
Pytrec_eval: An Extremely Fast Python Interface to trec_eval∗

Christophe Van Gysel
University of Amsterdam

Amsterdam, The Netherlands
chris@stophr.be

Maarten de Rijke
University of Amsterdam

Amsterdam, The Netherlands
derijke@uva.nl

ABSTRACT
We introduce pytrec_eval, a Python interface to the trec_eval
information retrieval evaluation toolkit. pytrec_eval exposes the
reference implementations of trec_eval within Python as a na-
tive extension. We show that pytrec_eval is around one order of
magnitude faster than invoking trec_eval as a sub process from
within Python. Compared to a native Python implementation of
NDCG, pytrec_eval is twice as fast for practically-sized rankings.
Finally, we demonstrate its effectiveness in an application where
pytrec_eval is combined with Pyndri and the OpenAI Gym where
query expansion is learned using Q-learning.

CCS CONCEPTS
• Information systems→ Evaluation of retrieval results;

KEYWORDS
IR evaluation, toolkits

ACM Reference Format:
Christophe Van Gysel and Maarten de Rijke. 2018. Pytrec_eval: An Ex-
tremely Fast Python Interface to trec_eval. In SIGIR ’18: The 41st Interna-
tional ACM SIGIR Conference on Research & Development in Information
Retrieval, July 8–12, 2018, Ann Arbor, MI, USA. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3209978.3210065

1 INTRODUCTION
Evaluation is a crucial component of any information retrieval (IR)
system [2]. Reusable test collections and off-line evaluation mea-
sures [7] have been the dominating paradigm for experimentally
validating IR research for the last 30 years. The popularity and
ubiquity of off-line IR evaluation measures is partly due to the Text
REtrieval Conference (TREC) [5]. TREC led to the development
of the trec_eval1 software package that is the standard tool for
evaluating a collection of rankings. The trec_eval tool allows IR re-
searchers to easily compute a large number of evaluation measures
using standardized input and output formats. For a document col-
lection, a test collection of queries with query/document relevance
information (i.e., qrel) and a set of rankings generated by a par-
ticular IR system (i.e., a system run) for the test collection queries,

∗Open-source implementation is available at https://github.com/cvangysel/pytrec_eval.
1https://github.com/usnistgov/trec_eval

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR ’18, July 8–12, 2018, Ann Arbor, MI, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5657-2/18/07. . . $15.00
https://doi.org/10.1145/3209978.3210065

trec_eval outputs a standardized output format containing eval-
uation measure values. The adoption of trec_eval as an integral
part of IR research has led to the following benefits: (a) standardized
formats for system rankings and query relevance information such
that different research groups can exchange experimental results
with minimal communication, and (b) open-source reference imple-
mentations of evaluation measures—provided by a third party (i.e.,
NIST)—that promotes transparent and consistent evaluation.

While the availability of trec_eval has brought many benefits
to the IR community, it has the downside that it is available only
as a standalone executable that is interfaced by passing files with
rankings and ground truth information. In recent years, the Python
programming language has risen in popularity due to its feature
richness (i.e., scientific libraries and data structures) and holistic
language design [3]. Research progresses at a rate proportional to
the time it takes to implement an idea, and consequently, scripting
languages (e.g., Python) are preferred over conventional program-
ming languages [6]. Within IR research, retrieval systems are often
implemented and optimized using Python (e.g., [4, 9]) and for their
evaluation trec_eval is used. However, invoking trec_eval from
Python is expensive as it involves (1) serializing the internal rank-
ing structures to disk files, (2) invoking trec_eval through the
operating system, and (3) parsing the trec_eval evaluation output
from the standard output stream. This workflow is unnecessarily
inefficient as it incurs (a) a double I/O cost when the ranking is
first serialized by the Python script and subsequently parsed by
trec_eval, and (b) a context-switching overhead as the invocation
of trec_eval needs to be processed by the operating system.

