, r v x )s -  (r ~ v x>, (5) 

Then, again by PL, we have 

T1 (~, (r v x)) A T~ (~, (~ v x)), 
-~ @,r v x ) s - @ , v  vx) .  

So by (4) and (5) this implies 

~((PAX) A---,(@Ax) --+ ((p, '@Vx)E-(@,~Vx). (6) 

Applying Necessitation and D(2) to (6), we find 

Lo-~(~ A X) A Lo-~(r A X) --+ (at least(~,~)  ~ atleast(~ V X,O V X)). 

To complete this introductory section on QM, let us briefly mention an al- 
ternative proposal to analyze the quantifier t h e r e  a r e  at  l e a s t  as  m a n y  
X s  as  Ys, that is due to Johan van Benthem (private communication). He 
suggested to consider some mixture of modal logic and additive arithmetic, 
with atomic statements of the form a t l eas f (A ,  B) and Eixi >_ ~jyj ,  where 
the xi and yj are numerical variables ranging over cardinalities of subsets of 
the universe. 

5.2. Completeness 

In Giirdenfors (1975) a completeness result for QM is given with respect to 
a special class of so-called probability models. Combining this result with a 
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result from (van der Hoek, 1991), we can derive a completeness result for 
QM with respect to models in which at least  and Lo receive their intended 
interpretations. 

To state these results, we need some definitions. Recall that a probability 
measure on a set W is a function P : 2 w ---+ [0, 1] that satisfies (i) P(W) = 1, 
(ii) P(0)  = 0, and (iii) if for countable I, Xi E 2 w, Xi N Xj = 0 whenever 
i ~ j ,  then P(U~I Xi) = ~i~IP(Xi). A probability model At is a tuple 
(W, F, V) where W and V are as usual, and where F is a collection of 
probability measures { P~ : w E W } on W. The interesting case in the troth 
definition is 

At, w ~ atleast(~, r iff P~ (V(~)) _> P,~ (V(r  

So, on probability models at least  is interpreted as 'at least as likely as'. The 
following result may be found in Gfirdenfors (1975: Section V): 

THEOREM 5.2. QM is complete w.r.t, the class of finite probability models 
in which all probability measures satisfy Vx (Px({ x }) > 0), and for all 
S C_ W, Vxy (Px(S)= Pv(S)). 

A qualitative model is a tuple At = (W, R, V) with W a finite set, V as 
usual, R C W 2, and in which atleaat is interpreted as follows: 

A,4, w ~ atleast(~, ~) iff 

[{v :Rwv andAt, v ~ ~}[ > ]{v : Rwv and At,  v ~ r  

In qualitative models W has to be finite to ensure the soundness of 
D(m). For, let W be infinite, and pick w C W; put V(po) = W \ { w }, 
V(pl) --- {w},  V(qo) = W, and V(ql) = 0. Then (W,W • W,V) 
(po, Pl)E(qo, q~) A atleast(po, qo), but (W, W • W, V) ~= atleast(ql,pl), 
which refutes axiom D (1). 

Our next aim is to prove the completeness of QM with respect to models 
in which the modal operators receive their intended quantifier interpretations. 
To do this it suffices to show that QM is complete w.r.t, qualitative models 
in which R is an equivalence relation. For then, QM ( ~ implies that for 
some qualitative model .A4 in which R is an equivalence relation, At,  w ~ ~. 
Taking the submodel generated by w gives a model Att in which ~ is refuted, 
and in which R is the universal relation. Hence, at least  and L0 receive their 
intended interpretations in At1. 

THEOREM 5.3. QM is complete w.r.t, finite qualitative models in which R 
is an equivalence relation. 
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Proof If QM ~ qo then by 5.2 there is a finite probabilistic model Mp 
(= (IV, F, V)) satisfying the conditions stated in 5.2, such that for some 
w E Alp we have Alp,W ~= q~. By van der Hock (1991: Lemma 3.7) 
there is a finite qualitative model .A4q (= (W t, R, W)), where W ~ contains 
a number of copies w ~ of certain w E W, such that Vx~y t E W t (Rx'y ~ 
Px({y }) > 0) and for each subformula ~ of~,  Alp,W ~ r ~ ~ ~. 
Moreover, using the above condition on R it can be seen that if .AAp satisfies 
Vx(Px({x})  > 0)and  for all S C W, Vxy(Px(S)= Pv( S) ), then in Jk4q 
we have that R is an equivalence relation. 4 

COROLLARY5.4. QM is complete w.r.t, finite models (W,V) (or 
(W, Po, P1,...)) in which atleast(#, ~) is interpreted as "there are ate 
least as many worlds satisfying q; as there are worlds verifying ~." 

