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ABSTRACT
Besides position bias, which has been well-studied, trust bias is

another type of bias prevalent in user interactions with rankings:

users are more likely to click incorrectly w.r.t. their preferences on

highly ranked items because they trust the ranking system. While

previous work has observed this behavior in users, we prove that

existing Counterfactual Learning to Rank (CLTR) methods do not

remove this bias, including methods specifically designed to miti-

gate this type of bias. Moreover, we prove that Inverse Propensity

Scoring (IPS) is principally unable to correct for trust bias under

non-trivial circumstances. Our main contribution is a new estimator

based on affine corrections: it both reweights clicks and penalizes

items displayed on ranks with high trust bias. Our estimator is the

first estimator that is proven to remove the effect of both trust bias

and position bias. Furthermore, we show that our estimator is a

generalization of the existing CLTR framework: if no trust bias is

present, it reduces to the original IPS estimator. Our semi-synthetic

experiments indicate that by removing the effect of trust bias in ad-

dition to position bias, CLTR can approximate the optimal ranking

system even closer than previously possible.
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1 INTRODUCTION
Learning to Rank (LTR) is a long-established area of research that

continues to receive considerable attention from academia and in-

dustry [14]. Supervised approaches to LTR use manually annotated

* Equal contribution.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM ’20, October 19–23, 2020, Virtual Event, Ireland
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6859-9/20/10. . . $15.00

https://doi.org/10.1145/3340531.3412031

data, where human annotators have provided relevance judgements.

Over time, the limitations of such approaches have become appar-

ent: manually annotated labels are time consuming and expensive

to create [5, 17]; moreover, the preferences of actual users and anno-

tators need not be aligned [18]. Instead, recent years have brought

increased interest in LTR methods that learn from user interactions.

At first glance user interactions have great advantages over la-

belled data: online search engines receive large numbers of interac-

tions at virtually no additional costs; and interactions reflect actual

user preferences as opposed to annotators’ preferences. Unfortu-

nately, user interactions also bring their own difficulties because

they are a form of noisy and biased implicit feedback. For instance,

clicks are noisy in the sense that, often, a non-relevant item receives

a click or a relevant item is skipped. The effect of noise is easily

mitigated by averaging over a large number of clicks, but this is not

true for bias. Position bias, a well-known type of bias of interactions

through clicks [6], occurs because users are more likely to examine

results at higher ranks. As a consequence, an itemmay receive more

clicks because it was displayed at a high rank, not because it was

preferred by the user. Other types of bias include item-selection bias:
not all items can be displayed at once [15, 16]; presentation bias:
items are presented in different manners [23]; and trust-bias: users
are more likely to click incorrectly on higher ranked items [12]. In

order to infer a user’s true preferences from their interactions, the

effects of these biases have to be corrected for.

Research into Counterfactual Learning to Rank (CLTR) aims to

find methods that learn from user interactions but whose optimiza-

tion process is unaffected by biases [13]. Early CLTR methods cor-

rect for position bias using Inverse Propensity Scoring (IPS) [13, 20].

IPS estimators weight clicks inversely to the probability of the

clicked items being examined during logging. Thus, clicks on items

that are less likely to have been examined by users are weighted

more heavily. This reweighting compensates for the effect of posi-

tion bias, allowing CLTR methods to estimate and learn without

being affected by position bias in expectation. Later CLTR work

has focused on estimating examination probabilities [3, 4, 8, 21],

training deep learning models [1], and correcting for more types of

bias [2, 15, 16]. In particular, Agarwal et al. [2] have proposed an

expansion to IPS to correct for both position bias and trust bias.

In this paper, we prove that no IPS estimator is able to correct
for trust bias, under non-trivial circumstances. Since all existing

bias mitigation methods are IPS-based approaches, this implies

that there is currently no known CLTR method that can deal with

trust bias. We identify the root cause to be the fact that IPS only

corrects for Missing-Not-At-Random (MNAR) feedback [13]. While

position bias prevents clicks from occurring due to a lack of user

examination, trust bias adds additional clicks due to user trust [2, 12].
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Table 1: Notation used in this paper.

Symbol Description

𝑞 a query

𝑑 an item (to be ranked)

𝐷𝑞 set of items to be ranked for query 𝑞

_ metric function that assigns a weight per rank

𝑓 a ranker, or ranking function, that scores items

𝑦𝑖 a ranking displayed at interaction 𝑖

𝐶 a click on an item

𝐸 user examination of an item

𝑅 the relevance of an item

�̃� the perceived relevance of an item

\𝑘 examination probability at rank 𝑘 : 𝑃 (𝐸 = 1 | 𝑘)
𝛾𝑞,𝑑 relevance probability: 𝑃 (𝑅 = 1 | 𝑞, 𝑑)
𝜖+
𝑘

perceived relevance probability at rank 𝑘 of

an examined relevant item: 𝑃 (�̃� = 1 | 𝐸 = 1, 𝑅 = 1, 𝑘)
𝜖−
𝑘

perceived relevance probability at rank 𝑘 of

an examined non-relevant item:

𝑃 (�̃� = 1 | 𝐸 = 1, 𝑅 = 0, 𝑘)
𝛼𝑘 first weight of the affine transformation of

trust bias: 𝛼𝑘 = \𝑘 (𝜖+𝑘 − 𝜖−
𝑘
)

𝛽𝑘 second weight of the affine transformation of

trust bias: 𝛽𝑘 = \𝑘𝜖
−
𝑘

Hence, clicks that are affected by trust bias are not simply a form

of MNAR feedback and IPS cannot correct for such biases.

We introduce a novel estimator for CLTR that makes use of

affine corrections, as opposed to the linear corrections of IPS. Our
novel affine estimator both reweights clicks based on examina-

tion probabilities and penalizes items for being displayed on ranks

where many incorrect clicks take place. We prove that the affine

estimator is the first method that can correct for both position bias

and trust bias. Furthermore, we show that it is an extension of

the existing CLTR framework: when no trust bias is present the

affine estimator naturally reduces to an IPS estimator. The results

of our semi-synthetic experiments show that while existing CLTR

methods are negatively affected by trust bias, our affine approach

approximates the optimal ranking model under varying degrees of

position bias and trust bias.

The main contributions of this work are:

(1) The first CLTR estimator that is proven to be unbiased w.r.t.

both position bias and trust bias.

(2) A theoretical analysis that shows that IPS estimators cannot

correct for trust bias.

(3) An empirical analysis based on semi-synthetic experiments that

reveal our affine estimator bridges the gap between existing

CLTRmethods and the optimal model when trust bias is present.

Table 1 summarizes the notation we use in the paper.

2 BACKGROUND AND RELATEDWORK
This section covers supervised LTR and the original IPS method

for CLTR with position bias correction.