We introduce pytrec_eval to counter these excessive efficiency
costs and avoid a wild growth of ad-hoc Python-based evaluation
measure implementations. pytrec_eval builds upon the trec_eval
source code and exposes a Python-first interface to the trec_eval
evaluation toolkit as a native Python extension. Rankings con-
structed in Python can directly be passed to the evaluation proce-
dure, without incurring disk I/O costs; evaluation is performed us-
ing the original trec_eval implementation. Due to pytrec_eval’s
implementation as a native Python extension, context-switching
overheads are avoided as the evaluation procedure and its invoca-
tion reside within the same process. Next to improved efficiency,
pytrec_eval brings the following benefits: (a) current and future
reference trec_eval implementations of IR evaluation measures
are available within Python, and (b) as the evaluation measures are
implemented in C, their execution are typically faster than native
Python-based alternatives. The main purpose of this paper is to
describe pytrec_eval, provide empirical evidence of the speedup
that pytrec_eval delivers, and showcase the use of pytrec_eval
in a reinforcement learning application. We ask the following ques-
tions: (RQ1)What speedup do we obtain when using pytrec_eval
over trec_eval (serialize-invoke-parse workflow)? (RQ2) How
fast is pytrec_eval compared to native Python implementations
of IR evaluation measures? We also present a demo application
that combines Pyndri [9] and pytrec_eval in a query formulation

https://doi.org/10.1145/3209978.3210065
https://github.com/cvangysel/pytrec_eval
https://github.com/usnistgov/trec_eval
https://doi.org/10.1145/3209978.3210065

qrel = {'q1': {'d1': 1, 'd2': 0},
'q2': {'d2': 1}}

run = {'q1': {'d1': 0.5, 'd2': 2.0},
'q2': {'d1': 0.5, 'd2': 0.6}}

evaluator = pytrec_eval.RelevanceEvaluator(
qrel, {'map', 'ndcg'})

result = evaluator.evaluate(run)

result equals
{'q1': {'map': 0.5, 'ndcg': 0.6309297535714575},
'q2': {'map': 1.0, 'ndcg': 1.0}}

Code snippet 1:Minimal example of how pytrec_eval can be
used to compute IR evaluation measures. Evaluation mea-
sures (NDCG, MAP) are computed for two queries—q1 and
q2—and two documents—d1 and d2—where for q2 we only
have partial relevance (d1 is assumed to be non-relevant).

reinforcement learning setting and provide the environment and
the reward signal, integrated within the OpenAI Gym [1].

2 EVALUATING USING PYTREC_EVAL
The pytrec_eval library has a minimalistic design. Its main inter-
face is the RelevanceEvaluator class. The RelevanceEvaluator
class takes as arguments (1) query relevance ground truth, a dic-
tionary of query identifiers to a dictionary of document identifiers
and their integral relevance level, and (2) a set of evaluation mea-
sures to compute (e.g., ndcg, map). Code snippet 1 shows a minimal
example on how pytrec_eval can be used to evaluate a ranking.
Rankings are encoded by a mapping from document identifiers to
their retrieval scores. Internally, pytrec_eval sorts the documents
in decreasing order of retrieval score. This behavior mimics the im-
plementation of trec_eval, which ignores the order of documents
within the user-provided file, and only considers the document
scores. Similar to trec_eval, document ties, which occur when
two documents are assigned the same score, are broken by secondar-
ily sorting on document identifier. Query relevance ground truth is
passed to pytrec_eval in a similar way to document scores, where
relevance is encoded as an integer rather than a floating point value.

Beyond measures computed over the full ranking of documents,
pytrec_eval also supports measures computed up to a particular
rank k . The values of k are the same as the ones used by trec_eval.
For example, measures ndcg_cut and P correspond to NDCG@k
and precision@k , respectively, with k = 5, 10, 15, 20, 30, 100, 200,
500, 1000. The set of supported evaluation measures is stored in the
pytrec_eval.supported_measures property and the identifiers
are the same as used by trec_eval (i.e., running trec_eval with
arguments -m ndcg_cut --help will show documentation for
the NDCG@k measure). To mimic the behavior of trec_eval to
compute all known evaluation measures (i.e., passing argument
-m all_trec to trec_eval), just instantiate RelevanceEvaluator
with pytrec_eval.supported_measures as the second argument.