A few remarks are in order here. First, Corollary 5.4 does not generalize 
to a strong completeness result. For QM is not compact: define A to be the 
s e t  

{ atleast(pi+i,pi),-~atleast(pi,pi+l):i E N}. 

Then, over QM, A ~ J_, since QM is not sound on infinite models, while A 
only has infinite ones. But obviously, A 0 ~: _L, for all finite A0 _C A. Hence, 
A y J_, and strong completeness fails for QM. 

The proof of 5.3 is a special version of a rather complex argument used to 
prove the completeness of QM minus the axioms C5 and C6. It is still open 
whether 5.3 may be proved in a simpler, more direct way, for example using 
some version of the method used in 4.10. More specifically, is the infinite 
schema D(m) really necessary, or is there some finite axiomatization after 
all? 

Although we do not want to discuss the complexity of QM-satisfiability 
in this paper, we feel that it may be shown to be in one or other complexity 
class in pretty much the same way as QUANT-satisfiability was shown to be 
in PSPACE in Section 3.3. 

5.3. Normal Forms and Semantic Constraints 

Using our general result on normal forms from Section 2.2 we give a quick 
proof for the existence of syntactic normal forms for formulas in Form >. 
After that we determine 'semantic' normal forms for such formulas, and use 
these to obtain syntactic characterizations of various semantic constraints. 

DEFINITION 5.5. A formula ~ E Form> is in normal form (NF) if it is a 
disjunction of conjunctions of the general form 

(~ A atleast(~l,/31) A . . .  A atleast(~n,/3n) A 
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-~atleast(71, 81) A . . . A - ~ a t l e a s t ( % ~ ,  5 m ) ,  

where c~,c~i,/3i,Tj,Sj (1 < i <_ n, 1 <_ j <_ m)are  purely propositional 
formulas. 

THEOREM 5.6. Over Q M  every X E Form> is equivalent to a formula in 
normal form. 

Proof Let (9 = { Lo, a t l e a s t  }. Prove that Q M  is neat, and apply 2.11. 

Our next aim is to find an Ehrenfeucht-Fra'issd-like characterization for 
QM-formulas, and use this to find syntactic counterparts for a number of 
semantic constraints, as we did in Section 4.1. 

First, we have to give some definitions. To simplify matters we assume that 
we are working in a restricted language with proposition letters P0,. .  �9 Pk-1; 
the appropriate models then have the form (W,/9o, . . . ,  Pk-1), with W finite. 
Recall from Section 2.3 that we use 7~i to denote partition sets (or partition 
conjunctions), and L/j to denote unions of partition sets (or disjunctions of 
partition conjunctions). Define 

JM ~atleast -A//t iff for all unions of partition sets Hi, b/j (1 _< i , j  <_ 2 2k) 

we have I/4/341 _> I/~t41 iff[U/"x4' ] ___ IUj~'I; 

also, 

M =aUeast �9 hd~ iff .Ad and M '  verify the same QM-formulas in 

PO~ " " ~ P k - l "  

LEMMA 5.7. For any two finite models A4, Ad t we have 

M ~atleast j ~ t  iff A4 ~atleast .A/[t- 

Proof Let 2_ denote the empty disjunction of partition conjunctions, and 
7- the disjunction of all partition conjunctions. Assume Ad ~atleast M t. 
Then, if I/d/MI _> ]/d~], we have M ~ atleast(Lti,ldj). Thus M '  

atleaat(ldi,lds), i.e., lU 'l _> lu 'l. Since the converse may be proved 
similarly we have AA '~atleast �9 Ad/. 

