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ABSTRACT
Offline evaluation of information retrieval systems typically focuses
on a single effectiveness measure that models the utility for a typi-
cal user. Such a measure usually combines a behavior-based rank
discount with a notion of document utility that captures the single
relevance criterion of topicality. However, for individual users rel-
evance criteria such as credibility, reputability or readability can
strongly impact the utility. Also, for different information needs the
utility can be a different mixture of these criteria. Because of the
focus on single metrics, offline optimization of IR systems does not
account for different preferences in balancing relevance criteria.

We propose to mitigate this by viewing multiple relevance criteria
as objectives and learning a set of rankers that provide different trade-
offs w.r.t. these objectives. We model document utility within a gain-
based evaluation framework as a weighted combination of relevance
criteria. Using the learned set, we are able to make an informed
decision based on the values of the rankers and a preference w.r.t. the
relevance criteria. On a dataset annotated for readability and a web
search dataset annotated for sub-topic relevance we demonstrate
how trade-offs between can be made explicit. We show that there
are different available trade-offs between relevance criteria.
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1. INTRODUCTION
The primary goal of information retrieval (IR) systems is to sat-

isfy the information need of a user. Search engines today are fairly
successful in finding topically relevant pages. To achieve this most
search engines are optimized to rank documents based on their
topical relevance to the query. In an offline optimization setting
relevance is typically determined by experts, and evaluated with
utility-based metrics such as nDCG, which tends to focus on opti-
mizing a single aspect of utility. In online optimization, feedback is
collected implicitly for all relevance criteria. However, this approach
may ignore differences between individual users and information
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needs by aggregating across all users and queries. Often aggregation
works well, but not always. E.g., users that have limited vocabu-
laries (e.g., children) can benefit from search results optimized for
their reading level. When people look for medical information on
the web they would benefit from accurate and reliable information,
more so than when looking for information on a Star Wars movie.

Utility depends on many factors aside from topicality; crite-
ria such as credibility, reputability and readability are also impor-
tant [14]. While their importance is typically secondary to topicality,
there clearly is a benefit in many use cases. A learning to rank
approach [16] can be used to learn an optimal ranker for a specified
weighted preference over criteria. Similarly, data fusion techniques
can combine ranked lists that are optimized for a certain notion of
utility. But what if we want to optimize for multiple criteria, without
knowing their relative importance beforehand? For instance, how
should we balance relevance and readability if we do not know who
our user will be? Or relevance and sub-topic relevance?

We draw inspiration from multi-objective optimization techniques
to answer these questions, i.e., to find a set of rankers for which
each solution is optimal for a different trade-off in the relevance
criteria. We combine the multi-objective technique Optimistic Lin-
ear Support (OLS) [12] with multiple utility-based metrics in a
learning-to-rank setting. We consider two scenarios with two rele-
vance criteria for which we optimize a set of rankers. We evaluate
our approach on two datasets, one annotated for relevance and read-
ability, and one annotated for relevance and diversity. To learn our
rankers we apply dueling bandit gradient descent with a point-wise
ranking function. To optimize for diversity we subsequently apply
MMR and cluster-based ranking.

2. BACKGROUND
The concept of relevance is core to IR and a much debated subject.

Park [9] gives an extensive analysis on the nature of relevance in IR,
and argues that relevance is intrinsically related to the selection pro-
cess by the user. Cooper [4] states that each query could represent
a set of specific questions as part of the information need, where
documents are relevant if they provide an answer to one of these
specific questions. Schamber [14] identifies major criterion groups
for relevance: aboutness, currency, availability, clarity and credibil-
ity. There is a general trend that relevance cannot be attributed to
just one factor such as topicality, but is multi-factored [9].

Many metrics have been proposed to measure the effectiveness
of an IR system; we focus on metrics based on the concept of util-
ity [2, 4]. The utility of an IR system depends on all factors that
determine the usefulness for each specific user. Cooper [4] defines
utility as “A catch all concept involving not only topic relatedness
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Figure 1: The points on the line
represent solutions in the cover-
age set, the others are dominated.
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Figure 2: Three steps of OLS on a two-objective problem. X-axis is weight of one objective (note:
w2 = 1 − w1), y-axis the scalarized value. Blue area highlights difference between upper bound
and convex value. As more solutions are added to the CCS, the difference is iteratively reduced.

but also quality, novelty, importance, credibility, and many other
things.” Utility-based metrics combine a notion of utility with spe-
cific assumptions about user behavior [2]. Each document has a
specific numerical utility value for an information need. Addition-
ally, a discount function is used on the document’s rank, under the
assumption that more effort is needed to reach lower ranked doc-
uments, and it is less likely for the user to reach these documents.
Many metrics, therefore, boil down to the same basic formula to
estimate the utility of the ranked list, composed of a sum of the
product of document utility and a discount factor [3]:

M =
∑K

k=1 gain(relk)× discount(k) (1)

Extensions focus on multiple criteria. E.g., Dai et al. [5] present
an extension of nDCG for freshness and relevance. Zuccon [17]
proposes on an extension of rank-based precision for readability.