3 BENCHMARK RESULTS
As demonstrated above, pytrec_eval conveniently exposes pop-
ular IR evaluation measures within Python. However, the same
functionality could be exposed by invoking trec_eval in a serialize-
invoke-parse workflow—or—by implementing the evaluation mea-
sure natively in Python. In this section we provide empirical bench-
mark results that show that pytrec_eval, beyond its convenience,

is also faster at computing evaluation measures than these two
alternatives (i.e., invoking trec_eval or native Python).
Experimental setup. For every hyperparameter configuration,
the runtime measurement was repeated 20 times and the average
runtime is reported. Speedup denotes the ratio of the runtime of
the alternative method (i.e., trec_eval or native Python) over the
runtime of pytrec_eval and consequently, a speedup of 1.0means
that both methods are equally fast. When invoking trec_eval us-
ing the serialize-invoke-parse workflow, rankings are written from
Python to storage without sorting, as trec_eval itself sorts the
rankings internally. The resulting evaluation output is read from
stdout to a Python string and we do not extract the measure val-
ues, as different parsing strategies can lead to large variance in
runtime. For the native Python implementation, we experimented
with different open-source implementations of the NDCG measure
and adapted the fastest implementation as our baseline. The imple-
mentation does not make use of NumPy or other scientific Python
libraries as (a) we wish to compare to native Python directly and
(b) the NumPy-based implementations we experimented with were
less efficient than the native implementation we settled with, as
NumPy-based implementations require that the rankings are en-
coded in dense arrays before computing evaluation measures. The
evaluated rankings and ground-truth were synthesized by assign-
ing every document a distinct ranking score in N and a relevance
level of 1. This allows us to evaluate different evaluation measure
implementations with rankings and query sets of different sizes.
Experiments were run using a single Intel Xeon CPU (E5-2630 v3)
clocked at 2.4GHz, DDR4 RAM clocked at 2.4GHz, an Intel SSD (DC
S3610) with sequential read/write speeds of 550MB/s and 450MB/s,
respectively, and a hard disk drive (Seagate ST2000NX0253) with a
rotational speed of 7200 rpm. All code used to run our experiments
is available under the MIT open-source license.2

Results.We now answer our research questions by comparing the
runtime performance of pytrec_eval to trec_eval (RQ1) and a
native Python implementation (RQ2).
RQ1 What speedup do we obtain when using pytrec_eval over

trec_eval (serialize-invoke-parse workflow)?
Fig. 1 shows matrices of speedups of pytrec_eval over trec_eval
obtained using different storage types (increasing order of through-
put capacity): a regular hard disk drive (HDD), a solid state drive
(SSD) and a memory-mapped file system (tmpfs). For the degen-
erate case where we have a single query and a single returned
document, we observe that there is a clear difference between the
different storages. In particular, we can see that tmpfs is faster than
SSD, and in turn, SSD is faster than the HDD. However, for larger
configurations (upper right box in every grid; 10,000 queries with
1,000 documents) we see that the difference between the storage
types fades away and that pytrec_eval always achieves a speedup
of at least 17 over trec_eval. This is because (a) starting the seri-
alization (e.g., disk seek time) is expensive (as can be seen in the
left-lower box of every grid), but that cost is quickly overshadowed
by (b) the cost of context switching between processes. In the case
of pytrec_eval, however, context switching is avoided as all logic
runs as part of the same process. Consequently, we can conclude
that pytrec_eval is at least one order of magnitude faster than
invoking trec_eval using a serialize-invoke-parse workflow.

2The benchmark code can be found in the benchmarks sub-directory of the
pytrec_eval repository; see the footnote on the first page.