Conversely, assume 34 '~atleast flclt. For ~ a formula, let [~]~ abbre- 
viate { x : AJ, x ~ ~ }, and similarly for [~]~,.  To each formula ~ (in 
P 0 , . . . ,  Pk-1) we will associate a union of partition sets/gi such that [~]M = 
/d/~, and [cy]~, = L//r . Then, given the assumption that Ad "~atleast M t, it 
follows that Ad ~-atleast M t. For A.4 ~ ~ implies [[~].~ [ = l u l l  _> I[-r]~[, 
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so, since 34  ~atleast 34 ' ,  I[qo]~.t '1 = l U ~ ' l  _> [Tlxt, ,  which means that 
34' ~ .  

With proposition letters we associate unions of  partition sets as follows: 
let L/i = 791 t_J . . .  t5 792k_~, where 791, . . . ,  792~-~ are all the proposition con- 
junctions in which p occurs positively. Then [P]z4 ---/.//st4, and [p]~, =/4~'. 
Next, assume [qo]~ = b//~, and [~]M' = L//~'; then [--,cp]z4 = (L//z4) ~, and 
[--,~]Z4, = (L/~')~. Using some standard procedure one can bring (Lli) c into 
a 'disjunctive'  normal form, consisting of disjunctions of  conjunctions of 
(--')P0,. �9 �9 (-~)Pt~-I - thus (L/i) ~ = L/j, for some j ,  and we are done. Next  as- 
sume that [~]~ = b/M, [~]~ = b[~, and [~]za, =///M', [~,]~, = g/~'.  As 
in the previous case one can use a standard procedure to show that for some 
L/k, b/i f~L/j = /gk ;  but then [~ A ~b]Z4 = / - / ~  and [~p A ~]z4, = b / ~ ' .  Finally, 
under  the assumptions of the previous case we have to associate a union of 
partition sets to atleast(~, ~). We distinguish two cases, the first one be- 
ing 34  ~ atleast(%~b). Then I/./~[ _> IL/~4 I, so lU/r >_ lUJVt'l; hence,  
[atleast(qo, ~b)]~ = [Y]za, and [atleast(% ~)]M'  = [T],.M,. The second 
case is 34  ~ at least(%~).  Then Ib/~l  ~ IUJt4l, so I/g/~4 [ ;~ Ib/~ 4 [, But  
then we have [atleast(~, ~b)]za = [ ' •  and [atleast(% ~)]z4, = [-l-]za,. 

C O R O L L A R Y  5.8. Let I > O. Then the modal operator Ml is not definable 
by means of Q M-formulas. 

Proof Let 34  = (W, V) be a model  with IV(p) l = t + l ,  and IW I = 2. ( l+  1). 
Obviously, 34  ~ Mlp. Let 34 '  = (W', V') be a model  with IW'I = 2, 
]V'(p)] = 1. Then 34' g= Mzp. To show that there is no definition of  Ml by 
means of QM-formulas ,  it is sufficient to prove 34  =atleast 34t  (w.r.t. the 
f ragment  over the single proposition letter p). To see this, it suffices to show 
that 34  ~atleast 341 (w.r.t. the same fragment),  by 5.7. But  this is simple, 
since for all relevant unions of partition sets b/i, we have ]/A/MI = n iff 

]lgiM' l = n / ( l  + l ). -~ 

Let cp be a formula in P 0 , . . .  , p k - l .  The number  of  ,-~atleast-equivalence 
classes is finite; let .M 1 , . - - ,  .Mg be representatives of  the ~atleast-classes that 
contain models  of ~. For 34  C { 341, . . . ,  Adg } write down a conjunction 
~ ,~  of formulas of the form (-~)atleast(lgi, lgj), depending on whether  or 
not l/g/~4 ] >_ Ib/~l  in 34 .  (Note: for any .Mr, 34 '  ~ ~ iff 34 '  "~atleast 34.)  
This results in a semantic normal  form for ~ as follows: for any 3 4 : 3 4  ~ cp 
iff 34 D ~0~ v . . .  v ~ .  

Using these semantic normal forms one can try and find syntactic coun- 
terparts (in Form >_) of semantic constraints, just like we did in Section 4.1. 
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However, the semantic normal forms for QM-formulas are much more com- 
plex than those found for QUANT-formulas in Section 2.3. (Indeed, the proof 
of the Ehrenfeucht-Fraiss6 Theorem for QM was already more complex than 
the corresponding result for QUANT, or first order logic (Westerst~hl 1989: 
Section 1.7). Consequently, manipulations on semantic normal forms for Q M  
have to be more abstract and involved than they were in the proofs of e.g. 4.1 
and 4.2, as is witnessed below. 

