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ABSTRACT
A common way to avoid overfitting in supervised learning is early
stopping, where a held-out set is used for iterative evaluation dur-
ing training to find a sweet spot in the number of training steps that
gives maximum generalization. However, such a method requires a
disjoint validation set, thus part of the labeled data from the train-
ing set is usually left out for this purpose, which is not ideal when
training data is scarce. Furthermore, when the training labels are
noisy, the performance of the model over a validation set may not
be an accurate proxy for generalization. In this paper, we propose
a method to spot an early stopping point in the training iterations
of an overparameterized neural network (NN) without the need
for a validation set. We first show that in the overparameterized
regime the randomly initialized weights of a linear model converge
to the same direction during training. Using this result, we propose
to train two parallel instances of a linear model, initialized with
different random seeds, and use their intersection as a signal to
detect overfitting. In order to detect intersection, we use the cosine
distance between the weights of the parallel models during training
iterations. Noticing that the final layer of a NN is a linear map of
pre-last layer activations to output logits, we build on our criterion
for linear models and propose an extension to multi-layer networks,
using the new notion of counterfactual weights. We conduct experi-
ments on two areas that early stopping has noticeable impact on
preventing overfitting of a NN: (i) learning from noisy labels; and
(ii) learning to rank in information retrieval. Our experiments on
four widely used datasets confirm the effectiveness of our method
for generalization. For a wide range of learning rates, our method,
called Cosine-Distance Criterion (CDC), leads to better generaliza-
tion on average than all the methods that we compare against in
almost all of the tested cases.
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1 INTRODUCTION
Modern overparameterized neural networks can easily overfit to
the training data, even when the data is noisy [22]. Collecting
up-to-date and large-scale high accuracy labeled data is however
expensive, time-consuming, and in many cases not feasible. The
main question we address in this work is “how can we improve
generalizability of overparameterized neural networks in low data
regimes and noisy labeled data?”

Early stopping. Early stopping is one of the fundamental tech-
niques for generalization in neural networks (NNs) with iterative
training [14, 26]. The common practice for early stopping is to
monitor model performance on a held-out set, called validation set,
and quit training if the validation performance degrades or has not
improved for several iterations. In such settings, the assumption
is that model performance over the held-out data, which has not
been seen by the model during training, is an unbiased proxy for
the test performance. This poses a trade-off for choosing the size
of the validation set: A small validation set would suffer from high
variance in estimating the test performance, whereas a large valida-
tion set would reduce the size of the training set and possibly hurt
the model generalizability. Additionally, it is known that overpa-
rameterized NNs can easily overfit noisy labeled datasets without
early stopping [22]. However, as noted in [12], when training on a
noisy labeled dataset, relying on an accurately labeled validation
set for early stopping is not realistic.

Ideally, then, we would like to have a criterion for early stopping
that does not rely on the existence of a validation set. Some valida-
tion set independent criteria have been proposed in the literature
based on gradients [12, 24] or leave one out (LOO) interpolation [5].

Overparameterization. Despite the positive generalizability
results of overparameterization that state that overparameterized
models are less dependent on regularization [4, 36], early stopping
has been shown to still be helpful in overparameterized models [21],
especially in the presence of label noise [22].

A proposal for early stopping. In this work, we propose a new
criterion for early stopping NNs with iterative optimization meth-
ods such as (stochastic) gradient descent, that is particularly helpful
in low data regimes and noisy labeled datasets. We start with linear
models and then describe how to extend our method to be effective
for non-linear multi-layer networks as well. Our early stopping
criterion is based on our experimental observation that different
instances of an overparameterized linear model, initialized with
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Figure 1: Convergence of cosine distance of parallel instances
coincides with overfitting.

different random seeds, tend to converge to a similar solution on
the fitness surface during training. Fig. 1 plots the cosine distance
between the weight vectors of two linear networks as well as test
performance during the training. First, we observe that the cosine
distance forms an L-curve. We indicate the corner of this L-curve by
a vertical black line. We hypothesize that when the cosine distance
starts to converge to zero, i.e., the two parallel instances intersect,
the models have already learned the “generalizable” patterns for
solving the task and after that point they start picking up spurious
features that only represent the training set. This is observable in
Fig. 1, where the test performance continues to decrease after the
L-curve corner. Our goal is to find the transition point between the
two extreme cases: (i) The first training iterations where the parallel
instances are far from each other. This case is captured by weight
vectors that are randomly directed and are almost surely orthogonal.
(ii) The converged iterations where the parallel instances become
very close to each other, i.e., intersect. This case is captured by the
weight vectors that are aligned with the direction of zero train-
ing loss. To this end, we measure the cosine distance between the
weight vectors of parallel models at each iteration. Due to the two
extreme cases mentioned above, the cosine distances with respect
to training iterations form an L-curve (Fig. 1). We use two simple
methods, namely the maximum curvature and a threshold-based
criterion, to detect the transition point, and output the correspond-
ing iteration as the early stopping point. Our experiments on a
diverse set of datasets on different data modalities show that the
transition point obtained as above for the early stopping iteration
leads to better generalization results than existing methods.