1 5 10 20 50 100 500 1000
Documents per query

1

10

50

250

1000

5000

10000

Qu
er

ie
s

951 780 627 443 229 125 38 28

229 194 140 96 57 40 22 19

54 50 49 41 33 25 19 17

16 24 28 29 27 22 18 18

14 21 23 19 19 21 18 18

25 20 19 21 21 22 19 17

34 34 30 25 24 22 18 18

(a) HDD

1 5 10 20 50 100 500 1000
Documents per query

1

10

50

250

1000

5000

10000

Qu
er

ie
s

781 653 565 389 196 113 32 24

190 142 106 81 46 35 20 19

45 44 42 37 30 29 21 18

15 22 26 29 27 28 18 17

13 21 26 24 24 23 18 18

31 30 28 23 21 22 19 18

49 36 31 26 23 23 18 18

(b) SSD

1 5 10 20 50 100 500 1000
Documents per query

1

10

50

250

1000

5000

10000

Qu
er

ie
s

771 511 525 333 192 102 32 24

185 144 109 76 47 34 21 19

45 43 41 37 31 28 20 18

15 22 26 29 29 27 18 17

12 21 25 25 24 21 19 17

34 29 26 23 22 22 19 18

55 41 31 28 23 23 18 17

(c) Memory-mapped (tmpfs)
Figure 1: Speedup of pytrec_eval (down-rounded speedup in each box; runtime measured as average over 20 repetitions) com-
pared to invoking trec_eval using a serialize-invoke-parse workflow (§1) for different numbers of queries, different numbers
of ranked documents per query, and using different types of storage (hard disk drive, solid state drive and random access
memory) for serializing the rankings and query relevance ground truth.

1 3 5 10 20 30 40 50 102 103 104 105

Number of documents
0

1

2

3

Sp
ee

du
p

Figure 2: Speedup of pytrec_eval over a native Python im-
plementation of the NDCG evaluation measure (we report
average speedup and its standard deviation over 20 repeti-
tions). For practically-sized rankings, pytrec_eval is consis-
tently faster than the native Python implementation.

RQ2 How fast is pytrec_eval compared to native Python imple-
mentations of IR evaluation measures?

Fig. 2 shows the speedup of pytrec_eval over a Python-native
implementation of NDCG for a single query and a varying number
of documents. Here we see that for extremely short rankings (1–3
documents), the native implementation outperforms pytrec_eval.
However, for rankings consisting of 5 documents or more, we can
see that pytrec_eval provides a consistent performance boost over
the native implementation. The reason for the sub-native perfor-
mance of pytrec_eval for very short rankings is because—before
pytrec_eval computes evaluation measures—rankings need to
be converted into the internal C format used by trec_eval. The
Python-native implementation does not require this transformation,
and consequently, can thus be slightly faster when rankings are
very short. However, it is important to note that short rankings are
uncommon in IR and that the average ranking consists of around
100 to 1,000 documents. We conclude that pytrec_eval is faster
than native Python implementations for practically-size rankings.

4 EXAMPLE: Q-LEARNING
We showcase the integration of the Pyndri indexing library [9]
and pytrec_eval within the OpenAI Gym [1], a reinforcement
learning library, for the task of query expansion. In particular, we
use Pyndri to rank documents according to a textual query and