Call a formula in Form > po-restricted if it is a Boolean combination 
of formulas of the form atleast(po A ~,P0 A ~b), where ~, ~ are purely 
propositional. 

PROPOSITION 5.9. On finite models, a formula g)(Po,Pl ) E Form> satis- 
ties CONSERV and EXT iff it is equivalent to a po-restricted formula. 

Proof The simple proof that all p0-restricted QM-formulas satisfy CON- 
SERV and EXT is left to the reader. Assume ~ satisfies CONSERV and EXT. 
Let �9 -= r V . . .  V ~9 be a semantic normal form for % Since we are 
restricting ourselves to the fragment containing only Po, Pl, the disjunctions 
L/i occurring in the disjuncts ~b0,..., ~bg are disjunctions of formulas of the 
form (--')P0 A (~)Pl. Now, let r be a disjunct in q2. Let ~ be obtained from 

by deleting all conjuncts of the form ~P0 A (~)Pl. Let k9 ~ be the result of 
substituting ~ for r in ~.  Hence, k9 ~ is p0-restricted. Our claim is that for 
any .M, .M ~ ~ iff .A4 ~ kv ~. To prove this we use the Figure displayed in 
the proof of 4.3. Assume first that Ad ~ ~, say 34 ~ r where ~ is a dis- 
junct in ~.  34 ~ ~ means that a number of inequalities involving k, l, m, n 
must be satisfied in Ad. By CONSERV and EXT these inequalities are still 
satisfied if we leave out m and n. On the level of formulas this means that 
34 ~ [ l /~pO AplJ[-L/~po A ~Pl]r That is, 34 ~ r 

For the converse, assume 34 ~ et, where et  is some disjunct in ~/. This 
means that certain inequalities involving only k and l must be satisfied in .A/L 
Define 34! by putting U = k, I / = l, and m ~ = n ~ = O. Then 34! ~ r Since 
m ! ----- n ~ = 0 we can 'plug in' occurrences of m ! and n t in the inequalities 
corresponding to r at any place we like, But then we may assume that 
34~ ~ r Thus 34~ ~ g~, and so, by CONSERV and EXT, 34 ~ ~. 

To characterize the TMON formulas, we need to specify what it is for a 
proposition letter to occur positively (or negatively) in a QM-formula. The 
appropriate inductive definition has the usual clauses for proposition letters 
and the Boolean connectives, while a positive (negative) occurrence of p in 

is a positive (negative) occurrence of p in at leas t (~ ,  r and a positive 
(negative) occurrence of p in ~ is a negative (positive) occurrence of p in 
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at leas t (  r ~). 

THEOREM 5.10. Let ~(p ) be a Q M-formula that is equivalent to a disjunc- 
tion �9 of formulas of the form (-~)atleast(x1, X2), where Xa, X2 are purely 
propositional. Then, on finite models, qo is TMON (in p) iff ~ is equivalent to 
a formula in which all occurrences ofp are positive. 

Proof The direction from right to left is similar to the corresponding case 
in Theorem 4.2. Assume ~ is TMON, and let r be a disjunct in ~,  say 

--- ( ' , )atleast(X1, X2), where X1, X2 are disjunctions of conjunctions of 
literals. Since ~ at leas t (A ,  B) ~ a t l eas t (A  A ~B, ~A A B), we may 
assume that X1, X2 are mutually exclusive. Moreover, using propositional 
logic, r can be brought into the form 

(V) ( ~ ) a t l e a s t ( ( p A D 1 ) V ( - ~ p A D 2 ) , ( p A D 3 ) V ( - ~ p A D a ) ) ,  

where D1, D2, D3, D4 are p-free, and both ~- (p A D1) A (p A D3) ~ 2_ and 
F- (-,p A D2) A (-~p A D4) --+ 2-. Now, if ~ has the form atleast(x1,  X2) 

define 

a t l eas t ( (p  A D1 A -~D3) V (D2 A -',D4), (r 
(-~p A -~D2 A Da) V (-~D1 A -~D2 A D3 A Da)). 