2.1 Learning to rank
In general, the goal of LTR methods is to find the optimal ranking

function 𝑓 , in order to sort items for user-issued queries. For this

work, we will use 𝑓 to sort in ascending order. Let 𝑞 indicate a

query, 𝑑 an item, and rank(𝑑 | 𝑞, 𝑓 ) the rank of item 𝑑 in the

ranking produced by 𝑓 for 𝑞. Then:

𝑓 (𝑑𝑖 | 𝑞) > 𝑓 (𝑑 𝑗 | 𝑞) ⇒ rank(𝑑𝑖 | 𝑞, 𝑓 ) ≻ rank(𝑑 𝑗 | 𝑞, 𝑓 ) . (1)

Commonly, 𝑓 is considered optimal if it maximizes some linearly

decomposable metric. Let 𝑃 (𝑞) be the distribution of queries, 𝐷𝑞

the set of items to be ranked for query 𝑞, and 𝑃 (𝑅 = 1 | 𝑞, 𝑑) the
probability that an item 𝑑 is considered relevant by the user. Then,

with some weighting function _, a linearly decomposable metric

has the form:

Δ(𝑓 ) =
∑︁
𝑞

𝑃 (𝑞)
∑︁
𝑑∈𝐷𝑞

𝑃 (𝑅 = 1 | 𝑞, 𝑑) · _(𝑑 | 𝑞, 𝑓 ). (2)

Generally, _ is based on the rank of 𝑑 for 𝑞 according to 𝑓 . For

instance, it can be chosen to match the well-known Discounted

Cumulative Gain (DCG) metric:

_DCG (𝑑 | 𝑞, 𝑓 ) =
(
log

2

(
rank(𝑑 | 𝐷𝑞, 𝑞, 𝑓 ) + 1

) )−1
. (3)

If the relevance probabilities 𝑃 (𝑅 = 1 | 𝑞, 𝑑) are known, finding
the optimal 𝑓 can be done through traditional supervised LTR

methods [14].

2.2 Counterfactual learning to rank for
position bias correction

In practice the relevance probabilities 𝑃 (𝑅 = 1 | 𝑞, 𝑑) are not

known and are costly to estimate through human labelling [5, 17].

Moreover, often the annotations obtained through manual labelling

are not aligned with the actual preferences of the users [18].

As an alternative, Counterfactual Learning to Rank (CLTR) meth-

ods use click logs to base their optimization and evaluation on.

Clicks can be seen as a form of implicit feedback, which is indica-

tive of the users’ preferences but also a very noisy and biased signal.

One of the most prevalent biases in clicks on items included in a

ranking is position bias: users are less likely to examine – and there-

fore click – items on lower ranks. Position bias is formally modeled

through the examination hypothesis, which states that a clicked

item (𝐶 ∈ {0, 1}) must be examined (𝐸 ∈ {0, 1}) and considered

relevant (𝑅 ∈ {0, 1}): 𝐶 = 1 ↔ 𝐸 = 1 ∧ 𝑅 = 1. Position bias is often

assumed to depend on the rank at which an item is displayed, while

the relevance of an item is assumed to be independent of where it

is displayed [6]. Thus, if 𝑘 is the rank at which 𝑑 is displayed, the

probability of a click is:

𝑃
(
𝐶 = 1 | 𝑞, 𝑑, 𝑘

)
= 𝑃

(
𝐸 = 1 | 𝑘

)
· 𝑃

(
𝑅 = 1 | 𝑞, 𝑑

)
. (4)

The click probability (Eq. 4) shows us that the position bias, mod-

eled by 𝑃 (𝐸 = 1 | 𝑘), gives an unfair advantage to documents in

positions that are more likely to be examined.

LetD be the set of logged interactions, containing 𝑁 tuples each

consisting of a user-issued query 𝑞𝑖 , a displayed ranking 𝑦𝑖 , and

the observed clicks 𝑐𝑖 where 𝑐𝑖 (𝑑) ∈ {0, 1}:

D = {(𝑞𝑖 , 𝑦𝑖 , 𝑐𝑖 )}𝑁𝑖=1 . (5)

For brevity we will use the sum

∑
(𝑑,𝑘) ∈𝑦𝑖 , which sums over the

items 𝑑 and their associated ranks in 𝑦𝑖 :

∀(𝑑, 𝑘) ∈ 𝑦𝑖 , 𝑘 = rank(𝑑 | 𝑖) . (6)



Furthermore, we use 𝑃 (𝐸 = 1 | 𝑘) = \𝑘 . Thus, the probability of

item 𝑑 being examined at interaction 𝑖 depends on the rank it was

displayed at: 𝑃 (𝐸 = 1 | 𝑑, 𝑖) = \
rank(𝑑 |𝑖) . The first published CLTR

methods correct for position bias using an IPS estimator [13, 20].

This IPS estimator weights each click inversely to the probability

that the clicked item was examined:

Δ̂IPS (𝑓 ) =
1

𝑁

𝑁∑︁
𝑖=1

∑︁
(𝑑,𝑘) ∈𝑦𝑖

𝑐𝑖 (𝑑)
\𝑘

· _(𝑑 | 𝑞𝑖 , 𝑓 ) . (7)

The result is an unbiased estimator, since in expectation it correctly

estimates Δ:

E𝑞,𝑦,𝑐 [Δ̂IPS (𝑓 )] = Δ(𝑓 ) (under the click model in Eq. 4). (8)

For a proof of unbiasedness we refer to the work by Joachims et al.

[13], who prove that even with click noise Δ̂IPS can be used for

unbiased CLTR optimization. However, we note that this proof

relies on (at least) three important assumptions: (i) the click model

as described in Eq. 4 is true, (ii) the propensities \ are known, and

(iii) all propensities are positive: ∀𝑘 \𝑘 > 0.

A lot of related work has considered the estimation of the po-

sition bias parameters \ , using randomization [3, 8, 13, 21], or by

jointly estimating relevance and position bias [4, 20]. Recently, both

Ovaisi et al. [16] and Oosterhuis and de Rijke [15] have proposed

using different propensities when not all items can be displayed at

once (i.e., in case ∃𝑘 \𝑘 = 0). For this paper, we will assume that all

propensities are positive and thus Δ̂IPS is unbiased.

Finally, different methods have been proposed to optimize 𝑓

based on Δ̂IPS . Joachims et al. [13] show that Rank-SVM [11] can be

adapted to optimize IPS estimates for the average-relevant-position

metric. Agarwal et al. [1] introduce a method that can optimize any

differentiable model w.r.t. an IPS estimate of a metric based on a

monotonically decreasing function. Lastly, Oosterhuis and de Rijke

[15] show that the supervised LambdaLoss LTR framework [22]

can easily be adapted to optimize IPS estimates as well.

3 TRUST BIAS
Besides position bias, other forms of bias are also known to affect

user interactions with ranked lists. Joachims et al. [12] conclude

that the trust users have in a ranking system affects their click

behavior. Because users trust the results, they are more likely to

perceive top-ranked items to be relevant, even when the displayed

information about the item suggests otherwise. Similar to position

bias, this causes items displayed at high ranks to have an unfair

advantage, however, despite this similarity the effects of the two

types of bias are not identical.

Recently, Agarwal et al. [2] have modeled trust bias by distin-

guishing between perceived relevance �̃� ∈ {0, 1} and real relevance 𝑅.
Trust bias occurs because users are more likely to perceive items as

relevant �̃� = 1 if they are among the top ranked items in the list. In

Agarwal et al.’s model, a click happens when a user examines and

perceives an item to be relevant:𝐶 = 1 ↔ 𝐸 = 1∧ �̃� = 1. The model

combines rank-based position bias (as described in Section 2.2) with

trust bias, resulting in the following click probability:

𝑃
(
𝐶 = 1 | 𝑞, 𝑑, 𝑘

)
= 𝑃

(
𝐸 = 1 | 𝑘

)
· 𝑃

(
�̃� = 1 | 𝐸 = 1, 𝑅, 𝑘

)
. (9)

Furthermore, the probability of perceived relevance of an examined

item is conditioned on the actual relevance and the rank 𝑘 at which

item 𝑑 is displayed. For brevity, we use 𝜖+
𝑘
and 𝜖−

𝑘
to denote these

probabilities:

𝑃
(
�̃� = 1 | 𝐸 = 1, 𝑅 = 1, 𝑘

)
= 𝜖+

𝑘
,

𝑃
(
�̃� = 1 | 𝐸 = 1, 𝑅 = 0, 𝑘

)
= 𝜖−

𝑘
.