Going beyond linear models. Our observation of converging
parallel instances only holds for linear models where the weight
vector is used to map a fixed input matrix to a fixed target vector.
For networks with more than one layer and non-linear activation
functions, however, the weight vector of the last layer maps the
activation matrix of the previous layer to the target vector. So
for two different randomly initialized networks N1 and N2, last
layer activations, 𝐴1 and 𝐴2, may be in completely different spaces
and not directly comparable. Consequently, the described L-curve
criterion cannot be used as-is for the linear mapping in the last
layer of networks with multiple layers. To remedy this, we first
answer the counterfactual question of: what would be the weight
vector of N2 if its last layer activation 𝐴2 was to be replaced with 𝐴1
from N1? Using a linear algebra trick, we find an answer for this
counterfactual question, and as the settings have been made similar
to the linear case, we observe a similar L-curve trend in the cosine
distance between the weight vector of N1 and the counterfactual

weight vector of N2. Our experiments on different datasets and
with a wide range of learning rates confirm the effectiveness of this
method on multi-layer networks.

Our contributions in this paper are:
(1) We empirically show that for overparameterized linear models,

the randomly initialized weight vectors, when trained by an
iterative method such as stochastic gradient descent (SGD),
converge to the same solution.

(2) We use the above finding on linear models to detect an early
stopping point without a validation set by measuring the cosine
distance between the weight vectors of two parallel instances
of a linear model, initialized with different random seeds. We
call our method Cosine-Distance Criterion (CDC).

(3) Using the counterfactual weight vector of the last layer of one of
the instances, we extend our proposed cosine distance criterion
to multi-layer networks.

(4) We experimentally verify the generalization effectiveness of
CDC on two widely used computer vision datasets with noisy
labels as well as twowidely used learning to rank (LTR) datasets.
Particularly, we show that CDC leads to better average test per-
formance, i.e., better generalization, than the methods against
which we compare across a wide range of learning rates.

1.1 Notation
Let 𝑋𝑁×𝑑 = [𝑥1 𝑥2 · · · 𝑥𝑁 ]𝑇 denote the training data consisting of
𝑥𝑖 ∈ R𝑑 as feature vectors and let 𝑌𝑁×1 = [𝑦1 𝑦2 · · · 𝑦𝑁 ]𝑇 denote
the corresponding labels. For a one-layer network, i.e., a linear
model, we use a (non-trainable) featurization function Φ : R𝑑 →
R𝐷 with 𝐷 > 𝑁 to have an overparameterized model. We use
𝐴𝑁×𝐷 = [Φ(𝑥1) · · · Φ(𝑥𝑁 )]𝑇 for the featurized inputs. Training a
linear model means finding a weight vector𝑊 = [𝑤1,𝑤2, . . . ,𝑤𝐷 ]𝑇
satisfying:

𝐴 ·𝑊 = 𝑌 . (1)

For a𝑚-layer network, layer 𝑖 can be written as:

𝐴𝑖+1 = 𝜎 (𝐴𝑖 ·𝑊𝑖 ) (2)

where𝜎 is the activation function, and𝐴0 = 𝑋 .1 Focusing on the last
layer, training such a network means finding parameters leading to
activation matrix 𝐴𝑚 and a weight vector𝑊𝑚 satisfying:

𝐴𝑚 ·𝑊𝑚 = 𝑌 . (3)

Here, as opposed to Eq. (1) where 𝐴 only depends on the input
data, 𝐴𝑚 depends on the trainable parameters. This means that,
for different initializations, 𝐴𝑚 in Eq. (3) will be different, while 𝐴
in Eq. (1) is fixed. In what follows, when no confusion is possible,
we drop the subscripts and write 𝐴 and𝑊 for the pre-last layer
activation matrix and last layer weight vector of a multi-layer net-
work, respectively. For both linear and multi-layer networks, we
use subscripts to differentiate between instances that are initialized
with different random seeds. We use 𝐴+ for the Moore-Penrose
inverse of matrix 𝐴.

Finally, we show gradient descent (GD) iterations by parenthe-
sized superscripts. For example, iteration 𝑡 of a multi-layer network

1Without loss of generality we assume the bias is zero. We can always concatenate a
single 1 to the end of feature vector 𝑥 to model the bias.
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satisfies:
𝐴(𝑡 ) ·𝑊 (𝑡 ) = �̃� (𝑡 ) , (4)

where �̃� is the model prediction. Iteration 0 stands for the initial-
ization values.

2 RELATEDWORK
Early stopping. The idea of early stopping in machine learning is
based on the assumption that in the process of training iterations
of a model, the model first learns the general relation between
the inputs and labels, and then, gradually overfits to the training
samples [26]. Various studies investigate the effect of early stopping
or propose rules to identify early stopping points, especially with
the gradient descent algorithm [21, 35]. A common practice for early
stopping is to hold out part of the training data, usually referred
to as the validation set, and train the model on the remaining
data. The validation set is used to periodically evaluate the model
during training, and the validation performance is considered as a
generalization proxy.

As noted in previous work on early stopping [5, 24], using a
validation set for early stopping has some drawbacks, especially
in the low data regime. As the validation performance is going
to be used as a proxy for generalization, its size should not be
small. On the other hand, when the annotated data is already small,
consuming a considerable part of it for the validation set, reduces
the size of the training data and can lead to degraded performance.
Relying on the validation set is also not desired for noisy labeled
data where the performance on a noisy labeled validation set may
not be a good proxy for the actual performance on unseen data [12].