Otherwise, if r has the form ~atleast(x1,  )/2) define 

-~atleast((-~p A D2 A ~D4) V (D1 A D2 A -~D3 A ~D4), 

(p A -~D1 A D3) V (~D2 A D3)). 

Let kV t be the result of substituting r for ~ in �9 (for all ~). Then all 
occurrences of p in k~ are positive. Our claim is that for any 34, 34 ~ ~ iff 
34 ~ ~ .  To prove this, we use Xt to denote X1 and Xr to denote X2, for a 
formula X = atleast(X1, X2). One direction of the claim is easy. Suppose 
34 ~ ~p, say 34 ~ ~b, for some disjunct r in ~. Assume also that ~ has 
the form a t l eas t ( x t ,  )~2)- Then, since F Cz ~ ~I and F r ~ r we 
immediately have A4 ~ r To prove the opposite direction we have to do 
some more work. Assume (W, W) ~ r for some disjunct ~' in ~,  and 
assume also that Ct has the form atleast(x1,  X2). Given a valuation V on 
W we are interested in the number of worlds verifying formulas of the form 
(-,)D1 A (-~)D2 A (--,)D3 A (--,)D4. Given such a formula Oi (1 < i < 16) 
the number of worlds verifying p A 0i is denoted by xi, and the number of 
worlds verifying -,p A Oi is denoted by yi. 
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#p 

D1 

/)2 

D3 

1)4 

#~p 

Xl X2 X3 X4 X5 X6 X 7 X8 

0 0 0 0 0 0 0 0 

0 0 0 0 1 1 1 1 

0 0 1 1 0 0 1 1 

0 1 0 1 0 1 0 1 

Y~ Y2 Y3 Y4 Y5 Y6 Y7 Y8 

X9 Xl0 Xll XI2 X13 X14 X15 

1 1 1 1 1 1 1 

0 0 0 0 1 1 1 

0 0 1 1 0 0 1 

0 1 0 1 0 1 0 

Y9 YlO Yll Y12 Y13 Y14 Y15 

Xl6 #p 

1 D1 

1 De 

1 D3 

1 D4 

yl6 #-~p 

As is easily computed, ~ is true under some valuation V on W iffthe following 
inequality is satisfied in (W, V): 

X9 + Zl0 'J- X13 + Xt4 -}- Y5 + Y7 + YI3 + Y15 

X3 ~- X4 + X7 + X8 --I- Y2 + Y4 + Yl0 + Y12. (7) 

Consider the following inequality: 

X9 + XlO + Xl4 + (X5 + YS) + (x7 + Y7) + (x13 + Y13) + (X15 + YlS) _> 

Y2 + (x4 + Y4) + Yl0 + Y12. (8) 

We leave it to the reader to check that for any V on W, (W, V) ~ r iff 
(W, V) satisfies (8). 

Let V be a valuation for ~b ~ on W such that V(p) C_ V'(p) is minimal, 
while V(q) = V'(q) for q ~ p. Then, in (W, V), we have that 

x3 = x5 = x7 = x8 = x13 = x15 = 0. (9) 

This is trivial for xs, x7, x 13, x15. Consider for example x5; if x5 > 0, transfer 
all elements in V(p A -~D1 A D2 A ~D3 A ~D4) to V(~p A ~DI A D2 A -~D3 A 
~D4) to obtain V ' .  Then x5 + Y5 in (W, V ' )  equals x5 + Y5 in (W, V), while 
the other quantities xi, yi occurring in (8) remain unchanged, i.e., (IV, V')  is 
also a model for r while V'(p) c V(p) - a contradiction. Next, x3, x8 also 
equal 0 since neither x~, Y3 nor xs, Y8 occur in (8). So any elements in the 
slot corresponding to x3 (x8) may be transferred to the slot corresponding to 
Y3 (ys) without changing the truth-value of (8). 
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Applying (9) to (8) we see that in (W, V) the following inequality must 
be satisfied: 

X9 + Xl0 q- X13 § X14 § (0 § Ys) + (0 + Y7) + (0 + Y13) § (0 § Y15) >_ 
x3 + x4 + x7 + x8 + Y2 + +Y4 + Yl0 + Y12. 