(10)

Additionally, we write 𝛾𝑞,𝑑 for the probability of actual relevance:

𝛾𝑞,𝑑 = 𝑃 (𝑅 = 1 | 𝑞, 𝑑). These conventions allow us to have the

following succinct notation for the click probability:

𝑃
(
𝐶 = 1 | 𝑞, 𝑑, 𝑘

)
= \𝑘

(
𝜖+
𝑘
𝛾𝑞,𝑑 + 𝜖−

𝑘
(1 − 𝛾𝑞,𝑑 )

)
. (11)

It is important to note that the combination of trust bias and position

bias can be seen as an affine transformation between the relevance

probabilities and click probabilities. If we choose 𝛼𝑘 = \𝑘 (𝜖+𝑘 − 𝜖−
𝑘
)

and 𝛽𝑘 = \𝑘𝜖
−
𝑘
, this affine transformation becomes apparent:

𝑃
(
𝐶 = 1 | 𝑞, 𝑑, 𝑘

)
= 𝛼𝑘𝑃 (𝑅 = 1 | 𝑞, 𝑑) + 𝛽𝑘 . (12)

We will use this property in Section 5 to introduce affine corrections

for these biases.

An empirical analysis by Agarwal et al. [2] shows that their trust

bias model better captures observed user behavior than the model

that only considers position bias (Eq. 4). Furthermore, Agarwal

et al. propose an IPS estimator in order to correct for both trust

bias and position bias. In the next section, we will first prove that

this estimator cannot correct for these biases. Moreover, we subse-

quently prove that no IPS estimator is capable of doing so. Then,

in Section 5 we introduce an estimator based on affine corrections,

and prove that it is the first unbiased estimator that corrects for

both position bias and trust bias.

4 EXISTING METHODS AND TRUST BIAS
In this section, we discuss Agarwal et al. [2]’s Bayes-IPS method

designed specifically for trust bias. We prove that no IPS estimator

is able to correct for trust bias, including Bayes-IPS.

4.1 Bayes-IPS
Agarwal et al. [2] have proposed the Bayes-IPS estimator to cor-

rect for trust bias and position bias. This estimator combines two

corrections: (i) correcting for position bias by weighting inversely

to \ ; and (ii) correcting for trust bias by weighting each click to

the probability of true relevance: 𝑃 (𝑅 = 1 | �̃� = 1, 𝐸 = 1, 𝑘). This
results in the following estimator:

Δ̂Bayes-IPS (𝑓 ) =
1

𝑁

𝑁∑︁
𝑖=1

∑︁
(𝑑,𝑘) ∈𝑦𝑖

𝜖+
𝑘

𝜖+
𝑘
+ 𝜖−

𝑘

𝑐𝑖 (𝑑)
\𝑘

· _(𝑑 | 𝑞𝑖 , 𝑓 ). (13)

We note that Δ̂Bayes-IPS is still an IPS estimator; the difference with

Δ̂IPS is that it uses the weights
1

\𝑘

𝜖+
𝑘

𝜖+
𝑘
+𝜖−

𝑘

instead of
1

\𝑘
. In addition to

\𝑘 , Bayes-IPS also needs to know the values of 𝜖+
𝑘
and 𝜖−

𝑘
. Agarwal

et al. use Expectation Maximization (EM) to estimate these values

from click logs, and, using the estimated values, optimize a ranking

model using Δ̂Bayes-IPS . Their results show that optimizing with

Δ̂Bayes-IPS is more effective than using Δ̂IPS and leads to significant

improvements when ranking for search through emails or other

personal documents [2].



While empirical results indicate that Δ̂Bayes-IPS is an improve-

ment over Δ̂IPS , neither estimator is unbiased w.r.t. trust bias. If

trust bias is present, i.e., if∃𝑘, 𝑘 ′ (𝜖−
𝑘
≠ 𝜖−

𝑘′
), then Δ̂Bayes-IPS is biased.

We can show this by looking at the difference between Δ̂Bayes-IPS
and Δ, which is not necessarily equal to zero. Let _𝑞,𝑑 be short for

_(𝑑 | 𝑞, 𝑓 ), then:
Δ(𝑓 ) − E𝑞,𝑦,𝑐

[
Δ̂Bayes-IPS (𝑓 )

]
= E𝑞,𝑦,𝑐


∑︁

(𝑑,𝑘) ∈𝑦𝑖

(
𝛾𝑞,𝑑 −

𝜖+
𝑘

𝜖+
𝑘
+ 𝜖−

𝑘

𝑃 (𝐶 = 1 | 𝑞, 𝑑, 𝑘)
\𝑘

)
· _𝑞,𝑑

 (14)

= E𝑞,𝑦,𝑐


∑︁

(𝑑,𝑘) ∈𝑦𝑖

©«
©«1 −

𝜖+
𝑘

(
𝜖+
𝑘
− 𝜖−

𝑘

)
𝜖+
𝑘
+ 𝜖−

𝑘

ª®®¬𝛾𝑞,𝑑 −
(

𝜖+
𝑘
𝜖−
𝑘

𝜖+
𝑘
+ 𝜖−

𝑘

)ª®®¬ · _𝑞,𝑑
 .

Clearly, it is non-trivial to derive under what conditions the dif-

ference between Δ(𝑓 ) and E𝑞,𝑦,𝑐 [Δ̂Bayes-IPS (𝑓 )] is zero. Instead of

further investigating Bayes-IPS, we will prove that no IPS estimator

is unbiased w.r.t. trust bias under non-trivial circumstances, thereby

also proving that no practical conditions exist where this difference

is guaranteed to be zero.

4.2 IPS cannot correct for trust bias
We proceed by considering whether any IPS estimator can be un-

biased w.r.t. trust bias. Consider a generic IPS estimator Δ̂𝜌 . We

will derive the values the propensities 𝜌 should have for unbiased

CLTR:

Δ̂𝜌 (𝑓 ) =
1

𝑁

𝑁∑︁
𝑖=1

∑︁
(𝑑,𝑘) ∈𝑦𝑖

𝑐𝑖 (𝑑)
𝜌𝑞𝑖 ,𝑑,𝑘

· _(𝑑 | 𝑞𝑖 , 𝑓 ) . (15)

Importantly, we have to limit the possible choices for 𝜌 , because

trivially unbiased estimators are theoretically possible [9]:

∀𝑑, 𝑘 𝜌𝑞,𝑑,𝑘 =

1

𝑁

∑𝑁
𝑖=1

∑
(𝑑,𝑘) ∈𝑦𝑖 𝛾𝑑,𝑘 · _(𝑑 | 𝑞𝑖 , 𝑓 )

1

𝑁

∑𝑁
𝑖=1

∑
(𝑑,𝑘) ∈𝑦𝑖 𝑐𝑖 (𝑑) · _(𝑑 | 𝑞𝑖 , 𝑓 )

. (16)

To avoid such trivial situations, we use the following definition for

circumstances where CLTR is not a trivial problem:

Definition 1. We define non-trivial circumstances as situations
where no information about the relevances𝛾 is known. Furthermore,

trust biasmust be present, meaning users’ trustmust not be constant

at all the ranks:

∃𝑘, 𝑘 ′ (𝜖−
𝑘
≠ 𝜖−

𝑘′) . (17)

Additionally, every displayed item should have a chance of being

clicked and clicks at any rank 𝑘 should be positively correlated with

relevance:

∀𝑘 (\𝑘 (𝜖+𝑘 − 𝜖−
𝑘
) > 0). (18)

Lastly, the metric _ should not be indifferent to the ranking of 𝑓 :

∃𝑞, 𝑑, 𝑓 , 𝑓 ′ (_(𝑑 | 𝑞, 𝑓 ) ≠ _(𝑑 | 𝑞, 𝑓 ′)) . (19)

With this definition we avoid the following scenarios: (i) 𝜌 is chosen

based on the known values of 𝛾 , in which case there is no need to

estimate Δ(𝑓 ) based on clicks; (ii) there is no trust bias, in which

case every method is trivially unbiased w.r.t. trust bias; (iii) some

items cannot receive clicks or clicks are not indicative of relevance,

in these cases there is no signal to learn from; (iv) the metric is

indifferent to the ranking function 𝑓 , in which case there is nothing

to evaluate since all ranking functions are equally good.

Naturally, an unbiased estimator should lead to the same optimal

ranking as the full information case. For this, it is sufficient to

have consistent pairwise rankings. To be clear about what we are

going to prove about unbiasedness w.r.t. trust bias, we introduce

the following formal definition:

Definition 2. An IPS estimator Δ̂𝜌 is unbiased w.r.t. trust bias,
if in all non-trivial circumstances 𝜌 can be chosen so that it can

correctly predict relative differences:

∃𝜌,∀𝑓 , 𝑓 ′,
(
Δ(𝑓 ) > Δ(𝑓 ′) ↔ E𝑐

[
Δ̂𝜌 (𝑓 )

]
> E𝑐

[
Δ̂𝜌 (𝑓 ′)

] )
. (20)

In other words, we define an estimator to be unbiased w.r.t. to trust

bias, if it can unbiasedly predict the preference between any two

rankers under any non-trivial circumstances. Again, it is important

to avoid 𝜌 being chosen based on knowledge of 𝛾 . If a Δ̂𝜌 meets

our definition of unbiasedness it can safely be applied in any non-

trivial circumstances; we argue that this covers all realistic CLTR

situations.

Theorem 1. No IPS estimator is unbiased w.r.t. trust bias.

Proof. We will prove this by showing that there are non-trivial

circumstances where no values of 𝜌 exist for Δ̂𝜌 to correctly predict

relative differences. We do so by starting from the most basic rank-

ing example and deriving the values of 𝜌 where Δ̂𝜌 is unbiased, we

prove that no such values exist. In addition to this proof, we will

show how our basic example can be extended to include rankings

with more queries and items.

In our basic example, we consider a system that only receives a

single query 𝑞1: 𝑃 (𝑞1) = 1 and that only has to rank two documents

𝐷𝑞1 = {𝑑1, 𝑑2}. Therefore, two ranking functions can cover all

possible rankings: 𝑓1 that produces [𝑑1, 𝑑2] and 𝑓2 that produces

[𝑑2, 𝑑1]. Lastly, the metric we consider is a top-1 metric, which

means it is only affected by the top document of a ranking:

_(𝑑1 | 𝑞1, 𝑓1) = _(𝑑2 | 𝑞1, 𝑓2) > 0,

_(𝑑2 | 𝑞1, 𝑓1) = _(𝑑1 | 𝑞1, 𝑓2) = 0.
(21)

Thus, in this basic example, we are trying to estimate whether 𝑑1
should be ranked higher than 𝑑2 or vice-versa.

The true difference in metric value between the rankers is:

Δ(𝑓1) − Δ(𝑓2) = (𝛾𝑞1,𝑑1 − 𝛾𝑞1,𝑑2 ) · _(𝑑1 | 𝑞1, 𝑓1) . (22)

Therefore, only the difference in item relevance matters for the

relative difference:

sign

(
Δ(𝑓1) − Δ(𝑓2)

)
= sign(𝛾𝑞1,𝑑1 − 𝛾𝑞1,𝑑2 ). (23)

The estimates of Δ̂𝜌 are based on 𝑁 interactions with query 𝑞1
where at each interaction 𝑑1 and 𝑑2 were displayed at rank 1 and

2, respectively. The difference in the expected estimates (cf. Eq. 11

and Eq. 15) is therefore:

E𝑐
[
Δ̂𝜌 (𝑓1)

]
− E𝑐

[
Δ̂𝜌 (𝑓2)

]
=

\1

( (
𝜖+
1
− 𝜖−

1

)
𝛾𝑞1,𝑑1 + 𝜖−

1

)
𝜌𝑞1,𝑑1,1

−
\2

( (
𝜖+
2
− 𝜖−

2

)
𝛾𝑞1,𝑑2 + 𝜖−

2

)
𝜌𝑞1,𝑑2,2

.

(24)

We note that this scenario falls under the definition of a non-trivial

circumstance (Definition 1).



In order to be unbiased, the values of the propensities 𝜌 must be

chosen so that the requirement in Eq. 20 is met. Note that for two

continuous functions to always have the same sign, they should

agree on zero values. By combining Eq. 20 with Eq. 23 and Eq. 24,

we can derive that 𝜌 must meet the following requirement:

𝛾𝑞1,𝑑1 = 𝛾𝑞1,𝑑2 ↔
𝜌𝑞1,𝑑1,1

𝜌𝑞1,𝑑2,2
=

\1

( (
𝜖+
1
− 𝜖−

1

)
𝛾𝑞1,𝑑1 + 𝜖−

1

)
\2

((
𝜖+
2
− 𝜖−

2

)
𝛾𝑞1,𝑑2 + 𝜖−

2

) . (25)

Under non-trivial circumstances, 𝜌 has to be chosen without knowl-

edge of 𝛾 , therefore we must find a single value for each of 𝜌𝑞1,𝑑1,1
and 𝜌𝑞1,𝑑2,2 that meets this requirement for all possible values of

𝛾 . Combining this fact with the fact that 𝛾 consists of probabilities,

we can derive the following requirement from Eq. 25:

∀𝑥 ∈ [0, 1]
©«
𝜌𝑞1,𝑑1,1

𝜌𝑞1,𝑑2,2
=

\1
( (
𝜖+
1
− 𝜖−

1

)
𝑥 + 𝜖−

1

)
\2

((
𝜖+
2
− 𝜖−

2

)
𝑥 + 𝜖−

2

) ª®®¬ . (26)

From this we can directly derive the following requirement for the

bias parameters 𝜖 :

∀𝑥 ∈ [0, 1]
©«
𝜖+
1

𝜖+
2

=
𝜖−
1

𝜖−
2

=

(
𝜖+
1
− 𝜖−

1

)
𝑥 + 𝜖−

1(
𝜖+
2
− 𝜖−

2

)
𝑥 + 𝜖−

2

ª®®¬ . (27)

Thus, a solution for the propensities 𝜌 in Eq. 26 only exists if the

trust bias parameters 𝜖 meet the requirement in Eq. 27. Solving for

𝜖 shows that the latter requirement can be simplified to:

𝜖+
1

𝜖+
2

=
𝜖−
1

𝜖−
2

. (28)

Therefore, only in very specific cases where trust bias adheres

to Eq. 28 do values of 𝜌 exist that can meet Eq. 25. This proves

the theorem since we have provided input cases where no IPS is

unbiased. In fact, in non-trivial circumstances (Definition 1 and

Eq. 17), the probability of even being close to this regularity of

Eq. 28 is so low that in practice we can safely say that it never

happens. So, not only do non-trivial input cases exist where no IPS

can be unbiased, but almost all of the time we are dealing with such

cases.

