
Mixture-Based Correction for Position and Trust Bias
in Counterfactual Learning to Rank

Ali Vardasbi

University of Amsterdam

Amsterdam, The Netherlands

a.vardasbi@uva.nl

Maarten de Rijke

University of Amsterdam

Amsterdam, The Netherlands

m.derijke@uva.nl

Ilya Markov

University of Amsterdam

Amsterdam, The Netherlands

i.markov@uva.nl

ABSTRACT
In counterfactual learning to rank (CLTR) user interactions are used

as a source of supervision. Since user interactions comewith bias, an

important focus of research in this field lies in developing methods

to correct for the bias of interactions. Inverse propensity scoring

(IPS) is a popular method suitable for correcting position bias. Affine

correction (AC) is a generalization of IPS that corrects for position

bias and trust bias. IPS and AC provably remove bias, conditioned

on an accurate estimation of the bias parameters. Estimating the

bias parameters, in turn, requires an accurate estimation of the

relevance probabilities. This cyclic dependency introduces practical

limitations in terms of sensitivity, convergence and efficiency.

We propose a new correction method for position and trust bias

in CLTR in which, unlike the existing methods, the correction does

not rely on relevance estimation. Our proposed method, mixture-

based correction (MBC), is based on the assumption that the dis-

tribution of the click-through rates over the items being ranked

is a mixture of two distributions: the distribution of click-through

rates for relevant items and the distribution of click-through rates

for non-relevant items. We prove that our method is unbiased. The

validity of our proof is not conditioned on accurate bias parameter

estimation. Our experiments show that MBC, when used in differ-

ent bias settings and accompanied by different learning to rank

algorithms, outperforms AC, the state-of-the-art method for cor-

recting position and trust bias, in some settings, while performing

on par in other settings. Furthermore, MBC is orders of magnitude

more efficient than AC in terms of the training time.

CCS CONCEPTS
• Information systems → Learning to rank.

KEYWORDS
Unbiased learning to rank; Mixture model; Position bias; Trust bias

ACM Reference Format:
Ali Vardasbi, Maarten de Rijke, and Ilya Markov. 2021. Mixture-Based Cor-

rection for Position and Trust Bias in Counterfactual Learning to Rank.

In Proceedings of the 30th ACM International Conference on Information
and Knowledge Management (CIKM ’21), November 1–5, 2021, Virtual Event,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00

https://doi.org/10.1145/3459637.3482275

QLD, Australia. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/

3459637.3482275

1 INTRODUCTION
Learning to rank (LTR) is the practice of using supervision to train a

ranking function. Traditional LTRmethods use explicit relevance la-

bels produced by human annotators [19]. In contrast, counterfactual

learning to rank (CLTR) uses historical interactions, such as clicks,

as labels. Unlike costly manual labels, clicks are available in large

amounts for almost no additional cost. The downside of using clicks

as relevance labels, however, is bias. Clicks suffer from different

types of bias, such as position bias, selection bias, trust bias, etc. [16]

As a result of bias, the probability of a click is not the same as the

probability of relevance. Thus, in order to use clicks as relevance

labels, we should first correct for the bias [17, 29].
A number of techniques have been proposed to debias clicks

and to estimate the probability of relevance based on the proba-

bility of clicks. A well-known method is inverse propensity scor-
ing (IPS) [17, 29], which corrects for the position bias in clicks.

Inverse propensity scoring (IPS) relies on the examination hypothe-
sis, i.e., an item is clicked if it is examined and perceived to be rele-

vant by a user. As the name suggests, in IPS clicks are re-weighed

by the inverse of the examination probability, a.k.a. propensity.

IPS is proved to be unbiased when the clicks suffer from position

bias [17]. Affine correction (AC) generalizes IPS to also correct for

trust bias [28]. Affine correction (AC) has been proved to be unbi-

ased when the clicks suffer from both position and trust bias. The

proofs of the unbiasedness of IPS and AC depend on knowledge of

the bias parameters. Accurately estimating the bias parameters, in

turn, depends on obtaining accurate relevance estimations, which

is as hard as the LTR problem itself. In the literature, this cyclic

dependency is solved by a regression-based EM (rbEM) algorithm

that simultaneously learns the ranker as well as the bias parame-

ters [1, 28, 30]. We argue that integration of a regression function

into the standard Expectation-Maximization (EM) leads to a number

of practical limitations in terms of (1) sensitivity to the regression

function, (2) a lack of guarantees that EM converges to a zero gra-

dient, and (3) low efficiency of the algorithm.

We break the curse of cyclic dependency by proposing a novel

debiasing method, mixture-based correction (MBC). Inspired by the

idea of score distributions [3], we assume that the probability of

seeing a specific click-through rate (CTR) for an item at a position

in a ranking is a mixture of CTR probabilities for relevant and non-

relevant items appearing on that position. More specifically, we

assume that an item is clicked if, and only if, one of the following

two disjoint events occurs: (1) a user examines the item and the

item is actually relevant (i.e., this is a click on a relevant item),

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1869

https://doi.org/10.1145/3459637.3482275
https://doi.org/10.1145/3459637.3482275
https://doi.org/10.1145/3459637.3482275

or (2) the user examines the item, the item is not relevant, but

the user clicks on it anyway due a certain bias, e.g., trust in the

search engine [1] or visual attractiveness of the item [8] (i.e., this

is a click on a non-relevant item). For each position in a ranking,

mixture-based correction (MBC) estimates the distribution of CTRs

for these two events and calculates the full distribution of CTRs on

that position as their mixture. Then, the probability of relevance for

a given item is calculated by Bayes’ rule, as the posterior probability

of relevance, given the observed CTR over that item. Finally, the

estimated probabilities of relevance are used as labels in a standard

LTR algorithm.

We prove that MBC gives an unbiased estimator of the probabil-

ity of relevance, without any prior knowledge of the bias parameter

values. This is a step forward, as IPS and AC do rely on prior knowl-

edge of the bias parameter values to be unbiased. Below, we show

theoretically how inaccurate bias parameters prevent AC from com-

pletely removing bias.

We confirm our theoretical advances with a set of semi-synthetic

experiments. We show that the ranking performance of different

LTR algorithms, trained on the relevance estimates of MBC, always

converges to the ranking performance where the true relevance

labels are available. We also compare MBC with the state-of-the-art

correction method for position and trust bias, i.e., AC. We compare

them by training LTR algorithms over MBC’s and AC’s respective

corrected outputs. We show that in several cases MBC outperforms

AC by filling the gap between AC’s ranking performance and the

true relevance case. Finally, since both MBC and AC depend to the

assumption of a click model to infer and correct for the bias, we

conduct robustness experiments in terms of click model mismatch.

Specifically, we show that when clicks adhere to the Dependent

Click Model (DCM) or the User Browsing Model (UBM), but a

different click model, such as the Position-Based Model (PBM), is

assumed by the correction methods, MBC is more robust, i.e., its

ranking performance is affected less compared to AC.