Similarly, diversity and novelty metrics also take into account
multiple criteria in the form of subtopic relevance [3]. The underly-
ing assumption is that there are multiple subtopics (or categories)
for each query, and each user will be interested in results for at least
one of these subtopics. Relevance assessments are provided for
each of the subtopics belonging to a query separately. These are
combined based on the probability p(i|q) of intent i being intended
by the user for query q [1]. α-nDCG extends (1) with a weighted
sum over subtopics, given pi as the probability of each subtopic:

α-nDCG = 1
N

∑M
i=1 pi

∑K
k=1 gain

k
i × discount(k) (2)

While there has been previous work that combines multiple rel-
evance criteria in the utility-based evaluation framework, to the
best of our knowledge, no previous work uses multi-objective opti-
mization techniques on information retrieval problems, i.e., existing
methods do not return a set of alternative rankers with different
available trade-offs with respect to the different relevance criteria.

3. MULTI-OBJECTIVE OPTIMIZATION
Scalarization function. We assume that a ranker has a value for
each different relevance criterion, i.e., each ranker has an associated
value vector V, with a value, Vi in each criterion i. We follow [11]
and assume that the preference of an individual user with respect
to these criteria can be expressed in terms of an unknown scalar-
ization function f , that collapses the value vector to a scalar utility:
f(V,w), where w is a vector that parameterizes f . We are unable
to observe this function directly. Instead, we aim to find a cover-
age set [11] of rankers, that contains an optimal trade-off for each
possible preference (i.e., f and w) that a user might have, see Fig. 1.

We assume that f is linear (where weighted means:
∑C

i wi = 1):

f (V,w) = wTV, (3)

i.e., the utility for the user is a weighted sum over relevance criteria.

Metrics as objectives. To formulate our own scalarization function
we can combine (1) with (3):

M =
∑C

i=1 wi

∑K
k=1 gaini(dock)× discount(k) (4)

This definition is similar to the definition of α-nDCG of (2), where
instead of a sum over topics we have a sum over C relevance criteria.
In α-nDCG, the metric M would subsequently be normalized. It
is, however, not desirable to normalize the linear scalarized value
function as this would remove the convex property of the value
vector that is required for efficient optimization using OLS. The
linear scalarization function does require values that are comparable
in their magnitude, therefore, the individual value functions are
normalized with normalization value Ni instead, giving:

Vi =
1
Ni

∑K
k=1 gaini(dock)× discount(k) (5)

Convex coverage set. Because each criterion contributes pos-
itively to the scalarization function, and we are interested in the
relative importance of each criterion, we can assume that w is a
positive vector that sums to 1 in order to determine a coverage set.
A coverage set that covers all possible linear scalarizations is called
a convex coverage set (CCS) [11]. To compute the (approximate)
CCS, we build on the Optimistic Linear Support (OLS) framework
for multi-objective optimization [12]. Fig. 2 illustrates the OLS
procedure; OLS computes a CCS by solving a multi-objective prob-
lem as a series of single-objective problems, i.e., problems that are
scalarized using different w. At each iteration, OLS tries to find
a new ranker, thereby incrementally building a CCS. We can use
existing single-objective optimization techniques to find rankers for
a given w. We use Dueling Bandit Gradient Descent (DBGD) [16].

Each ranker found in an iteration of OLS has an associated value
vector V. For each w, the scalarized value of a ranker is Vw = w·V.
Given a partial CCS, i.e., the set S of rankers and associated V found
so far, we define the scalarized value function as a function of w:

V ∗S (w) = max
V∈S

w ·V,

i.e., the scalarized value function is the convex upper surface of
the vectors in Fig. 2. OLS selects the next w from the corner
weights of V ∗S (w), i.e., those w where V ∗S (w) changes slope. In
Fig. 2 the corner weights evaluated in that iteration are indicated
by the blue vertical lines. The maximal possible improvement in
scalarized value on the partial CCS is indicated by the dashed lines
above V ∗S (w). Once it reaches a corner weight, OLS is provably
optimal as long as the single-objective method it employs to solve
the scalarized problems is exact [12]. In practice, exact single-
objective subroutines are not required; we can safely use DBGD,
but with lesser guarantees of the optimality of the solution [13].