Therefore, we have proven that Δ̂𝜌 can never correctly predict

the relative difference between 𝑓1 and 𝑓2 in this example under

non-trivial circumstances. In conclusion, we have therefore proven

that no IPS estimator is unbiased w.r.t. trust bias, since there are

examples where under non-trivial circumstances, no propensities

𝜌 can be chosen so that it unbiasedly infers the preference between

two rankers. □

While the basic counterexample used in the proof of Theorem 1 is

enough for proving that IPS estimators are biased w.r.t. trust bias,

we note that it can easily be extended to cases with more queries

and items. For any number of queries and items and any item pair

𝑑3 and 𝑑4, there always exist two rankers 𝑓3 and 𝑓4 that agree on

all item placements expect that they swap the ranks of 𝑑3 and 𝑑4.

Using a proof analogous to the above, one can prove that similar

to Eq. 28 (𝜖+
𝑘3
/𝜖+

𝑘4
) = (𝜖−

𝑘3
/𝜖−

𝑘4
), where 𝑘3 and 𝑘4 are the display

ranks of 𝑑3 and 𝑑4, respectively. This process can be repeated for

other item pairs until the requirement ∀𝑘, 𝑘 ′ ((𝜖+
𝑘
/𝜖+

𝑘′
) = (𝜖−

𝑘
/𝜖−

𝑘′
))

is obtained. Thus, one can prove this very restrictive requirement to

the trust bias, that applies regardless of the number of queries and

documents. Only when the trust bias adheres to this requirement,

is it possible that an IPS estimator may be able to correctly infer

relative differences. This shows that IPS is not a practical solution

to trust bias.

In summary, we have proven that no IPS estimator is unbiased

w.r.t. trust bias without a priori knowledge of the relevance 𝛾 , and
thus is not applicable in any practical circumstances. We have done

so by taking a generic IPS estimator and deriving the possible values

for the propensities 𝜌 that would lead to unbiased results in the

most basic ranking scenario. The proof of Theorem 1 shows that

for most instances of trust bias such values do not exist. Thus,

none of the existing IPS estimators can correct for trust bias or can

be adapted to do so. For clarity, this includes: the original CLTR

estimators [13, 20]; the dual learning algorithm by Ai et al. [4]; the

IPS with corrections for item-selection bias by Ovaisi et al. [16];

the policy aware estimator [15]; and the Bayes-IPS estimator [2].

The problem with IPS appears to be that trust bias causes an

affine transformation between relevance probabilities and click

probabilities. For a single query item pair 𝑞, 𝑑 displayed at rank 𝑘 ,

ideally a propensity 𝜌𝑞,𝑑,𝑘 exists so that:

𝛾𝑞,𝑑 =
𝛼𝑘𝛾𝑞,𝑑 + 𝛽𝑘

𝜌𝑞,𝑑,𝑘
. (29)

Such a propensity does exist but it is dependent on 𝛾 :

𝜌𝑞,𝑑,𝑘 =
𝛼𝑘𝛾𝑞,𝑑 + 𝛽𝑘

𝛾𝑞,𝑑
. (30)

If 𝛽𝑘 = 0 (i.e., 𝜖−
𝑘

= 0), the transformation becomes linear and 𝜌

becomes independent of 𝛾 : 𝜌𝑞,𝑑,𝑘 = 𝛼𝑘 . Thus, the core issue is that

IPS applies a linear transformation to observed clicks but a linear

transformation cannot correct for the affine transformation caused

by trust bias. As a solution to this problem, we will introduce a

novel estimator that applies affine corrections to clicks.

5 AFFINE CORRECTIONS FOR TRUST BIAS
Next, we introduce our novel affine estimator: the first method

that is proven to correct for trust bias. We also compare the affine

estimator with the existing IPS estimator, and introduce an adaption

of the EM algorithm for estimating trust bias.

5.1 The novel affine estimator
In Section 3 we described how trust bias can be seen as an affine

transformation from relevance probabilities to click probabilities

(see Eq. 12). Subsequently, in Section 4.2 we proved that IPS estima-

tors cannot correct for trust bias because IPS can only apply linear

transformations and no linear transformation can reverse the effect

of an affine transformation (in non-trivial circumstances).

We now propose a novel estimator based on affine transforma-

tions to correct for both position bias and trust bias: the affine

estimator. The estimator works for any situation where click prob-

abilities are based on an affine transformation of relevance proba-

bilities:

𝑃
(
𝐶 = 1 | 𝑞, 𝑑, 𝑘

)
= 𝛼𝑘𝑃 (𝑅 = 1 | 𝑞, 𝑑) + 𝛽𝑘 . (31)



This includes trust bias where 𝛼𝑘 = \𝑘 (𝜖+𝑘 − 𝜖−
𝑘
) and 𝛽𝑘 = \𝑘𝜖

−
𝑘
.

Spelled out in the notation of Eq. 31 and in the trust bias notation,

the affine estimator is:

Δ̂
affine

(𝑓 ) = 1

𝑁

𝑁∑︁
𝑖=1

∑︁
(𝑑,𝑘) ∈𝑦𝑖

𝑐𝑖 (𝑑) − 𝛽𝑘

𝛼𝑘
· _(𝑑 | 𝑞𝑖 , 𝑓 )

=
1

𝑁

𝑁∑︁
𝑖=1

∑︁
(𝑑,𝑘) ∈𝑦𝑖

𝑐𝑖 (𝑑) − \𝑘𝜖
−
𝑘

\𝑘 (𝜖+𝑘 − 𝜖−
𝑘
) · _(𝑑 | 𝑞𝑖 , 𝑓 ) .

(32)

We see that the affine estimator reweights clicks inversely to 𝛼𝑘 ,

which is somewhat similar to IPS. However, the salient difference

is that Δ̂
affine

also penalizes items by subtracting
𝛽𝑘
𝛼𝑘

. This penalty

compensates for incorrect clicks where the perceived relevance does
not match the true relevance: �̃� = 1 ∧ 𝑅 = 0. Thus items displayed

at ranks where more incorrect clicks take place receive more penal-

ties, while simultaneously clicks are reweighted according to the

position bias \𝑘 and to compensate for the penalties: 𝜖+
𝑘
− 𝜖−

𝑘
. We

note that unlike with the IPS estimator, an item that is displayed

but not clicked can receive a negative weight. In expectation later

clicks will compensate for this effect.

Theorem 2. The affine estimator is unbiased w.r.t trust bias.

Proof. First, we use the assumption that clicks are correlated

with relevancy: ∀𝑘 (𝛼𝑘 ≠ 0). Then we consider the expected value

for a single click 𝑐𝑖 (𝑑):

E𝑐

[
𝑐𝑖 (𝑑) − 𝛽𝑘

𝛼𝑘

]
=

(𝛼𝑘 · 𝛾𝑞,𝑑 + 𝛽𝑘 ) − 𝛽𝑘

𝛼𝑘
= 𝛾𝑞,𝑑 . (33)

We can use this to derive the expected value of the affine estimator;

it is equal to the true metric value:

E𝑞,𝑦,𝑐
[
Δ̂
affine

(𝑓 )
]

= E𝑞,𝑦


∑︁

(𝑑,𝑘) ∈𝑦𝑖
E𝑐

[
𝑐𝑖 (𝑑) − 𝛽𝑘

𝛼𝑘

]
· _(𝑑 | 𝑞, 𝑓 )


= E𝑞,𝑦


∑︁

(𝑑,𝑘) ∈𝑦𝑖
𝛾𝑞,𝑑 · _(𝑑 | 𝑞, 𝑓 )

 = Δ(𝑓 ).