In summary, the contributions of the paper are:

(1) We propose a new debiasing method, mixture-based correc-

tion (MBC), for correcting position and trust bias, and prove

its unbiasedness. Our proof is stronger than the unbiasedness

proofs for existing methods, as it does not rely on the assump-

tion that the bias parameters are known.

(2) We show experimentally that, when used with LTR methods,

MBC outperforms AC, the state-of-the-art correction method

for position and trust bias, in several settings, while having

similar performance in other settings.

(3) We show that MBC is orders of magnitude faster than AC, in

terms of the training time.

(4) We provide experimental evidence that MBC is more robust to

click model mismatch compared to AC.

2 BACKGROUND
The majority of prior work on unbiased LTR, tries to correct for the

mismatch between the distribution of clicks and relevance proba-

bility due to bias. Bias in clicks means that not all relevant items

have the same a priori chance of being clicked. E.g., position bias

means that relevant items at the top of a result list usually absorb

more clicks than lower ranked relevant items [16]; and trust bias

means that users trust a search engine and click on higher ranked

non-relevant items more than lower ranked items [1]. Usually, these

types of bias are modeled with the help of click models [10].

Below, we review existing methods for correcting position and

trust bias. After discussing AC as the state-of-the-art correction

method for position and trust bias, we analyze its relevance estima-

tion error and show how inaccurate bias parameters cause AC to

remain biased. We also discuss other work related to this paper.

2.1 A review of AC
Agarwal et al. [1] notice that IPS is still biased when there is also

trust bias. In the presence of trust bias, the click probability should

be written as follows (for brevity we drop the (· | q,d,k) conditions
from all the probabilities, where q and d represent the query and

item and k is the item position in the results list.):

P(C = 1) = P(E = 1) · P(R = 1) · P(C = 1 | R = 1, E = 1)

+ P(E = 1) · P(R = 0) · P(C = 1 | R = 0, E = 1)

= αP(R = 1) + β .

(1)

where C , E and R indicate click, examination and relevance binary

indicators. Vardasbi et al. [28] prove that the following correction

gives an unbiased estimate of the relevance in this situation:

r̂q,d =
cq,d ,k − βq,d ,k

αq,d ,k
. (2)

where cq,d ,k is the click over document d of query q at position

k ; α and β are bias parameters (Eq. 1); and r̂q,d is the estimated

relevance of d .

2.2 Regression-based EM
IPS and AC are unbiased only if the value of the bias parameters

such as α and β are known, or accurately estimated. Since the stan-

dard EM requires the availability of multiple sessions of the same

query with different items ordering to work properly [7], Wang

et al. [30] proposed to use regression-based EM (rbEM) to solve the

sparsity problem. In the rbEM, the P(R = 1 | q,d) values obtained
in the M-step are first used to fit a regression function, and then,

the output of this regression function is used in the next E-step.

Though rbEM leads to good results in the CLTR framework with

IPS and AC [1, 28, 30], in this paper we argue that the integration

of a regression function into the EM leads to multiple practical

limitations, as we explain in Appendix A.1.

2.3 Error analysis of AC
Let us denote the true relevance of document d to query q by rq,d ,
and the probability P(rq,d = 1) by γq,d . In the presence of trust

bias, according to Eq. (1), we have:

Ec
[
cq,d ,k

]
= αq,d ,k · γq,d + βq,d ,k . (3)

In what follows we drop the subscripts for brevity.

Supposing α ′
and β ′ are estimates of α and β obtained from the

rbEM algorithm, AC estimates r as follows:

r̂ =
c − β ′

α ′
. (4)

In order to have an unbiased estimator, we need to ensure that

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1870

Ec [r̂] = Er [r]. Therefore, we are interested in e = |r̂ − r |. Using
Eq. (1), we can calculate the expectation as follows:

Ec ,r [e] = γ

����1 − α + β − β ′

α ′

���� + (1 − γ)

���� β − β ′

α ′

����
= γ

|∆α + ∆β | − |∆β |

α ′
+

|∆β |

α ′
,

(5)

where ∆β = β ′ − β and ∆α = α ′ − α are estimation errors of the

bias parameters. It is important to have the average error converge

to zero as the number of sessions associated with the query grows.

Eq. (5) shows that only when ∆α → 0 and ∆β → 0, i.e., when the

parameter estimations obtained from rbEM are accurate, this is the

case. In summary, inaccurate bias parameters estimations cause the

AC method to remain biased, even with infinitely many training

sessions.

2.4 Mixture of distributions
Our assumption of having a mixture of relevant and non-relevant

distributions is related to score distribution models [3]. But MBC

differs in two important ways. First, unlike scores, clicks are feed-

back and constitute a source of supervision. This makes CLTR used

with MBC a supervised learning algorithm as opposed to the un-

supervised algorithms based on score distribution models. Second,

a score distribution model is built over the corresponding list of

items for a single query, whereas our mixture model is built over the

items with the same examination probability for different queries.

In this sense, our model has a global view over all queries, while

the score distribution models have a local view over one query.

2.5 Other related work
Instead of using rbEM, Ai et al. [2] propose to use the Dual Learning

Algorithm (DLA). DLA is shown to be effective in estimating the

bias parameters and leading to an unbiased LTR. However, it only

models the position bias and it is not clear how it can be extended

to work with trust bias.

Qin et al. [26] use rbEM to estimate the attribute-based propen-

sity, which considers different platforms and feedback sources in

addition to the items positions. Dai et al. [11] define a utility based

on the click probability and propose to optimize that utility directly,

instead of optimizing retrieval metrics with the hope that they may

indirectly improve the CTR. Their approach solves the problem of

bias parameter estimation by directly learning a position-aware

click model from user interactions.

What our proposed method, MBC, contributes on top of the

related work discussed above is that it breaks the cyclic depen-

dency between the bias parameters and relevance probability. This

means that in MBC the bias parameters are inferred only using

the user interactions, without any direct reliance on the relevance

probabilities. In other words, in existing methods relevance estima-

tion is unbiased if the bias parameters are accurately set, and the

bias parameters can be set accurately if the relevance estimation is

precise. In contrast, with MBC, the correction and bias parameter

estimation are performed at the same time, without any reliance on

relevance estimation. This enables us to avoid the use of regression

functions inside the EM algorithm, which is shown in Appendix A

to have practical limitations.

Finally, in [5, 27] it is argued that a mismatch between the actual

model of clicks and the assumed click model for correction hurts

ranking performance of the correction methods. We address this

issue by showing that MBC is robust to click model mismatch,

specifically, when actual clicks adhere to DCM or UBM while MBC

assumes PBM for correction.

3 MIXTURE-BASED CORRECTION
In this section, we explain our mixture-based correction (MBC)

method and prove that it gives an unbiased estimate of relevance.