These limitations have led some researchers to propose early
stopping rules without a validation set. Mahsereci et al. [24], build-
ing on [10], use gradients to identify the early stopping point. The
idea is when the gradients become small, it is a signal indicating
the model has learned the general structure, and it is starting to
overfit to the train data. Similarly, Forouzesh and Thiran [12] use
the gradients for an early stopping criterion. Instead of the size of
the gradients, they measure the disparity of gradients, i.e., the effect
of a gradient step on one mini-batch on another one, and decide to
stop early when a number of training iterations with increased dis-
parities are observed. Finally, Bonet et al. [5] use LOO interpolation
to characterize generalization and propose to stop the training if
for a pre-defined number of iterations the risk estimated from LOO
interpolations is increased. As their method uses LOO samples, it
can be thought of as an efficient modified cross validation (CV)
with as many folds as the size of training data.

Our CDC method differs from previous work in that it uses two
parallel instances of a model to detect early stopping. We show
experimentally that the change of parameter vector direction dur-
ing training of one network does not provide a helpful signal for
overfitting. Furthermore, instead of monitoring the gradients of
the parameters, we track the parameters themselves. Parameter
values at each iteration depend on their initial values, their gradi-
ents, and the learning rate. As such, our method can better adapt
to different learning rates compared to previous work that uses
gradients for their early stopping rule. We will verify this intuition
in our experiments. Lastly, CDC is agnostic to the optimization
method used, so it is the same for gradient descent and stochastic

gradient descent methods (unlike [24]) and does not depend on the
mini-batch size or the subset size of mini-batches to approximate
gradient discrepancy (unlike [12]).

Li et al. [22] analyze the robustness of neural networks to noisy
labels, when trained with gradient descent. They show that overpa-
rameterized networks with early stopping, where the parameters
are still close to their initial values, can robustly learn the correct
labels and ignore the noisy ones. But after many more iterations,
where the model goes far from its initialization, overfitting to the
noisy labels occurs. The intuition of our CDC method is very close
to that work in the sense that we stop training as soon as the
parameters become far from their initial value. The difference is
that we use two parallel instances of a model to estimate the point
with lowest generalization risk. Using two instances allows us to
spot the desired point even with large learning rates, where the
model overfits soon and looking at the distance of one model to its
initialization point is not enough (see Sec. 3.2).

Overparameterized models. A model is said to be overparam-
eterized when its number of trainable parameters is bigger than
the number of training samples. Modern machine learning mod-
els are usually highly overparameterized with good generalization
properties. In order to better understand overparameterized neural
networks, various studies analyze two-layer networks and examine
their generalization characteristics [2, 23, 32, 37]. Overparameter-
ization is essential for this work, because only in this case the
gradient descent converges to the solution with minimum ℓ2 dis-
tance from the initialization point [11]. Since we base our early
stopping rule on the convergence of weights of linear models, our
rule only works with overparameterized models. In modern ma-
chine learning, this is not a concern, as almost all the leadingmodels
are overparameterized.

A number of studies analyze overparameterized linear models,
or two-layer wide networks with only the last layer trainable [4, 28].
Muthukumar et al. [27] and Kini and Thrampoulidis [19] analyze
the impact of loss on generalization of linear overparameterized
models. Montanari and Zhong [25] characterize the generalization
error of minimum-ℓ2 norm solution of linear models. There are also
studies such as [3, 9, 33] that analyze gradient descent on linearly
separable data with overparameterized linear models.

L-curve corner detection. Detecting the corner of an L-curve is
a popular regularization method for solving systems of linear equa-
tions with ill-conditioned matrices [15]. There are several advanced
methods to solve this problem, [e.g., 7, 18], but for the purpose of
our work, we adopt two basic methods: (i) The maximum curvature
point [15]; and (ii) A fixed threshold on the cosine distance as an
indication of the transition from generalization to overfitting. We
show with extensive experiments that these two basic methods
work fine in detecting the transition point for early stoping.

3 Cosine-Distance Criterion
The Cosine-Distance Criterion (CDC) for early stopping is based on
the convergence of weight vectors of two instances of a linear model
that are initialized with different random seeds. In this section, we
first discuss this convergence behavior and then show how it can
be used for early stopping in a linear model. Finally, we present an
extension of CDC to multi-layer networks.
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Figure 2: The growth of the weight vectors ℓ2 norms for
MNIST and CIFAR datasets and hidden layer widths of 9k
and 25k.

3.1 Convergence of Weights in Linear Model
In an overparameterized system, there are infinite directions of
weight vectors that minimize the training loss. In the case of the
RMSE loss, it can be shown that gradient descent converges to the
solution with minimum ℓ2 distance from the initialization point [11].
The common practice in current neural models is to use the Xavier
initialization [13] that gives rise to E

[
|𝑊 (0) |2

]
= 1

3 . As proved
in [22] for a wide class of datasets, including noisy labeled datasets,
network weights should converge to large values so that the net-
work is able to distinguish inputs with small difference, but differ-
ent labels. Our empirical results confirm this for all of our tested
datasets. For example, Fig. 2 illustrates the growth of ℓ2-norms of
linear models on MNIST and CIFAR datasets with different widths
for the hidden layer (9k and 25k). Consequently, the ℓ2-norm of the
initial weights becomes negligible compared to the ℓ2-norm in the
higher iterations. This means that the ℓ2-norm of the converged
weights becomes dominant and the ℓ2 distance from the initializa-
tion point can be approximated by the ℓ2-norm itself. In other words,

Given two instances of an overparameterized linearmodel
that are initialized using Xavier initialization, but with
different random seeds, training them using SGD leads to
similar solutions on the fitness surface.