Hence, (W, Y)  ~ r By the monotonicity of ~ this implies (W, V') 7 ~ - 
as required. -t 

Since, in 5.10, we have restricted ourselves to QM-formulas that are 
equivalent to disjunctions of formulas of the form (~)at least(x1,  X2), with 
X1, X2 purely propositional, we have only proved a 'partial' Lyndon Theorem 
there; to prove a Lyndon Theorem for the full language we would have to 
consider disjunctions of conjunctions of formulas of the above form (this is 
because of 5.6). We believe that there is indeed a Lyndon Theorem for the full 
language of QM. However, we doubt whether the method we used in 5.10 
to prove a partial Lyndon Theorem would be the most efficient way to obtain 
the more general result. 

5.4. Other Higher Order Quantifiers 

Just like the systems QUANT and QUANTk did not determine the sets of 
operators { Mn : n E N } and { M0, Mk }, respectively, Q M  does not de- 
termine at leas t ;  Q M  also axiomatizes the complete modal theory of the 
operator t h e r e  are  at  l eas t  as m a n y  R - succes sor s  s a t i s f y i n g  X 
as t h e r e  are  s a t i s f y i n g  Y ,  where R is an equivalence relation. And 
by 5.2, Q M  also axiomatizes the modal theory of the probabilistic quantifier 
' X  is a t  l eas t  as l i ke ly  as Y ' ,  where the underlying probability mea- 
sure is not based upon statistic bearings but interpreted 'subjectively' (see 
Gardenfors 1975 for a brief explanation of how the latter is accounted for by 
our axioms C5 and C6). 

When added to first order logic the quantifiers m o s t  and m o v e  yield 
languages that are not equivalent as far as their expressive power is con- 
cerned (Westerst~thl 1989). However, on top of $5, the three quantifiers 
at leas t ,  m o r e ,  and m o s t  (considered as modal operators) all yield 
the same language in this respect. Given the abbreviations introduced at 
the start of Section 5.1, to establish this claim it suffices to show that 
a t l e a s t  can be defined in terms of m o r e  (which can be done as follows: 
at leas t (~ ,  ~) *-+ -~more(~b, qo)), and that it can also be defined in terms 
of m o s t .  On finite models the latter is indeed possible; ff (W, V) is such a 
model, then 

atleast( , ) IV( )I >_ IV(r 
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,--, > Iv(v))l) 

--moat@ �9 @, 

where X | Y is the symmetric difference of X and Y. This equivalence im- 
plies, of course, that the modal languages with a t l e a s t  and m o a t ,  respec- 
tively, are equally expressive on finite models (but, as one of the anonymous 
referees pointed out, these modal languages are not equally expressive on 
infinite models). Finally, from the above observations it follows that we can 
extract complete axiomatizations (for validity on finite models) for the modal 
operators m o r e  and m o s t  from the complete axiomatization we have given 
for atleast.  

A natural extension of QM and its language arises when we consider 
at leas t  not in isolation, but together with one or more operators atleaatn 
(n > 0), where atleastn(~, r is interpreted as 'there are at least n times as 
many qos as es ' .  Here, we want to elaborate a bit on a possible axiomatization 
QM2 for the modal language with at least  and atleast2. QMs should at 
least contain the system QM (for atleast), and also axioms corresponding 
to those in 2.6 to ensure that we have a decent normal form theorem. These 
normal forms are disjunctions of conjunctions of the form 

f2 A (-,)atleast(r X1) A . . .  A (-.)atlea8t(r Xn) A 
(-gatleasts162 Xn+l) A...  A ( )atleasts162 

where ~, r Xi are purely propositional. Such normal forms suggest a natural 
reduction of QM2-provability to provability in QM. Replace each conjunct 
atleast2( r X) by (equal(p, X) A Lo-,(p A X) A atleaat( r p V X)), where 
p is a proposition letter not occurring in r X. Similarly, formulas of the form 
-,atleast2(r X) should be replaced by 

-~(atleast(~x,X) A (L0~(p A X) A equal(p,x ) --+ atleast(~2, p V X))), 

where p is a proposition letter not occurring in ~, X. To get this reduction to 
work we should have two additional derivation rules (either derived from the 
axioms, or explicitly added) that amount to 

if for all proposition letters p we have 
(R +) ~- (equal(p,x) A Lo~(p A X) A atIeast(r  V X)) -+ ~, 

then ~- atleast2(r X) --+ ~, 
and 

if for all proposition letters p we have 
~- 6 --+ (atleast(-~X, X) A (Lo(p A X) A equal(q, X) --* 