subsequently evaluate the obtained ranking using pytrec_eval.
The reinforcement learning agent navigates an environment where
actions correspond to adding a term to the query. Rewards are given
by an increase or decrease in evaluation measure (i.e., NDCG). The
goal is for the agent to learn a policy π∗ that optimizes the expected
value of the total reward. For the purpose of this demonstration of
software interoperability, we synthesize a test collection in order to
(1) limit the computational complexity that arises from real-world
collections, and (2) to give us the ability to create an unlimited
number of training queries and relevance judgments.
Document collection. We construct a synthetic document collec-
tion D, of a given size |D | = 100, following the principles laid out
by Tague et al. [8]. For a given vocabulary size |V | = 10,000, we
construct vocabulary V consisting of symbolic tokens. We sample
collection-wide unigram (|V | parameters) and bigram (|V | 2 param-
eters) pseudo counts from an exponential distribution (λ = 1.0).
This incorporates term specificity within our synthetic collection, as
only few term uni- and bigrams will be frequent and most will be in-
frequent. These pseudo counts will then serve as the concentration
parameters of Dirichlet distributions from which we will sample
a uni- and bigram language model for every document. We create
|D | documents as follows. For every document d , given the average
document length µd = 200, we sample its document size, |d |, from a
Poisson with mean µd . We then sample two language models—one
for unigrams P (w | d) and another for bigrams P ((x ,y) | d)—from
a Dirichlet distribution where the concentration parameters we
defined earlier for the whole collection. The document is then con-
structed as follows. Until we have reached |d | tokens, we repeat the
following: (a) sample an n-gram size from a predefined probability
distribution (P (n = 1) = 0.9, P (n = 2) = 0.1), and subsequently,
(b) sample an n-gram from the corresponding language model. We
truncate a document if it exceeds its pre-defined length |d |.
Query collection. Once we obtained our synthetic document col-
lection D, we proceed by constructing our query set Q , of a given
size |Q | = 100,000, as follows. For every query q to be constructed,
we select r = 5 documents uniformly at random from D and de-
note these as the set of relevant documents Rq ⊂ D for query q.
Given the average query length µq = 3, the length of query q, |q |, is
then sampled from a Poisson distribution with mean µq . We write
P
(
w | Rq

)
and P (w | D) to denote the empirical language models

00h 00m 00s 02h 46m 40s 05h 33m 20s 08h 20m 00s 11h 06m 40s 13h 53m 20s 16h 40m 00s
Wall-clock time

0.00

0.05

0.10
A

vg
.

re
w

ar
d

(∆
N

D
C

G
)

Figure 3: Average reward (∆NDCG) obtained by the Q-learning algorithm over time while training the reinforcement learning
agent. The agent learns to select vocabulary terms that improve retrieval effectiveness for the set of 100k training queries.

estimated from concatenating the relevant documents for query
q and from concatenating all documents in the collection D (i.e.,
the collection language model), respectively. The |q | terms of query
q are sampled with replacement from P

(
w | Rq

)
(1.0 − P (w | D)),

such that terms specific to Rq and uncommon in D are selected.
Environment. For each query q, the environment is initialized to
the state where only the query terms are present. At any given
state, the agent can then choose to expand the query terms with
any unigram term from the vocabulary V in addition to a null op-
eration action. Rankings are obtained by querying the Indri search
engine using Pyndri, using a Dirichlet language model (µ = 2,500),
and obtaining a ranking of the top-10 documents. The reward of
choosing an action is the ∆NDCG that is obtained by expanding
the query with the chosen term. As observation, the agent receives
a binary vector indicating which terms of the vocabulary V occur
at least once in the current expanded query. After 5 actions—or a
perfect NDCG (i.e., 1.0) is achieved—the episode terminates.
Reinforcement learning agent. We learn an optimal policy tab-
ular π∗ using Q-learning where the initial values of the Q (·) are
initialized to zero. We set the learning rate α = 0.1 and the discount
factor γ = 0.95. During learning, we maintain an ϵ-greedy strategy
with ϵ = 0.05. Fig. 3 shows the average reward obtained while train-
ing an agent on the reinforcement learning problem defined above.
The average reward obtained by the agent increases over time. In
particular, this example showcases that different IR libraries (Pyn-
dri, pytrec_eval) can easily be integrated with machine learning
libraries (OpenAI Gym) to quickly prototype ideas. An essential
part here is that expensive operations (i.e., ranking and evaluation)
are performed in efficient low-level languages, whereas prototyping
occurs in the high-level Python scripting language. All code used
in this example is available under the MIT open-source license.3