Fig. 3 illustrates examples of this result. The left plot shows the trend
of the cosine distance between the weight vectors of two parallel
instances of a linear model, initialized with different random seeds,
in terms of gradient descent epochs. Similar to Fig. 2, the results
are reported for MNIST and CIFAR with hidden layer widths of
9k and 25k. We repeat the experiment for different learning rates
and different model sizes and consistently observe that the cosine
distance always converges to zero with rates depending on the
learning rate and model size. This observation also holds for the
two LTR datasets that we consider in this paper (see Sec. 4).

Start of overfitting. In overparameterized linear models, the ex-
act minimum-ℓ2 solution can be obtained using the Moore-Penrose
inverse [30]. This exact solution corresponds to one of the zero
training loss solutions of the model. Our experiments show that,
although GD converges to the minimum-ℓ2 solution, it requires
significantly longer training epochs than what is observed in Fig. 3-
left. For instance, after 100k training epochs, the cosine distance
between the GD and minimum-ℓ2 solutions in different data and
different model setups falls in the range of 0.1 and 0.3. Comparing
to Fig. 3, where at epoch 400 the weights of two parallel instances
have a cosine distance less than 0.01, we see a large gap between
the convergence rates of these two cases:
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Figure 3: Convergence of the direction (left) and magnitude
(right) of randomly initialized weight vectors of two identi-
cal but differently initialized models for MNIST and CIFAR
datasets and hidden layer widths of 9k and 25k.

The parallel instances converge to each other long before
they converge to their final value of the minimum-ℓ2 solu-
tion.

Noticing that overfitting can start at sooner iterations than the zero
training loss point, we conjecture that this early convergence coin-
cides with the start of overfitting to the training data and provide
evidence for our conjecture with a diverse set of experiments.

Formal notation. Our discussion so far can be summarized in
the following formal notation. Suppose two parallel instances of
a linear network L1 and L2, with different initializations𝑊 (0)

1
and𝑊 (0)

2 , featurized input 𝐴 and target output 𝑌 . Both models will
converge to the minimum ℓ2 zero training loss solution, obtained
by𝑊 (∞) = 𝐴+ · 𝑌 , but, based on our empirical findings,𝑊 (𝑡 )

1 and
𝑊

(𝑡 )
2 converge in direction at a rate considerably faster than they

converge to𝑊 (∞) . Intuitively, the reason for such a behavior is
that the models first learn the general structure of the training data
and ignore the outlier samples [22]. Suppose the (unknown) set
of the non-outlier (featurized) training samples that best describe
the general data structure and their corresponding clean labels are
shown by 𝐴 and 𝑌 . Then, by learning the general structure, each
model first converges to the 𝐴+ · 𝑌 solution. A low distant pair of
𝑊

(𝑡 )
1 and𝑊 (𝑡 )

2 vectors indicates that the general 𝐴+ · 𝑌 solution
has been reached and, from now on, the models are converging to
the zero training loss solution of 𝐴+ · 𝑌 .

Directions or magnitudes. Finally, to show that the above
trends are only observable for the directions and not themagnitudes,
we replace the cosine distance with the Euclidean distance in the
right plot of Fig. 3. As can be seen in this figure, the Euclidean dis-
tance does not converge to zero within a practical number of epochs.
More importantly, when the model overfits (which is the case in
all of the shown plots), the Euclidean distance does not converge
to a fixed value across different datasets, model sizes and learning
rates, making it difficult to base an early stopping criterion on it.

3.2 Cosine-Distance Criterion
Based on what we have discussed in the previous section, we can
state our simple rule for early stopping:

Train in parallel two identical instances of a linear model,
initialized with different random seeds, and stop training
when the L-curve obtained from the cosine distance between
their weight vectors in terms of training epochs passed its
corner.

Findings of Li et al. [22] (as discussed in Sec. 2) support this idea to
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some extent. They show that in the presence of corrupted labels,
the first iterations of gradient descent ignores them and tries to
fit on the correct labels. During this phase, the weights remain
close to their initial values. But as the iterations proceed, the model
starts to overfit the corrupted labels and the weights move far from
their initial value. Here, our empirical observation suggests a more
specific behavior: networks converge to directions far from their
initialization, but this new direction is the same for identical but
differently initialized networks and it is not necessarily the direction
corresponding to zero training loss.

Using parallel instances. In order to materialize this idea for
early stopping, we need a robust method to detect when the weights
of the linear model are converged far enough from their initial value,
and the model is starting to overfit. Two extreme cases are clear:
(i) at the beginning iterations, the weights are close to the initial-
ization and the model underfits; but (ii) after too many iterations,
the weights are far from the initialization and the model overfits.
Knowing these two extreme cases is not enough. Instead, we are
interested in finding the transition point between them. Looking at
one model and measuring the distance of its weights to their initial
value is not sufficient for detecting the transition point, as it is not
clear how far from the initialization point the transition occurs. Our
experiments reveal that this issue is solvable by comparing two
identical but differently initialized models, instead of only looking
at a single model. Two identical models, starting from two differ-
ent initialization points, converge to the same zero training loss
point. As a consequence of this shared final destination, they are
converging to each other too. The closer they get to each other, they
will be closer to their shared final destination of zero training loss,
and they overfit more to the train data. Therefore, the similarity of
these models at each iteration can be used as a proxy for detecting
their degree of overfitting. Starting from a cosine distance close
to one (as two random high dimensional vectors are almost surely
orthogonal), the two models converge to each other as they learn
the training data. After the general structure of the training data
has been learned, the two models start to overfit. Our empirical
observations on four datasets with different modalities and models
with different sizes and learning rates suggest that the changing
rate of the cosine distance differs before and after the sweet point
of maximum generalization: the cosine distance decreases sharply