3.1 Method
Our idea is to infer the relevance of an item to a user’s query based

on the observed CTR for that query-item pair. Similarly to previous

work on CLTR, we assume that user clicks on search results follow

the examination hypothesis [1, 2, 17, 23, 28, 30], that is, a click on

an item (or, consequently, the CTR for that item) is affected only

by how likely the item is to be examined and perceived relevant

by a user. So there are two components, namely, examination and

relevance of an item, that contribute to a click on the item. Our

goal is to estimate the relevance component.

To rule out the examination component, we consider items with

the same examination probability P(E = 1). In practice, P(E = 1)

is not known and one needs a click model to decide which items

have the same P(E = 1). We will address this issue later in this

section. For now, assume that we know which items have the same

P(E = 1).

For a set of items with the same examination probability P(E = 1)

there is a certain distribution of CTRs, P(CTR = x). Assuming

binary relevance,
1
this distribution has two parts: one for relevant

items and one for non-relevant items. So P(CTR = x) can be seen as

a mixture of two separate distributions: the distribution P(CTR =
x | R = 1) of CTRs of relevant items and the distribution P(CTR =
x | R = 0) of CTRs of non-relevant items. Formally:

P(CTR = x) = P(R = 1) · P(CTR = x | R = 1)

+ P(R = 0) · P(CTR = x | R = 0). (6)

Now, we can reach our goal and calculate the probability of rele-

vance based on the observed CTR using Bayes’ rule:

P(R = 1 | CTR = x) =
P(R = 1) · P(CTR = x | R = 1)

P(CTR = x)
. (7)

These relevance probabilities can ultimately be used for CLTR.

Algorithm 1 summarizes the above steps of MBC.

For our MBC method to work, it remains to discuss two things:

(1) How to estimate the mixture in Eq. (6) (Line 3 in Alg. 1); and

(2) How to get items with the same examination probability (Line 1

in Alg. 1). This is what we turn to next.

Mixture estimation. To infer distributions P(CTR = x | R = i)
and priors P(R = i) for i ∈ {0, 1} in Eq. (6), parametric approaches

can be used. For example, we can assume a Gaussian or a binomial

mixture model. As is common with parametric mixture models, we

use standard EM to learn the above distributions and priors [21].

1
Graded relevance can be considered as the probability P (R = 1). See Sec. 4 for further

discussions.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1871

Algorithm 1: Mixture-based correction

Input: Click-through rates

Output: Estimates of relevance probability

1 Constitute sets of items with the same P(E = 1);

2 forall set of items with the same P(E = 1) do
3 Fit a 2-component mixture model to Eq. (6);

4 Output the relevance of items according to Eq. (7);

5 end

The limitation of the parametric approach to estimating mix-

tures is that it depends on the choice of the underlying parametric

distribution (e.g., Gaussian, binomial, etc). However, in Sec. 3.2, we

show that as long as there are enough clicks, the choice of this dis-

tribution is not essential to our method. Also, in our experiments in

Sec. 5.5, we compare Gaussian and binomial mixture distributions

and show that, in practice, both converge to the same performance.

Items with the same examination. The MBC method works on

sets of items with the same examination probability. Note that MBC

does not require the exact values of examination probabilities, it

only requires to know which items have the same examination. To

detect the desired sets of items, we propose to use click models [10].

For instance, we can assume that clicks adhere to the PBM as

is common in CLTR [1, 2, 17, 23, 28, 30]. In PBM, all items at the
same position in a results list have the same examination probability.

And that is all we need from the assumed click model. For cascade

models, such as the DCM [13] and the UBM [12], all items at the
same position and with the same pattern of relevant items above
them have the same examination probability. In the case of DCM

and UBM, the desired set of items can be detected recursively: to

collect items with the same examination probability at position k ,
we first use MBC to detect all relevant items at positions above k ,
and then we group items with the same pattern of relevant items

above k . Note that this recursive process is not cyclic: the grouping
of clicks at rank k depends on the reliability of the model at rank

k − 1. Again, no parameter estimation for the assumed click models

is required.

Remark 1. Detecting items with the same examination may seem

a bottleneck in real world scenarios. For MBC to work properly, the

distributions of relevant and non-relevant CTRs should be separable.

This means that the condition of items with the same examination
can be loosened by items with almost the same examination. To
elaborate, suppose a set of items are considered whose examination

probabilities are eitherθ orθ ′. Each examination probability leads to

one distribution for relevant CTRs, and one for non-relevant CTRs:

there are two relevant CTR distributions and two non-relevant CTR

distributions in the set. The relevant (non-relevant) CTR distribu-

tion of all the items in the set is itself a mixture of two distributions

corresponding to θ and θ ′. As long as these two relevant/non-

relevant distributions of all items are separable, MBC would be

able to distinguish relevant items from non-relevants, and the LTR

remains unbiased. This argument is easily extended to cases with

more than two different examination probabilities. We will discuss

this remark more in Sec. 5.3 and give a toy example for further

clarifications.

In the remainder of this section, we prove that the MBC inferred

relevance labels are unbiased estimations of the true relevance

labels. Consequently, a LTR algorithm trained on these corrected

values will be an unbiased LTR.

3.2 Unbiasedness of MBC
In this paper, similar to most previous work on online LTR and

CLTR, we assume that clicks on different sessions are indepen-

dent [1, 2, 10, 15, 17, 22, 23, 27, 28, 30, 31]. As discussed in Sec. 3.1,

we consider the set of items with almost the same examination

probability and fit a mixture model for each such set. We assume

that clicking on a relevant item is a random variable with mean

µ1 and variance σ 2

1
. Similarly, clicking on a non-relevant item has

mean µ0 and variance σ
2

0
. For a unique query, repeated in n sessions,

assume the clicks over the item x are given by {c
(x)
1
, c

(x)
2
, . . . , c

(x)
n }.

We prove that the CTR defined as

vx =
c
(x)
1
+ c

(x)
2
+ · · · + c

(x)
n

n
, (8)

can be used to estimate the relevance of x , given that n is large

enough.

Theorem 3.1. Assuming independent clicks in different sessions,
the clustering of the CTR signal into relevant and non-relevant items
converges in probability to the true relevance of the items.

Proof. Based on the assumptions, the c
(x)
i ’s constitute a se-

quence of independent and identically distributed (i.i.d.) random

variables. According to the Central Limit Theorem (CLT), as n

grows, vx will converge in probability to Ec

[
c
(x)
i

]
, which is either

µ0 or µ1. We are interested in the case where a full recovery of mix-

ture models is possible, i.e., one can fully separate the distribution

of relevant CTRs from the distribution of non-relevant CTRs. The

variance of vx diminishes linearly by n. Consequently, given any

threshold value for the variance for which a full recovery is possible,

there is a sufficiently large n that leads to the given threshold value.

This means that there exists an n such that a full recovery of the

mixture components is possible. □

We used the Central Limit Theorem for the proof of Theorem 3.1,

which does not rely on any specific distribution. In order to get a

better understanding of what constitutes a sufficiently large n for

full recovery, we discuss the special case of a Gaussian mixture.