Reuse and iterated search scheme. A limitation of applying
standard OLS is that for every corner weight DBGD needs to be
run. This can be expensive, depending on the size of the dataset.
However, this can be mitigated by hot-starting the single-objective
optimization algorithm with parts of previously found solutions
(following [13]). For each new corner weight, we multi-start DBGD,
starting from the rankers that were found at the 3 closest corner
weights so far. It is possible that DBGD does not find a new best



solution, even though such a solution might still exist. If this is
the case for a number of iterations, we take a random pertubation
step. DBGD is stopped automatically after 40,000 iterations, or if
no improvement has been found after 20 random pertubations. To
our knowledge, this is the first time such a Multi-Start/Iterated Local
Search scheme [7] has been combined with OLS.

4. EXPERIMENTAL SET-UP
To demonstrate how multi-objective optimization for balancing

multiple relevance criteria works in practice, we perform experi-
ments on two datasets: (i) balancing readability and topical rel-
evance in a health setting (CLEF eHealth 2015 task 2 [8]), and
(ii) balancing diversity and topical relevance in a web search dataset
annotated for sub-topic relevance (TREC 2012 Web Track diversity
task). While our runs are competitive, our main goal is to find mul-
tiple solutions that balance different relevance criteria, which we
report in the form of a CCS.

CLEF eHealth. CLEF eHealth 2015 task 2 provides annotations
for two objectives. It is composed of 5 training queries and 67 test
queries; annotations are provided for relevance only for the training
queries, and both relevance and understandability for the test queries.
As the extra understandability annotations are required to optimize
for both relevance and understandability at the same time we only
use the test set queries for optimization. To measure readability doc-
ument text is extracted using boilerpipe [6]. Since simple readability
metrics do not correlate well with actual readability in the medical
domain [15], another approach to readability is required. We com-
piled a list of medical terms and counted their occurrences. This list
was taken from an English Wikipedia page, for which all words con-
tained in the 20k English word list from the Google Trillion Word
Corpus were filtered out.1 Using this feature, and, additionally,
the Coleman-Liau index, Gunning fog index, and document length,
we trained an SVM to predict the understandability score. For the
CLEF eHealth 2015 task 2 the usual metrics are RBP, uRBP and
uRBPgr. In preliminary experiments we found a strong correlation
between RBP and uRBP, like [17]. Hence, we optimize for nDCG
using relevance annotations (nDCGrel), and also for nDCG using
understandability annotations (nDCGread). We normalize nDCGread

so that the value is in the same range as nDCGrel.

TREC Web Diversity. The TREC 2012 Web Track diversity
task comes with 50 queries, with sub topic relevance assessments
provided for the first 20 documents produced by the participating
systems. TREC 2010 and 2011 Web Track diversity task queries
were used for training. For diversity we use MMR and cluster-based
ranking [10] with cosine similarity on TF-IDF vectors. We only
apply MMR on the first T clusters. Documents are first scored
based on relevance, subsequently, MMR and cluster-based ranking
rerank the documents for diversity, which produces a rank i for each
document i. Using rank i, the final ranking is determined based on
(1− wd)scorei + wd

1
ranki

, where wd is a parameter that balances
diversity and relevance. The usual metrics reported for the TREC
Diversity task are nDCG and α-nDCG. For optimization we use both
nDCG and α-nDCG to optimize for both relevance and diversity.
As clustering introduces a lot of randomness, we average over 5
runs of DBGD. For value functions Vrel and Vdiv , we normalize the
values of nDCG and α-nDCG, respectively, to [0, 1].

5. RESULTS
CLEF eHealth 2015 task 2. For this task, we simultaneously
optimize for readability and relevance, using nDCG for both metrics.

1For this list see: github.com/JoostvDoorn/moo-sigir2016
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Figure 3: The CCS found on CLEF eHealth 2015, with a scalar-
ized value based on relevance and readability. Absolute left
having maximum weight on relevance, and absolute right max-
imum weight on readability.

The scalarized value of a solution was calculated using a weighted
interpolation between value functions Vrel and Vread (Eq. 3).