Algorithm 1: CDC
Input: 𝐷 , 𝜂, 𝑇max
Output: Early Stopping Epoch

1 Build N1 and N2 with weights𝑊1 and𝑊2 of length 𝐷

2 Initialize𝑊1 and𝑊2 with different random seeds
3 for 𝑡 = 0 to 𝑇max do
4 Update𝑊1 and𝑊2 using first order methods with

learning rate 𝜂
5 𝛿 (𝑡 ) = cos(𝑊 (𝑡 )

1 ,𝑊
(𝑡 )
2 )

6 if 𝛿 (𝑡 ) is a L-curve corner then
7 Return 𝑡

8 end
9 end

10 Return 𝑇max

before that point, but slowly after it. That is why we observe an
L-curve similar to what was shown in Fig. 1. We take the corner of
such an L-curve as the maximum generalization point.

The algorithm. Algorithm 1 shows the formal pseudo-code
for CDC. The algorithm gets as input the number of parameters
(𝐷), learning rate (𝜂) and the maximum number of epochs (𝑇max).
Despite its simplicity, our extensive experiments show the effec-
tiveness of CDC compared to existing methods for a wide range of
learning rates. For line 6 of Algorithm 1, we test two simple meth-
ods: (i) the maximum curvature condition; and (ii) a fixed threshold
for all cases. Next, we discuss and compare these two methods for
corner detection in more detail.

3.3 Corner Detection
As discussed in Sec. 2, the L-curve corner detection is a popular
regularization method for solving systems of linear equations [7, 15,
18]. Here, we show our method has a low sensitivity to the hyper
parameters of corner detection methods and in all of our tested
datasets and model setups, it is safe to consider a fixed threshold
for the cosine distance as the early stopping point.

Maximum curvature. Let 𝑐𝑖 be the cosine distance between
the two models at iteration 𝑖 . Since we are working with a discrete
series, we need a step size Δ to act as the sampling points in our
curves: each 𝑐𝑘 value corresponds to the virtual (𝑖 · Δ, 𝑐𝑖 ) point
in the 2-D plain. Using this terminology, curvature is defined as
follows (adapting [15] to our terminology):

𝜅𝑖 = Δ · 𝑐𝑖 − 𝑐𝑖−2(
Δ2 + (𝑐𝑖 − 𝑐𝑖−1)2

) 3
2
. (5)

Here, Δ is a hyper parameter, modeling the compression of the
x-axis in plots similar to Fig. 1. In practice, the {𝑐𝑖 } series may not
be smooth. So, before computing Eq. (5), we first apply Gaussian
kernel smoothing to the series. The iteration with maximum 𝜅𝑖 is
returned as the corner point in line 6 of Algorithm 1. For the hyper
parameter Δ, our experiments show a very low sensitivity as will
be discussed next. Intuitively, the discretization step should be in
the order of the learning rate. In Fig. 4 we show two examples on
MNIST (left) and CIFAR (right) datasets. The solid vertical black
line is the maximum curvature obtained by setting Δ equal to the
learning rate (0.004 and 0.002 for MNIST and CIFAR, respectively).
The shaded area contains the epochs with maximum curvature for
different Δ values, ranging from 𝑙𝑟

2 to 5 × 𝑙𝑟 . The test performance
drops, for this wide range of hyper parameter, are only 97% and 93%
for MNIST and CIFAR, respectively. Various experiments on other
datasets (see Sec. 4) and with different model sizes and learning
rates lead to similar results.

Fixed threshold. We use the cosine distance to measure the
similarity of two identical but differently initialized instances of a
model and want to decide about the starting point of overfitting
from this similarity. Therefore, it is natural to set a fixed threshold
for this similarity and early stop when the instances intersect, i.e.
becomemore similar than that threshold. Here, it is not theoretically
clear what choice for the fixed threshold leads to the optimal results
and whether this threshold should depend on the dataset and the
model setup or not. However, our empirical observations on four
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Figure 4: Sensitivity of the maximum curvature corner detec-
tion method to Δ on MNIST (left) and CIFAR (right) datasets
with 50% random labels.
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Figure 5: Sensitivity of fixed threshold corner detection
method to 𝜃 on MNIST (left) and CIFAR (right) datasets with
50% random labels.

datasets from two different domains (i.e. vision and LTR) and on a
wide range of model sizes and learning rates show that a threshold
of 𝜃 = 0.2 works fine in most of the cases. This threshold value
also works for our multi-layer experiments (to be discussed later in
Sec. 3.4). We leave further analysis of why a threshold of 𝜃 = 0.2 for
the cosine distance works fine for a very wide range of datasets and
model setups to future work. Now, similar to what we have shown
previously in the maximum curvature method, we show that our
method has a low sensitivity to this 𝜃 hyper parameter. In Fig. 5
we show two examples on MNIST (left) and CIFAR (right) datasets.
The solid vertical black line is where the cosine distance crosses
𝜃 = 0.2. The shaded area contains the epochs with 0.1 ≤ 𝜃 ≤ 0.5.
The test performance drops, for this wide range of hyper parameter,
are only 98% and 94% for MNIST and CIFAR, respectively. Various
experiments on other datasets (see Sec. 4) and with different model
sizes and learning rate lead to similar results.