There is a rich literature on the analysis of the recoverability of

Gaussian mixture models [see, e.g., 9]. In [20] a simple condition is

given for almost full recovery of Gaussianmixtures, which translates

to the setting of this paper as follows:

n = Ω

((
max(σ0,σ1)

µ1 − µ0

)
2

)
. (9)

This means that for any µi and σi values, if we increase the number

of sessions n so that Eq. (9) holds, the CTR of relevant and non-

relevant items can be almost fully separated. In our experiments,

where the parameters are set based on previous real-world studies

such as [1], Eq. (9) becomes n = Ω(1) and we find n ≥ 15 to be a

suitable value based on the convergence of ranking performance.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1872

4 EXPERIMENTAL SETUP
In this section, we discuss the experimental setup used to demon-

strate the effectiveness of our proposed MBC method. Following

previous CLTR studies [1, 2, 15, 17, 23, 28], we measure the effec-

tiveness of click debiasing by the ranking performance of LTRwhen

used on top of debiasing methods. Our experiments are performed

on two publicly available LTR datasets with query-document fea-

tures and relevance labels, while clicks are simulated.

4.1 Datasets
As a regular choice in LTR research [2, 15, 17, 23, 28], we use two

popular LTR datasets: Yahoo!Webscope [6] andMSLR-WEB30k [25].

For each query, these datasets contain a list of documents with

human-generated 5-level relevance labels. Yahoo! has 29 670 queries,

23.84 documents per query on average, and uses 700-feature vec-

tors to represent query-documents; MSLR has 31 339 queries, 120.19

documents per query, and uses 136 features. We use the default

provided training, validation and test splits for each dataset. We

only use the first fold of MSLR.

4.2 Click simulation
In our experiments, we measure the performance of LTR trained on

user clicks. The Yahoo! and MSLR datasets, however, do not contain

click information. Following a long line of previous studies [2, 14,

15, 17, 23, 28], we simulate clicks as follows.

Production ranker. First, we simulate a production ranker that is

used to create a ranked list of items for each query. Following [17],

we train a LTR method on a very small number of randomly se-

lected queries. The intuition is to provide a production ranker that

is better than a random ranker, but still has room for improvement.

We select 20 random queries from each dataset and use Lambda-

MART [4] to train a production ranker. To train LambdaMART,

we use the LightGBM package (version 3.2.1.99) [18] with the fol-

lowing parameters: 300 trees, 31 leaves and a learning rate of 0.05.

Training in this way with 20 queries gives us a decent ranker that

performs considerably better than a random ranker, while still hav-

ing room for improvement. Hence, we can exploit user interactions

to improve this production ranker.

The production ranker is then used to rank items for each query.

We cut the list of items at top-m, as do real-world search engines.

We report results form = 20. We also performed experiments with

the top-50, but since the results showed no significant difference

compared to the top-20, we do not report them in the paper.

User clicks. To simulate clicks, we follow previous studies on

trust bias [1, 28]. Given a list of items returned by the production

ranker for a query q, we first compute the click probability for

each item x and position k using Eq. (1) and the PBM assumption.

(For experiments in Sec. 5.3 we replace PBM with DCM and UBM.)

Then, for each item x and position k we simulate a click by sampling

from this Bernoulli distribution. Unless stated otherwise, we use

8M clicks (with uniformly repeated queries) to train the correction

methods. In our experiments, both MBC and AC begin to converge

to their final performance after 2M clicks. We choose 8M to be

on the safe side. Eq. (1) depends on two quantities: (1) relevance

probabilities; and (2) bias parameters. We will discuss both bellow.

Relevance probabilities. Both datasets used in our experiments

provide graded relevance labels. For simulating the clicks in a

graded relevance setting, a transformation function is required

to change the integer grades into valid relevance probabilities. We

employ the following two strategies, assuming y ∈ {0, . . . ,ymax}

is the relevance grade:

(1) Binarized: Following [17, 28] relevance probability can itself

be binary: P(R = 1 | y) = 1 iff y >
ymax

2
.

(2) Graded: The grades can also be turned into probabilities using

a linear transformation [24]: P(R = 1 | y) =
y

ymax

.

Bias parameters. Similarly to [2, 15, 17, 23, 28], the position bias

for a position k is computed as P(E = 1 | k) = k−η , where the

parameter η controls the severity of the position bias. Usually, η = 1

is considered in the CLTR literature [2, 17, 28]. In our experiments

we consider η ∈ {1, 2}.

For the trust bias, we follow [28] and for each position k compute

the parameters as follows:
2

P(C = 1 | R = 1, E = 1,k) = 1 −
min(k, 20) + 1

100

(10)

P(C = 1 | R = 0, E = 1,k) =
0.65

min(k, 10)
. (11)

4.3 Learning to rank
We train a LTR method over the corrected output of different click

debiasing methods. In order to show the consistency of our re-

sults over different LTR methods, we use two LTR approaches:

(1) LambdaMART [4]; and (2) DNN, a neural network similar to

that of [28]. The LambdaMART implementation of LightGBM only

works with integer labels, but the input of LTR in our experiments

is the relevance probability, which is non-integer. To solve this

problem, we made some minor modifications to the source code

of LightGBM in order to make it work with non-integer inputs as

well. The changed source files are included in the code repository

of this paper (see the end of the paper for the link).

4.4 Baselines
We compare the results of MBC to those of AC [28], the state-of-

the-art click debiasing method for position and trust bias. We do

not include IPS in our comparison, since (1) it cannot correct for

trust bias, and (2) AC is a generalization of IPS that leads to the

same performance when trust bias is absent [28]. In summary, we

compare the ranking performance of LTR trained on debiased clicks

of our MBC method, with the following settings:

(1) Ideal-AC: AC with true bias parameters. This gives the highest

potential of AC and is not realistic, since it uses the true values

for bias parameters;

(2) AC: LTR trained on debiased clicks of AC, using rbEM for

propensity estimation (See A.2 for the choice of regression

function);

(3) No correction: LTR trained on clicks without any debiasing;

(4) Relevance probabilities: LTR trained on the true relevance

probabilities, obtained from the true relevance labels. This de-

pends on the strategy that is used to transform the integer

relevance grades into probabilities (see paragraph Relevance
probabilities in Sec. 4.2).

2
Similar values were reported in the real-world experiments in [1].

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1873

Position 1 Position 9

E
s
t
i
m
a
t
e
d
P
(R
=
1
)

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.5

1.0

1.5

2.0

CTR

0.00 0.05 0.10 0.15 0.20 0.25
0.0

0.5

1.0

1.5

2.0

CTR

MBC (Relevant)
MBC (Non-relevant)

AC (Relevant)
AC (Non-relevant)

Figure 1: Correction comparison of our MBC method with
AC in inferring the relevance label from the observed CTR.

In our experiments, we use the same LTR algorithm for all the meth-

ods listed above, so that any differences in ranking performance

are solely due to the correction method, and no other factors such

as LTR performance.