The convex coverage set (CCS), constructed using OLS, is shown
in Fig. 3. OLS finds eight solutions of which six are not dominated.
The set of solutions is reported in Table 1 with their RBP and uRBP
scores. We note that our best uRBP score is above the second run for
the original task and the best nDCGrel is in the top-5 out of 110 runs.
We observe that we are able to find solutions that optimally combine
the nDCGrel and nDCGread objectives given different preferences for
readability. E.g., with a wread of 0.626, we obtain a 5% increase in
nDCGread, with an 8% loss compared the best solution in terms of
nDCGrel (wread = 0.197). uRBP combines both objectives, and is
highly correlated to RBP [17]. Due to this correlation, using RBP
with uRBP would not find all rankers that offer the best available
trade-offs between relevance and readability; the solution would
be biased toward relevance. We therefore conclude that uRBP is
not suitable for all possible preferences that a user might have.

Table 1: Evaluation of the solutions from the CCS on eHealth.
wread nDCGrel nDCGread RBP uRBP uRBPgr
0.000 0.350 0.783 0.392 0.342 0.337
0.197 0.364 0.777 0.397 0.340 0.339
0.448 0.344 0.807 0.371 0.327 0.324
0.514 0.343 0.804 0.372 0.327 0.324
0.626 0.335 0.814 0.369 0.326 0.324
0.771 0.298 0.832 0.333 0.294 0.294
0.944 0.266 0.840 0.304 0.270 0.269
1.000 0.157 0.840 0.189 0.160 0.159

To further analyze the effect of different weights for the readability
objective, we analyze the annotations at each position in the ranking
averaged over topics. Fig. 4 shows for three solutions in the CCS.
The ranker optimized for readability does not show documents
with higher relevance annotations in the top positions, whereas the
other rankers are able to place more relevant documents at the top
(similarly for readability). We observe that each ranker is suitable
for their specific scalarization function, and as such our method is
effective in balancing different relevance criteria.

TREC 2012 diversity task. For this task, we simultaneously
optimize for overall relevance and sub-topic relevance by linearly
combining value functions based on nDCG and α-nDCG. The CCS
from OLS is shown in Fig. 5. The results from the points in the
CCS on the TREC 2012 diversity task are shown in Table 2. Fewer
solutions were found for the CCS compared to the readability task,

https://github.com/JoostvDoorn/moo-sigir2016
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Figure 5: The CCS found on the TREC 2010 and 2011 datasets,
with a scalarized value based on relevance and diversity. Ab-
solute left having maximum weight on relevance, and absolute
right maximum weight on diversity.

furthermore the differences between the values in Table 5 are also
quite small, suggesting only a small trade-off between the objectives.

Table 2: Evaluation of the
solutions from the CCS on
the TREC 2012 dataset.
wdiv nDCG α-nDCG

0.000 0.236 0.489
0.808 0.229 0.493
1.000 0.204 0.480

As such this setting seems less
suitable for our method. In terms
of α-nDCG, the solutions on the
test set (TREC 2012) are mid-
performers compared to the origi-
nal participants (the best solution
is above the fourth of nine partic-
ipants). The overall nDCG score
would have ranked second. During training (TREC 2010–2011),
the intermediate solution that OLS found obtains the same α-nDCG
score with an increase in nDCG, compared to the solution optimized
only for α-nDCG, see Fig. 5. We therefore conclude that our ap-
proach finds more balanced and better solutions, than if we would
optimize for a single objective.

6. DISCUSSION
We demonstrated how to optimize rankings for multiple objectives

by proposing a multi-objective approach based on optimistic linear
support and DBGD for learning to rank. Because DBGD may
get stuck in a local minimum we proposed an iterated local search
schema for DBGD, and reuse of rankers inside OLS in order to make
our algorithm more efficient. Using this approach, we have found
multiple optimal rankers on the CLEF eHealth 2015 task 2 and on
the TREC diversity task that offer different trade-offs w.r.t. different
relevance criteria. These multiple optimal rankers are more flexible
than a one-size-fits-all ranker produced by a standard learning to
rank approach, and our work therefore forms an important step for
flexibly optimizing search when multiple criteria are in play.

As to future work, one important issue is exposing different solu-
tions to the user, or using different solutions to select the desired one.
Exposing the user to multiple solutions can be done using additional

user interface elements, or based on profiling of the user or adapting
per query. The number of user interface controls provided in generic
search engines is very minimal; specialized search engines are more
likely to benefit from optimizing their controls based on these multi-
objective criteria. Future work may also investigate what a good
scalarization function is, as others may exist and be more suited,
and which metrics are more suitable for linear combination. Many
current evaluation metrics are highly correlated with relevance and
as such may not always provide the flexibility to get a large CCS.
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