As the fixed threshold method has a lower sensitivity and it is
simpler, we only report the performance of our criterion with this
corner detection method and set 𝜃 = 0.2. We should also stress
that the maximum curvature method with Δ = 𝑙𝑟 leads to similar
results.

3.4 Multi-Layer Networks
As discussed in Sec. 1.1, in a multi-layer network, the pre-last layer
activation matrix depends on trainable parameters. As such, for two
parallel instances N1 and N2 with different initializations, we have
different, time-dependent activation matrices 𝐴(𝑡 )

1 and 𝐴
(𝑡 )
2 . The

target vector𝑌 , on the other hand, is shared for both instances. This
means that𝑊 (𝑡 )

1 and𝑊 (𝑡 )
2 should map different inputs𝐴(𝑡 )

1 ≠ 𝐴
(𝑡 )
2

to a shared output. Consequently, comparing𝑊
(𝑡 )
1 and𝑊

(𝑡 )
2 is

comparing apples and oranges. Between the two instances, only
the predictions �̃� (𝑡 )

1 and �̃� (𝑡 )
2 are comparable, since they are both
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Figure 6: Cosine distance of different vectors for 2-layer net-
works on MNIST (left) and CIFAR (right) datasets with 50%
random labels.

produced to match the same target label vector 𝑌 . In order to settle
this issue, we try to answer the following counterfactual question:

Had N2 been given the activation matrix of N1, that is,
𝐴
(𝑡 )
1 instead of𝐴(𝑡 )

2 , what would have been its weight vector
to produce the prediction �̃� (𝑡 )

2 ?

We call𝑊 (𝑡 )
2𝑐 the counterfactual weight of N2 as the answer to the

above question:
𝐴
(𝑡 )
1 ·𝑊 (𝑡 )

2𝑐 = �̃�
(𝑡 )
2 . (6)

The best solution in terms of ℓ2 error to Eq. (6) is given by the
Moore-Penrose inverse:

𝑊
(𝑡 )
2𝑐 = 𝐴

(𝑡 )+
1 · �̃� (𝑡 )

2 . (7)

It is worth noting that𝑊 (𝑡 )
1 = 𝐴

(𝑡 )+
1 · �̃� (𝑡 )

1 . Or in words,𝑊 (𝑡 )
1 and

𝑊
(𝑡 )
2𝑐 are projections of predictions �̃� (𝑡 )

1 and �̃� (𝑡 )
2 , using the same

matrix of 𝐴(𝑡 )+
1 .

In Sec. 3.1 we argued that the networks first learn the general
structure of data by fitting to the “set of the non-outlier samples
that best describe the general data structure and their correspond-
ing clean labels, shown by 𝐴 and 𝑌 ”. Here, in case of multi-layer
networks, when N1 and N2 are fit to 𝑌 , it means that �̃� (𝑡 )

1 and �̃� (𝑡 )
2

agree on the (unknown) 𝑌 part of their predictions. But, since they
do not overfit yet, they have random predictions about the outliers.
Consequently, measuring the distance between �̃�

(𝑡 )
1 and �̃�

(𝑡 )
2 is

simply not informative. However, when they are projected using
𝐴
(𝑡 )+
1 , they should be mapped to weight vectors close to 𝐴+ · 𝑌 .
We experimentally confirm the above theory by showing that the

cosine distance between �̃� (𝑡 )
1 and �̃� (𝑡 )

2 diverges instead of converg-
ing, while their projections𝑊 (𝑡 )

1 and𝑊 (𝑡 )
2𝑐 converge. Fig. 6 shows

two examples of the results of our experiments on MNIST (left) and
CIFAR (right) datasets. All the other setups for a 2-layer network
lead to similar observations. Here, we plot the cosine distance be-
tween three pairs of vectors: (i) Weight vectors𝑊 (𝑡 )

1 and𝑊 (𝑡 )
2 are

not comparable and their direction remains orthogonal during train-
ing. (ii) Predicted vectors �̃� (𝑡 )

1 and �̃� (𝑡 )
2 do not converge in direction,

because N1 and N2 first try to fit to 𝑌 and predict differently for
the other (noisy or outlier) part of the samples. (iii) Finally, the
projected vectors𝑊 (𝑡 )

1 and𝑊 (𝑡 )
2𝑐 are comparable and converge in

direction, similar to what we observe in linear models (e.g., Fig. 1).
The limitation of this method is when 𝐴

(𝑡 )
1 is rank deficient, so

the solution given by Eq. (7) is not correct. In our experiments, we
encountered such situations for mildly overparameterized networks
with four or more layers. We leave further investigations of when
this happens and what can be done to fix it for future work.
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4 EXPERIMENTS
In this section we explain the datasets and model used in our ex-
periments. We also explain the runs that we use to compare and
show the effectiveness of our CDC rule in generalization.

4.1 Setup
Image datasets. We use two image classification benchmark data-
sets: MNIST and CIFAR-10. Both datasets consist of 10 classes.
MNIST contains 60k training and 10k test grayscale 28 × 28 images
of handwritten digits, while CIFAR-10 has 50k training and 10k test
RGB 32 × 32 object images. Following [12], we make these datasets
noisy by changing 50% of the labels to random values.