(34)

Therefore, the affine estimator is unbiased in expectation. □

The negative penalties (𝛽𝑘/𝛼𝑘 ) may be counter-intuitive. For a

better understanding we consider a maximally non-relevant item

𝛾𝑞,𝑑 = 0 that is displayed at rank 𝑘 ,𝑀 times. We expect to observe

𝑀 · 𝛽𝑘 clicks (all incorrect since 𝛾𝑞,𝑑 = 0). The sum of the penalties

for the item given by the affine estimator is 𝑀 · (𝛽𝑘/𝛼𝑘 ), while
each click is weighted by 1/𝛼𝑘 . Thus, if we sum the weights for

the clicks we expect𝑀 · (𝛽𝑘/𝛼𝑘 ), therefore taking this sum minus

the penalties correctly results in a zero weight for the item (in

expectation). As with any estimator, for reliable estimates,𝑀 needs

to be considerably large due to variance.

This concludes the introduction of our novel affine estimator. By

performing affine transformations to clicks it is the first estimator

that can correct for the effect of both position bias and trust bias.

5.2 Relation with IPS and other properties
While the affine estimator is very distinct from IPS since it can

perform corrections that IPS cannot, we consider the former to be

an extension of the latter. In the most straightforward way any IPS-

based estimator can be seen as a special case of the affine estimator

where ∀𝑘 (𝛽𝑘 = 0). More generally, we consider the situation

without trust bias, i.e., where 𝜖+
𝑘
and 𝜖−

𝑘
have the same value for

every 𝑘 : ∀𝑘, 𝑘 ′ (𝜖−
𝑘
= 𝜖−

𝑘′
= 𝜖− ∧ 𝜖+

𝑘
= 𝜖+

𝑘′
= 𝜖+) and where clicks

are positively correlated with relevance: 𝜖+ > 𝜖−. Also, we will

assume that summing _ over documents leads to a constant value:

∀𝑓 , 𝑓 ′, 𝑞 ©«
∑︁
𝑑∈𝐷𝑞

_(𝑑 | 𝑞, 𝑓 ) =
∑︁
𝑑∈𝐷𝑞

_(𝑑 | 𝑞, 𝑓 ′)ª®¬ . (35)

This means that if all items are equally relevant the order of the

items does not matter. We note that this holds for virtually all

ranking metrics, e.g., DCG, precision, recall, MAP, ARP, etc. Now,

Eq. 32 can be rewritten as follows:

Δ̂
affine

(𝑓 )

=
1

𝑁

1

𝜖+ − 𝜖−

𝑁∑︁
𝑖=1

∑︁
(𝑑,𝑘) ∈𝑦𝑖

(
𝑐𝑖 (𝑑)
\𝑘

− 𝜖−
)
· _(𝑑 | 𝑞𝑖 , 𝑓 )

=
1

𝜖+ − 𝜖−
Δ̂IPS (𝑓 ) −

1

𝑁

𝜖−

𝜖+ − 𝜖−

𝑁∑︁
𝑖=1

∑︁
(𝑑,𝑘) ∈𝑦𝑖

_(𝑑 | 𝑞𝑖 , 𝑓 )

=
1

𝜖+ − 𝜖−
Δ̂IPS (𝑓 ) − C,

(36)

where C is a constant independent of 𝑓 . Therefore, Δ̂
affine

unbias-

edly predicts relative differences w.r.t. Δ̂IPS :

∀𝑓 , 𝑓 ′, Δ̂
affine

(𝑓 ) > Δ̂
affine

(𝑓 ′) ↔ Δ̂IPS (𝑓 ) > Δ̂IPS (𝑓 ′) . (37)

Consequently, we can conclude that optimizing 𝑓 w.r.t. Δ̂
affine

(𝑓 )
also optimizes w.r.t. Δ̂IPS when trust bias is not present. This further

shows that the affine estimator should be viewed as a generalization

of the existing IPS approach.

Furthermore, the notation of the affine estimator in Eq. 32 also

reveals some other intuitive properties. We see that if for some

𝑘 , 𝛼𝑘 = 0, then the estimator becomes undefined, thus if clicks

are not correlated with relevance, the estimator cannot be applied.

Interestingly, if we compare this with the trust bias model we see

that there are only two cases when ∃𝑘 (𝛼𝑘 = 0) can occur: (i) when

∃𝑘 (\𝑘 = 0), i.e., at some rank 𝑘 some items cannot be observed or

clicked, hence nothing about the item at this rank can be learned;

or (ii) when ∃𝑘 (𝜖+
𝑘
= 𝜖−

𝑘
), i.e., at some rank 𝑘 non-relevant and

relevant items are equally likely to be clicked, thus there is nothing

to learn from the click signal. Furthermore, something interesting

happens if ∃𝑘 (𝜖+
𝑘
< 𝜖−

𝑘
), i.e., if at some rank 𝑘 non-relevant items

are more likely to be clicked than relevant items. In this case, non-

clicked items receive a positive penalty and clicks lead to negative

scores, meaning the less clicked items are preferred since they are

more likely to be relevant. All these cases are very intuitive and

we consider it a great strength that they can be inferred from the

affine estimator from just a brief analysis of its formulation.



5.3 Parameter estimation
Agarwal et al. [2] describe how EM can be used to estimate the

position bias and trust bias parameters. We also use the regression-

based EM procedure for estimating the bias parameters. However,

unlike Agarwal et al., who estimate three parameters per rank 𝑘 ,

namely \𝑘 , 𝜖
−
𝑘
and 𝜖+

𝑘
, we notice that only two have to be estimated:

Z +
𝑘
= 𝑃 (𝐶 = 1 | 𝑅 = 1, 𝑘) = \𝑘𝜖

+
𝑘
= 𝛼𝑘 + 𝛽𝑘

Z−
𝑘
= 𝑃 (𝐶 = 1 | 𝑅 = 0, 𝑘) = \𝑘𝜖

−
𝑘
= 𝛽𝑘 .

(38)

From these two parameters the value of 𝛼𝑘 and 𝛽𝑘 can be inferred di-

rectly (𝛼𝑘 = Z +
𝑘
−Z−

𝑘
), and these are the only parameters required for

the trust bias click model (Eq. 12) and the affine estimator (Eq. 32).

To estimate these parameters we adapt the Expectation step,

where the parameters are updated as follows:

Z +
𝑘
= ∑𝑁

𝑖=1 𝑐𝑖 (𝑑)𝑃 (𝑅 = 1|𝐶 = 1, 𝑞𝑖 , 𝑑, 𝑘)∑𝑁
𝑖=1 𝑐𝑖 (𝑑)𝑃 (𝑅 = 1|𝐶 = 1, ...) + (1 − 𝑐𝑖 (𝑑))𝑃 (𝑅 = 1|𝐶 = 0, ...)