(R-) at least(r  q V X))), 
then f- ~5 ~ atleast2(~, X). 
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All in all, assuming that QM2 contains R + and R -  we get the following 
reduction of provability in QM2 to provability in QM. Assume ~ is consistent 
in QM2; we may assume that ~p is in NF. Thus, one of the disjuncts ~t in ~ is 
consistent in QM2. Using R + and R -  one can find a formula ~" C Form> 
such that ~" is consistent in Q M  iff ~ is consistent in QM2. Now apply 5.3 
to find a model for ~". It is easily verified that this model is also a model for 
the original formula ~. 

6. FURTHER DIRECTIONS; CONCLUDING REMARKS 

One might remark that many of our results do not seem to depend on our 
modalpoint of view. As a first reaction to this remark the authors of this paper 
would probably agree. But then, after some thought, we would say that we 
do not claim that modal logic is the answer to all questions in generalized 
quantifier theory. What we have attempted to do in this paper is to mix the 
modal and quantifer tradition, and explore some connections between the 
two, starting from the observation that at a basic level the two traditions share 
some essential features: they are both variable free formalisms whose model 
theory is Venn Diagrams. This cross-fertilization has brought a number of 
questions and techniques familiar from the theory of generalized quantifiers 
to modal logic; this gave rise to several non-trivial results. Conversely, we 
have been able to use well-understood facts and tools from modal logic to 
obtain some non-trivial results in generalized quantifier theory. 

We think that two of the main features of the modal languages used 
in this paper are the following. First, in these modal languages complex, 
non-constructive standard proofs can be replaced by simple, effective ma- 
nipulations of syntactic objects to obtain results like e.g., a Lyndon Theorem 
(cf. 4.2, 5.10). Secondly, our semantic (Boolean) intuitions about quantifiers 
translate more or less directly into syntactic intuitions about modal formu- 
las; as a result both old and new results connecting semantic constraints and 
special syntactic forms can easily be obtained (cf. 4.1, 4.2, 4.4, 5.10). 

Several specific open problems have already been stated in this paper. At 
this point we want to suggest some general issues that we think are worth 
further investigations. 

First, there are a lot of higher order quantifiers whose modal (or some- 
times even Boolean) theory is still pretty much terra incognita. Besides the 
ones mentioned in Section 5.4 these include probabilistic quantifiers like 
a l m o s t  all, and cardinality quantifiers like m o r e  t h a n  n Xs  a r e  Ys 
(~ >_ ~). 

With these and other quantifiers considered in earlier sections of this paper 
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the precise nature of the individuals constituting our universes of discourse 
is irrelevant. A natural example of a sentence outside the scope of this exten- 
sional point of view is three boys eat four apples. To give a modal analysis 
of the quantifier patterns involved here one may have to move back to the 
more traditional approach to modal logic where the domain is structured by 
some relation R. E.g., one way to handle the above sentence would be to 
add to QUANT operators Nn interpreted as the original graded modalities, 
i.e., AA, w ~ Nn~a iff more than n R-successors of w satisfy % In such a 
calculus the above sentence may be represented as M!3(B A N!4A) - this 
representation has all the readings of the original sentence. 

Another reason why one may want to have structured universes of dis- 
course arises when one gives the operators considered in this paper a temporal 
interpretation as quantifiers over temporal entities. In such an interpretation 
one could add operators to structure the temporal domain to obtain one's 
favorite ordering. This would allow one to express such statements as 'it will 
be the case at least twice that there have been exactly three occasions at which 

held'. 
Finally, in Atzeni et al. (1988) a complete, but very restricted system for 

talking about set containment is studied. This system deals with statements 
of the form 

(- )Q1xIY1,. . . , 

where Qi  E { all,  s o m e  } and the Xis and Y/s have no structure except 
maybe a negation sign. Thus, given that we also have a syllogistic, Boolean 
and modal analysis of all  and s o m e ,  there is a whole hierarchy of systems 
for dealing with these quantifiers. We think it may be well worth the effort 
to study this hierarchy more systematically, and to set up and study similar 
hierarchies for other pairs of dual quantifiers. 
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