LTR datasets. As a regular choice in LTR research [16, 17, 34],
we use two popular LTR datasets: Yahoo! Webscope [8] and MSLR-
WEB30k [31]. For each query, these datasets contain a list of docu-
ments with human-generated 5-level relevance labels. After clean-
ing, the query-document feature vectors of Yahoo! and MSLR are
501 and 131 in length, respectively. For our experiments we ran-
domly select 100 and 30 training queries from Yahoo! and MSLR
to have around2 3.3k training samples (i.e., document-query pairs)
for each dataset. We repeated experiments with smaller selections
(down to 330 training documents) and got similar results. For both
datasets, we use the test set split as provided in the original data. The
Yahoo! dataset contains 6.7k test queries and 163k test documents;
MSLR contains 6.1k and 749k query and documents in its test set.

Model. For image classification tasks, we report results from
overparameterized models with three different sizes: (i) Small;
(ii) Medium; and (iii) Large. For linear models, we respectively
use 9𝑘 , 25𝑘 , and 50𝑘 featurization, leading to 90𝑘 , 250𝑘 , and 500𝑘
parameters. For two-layer networks, we respectively use 150, 350,
and 700 hidden layer widths, leading to 119𝑘 , 278𝑘 , and 556𝑘 param-
eters for MNIST and 462𝑘 , 1𝑀 , and 2𝑀 parameters for CIFAR-10
datasets. The last layer of image classification tasks has a dimension
of 𝐷 × 10, because of the 10 classes. For our method, we work with
vectors. As a work-around, we consider the 𝐷 × 10 matrix as 10
vectors of length 𝐷 and take the average cosine distance between
the 10 vector pairs of parallel instances. We use the cross-entropy
loss for image classification.

For LTR tasks, we only report the results with 10𝑘 parameters
due to space limitations. To show the effectiveness of our method
with different loss functions, we report the results with two popular
LTR loss functions, namely the pointwise RMSE loss and the listwise
ListNet loss [6].

Metric. We report the classification accuracy on the test set for
image classification tasks. For LTR methods, we evaluate models in
terms of their NDCG@10 performance on the test set.

4.2 Baselines
We compare our CDC method with the following existing work:
(1) Cross Validation (CV): The traditional way for early stopping.

For this baseline, we use 5-fold cross validation to approximate
the generalization drop: if for five consecutive epochs the cross
validation performance did not improve, we stop the training.

2The exact number is different for different random selections.

(2) Evidence-Based (EB): The method proposed in [24] that uses
the gradient size to estimate the transition point in the general-
ization curve.

(3) Gradient Disparity (GD): A recent method proposed in [12]
based on gradient disparity. If the gradient disparity is increased
for five consecutive epochs, the training is stopped.

(4) Oracle: The skyline performance obtained by monitoring the
test performance for 500 epochs and selecting the epoch with
maximum test performance. We choose the maximum of 500
epochs because in the settings of our experiments the maximum
test performance occurs well before 500 epochs with probability
almost equal to one. Note that this is not a realistic run as we
do not have access to test labels in reality. We include this to
compare the gap between different runs and the ideal case.

5 RESULTS
In this section we present our experimental findings by comparing
CDC with other baselines (Sec. 4.2) using both overparameterized
linear and two-layer networks.

5.1 Performance Comparison of Linear Models
First, we show for a wide range of learning rates, that CDC leads
to near perfect generalization as opposed to other baselines. Fig. 7
shows the performance comparison of CDC with other baselines
on image classification tasks for linear models with different sizes:
small, medium and large as discussed in Sec. 4. In each plot, we com-
pare the generalization performance for a wide range of learning
rates. These plots show that, for almost all the learning rates, CDC
is better able to detect the start of overfitting and stop training,
compared to other baselines. Importantly, the gap between CDC
and Oracle is negligible in most cases, meaning that it is hard to
improve our stopping rule for the tested cases. As the learning rate
is increased, degradation of test performance occurs more rapidly,
making it more important and difficult to early stop at the correct
iteration. This is observed in these plots as the performance of
different methods diverge for higher learning rates. Even for this
rather difficult task, we see CDC performs robustly well and close
to the Oracle.

Fig. 8 contains a performance comparison of CDC with other
baselines on the LTR datasets with RMSE and ListNet loss functions
with a wide range of learning rates. Here we observe similar results:
CDC is more robust in finding the correct generalizable point in
all learning rates compared to other baselines and it performs very
close to the skyline Oracle case.

A stopping rule that can have a performance very close to the
oracle performance, reduces the sensitivity of the model to the
choice of learning rate. This means that (i) hyper-parameter tuning
for learning rate would be of less concern; and (ii) relatively larger
learning rates can be chosen for the model to converge faster; hence,
significantly reducing the training time.

For a quantitative comparison between different stopping meth-
ods, in Table 1 we compare the mean and standard deviations of
stopping methods across different setups (i.e., data points from
Fig. 7, 8 and 9). This table shows that in five out of six cases, our
CDC performs significantly better than other methods on average.
It also has the least or second least variance for most of the cases.
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Figure 7: Linear models. Performance comparison of CDC with baselines in terms of test accuracy for linear models with
different model sizes. Top: MNIST; Bottom: CIFAR-10; both with 50% random labels.
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with baselines in terms of test NDCG@10 for different LTR
loss functions. Top: Yahoo! dataset; Bottom: MSLR dataset.