4.5 Metrics
We measure the ranking performance of different methods by

Normalized Discounted Cumulative Gain (NDCG). All reported

nDCG@10 results are an average of eight independent runs. We

use the Student’s t-test to determine significant differences.

5 RESULTS
Our experimental results are centered around three benefits of MBC

compared to AC. The first – and most important – benefit is the

ranking performance (Sec. 5.2) and efficiency (Sec. 5.4) improve-

ment. The second is its robustness to clickmodel mismatch (Sec. 5.3).

The third benefit is that it requires almost no hyper-parameter tun-

ing as opposed to rbEM. Since MBC is based on a standard mixture

model, it is free of the so-called hyper-parameters prevalent in deep

learning models. On the other hand, rbEM uses a regression func-

tion that has a significant impact on the effectiveness and efficiency

of the unbiased LTR algorithm (as we show in Appendix A.2).

5.1 An insider’s look into corrected clicks
Before proceeding with the main experimental analysis, we com-

pare the shape of the corrected clicks obtained from MBC and AC.

This qualitative analysis is insightful in understanding the intrinsic

difference between the two methods.

Fig. 1 looks into the corrected CTR of MBC and AC. In this figure,

the CTR in two different positions of a ranked list are observed. We

used the binarized relevance probability (Sec. 4) in this figure for

simpler illustration purposes. We see that with enough sessions per

query, the relevant and non-relevant items become completely dis-

joint. Consequently, MBC is able to correctly distinguish between

the relevant and non-relevant items and infer their relevance label.

The complex transformation of CTRs into relevance labels in MBC

allows for accurate estimations of relevance. On the other hand, the

linearity of AC leads to wider range of relevance labels, scattered

around the true values of zero and one.

5.2 Ranking performance of MBC and AC
In this section, we try to answer the main research question of this

paper:

How does the MBC method perform compared to AC as the

state-of-the-art method for correcting position and trust bias?

In order to determine the effectiveness of methods in debiasing

clicks, we measure the ranking performance of a selected LTR

algorithm trained over the corrected output of MBC and AC.

Table 1 shows the comparison of MBC and AC in terms of

NDCG@10. In this table, we compare the performance for different

LTR algorithms: LambdaMART and DNN, and different strategies

for transforming relevance grades to probabilities: binarized and

graded.

The results show that in most cases MBC performs significantly

better than AC. When LambdaMART is used as the LTR algo-

rithm, MBC significantly outperforms AC on both datasets, both

binarized and graded settings and both bias severity cases (η = 1

and η = 2), the only exception being the graded MSLR with normal

position bias. Things are different for the DNN case. AC signifi-

cantly outperforms MBC in the graded setting in both datasets. We

also see that, with a single correction method, in some settings

LambdaMART performs better than DNN, while in others DNN

is the winner. Considering the LTR algorithm as a hyperparame-

ter, i.e. for each correction method in each setting, selecting the

LTR with the higher ranking performance, we can claim that MBC

corrects more effectively than AC, as the best performing MBC

leads to better results than the best performing AC. For instance, in

graded Yahoo! with severe bias, the best performing AC is obtained

from DNN: 0.746 vs 0.740, while the best performing MBC is due

to LambdaMART: 0.748 vs 0.740. We see that LambdaMART MBC

outperforms DNN AC in this case.

As can be seen in Table 1, there is a gap between AC (where the

bias parameters are estimated using rbEM) and Ideal-AC (where the

bias parameters are assumed to be known by an oracle). This shows

the dependency of AC on the accuracy of the bias parameters. As a

reminder, this dependency is one of our motivations to propose the

novel MBC method.

With severe position bias (η = 2), as a result of very low ex-

amination probabilities, we observe a noticeable drop in the per-

formance of AC and Ideal-AC in some cases. Specifically, for the

binarized MSLR with LambdaMART, we observe that AC performs

even worse than the no correction case. This observation underlines

the need for variance reduction techniques for the AC method.

Remark 2. We see that in some of the binarized cases, MBC per-

forms slightly better than the Rel. Probs case, which may seem

counterintuitive. The reason is that the evaluation is performed on

the graded test set for comparability considerations. As a result,

the relevance grades of {3, 4} as well as {0, 1, 2} are treated the

same in the training, but distinguished in evaluation. This is further

observable in comparing the Rel. Probs in the binarized and graded

settings: the binarized Rel. Probs is not the theoretical upper bound

for the ranking performance, the graded Rel. Probs is.

5.3 Click model mismatch
Next, we investigate the effect of a mismatch between a click model

that generates clicks and a click model that is used for debiasing:

How do MBC and AC methods perform when PBM is assumed
for debiasing, whereas user clicks adhere to a different click
model?

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1874

Table 1: NDCG@10 comparison ofMBC andAC on Yahoo!Webscope andMSLR-WEB30k datasets. Superscripts ∗ and † indicate
significance compared to the other correction method with p < 0.01 and p < 0.1, respectively.

Yahoo! Webscope MSLR-WEB30k

Normal bias (η = 1) Severe bias (η = 2) Normal bias (η = 1) Severe bias (η = 2)

Binarized Graded Binarized Graded Binarized Graded Binarized Graded

LambdaMART

Trained using clicks

No Correction 0.692 0.691 0.689 0.689 0.400 0.402 0.396 0.397

AC 0.758 0.763 0.725 0.740 0.426 0.477† 0.337 0.431

MBC 0.760∗ 0.767† 0.753∗ 0.748∗ 0.428 0.474 0.420∗ 0.454∗

Trained using oracle knowledge

Ideal-AC 0.758 0.771 0.725 0.740 0.423 0.486 0.337 0.432

Rel. Probs 0.759 0.774 0.759 0.774 0.429 0.491 0.429 0.491

DNN

Trained using clicks

No Correction 0.713 0.716 0.710 0.707 0.401 0.415 0.402 0.400

AC 0.736 0.746∗ 0.736 0.746∗ 0.404 0.448∗ 0.405 0.448∗

MBC 0.744∗ 0.744 0.741∗ 0.740 0.406 0.440 0.419∗ 0.439

Trained using oracle knowledge

Ideal-AC 0.742 0.749 0.737 0.746 0.409 0.451 0.405 0.446

Rel. Probs 0.743 0.750 0.743 0.750 0.416 0.453 0.416 0.453

Table 2: NDCG@10 comparison ofMBC andACwith PBM assumption on Yahoo!Webscope andMSLR-WEB30k datasets, when
cascade models are used for simulating the clicks.