,
(39)

and

Z−
𝑘
= ∑𝑁

𝑖=1 𝑐𝑖 (𝑑)𝑃 (𝑅 = 0 | 𝐶 = 1, 𝑞𝑖 , 𝑑, 𝑘)∑𝑁
𝑖=1 𝑐𝑖 (𝑑)𝑃 (𝑅 = 0|𝐶 = 1, ...) + (1 − 𝑐𝑖 (𝑑))𝑃 (𝑅 = 0|𝐶 = 0, ...)

,
(40)

where the conditional relevance probabilities 𝑃 (𝑅 | 𝐶,𝑞, 𝑑, 𝑘) are
computed using Bayes’s law. This simplification allows us to es-

timate the parameters with less computational costs. And since

fewer parameters are estimated, we expect EM to converge faster.

In the Maximization step, the 𝛾 values are estimated by a re-

gression algorithm. We use Z− and Z + obtained from the E-step to

train the unbiased ranking function 𝑓 based on Δ̂
affine

. Previous

work [2, 21] suggests to use a sigmoid as a final activation function

to obtain valid probability values. However, we observed that the

sigmoid function gives very similar relevance probabilities between

most items. In contrast, the softmax function results in more varied

values but it forces the probabilities to sum to one for each query. As

a simple alternative we propose the soft-min-max function, which

does not force probabilities to sum to one, but still results in varied

values:

soft-min-max(𝑥𝑖 ) =
𝑒𝑥𝑖 − 𝑒min(𝑥𝑖 )

𝑒max(𝑥𝑖 ) − 𝑒min(𝑥𝑖 )
. (41)

Our experiments show that the choice of activation function leads

to noticeable differences.

6 EXPERIMENTAL SETUP
We follow the semi-synthetic setup that is prevalent in existing

CLTRwork [4, 10, 13, 15], where queries, documents and relevances

are sampled from supervised LTR datasets, while clicks are simu-

lated using probabilistic user models. First, we train a production

ranker for each dataset; we randomly select 20 queries from each

training set and use the supervised LTR LambdaMART method to

optimize a ranking model. With these production rankers we simu-

late a situation where a decent ranking system exists but still leaves

plenty of room for improvement. On each dataset, we simulate user

interactions by repeatedly: (i) uniform-random sampling a query

from the training set, (ii) ranking the documents for that query with

the production ranker, and (iii) simulating clicks on the resulting

ranking using a probabilistic user model. This semi-synthetic setup

allows us to vary the number of clicks available for learning, as

well as the position bias and trust bias of the simulated user. Thus,

we can analyze the effects these factors have on the affine estimator

and other CLTR methods.

6.1 Datasets
We use two of the largest publicly available LTR datasets: Yahoo!

Webscope [5] and MSLR-WEB30k [17]. Both were created by a

commercial search engine, and each contains around 30 000 queries,

each query has a set of preselected documents to be ranked. The

datasets contain five level relevancy tags acquired through expert

labelling for the preselected query-document pairs. Yahoo! has 24

documents per query on average and uses 700-feature vectors to

represent query-documents; MSLR has 125 per query and uses 136

features. Each dataset is split in training, validation and test sets;

we only use the first fold of MSLR.

6.2 Click simulation
Clicks are simulated on rankings produced by the production rankers

by applying probabilistic click models.

Per experimental setting, we simulate up to 8 · 106 clicks on the

training set. The number of validation clicks is always 15% and

33% of the training clicks for Yahoo! and MSLR, respectively. These

numbers were chosen to match the ratio between the number of

training and validation queries in each dataset.

We apply Agarwal et al. [2]’s trust bias model with varying

parameters (see Section 3). The relevances 𝛾𝑞,𝑑 are based on the

relevance label recorded in the datasets; we follow Joachims et al.

[13] and use binary relevance:

𝑃 (𝑅 = 1 | 𝑞, 𝑑) = 𝛾𝑞,𝑑 =

{
1 if relevance_label(𝑞, 𝑑) > 2,

0 otherwise.
(42)

Similar to previous work [10, 13, 15], we set the position bias in-

versely proportional to the display rank:

𝑃 (𝐸 = 1 | 𝑘) = \𝑘 =

(
1

min(𝑘, 20)

)[
, (43)

where we vary the [ parameter: [ ∈ {1, 2}.
To the best of our knowledge, this is the first CLTR that simulates

trust bias, thus there is no precedent for the values of 𝜖+
𝑘
and 𝜖−

𝑘
. In

order to simulate trust bias as realistically as possible, we base our

values on the empirical work of Agarwal et al. [2]. It appears that

the bias Agarwal et al. inferred from actual user interactions can

be approximated by the following formula:

∀𝑘 ∈ {1, 2, . . . , 5}, 𝜖+
𝑘
≈ 1 − 𝑘 + 1

100

∧ 𝜖−
𝑘
≈ 𝜖−

1

1

𝑘
. (44)

Unfortunately, Agarwal et al. only observed interactions on top-5

rankings. To prevent 𝜖+
𝑘
and 𝜖−

𝑘
from disappearing on ranks beyond

𝑘 = 5, we apply the following

𝜖+
𝑘
= 1 − min(𝑘, 20) + 1

100

, 𝜖−
𝑘
= 𝜖−

1

1

min(𝑘, 10) . (45)

We use the incorrect-click rate on the first rank: 𝜖−
1
, as a hyper-

parameter to vary the amount of trust bias. We found that our

results are consistent across different values for 𝜖−
1
. To cover both



cases with high and low trust bias, we report results with 𝜖−
1

∈
{0.65, 0.35}.
6.3 LTR algorithm
Similar to Ai et al. [4] and Agarwal et al. [1] we train neural net-

works for our ranking functions. Our preliminary results indicate

that the configuration of the networks does not have to be fine-

tuned. The reported results are produced using models with three

hidden layers with sizes [512, 256, 128] respectively. All layers use
𝑒𝑙𝑢 activations and 0.1 dropout was applied to the last two layers.

For the loss function we follow Oosterhuis and de Rijke [15] and

use LambdaLoss to optimize DCG [22]. For updating the gradients,

we use the AdaGrad optimizer [7] with a learning rate of 0.004 and

0.02 for Yahoo! and MSLR datasets respectively, for 32 epochs.

6.4 Experimental runs
We evaluate the performance of our affine estimator, by comparing

the nDCG@10 of the models it produces with those produced using

other estimators. The following estimators are used as baselines:

(1) NoCorrection: The naïve estimator where each click is treated

as an unbiased relevance signal.

(2) IPS: The original CLTR IPS estimator [13, 21] that only corrects

for position bias (see Section 2.2).

(3) Bayes-IPS: The only existing CLTR estimator [2] designed for

addressing trust bias (see Section 4).

For a clearer analysis, we also report the performance of the fol-

lowing ranking models:

(4) Production: The production ranker used in during the logging

of simulated clicks.

(5) Full Info: A model trained using supervised LTR on the true

relevance probabilities, its performance illustrates the (theo-

retical) maximal performance possible on a dataset. We note

that this is not a baseline as it does not learn from clicks but

(unrealistically) from the true relevances.

All reported nDCG@10 results are an average of four independent

runs. Our experiments cover both the situation where the bias (\ ,

𝜖− and 𝜖+) is known, e.g., through previous experiments [3, 8, 21],

and the situation where the bias has to be estimated still.

7 RESULTS AND DISCUSSION
This section discusses our experimental results. We consider the

ranking performance of the affine estimator compared to other

estimators, in both the situation where the exact bias is known and

where it has to be estimated.