5 CONCLUSIONS
In this paper we introduced pytrec_eval, a Python interface to
trec_eval. pytrec_eval builds upon the trec_eval source code
and exposes a Python-first interface to the trec_eval evaluation
toolkit as a native Python extension. This allows for convenient and
fast invocation of IR evaluation measures directly from Python. We
showed that pytrec_eval is around one order of magnitude faster
than invoking trec_eval in a serialize-invoke-parse workflow as it
avoids the costs associated with (1) the serialization of the rankings
to storage, and (2) operation system context switching. Compared
to a native Python implementation of NDCG, pytrec_eval is ap-
proximately twice as fast for practically-sized rankings (100 to 1,000

3The reinforcement learning code can be found in the examples sub-directory of the
pytrec_eval repository; see the footnote on the first page.

documents). In addition, we showcased the integration of Pyndri
[9] and pytrec_eval within the OpenAI Gym [1] and showed that
all three modules can be combined to quickly prototype ideas.

In this paper, we used a tabular function during Q-learning; other
functional forms—such as a deep neural network—can also be used.
Pyndri and pytrec_eval expose common IR operations through
a convenient Python interface. Beyond the convenience that both
modules provide, an important design principle is that expensive
operations (e.g., indexing, ranking) are performed using efficient
low-level languages (e.g., C), while Python takes on the role of an in-
structor that links the expensive operations. Future work consists of
exposing more IR operations as Python libraries and allowing more
interoperability amongst modules. For example, currently Pyndri
converts its internal Indri structures to Python structures, which
are then again converted back to internal trec_eval structures
by pytrec_eval. A closer integration of Pyndri and pytrec_eval
could result in even faster execution times as both can communicate
directly—in cases where one is only interested in the evaluation
measures and not the rankings—rather than through Python.
Acknowledgements. This research was supported by Ahold Del-
haize, Amsterdam Data Science, the Bloomberg Research Grant
program, the China Scholarship Council, the Criteo Faculty Re-
search Award program, Elsevier, the European Community’s Sev-
enth Framework Programme (FP7/2007-2013) under grant agree-
ment nr 312827 (VOX-Pol), the Google Faculty Research Awards
program, the Microsoft Research Ph.D. program, the Netherlands
Institute for Sound and Vision, the Netherlands Organisation for
Scientific Research (NWO) under project nrs CI-14-25, 652.002.001,
612.001.551, 652.001.003, and Yandex. All content represents the
opinion of the authors, which is not necessarily shared or endorsed
by their respective employers and/or sponsors.

REFERENCES
[1] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and

W. Zaremba. OpenAI gym, 2016.
[2] D. Harman. Information retrieval evaluation. Synthesis Lectures on Information

Concepts, Retrieval, and Services, 3(2):1–119, 2011.
[3] H. Koepke. Why python rocks for research. https://www.stat.washington.edu/

~hoytak/_static/papers/why-python.pdf, 2010. Accessed February 12, 2018.
[4] D. Li and E. Kanoulas. Bayesian optimization for optimizing retrieval systems. In

WSDM. ACM, February 2018.
[5] NIST. Text retrieval conference, 1992–2017.
[6] L. Prechelt. An empirical comparison of seven programming languages. Computer,

33(10):23–29, Oct. 2000.
[7] M. Sanderson. Test collection based evaluation of information retrieval systems.

Foundations and Trends in Information Retrieval, 4(4):247–375, 2010.
[8] J. Tague, M. Nelson, and H. Wu. Problems in the simulation of bibliographic

retrieval systems. In SIGIR, pages 236–255. ACM, June 1980.
[9] C. Van Gysel, E. Kanoulas, and M. de Rijke. Pyndri: a python interface to the indri

search engine. In ECIR, pages 744–748. Springer, April 2017.

https://www.stat.washington.edu/~hoytak/_static/papers/why-python.pdf
https://www.stat.washington.edu/~hoytak/_static/papers/why-python.pdf

	Abstract
	1 Introduction
	2 Evaluating using Pytrec_eval
	3 Benchmark results
	4 Example: Q-learning
	5 Conclusions
	References