Yahoo! Webscope MSLR-WEB30k

DCM UBM DCM UBM

Binarized Graded Binarized Graded Binarized Graded Binarized Graded

LambdaMART

No Correction 0.694 0.691 0.691 0.690 0.405 0.402 0.397 0.400

AC 0.739 0.753 0.753 0.759 0.411† 0.469 0.387 0.474∗

MBC 0.752∗ 0.760∗ 0.756∗ 0.763† 0.407 0.477∗ 0.410∗ 0.469

Rel. Probs 0.756 0.770 0.756 0.770 0.409 0.485 0.409 0.485

DNN

No Correction 0.709 0.712 0.709 0.716 0.407 0.407 0.391 0.406

AC 0.728 0.733 0.736 0.743 0.364 0.433 0.402 0.445∗

MBC 0.741∗ 0.743∗ 0.741∗ 0.742 0.408∗ 0.446∗ 0.410† 0.441

Rel. Probs 0.743 0.749 0.743 0.749 0.412 0.453 0.412 0.453

This is an important question as in reality none of the existing click

models can fit user clicks perfectly and there is always a mismatch

between a click model that user clicks adhere to and the one that is

assumed for debiasing.

In this section, we want to examine the robustness of differ-

ent correction methods in terms of their assumed click model.

Specifically, we simulate clicks based on two well-known mod-

els: DCM [13], that is a cascade-based click model, and UBM [12],

that has features of both position-based and cascade-based models.

In order to have realistic experiments, we learn the parameters of

these click models using the Yandex dataset,
3
which contains a

large amount of clicks from a production search engine, and the

PyClick library.
4
Since the Yandex dataset has the top-10 results,

3
https://www.kaggle.com/c/yandex-personalized-web-search-challenge

4
https://github.com/markovi/PyClick

the parameters are obtained for the top-10 and our experiments in

this section are reported for the top-10 setting.
5
Then, we use the

learned parameters to simulate clicks similarly to Sec. 4.2, this time

using DCM and UBM instead of PBM.

For each case, we debias clicks using MBC and AC with the

PBM click model. Table 2 shows the ranking performance of these

correction methods.

We observe that MBC always improves over the no correction

case, while AC fails to do so in some cases: Binarized UBM with

LambdaMART and Binarized DCMwith DNN. Furthermore, inmost

cases, there is a gap between the corrections and the Rel. Probs

performance. This gap is due to the mismatch between the actual

and assumed click models.

5
Hence, the Rel. Probs results in this section may be different from those in Table 1,

where the top-20 is used instead.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1875

https://www.kaggle.com/c/yandex-personalized-web-search-challenge
https://github.com/markovi/PyClick

Comparing MBC and AC, we see that MBC outperforms AC in

most cases, suggesting that our MBC method is more robust to the

click model mismatch. This observation coincides with our expec-

tation, since MBC does not rely on the parameters of click models:

as long as the click probabilities over relevant and non-relevant

items are separable for each position, MBC with PBM works fine.

In other words, unlike AC where the examination probability of

each position is estimated by a single value, in MBC different items

at the same position are allowed to have different examination

probabilities (see Remark 1).

To further illustrate the difference, we give a toy example. Sup-

pose there are two sets of sessions S1 and S2 such that the true

(hidden) examination probability of an item at position 4 is 0.8 for

sessions in S1 and 0.4 for sessions in S2 respectively. Using Eq. 10,
the probabilities of click at position 4 on a relevant item are 0.768

and 0.384 and on a non-relevant item are 0.13 and 0.065 for sessions

in S1 and S2 respectively. The best AC can do is to estimate the

examination probability by the average of
0.8+0.4

2
= 0.6, leading to

inaccurate relevant probabilities for items in both sets of sessions.

MBC, instead, separates the CTRs obtained from sessions. Given

enough sessions from each set, a clustering method similar to what

we use in MBC, can distinguish between relevant CTRs with mean

∈ {0.768, 0.384} and non-relevant CTRs with mean ∈ {0.13, 0.065}.

In other words, as long as the minimum relevant click probability

is greater than the maximum non-relevant click probability, MBC

manages to separate the two distributions.

5.4 Efficiency of MBC
We measured the running time of MBC and AC on multiple cores

of Intel(R) Xeon(R) Gold 5118 CPU@2.30GHz. Here, we only report

the time required for correcting clicks, since the LTR part is the same

in bothMBC and AC.MBC, requires around 110 seconds to estimate

the mixture distributions and correct clicks. Each iteration of the

rbEM parameter estimation for AC requires 370 seconds for fitting

the regression function and around 50 additional seconds to update

the bias parameters and target relevance probabilities. The fact that

at least 30 iterations are required to get a decent performance of

AC (see App. A.2) means that AC requires a minimum of (370 +

50) · 30 = 12600 seconds to correct clicks. This means that MBC

runs approximately 114 times faster than AC.

Of course, the choice of the regression function plays an impor-

tant role in the above computations. However, it is worth noting

that even with a magical zero-time regression function, AC would

still require around 50 · 30 = 1500 seconds for updating the bias

parameters and target relevance probabilities. This hypothetical

setting gives a lower bound of around 13 times for the efficiency

superiority of our MBC method over AC.

5.5 MBC with different mixture distributions
MBC relies on mixture models for correcting the clicks. In this

section, we will address this question:

How do different assumptions for the distribution model of
mixture components affect the correction quality?

Particularly, to compare different distribution shapes, we execute

two variations of MBC:

(1) MBC (Gaussian): A Gaussian (normal) distribution is usually

n
D
C
G
@
1
0

105 106
0.68
0.70
0.72
0.74
0.76

Number of Training Clicks

MBC (Gaussian) MBC (Binomial)

Figure 2: Ranking comparison of different mixture distribu-
tions forMBC in termof nDCG@10with respect to different
numbers of clicks on Yahoo! Webscope dataset.

the default choice for modeling real world data, and due to the

Central Limit Theorem it is usually a safe choice.

(2) MBC (Binomial): We include a Binomial distribution test,

since the clicks are usually considered to have a Bernoulli dis-

tribution which makes CTR, follow a Binomial distribution.

Fig. 2 shows the effect of the assumed distribution shape on the

performance of MBC. These experiments coincide with the theory

provided in Sec. 3. However, we observe that the Gaussian model

converges faster than Binomial model. We hypothesize that, since

the Binomial model is less generalizable than the Gaussian model,

it cannot recover the signal in the presence of high levels of noise

in the low data regime.

6 CONCLUSION
We have proposed a new correction method for position and trust

bias, to be used in CLTR, and we have proven its unbiasedness. Our

method, mixture-based correction, assumes that the distribution of

CTRs of different items is a mixture of two distributions: relevant

and non-relevant. Once this mixture is estimated, the relevant items

are easily identified and can be used to train a LTR algorithm. Con-

sequently, correction and learning to rank are two separate phases

in our MBC method. This breaks the cyclic dependency between

bias parameter estimation and relevance inference in existing cor-

rection methods. Unlike those methods, in which the unbiasedness

relies on accurate bias parameters estimation, the unbiasedness

proof of MBC does not rely on knowledge of relevance. This solves

some of the practical limitations of the existing methods for cor-

recting position and trust bias which depend on the bias parameter

estimation and usually use the rbEM for that.