These results further show the reliability of CDC in different data
modalities.

5.2 Two-Layer Networks
Similar to results in the previous section on linear models, in this
section the generalization performance of CDC with other base-
lines on two-layer networks is examined. Fig. 9 contains the test
performance of different baselines in terms of learning rates. We
observe similar results to the linear case here: CDC performs more
robustly on different learning rates compared to other baselines
and it matches the Oracle performance, especially for medium and
large networks.

The data points of these plots are aggregated and shown in Ta-
ble 1 under columns indicated by “2-layer”. In this table we observe
that for the MNIST dataset, CDC and CV perform equally good and
better than the other two baselines, while for the CIFAR-10 dataset,
CDC is the sole winner.

5.3 Discussion
Our proposed method to find an early stopping point is based on
detecting the intersection of two parallel instances of models. To
materialize such a detection, we use the cosine distance of the
weight vectors of parallel instances. This method of cosine distance
works for linear models where all the learning is carried out by a
single vector. One use case of our criterion can be in linear probing
as one of the popular methods for transferring a pre-trained model
to a downstream task [1, 20, 29]. With linear probing, we only train
a linear layer that maps the representation from a frozen pre-trained
backbone to the label space of the downstream task. Moreover, in
general, in transfer learning, the downstream task has low training
data. This lets CDC to be a great choice for early stopping in linear
probing setup and can lead to better generalization than the existing
methods.

Going from one layer to more layers with non-linearities poses
a challenge on how to effectively detect the intersection point. Our
proposed method in Sec. 3.4 considers the last layer of the instances
to be able to continue to rely on the simple cosine distance. Our
extensive experiments confirm that by this extension our method
will be as effective on two-layer networks as it is on linear models.
However, as the network gets deeper and more complex, the train-
ing dynamics might change and the last layer may not be sufficient
to detect intersection of parallel instances. Consequently, our cosine
distance criterion works best for linear and two-layer networks,
and possibly for linear probing a pre-trained model. We believe
that the general idea of this paper, i.e., using the intersection of
two parallel instances of a model to signal early stopping, can be
applied to more complex models, but with a more complex crite-
rion that involves the whole model and not just the last layer. We
leave further development of more complex intersection detection
methods for future work.

6 CONCLUSION AND FUTUREWORK
We have proposed the Cosine-Distance Criterion (CDC) for early
stopping in linear and two-layer networks. Our stopping rule does
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Table 1: Mean and standard deviation of test accuracy and NDCG@10 across different model setups (Fig. 7, 8 and 9). Bold and
underlined entries indicate best and runner up values. Superscripts ∗ indicate significance improvements over the next best
score with 𝑝 < 0.01.

MNIST CIFAR-10 Yahoo! MSLR

Linear 2-layer Linear 2-layer Linear Linear

Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD

CDC 0.939 0.0260 0.947 0.0069 0.431∗ 0.0123 0.445∗ 0.0093 0.727∗ 0.0035 0.394∗ 0.0137
CV 0.910 0.0586 0.947 0.0053 0.396 0.0380 0.381 0.0618 0.722 0.0067 0.377 0.0260
EB 0.894 0.0321 0.910 0.0024 0.379 0.0148 0.399 0.0042 0.716 0.0087 0.354 0.0231
GD 0.902 0.0704 0.928 0.0358 0.401 0.0370 0.420 0.0320 0.722 0.0071 0.378 0.0241

Oracle 0.951 0.0080 0.953 0.0020 0.446 0.0076 0.451 0.0059 0.729 0.0033 0.398 0.0130
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Figure 9: Two-layer networks. Performance comparison of CDC with baselines in terms of test accuracy for two-layer networks
with different model sizes. Top: MNIST; Bottom: CIFAR10; both with 50% random labels.

not depend on a separate validation, nor does it use cross validation.
This means the entire labeled data can be used for training. CDC is
based on the consistent observation that two parallel instances of a
linear model, initialized with different random seeds, will converge
to the same solution on the fitness surface. This observation, to-
gether with supporting evidence from [22] on the distance of overfit
weights to the initialized values of a network, led us to propose an
early stopping rule based on the cosine distance of two parallel in-
stances of an overparameterized linear model. The intuition is that
when two randomly initialized weights start to become aligned, the
parallel instances will intersect, and this is a signal for overfitting.

We have compared the generalization of our CDC rule with exist-
ing methods, namely cross validation, evidence-based [24] and gra-
dient disparity [12], and shown that in all of the tested datasets and
all model setups, CDC performs more reliably with different learn-
ing rates and there is a small gap between its performance and the
skyline Oracle performance. We have also extended our method to
work with multi-layer networks, using our notion of counterfactual
weights vector. We have shown theoretically that our proposal is
equivalent to comparing the projection of the output vectors of two
instances, using a special projection matrix. Importantly, we have
argued why the output vectors themselves cannot be used to detect
the intersection point and verified our arguments experimentally.

The most interesting future direction to this work is to verify our

conjecture about the intersection of parallel instances as the start of
overfitting. Furthermore, finding a more complex criterion than the
cosine distance to detect this intersection that involves the whole
model and not just the last layer, and is suitable for more complex
structures as well, would be a natural follow up to this work.

CODE AND DATA
To facilitate the reproducibility of the reported results, this work
only made use of publicly available data and our experimental
implementation is publicly available at https://github.com/AliVard/
CDC-Early-Stopping.
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