7.1 Optimization with the affine estimator
First we consider whether optimizing with the affine estimator leads
to better performing ranking models than with existing estimators.

Figure 1 shows the performance (nDCG@10) reached by the

different estimators under varying degrees of bias and different

numbers of clicks available for training. We see that the naïve

estimator has already converged after 3 · 105 clicks, since additional
clicks do not increase its performance. In line with the empirical

results of Agarwal et al. [2], we see that both IPS and Bayes-IPS

improve over the naïve estimator, and that Bayes-IPS consistently

outperforms IPS. However, when we compare with the Full Info

ranker, we see that there is still a sizable gap between Full Info

and Bayes-IPS in every tested setting on both datasets. In other

words, neither IPS nor Bayes-IPS can approximate the optimal

model under the tested degrees of trust bias. As predicted by the

theory in Section 4, it thus appears that both these IPS estimators

are biased w.r.t. trust bias.

In contrast, we see that the affine estimator does approximate

the optimal model when position bias is mild ([ = 1). However,

under extreme position bias ([ = 2) it has not reached convergence

in any of our graphs. Based on the theory in Section 5.1, we expect

convergence near the optimal model if it were given more training

clicks. Furthermore, in all tested settings we observe the affine

estimator to outperform the other estimators when more than 10
6

training clicks are available. Using the Student’s t-test we found

that all the improvements at 8 · 106 clicks are significant with

𝑝 ≤ 0.001, except for the results on MSLR-WEB30k with [ = 1 and

𝜖−
1
= 0.35 with a significance of 𝑝 ≤ 0.002. On small numbers of

training clicks, the affine estimator has a similar or slightly lower

performance than the other estimators. This could be explained by

the bias-variance tradeoff: the Bayes-IPS and IPS estimators could

have lower variance due to their bias, making them perform better

on small amounts of data. Potentially, using propensity clipping on

the affine estimator can increase its performance here [19].

In conclusion, our results strongly indicate that optimizing with

the affine estimator results in better performing ranking models

than with previously proposed estimators. In particular, on both

datasets we see that, given enough click data, the affine estimator

can be used to approximate the optimal ranking model, in settings

with high or low degrees of trust bias or position bias.

7.2 Optimization with estimated biases
Next, we consider whether optimization with the affine estimator is
robust to estimated bias values. This is important as in practice the

values of bias parameters have to be estimated as well. While the

theory proves that the affine estimator is unbiased when provided

with the true bias values, we will now investigate whether it is still

effective when they are estimated.

Figure 2 shows the performance (nDCG@10) reached by the

affine estimator using bias parameters estimated from clicks (see

Section 5.3), under varying degrees of position and trust bias. For

clarity, both the ranking model optimization and the bias parameter

estimation used the same clicks. Furthermore, the results in Figure 2

are separated for different final activation functions. Figure 3 shows

the estimated parameters after 8 · 106 clicks in the same settings.

In Figure 2 we see that parameter estimation with the soft-min-

max function leads to the best performance: soft-min-max outper-

forms the other functions in all settings, regardless of the number

of training clicks. Though the difference between soft-min-max and

optimization with the true bias values is noticeable, it appears to

be a small difference, especially after 10
6
clicks. This suggests that

the affine estimator with the soft-min-max function is robust to

estimated bias values. Additionally, we see that the softmax func-

tion leads to decent performance when many clicks are available,

but handles small numbers of clicks less well. Lastly, the sigmoid

function results in the poorest performance.

Interestingly, Figure 3 shows that none of the functions leads to

extremely accurate bias estimation with EM. We see that except

for the first position, Soft-min-max and sigmoid underestimate
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Figure 1: Comparison of different CLTR estimators in term of nDCG@10 on different numbers of clicks and under varying
levels of position bias and trust bias. Estimators were given the true bias parameters. Results are averaged over four runs;
shaded area indicates the standard deviation. Top row: Yahoo! Webscope dataset; bottom row: MSLR-WEB30k dataset.
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Figure 2: Comparison of different final activation functions to estimate the bias parameters, under varying levels of position
and trust bias. Y-axis indicates the performance of ranking models optimized using the affine estimator. Results are averaged
over four runs; shaded area indicates the standard deviation. All results are based on the Yahoo! Webscope dataset.

the values of 𝛼𝑘 , while softmax overestimates it. While soft-min-

max and softmax have accurate estimates of 𝛽𝑘 , sigmoid appears

to underestimate it. This further shows that the affine estimator

is robust to estimated values, since soft-min-max leads to good

performance while underestimating 𝛼𝑘 . This seems to suggest that

having an accurate estimate of 𝛽𝑘 is more important than one

for 𝛼𝑘 . In theory, from Eq. 32 we see that, unlike 𝛽𝑘 , 𝛼𝑘 can be

estimated within a constant factor of the true value without hurting

the performance of Δ̂
affine

. However, further analysis is required

to fully understand what kind of inaccuracies still result in high

performance. These results also suggest that there are promising

opportunities for novel ways to estimate trust bias from click data.

In conclusion, our results show that using the affine estimator

still leads to good performance when it is based on estimated bias

values. In particular, we have found that using the soft-min-max

function leads to the best results, and that the affine estimator

can still get near-optimal performance when bias values are not

completely accurate. We conclude that the affine estimator is robust

w.r.t. estimated bias values.

8 CONCLUSION
In this paper we have considered CLTR in situations with both po-

sition bias and trust bias. We have proven that no IPS estimator can

correct for trust bias, including the Bayes-IPS estimator specifically

designed for this bias [2]. The reason for this inability is that trust

bias is an affine transformation between relevance probabilities and

click probabilities, and IPS estimators can only correct for linear

transformations.

As a solution, we have introduced the novel affine estimator,

which applies affine transformations to clicks: it both reweights

clicks and penalizes items for being displayed at ranks where the

users’ trust is high. We proved that the affine estimator is unbiased

w.r.t. both position bias and trust bias, thus it is the first CLTR

method that can deal with both of these biases simultaneously.

Furthermore, the affine estimator can be considered an extension of

the existing IPS approach: when no trust bias is present the affine

estimator optimizes the same objective as the existing IPS estimator.

Our experimental results show that using the affine estimator CLTR

can approximate the optimal model when both position bias and

trust bias are present, while existing IPS-based estimators cannot.
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Figure 3: Bias parameters estimated on 8 ·106 clicks using different final activation functions, under varying degrees of position
bias and trust bias. Results are averaged over four runs; shaded area indicates the standard deviation. All results are based on
the Yahoo! Webscope dataset. Top row: 𝛼𝑘 ; bottom row: 𝛽𝑘 .

Furthermore, our results suggest that the estimator is robust to bias

estimation, as performance is stable when the bias parameters are

estimated from interactions.

With the introduction of our affine estimator, the CLTR frame-

work has been expanded to correct for trust bias on top of position

bias. Future work can continue this trend, for instance, by combin-

ing the policy-aware approach by Oosterhuis and de Rijke [15] with

the affine estimator, perhaps an estimator that corrects for both

item-selection bias and trust bias can be found. Furthermore, previ-

ous work has found position bias estimation using randomization

to be very powerful [3, 21]. Thus, there seems to be potential for

methods based on randomization for estimating trust bias, possibly

another fruitful direction for future research.

CODE AND DATA
To facilitate the reproducibility of the reported results, this work

only made use of publicly available data and our experimental

implementation is publicly available at https://github.com/AliVard/

trust-bias-CIKM2020.
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