Particularly, we have found that the cyclic dependency in the

existing methods, leads to at least three practical limitations: (1) Se-

vere sensitivity to the choice of the regression function; (2) EM

not necessarily converging towards the zero gradient; and, (3) Low

efficiency due to repeated use of the regression function. MBC is a

new approach that solves all of these limitations as a side benefit.

We have performed extensive semi-synthetic experiments to an-

alyze the strength of MBC at correcting click bias. Our experiments

show that MBC outperforms AC, the state-of-the-art correction

method for position and trust bias, in most of the settings. Further-

more, we have provided evidence that MBC is more robust to the

click model mismatch, compared to AC.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1876

There are several directions that can be followed for the future

work: (1) Using non-parametric approaches for estimating the mix-

tures. (2) Testing on more complex click models than PBM, as MBC

is easier to extend to more complex click models than AC.

CODE AND DATA
To facilitate the reproducibility of the reported results, this work

only made use of publicly available data and our experimental

implementation is publicly available at https://github.com/AliVard/

MBC.

ACKNOWLEDGMENTS
This research was supported by Elsevier and the Netherlands Organ-

isation for Scientific Research (NWO) under project nr 612.001.551.

All content represents the opinion of the authors, which is not nec-

essarily shared or endorsed by their respective employers and/or

sponsors.

A ANALYSIS OF REGRESSION-BASED EM
In this Appendix, we list and discuss about three specific practical

limitations of rbEM with IPS and AC. As stated earlier, in AC and

IPS there is an inherent cyclic dependency between relevance and

bias parameters which leads to the use of iterative algorithms like

EM. All of the limitations we list here come from the fact that

standard EM cannot be used to infer the bias parameters and a

regression function has to be used in the middle. Needless to say,

these practical limitations do not apply to MBC.

A.1 Practical limitations of rbEM for AC
Sensitivity to the choice of regression function. In rbEM with AC,

the regression function is responsible for providing the relevance

probabilities in the M-step. This means that the EM is no longer

using the values obtained through the likelihood maximization, but

an estimate of them obtained from the regression function. Con-

sequently, the performance of EM greatly depends on the perfor-

mance of the underlying regression function. We show empirically

that different choices for the regression function lead to different

performances in the ranking of the final unbiased LTR algorithm.

Not necessarily converging to zero gradient. Unlike standard EM,

rbEM is not guaranteed to move in the direction of zero gradient.

The reason is simple: in the M-step of rbEM, the relevance proba-

bilities that maximize the likelihood function are replaced with the

outputs of the regression function, in favor of addressing the other-

wise unavoidable sparsity issue. Therefore, the convergence proof

of the standard EM, no longer holds for rbEM. Our observations sug-

gest that when using the rbEM, more iterations does not necessarily

mean better performance, as opposed to the standard EM.

Low efficiency. The rbEM, by design, requires a regression func-

tion to be fitted to the relevance probabilities at each maximization

step of the EM algorithm. We have discussed this issue in Sec. 5.4.

A.2 Instability of rbEM for AC
In practice, rbEM is used to estimate the bias parameters for AC.

In this set of experiments, we address the following two questions

about the performance of rbEM for AC:

Yahoo! Webscope MSLR-WEB30k

n
D
C
G
@
1
0

0 20 40 60 80 100
0.71
0.72
0.73
0.74
0.75
0.76

0 20 40 60 80 100
0.300
0.325
0.350
0.375
0.400
0.425
0.450

EM iteration EM iteration

DNN Sigmoid
DNN Soft-min-max

LambdaMART Sigmoid
LambdaMART Soft-min-max

Figure 3: Regression-based EM ranking performance with
different regression functions with respect to EM itera-
tions. Left: Yahoo! Webscope dataset; right: MSLR-WEB30k
dataset.

(1) What is the impact of the choice of regression function for rbEM
on the ranking performance of AC?

(2) How does the ranking performance of rbEM AC vary as a function
of the number of iterations?

Neither of the above questions concern the standard EM, as dis-

cussed before. Introducing a regression function in an EM algorithm

is a powerful idea to solve the issues of standard EM in CLTR, but

it also brings its concerns as well.

We try different regression functions with different loss func-

tions and report the ranking performance on different iterations

of rbEM. We use the following regression functions: (1) Lambda-

MART; and (2) a neural network similar to that of [28]. Since the

regression function is used for fitting to relevance probabilities,
we use the cross entropy loss. Following the literature, we test

two cross entropy variations: (1) Sigmoid cross entropy, similar

to [1, 30]; (2) Soft-min-max cross entropy, similar to [28].

Fig. 3 summarizes the ranking performance of AC with rbEM,

with different regression functions, as a function of EM iterations.

Based on the observations in this figure, the answers to the ques-

tions of this section are: big and a lot. Concerning the first question,
we see that different regression functions lead to large differences

in ranking performance. More interestingly, the ordering of the

regression functions is not preserved in different datasets.

The second question is about the change of the performance as

the number of EM iterations increases. Fig. 3 shows that the ranking

performance does not always improve with more EM iterations.

On the Yahoo! Webscope dataset, the DNN with sigmoid loss has

a slight performance drop at iteration 80. On the MSLR-WEB30k

dataset, the performance of DNN with sigmoid loss is decreasing

between iterations 20 and 50. Another observation relating to the

EM iterations are the sudden performance drops at some iterations:

DNN with Soft-min-max loss in both datasets. These observations

indicate that, unlike the standard EM, the rbEM cannot necessarily

be trusted with regard to iterations: The performance is not always

increasing with the number of iterations.

Based on the above discussions and according to Fig. 3, our

choice for the rbEM baseline for comparison with other methods

is as follows: We chose the DNN with sigmoid cross entropy loss

function as the regression function. When there are no anomalies,

the DNN Sigmoid performs well up until iteration 100. In the cases

where there is an anomaly, we use the results of the last iteration

before the anomaly.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1877

https://github.com/AliVard/MBC
https://github.com/AliVard/MBC

REFERENCES
[1] Aman Agarwal, Xuanhui Wang, Cheng Li, Michael Bendersky, and Marc Najork.

2019. Addressing Trust Bias for Unbiased Learning-to-Rank. In The World Wide
Web Conference. ACM, 4–14.

[2] Qingyao Ai, Keping Bi, Cheng Luo, Jiafeng Guo, and W Bruce Croft. 2018. Unbi-

ased Learning to Rank with Unbiased Propensity Estimation. In The 41st Interna-
tional ACM SIGIR Conference on Research & Development in Information Retrieval.
ACM, 385–394.

[3] Avi Arampatzis, Stephen Robertson, and Jaap Kamps. 2009. Score Distributions

in Information Retrieval. In Advances in Information Retrieval Theory. Springer,
139–151.

[4] Christopher J.C. Burges. 2010. From RankNet to LambdaRank to LambdaMART:
An Overview. Technical Report MSR-TR-2010-82. Microsoft.

[5] Praveen Chandar and Ben Carterette. 2018. Estimating Clickthrough Bias in

the Cascade Model. In Proceedings of the 27th ACM International Conference on
Information and Knowledge Management. 1587–1590.

[6] Olivier Chapelle and Yi Chang. 2011. Yahoo! Learning to Rank Challenge

Overview. Journal of Machine Learning Research 14 (2011), 1–24.

[7] Olivier Chapelle and Ya Zhang. 2009. A Dynamic Bayesian Network Click Model

for Web Search Ranking. In Proceedings of the 18th International Conference on
World Wide Web. ACM, 1–10.

[8] Danqi Chen, Weizhu Chen, Haixun Wang, Zheng Chen, and Qiang Yang. 2012.

Beyond Ten Blue Links: Enabling User Click Modeling in Federated Web Search.

In Proceedings of the Fifth ACM International Conference on Web Search and Data
Mining. 463–472.

[9] Xiaohui Chen and Yun Yang. 2020. Cutoff for Exact Recovery of Gaussian Mixture

Models. arXiv preprint arXiv:2001.01194 (2020).
[10] Aleksandr Chuklin, Ilya Markov, and Maarten de Rijke. 2015. Click Models for

Web Search. Morgan & Claypool Publishers.

[11] Xinyi Dai, Jiawei Hou, Qing Liu, Yunjia Xi, Ruiming Tang, Weinan Zhang, Xi-

uqiang He, Jun Wang, and Yong Yu. 2020. U-rank: Utility-oriented Learning

to Rank with Implicit Feedback. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management.

[12] Georges E Dupret and Benjamin Piwowarski. 2008. A User Browsing Model to

Predict Search Engine Click Data from Past Observations. In Proceedings of the
31st Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval. 331–338.

[13] Fan Guo, Chao Liu, and Yi Min Wang. 2009. Efficient Multiple-click Models in

Web Search. In Proceedings of the Second ACM International Conference on Web
Search and Data Mining. ACM, 124–131.

[14] Katja Hofmann, Shimon Whiteson, and Maarten de Rijke. 2011. Balancing Explo-

ration and Exploitation in Learning to Rank Online. In Advances in Information
Retrieval. Springer, 251–263.

[15] Rolf Jagerman, Harrie Oosterhuis, and Maarten de Rijke. 2019. To Model or to

Intervene: A Comparison of Counterfactual and Online Learning to Rank from

User Interactions. In Proceedings of the 42nd International ACM SIGIR Conference
on Research & Development in Information Retrieval. ACM, 15–24.

[16] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and Geri Gay.

2005. Accurately Interpreting Clickthrough Data as Implicit Feedback. In Pro-
ceedings of the 28th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval. ACM, 154–161.

[17] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. 2017. Unbiased

Learning-to-Rank with Biased Feedback. In Proceedings of the Tenth ACM Inter-
national Conference on Web Search and Data Mining. ACM, 781–789.

[18] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,

Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A Highly Efficient Gradient Boosting

Decision Tree. In Advances in Neural Information Processing Systems. 3146–3154.
[19] Tie-Yan Liu. 2009. Learning to Rank for Information Retrieval. Foundations and

Trends in Information Retrieval 3, 3 (2009), 225–331.
[20] Yu Lu and Harrison H Zhou. 2016. Statistical and Computational Guarantees of

Lloyd’s Algorithm and its Variants. arXiv preprint arXiv:1612.02099 (2016).
[21] Geoffrey J McLachlan and Kaye E Basford. 1988. Mixture models: Inference and

applications to clustering. Vol. 38. M. Dekker New York.

[22] Harrie Oosterhuis and Maarten de Rijke. 2018. Differentiable Unbiased Online

Learning to Rank. In Proceedings of the 27th ACM International Conference on
Information and Knowledge Management. ACM, 1293–1302.

[23] Harrie Oosterhuis and Maarten de Rijke. 2020. Policy-Aware Unbiased Learning

to Rank for Top-k Rankings. In Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval. ACM, 489–498.

[24] Harrie Oosterhuis and Maarten de Rijke. 2021. Unifying Online and Counterfac-

tual Learning to Rank: A Novel Counterfactual Estimator that Effectively Utilizes

Online Interventions. In Proceedings of the 14th ACM International Conference on
Web Search and Data Mining. ACM, 463–471.

[25] Tao Qin and Tie-Yan Liu. 2013. Introducing LETOR 4.0 datasets. arXiv preprint
arXiv:1306.2597 (2013).

[26] Zhen Qin, Suming J Chen, Donald Metzler, Yongwoo Noh, Jingzheng Qin, and

Xuanhui Wang. 2020. Attribute-based Propensity for Unbiased Learning in

Recommender Systems: Algorithm and Case Studies. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
ACM, 2359–2367.

[27] Ali Vardasbi, Maarten de Rijke, and Ilya Markov. 2020. Cascade Model-based

Propensity Estimation for Counterfactual Learning to Rank. In Proceedings of
the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM, 2089–2092.

[28] Ali Vardasbi, Harrie Oosterhuis, and Maarten de Rijke. 2020. When Inverse

Propensity Scoring does not Work: Affine Corrections for Unbiased Learning to

Rank. In Proceedings of the 29th ACM International Conference on Information &
Knowledge Management. ACM, 1475–1484.

[29] Xuanhui Wang, Michael Bendersky, Donald Metzler, and Marc Najork. 2016.

Learning to Rank with Selection Bias in Personal Search. In Proceedings of the 39th
International ACM SIGIR conference on Research and Development in Information
Retrieval. ACM, 115–124.

[30] Xuanhui Wang, Nadav Golbandi, Michael Bendersky, Donald Metzler, and Marc

Najork. 2018. Position Bias Estimation for Unbiased Learning to Rank in Personal

Search. In Proceedings of the Eleventh ACM International Conference onWeb Search
and Data Mining. ACM, 610–618.

[31] Masrour Zoghi, Tomas Tunys, Mohammad Ghavamzadeh, Branislav Kveton,

Csaba Szepesvari, and Zheng Wen. 2017. Online Learning to Rank in Stochastic

Click Models. arXiv preprint arXiv:1703.02527 (2017).

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1878

	Abstract
	1 Introduction
	2 Background
	2.1 A review of AC
	2.2 rbEM
	2.3 Error analysis of AC
	2.4 Mixture of distributions
	2.5 Other related work

	3 Mixture-based Correction
	3.1 Method
	3.2 Unbiasedness of MBC

	4 Experimental setup
	4.1 Datasets
	4.2 Click simulation
	4.3 LTR
	4.4 Baselines
	4.5 Metrics

	5 Results
	5.1 An insider's look into corrected clicks
	5.2 Ranking performance of MBC and AC
	5.3 Click model mismatch
	5.4 Efficiency of MBC
	5.5 MBC with different mixture distributions

	6 Conclusion
	Acknowledgments
	A Analysis of regression-based EM
	A.1 Practical limitations of rbEM for AC
	A.2 Instability of rbEM for AC

	References

