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ABSTRACT
When learning to rank from user interactions, search and recom-

mender systems must address biases in user behavior to provide

a high-quality ranking. One type of bias that has recently been

studied in the ranking literature is when sensitive attributes, such

as gender, have an impact on a user’s judgment about an item’s

utility. For example, in a search for an expertise area, some users

may be biased towards clicking on male candidates over female

candidates. We call this type of bias group membership bias.
Increasingly, we seek rankings that are fair to individuals and

sensitive groups. Merit-based fairness measures rely on the esti-

mated utility of the items. With group membership bias, the utility

of the sensitive groups is underestimated, hence, without correct-

ing for this bias, a supposedly fair ranking is not truly fair. In this

paper, first, we analyze the impact of group membership bias on

ranking quality as well as merit-based fairness metrics and show

that group membership bias can hurt both ranking and fairness.

Then, we provide a correction method for group bias that is based

on the assumption that the utility score of items in different groups

comes from the same distribution. This assumption has two po-

tential issues of sparsity and equality-instead-of-equity; we use an

amortized approach to address these. We show that our correction

method can consistently compensate for the negative impact of

group membership bias on ranking quality and fairness metrics.
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Figure 1: The effect of group bias on user clicks.

1 INTRODUCTION
Online search and recommender systems leverage user interac-

tion data to enhance their ranking quality. When using human

interactions, however, we need to account for human bias and the

possibility of learning unfair ranking policies. In the context of

learning to rank (LTR), the term bias usually refers to unequal treat-
ment of items with equal utility by users [20]. Studies show that

if the bias is ignored, this leads to a degradation in the ranking

quality of a system trained on the user interactions [1, 21, 51, 54].

Correcting for bias is a necessary step for high-quality rankings,

but it is not sufficient. A system should return rankings that strive,

to a certain extent, for fairness of exposure. There are different def-
initions for fairness of exposure in ranking, leading to different

metrics [12, 13, 19, 43, 47, 55]. However, the core idea is the same:

items with similar levels of utility should receive similar exposure

by the system. Without meeting fairness of exposure, bias towards

the privileged groups or individuals is reinforced, both in what the

system learns from the ongoing interactions [16, 18, 46], and in

users’ judgments about the utility of items [25, 49].

Group bias. A search or recommender system can only ensure

that items with similar utility receive comparable exposure to users,

by arranging them accordingly. However, this alone is insufficient.

Users’ judgments about the utility of items are affected by their

perception of the item’s group membership [25, 28, 34, 49]. This

means that, even when the exposure of two high-utility items from

two different groups is the same, users may judge them differently

and one group may receive more clicks than the other. Fig. 1 pro-

vides a toy example for this phenomenon. Assume a job application

system where there are four applicants coming from two groups,

shown in the figure by squares (𝑆1 and 𝑆2) and circles (𝐶1 and 𝐶2).

The average relevance over the groups is equal and both groups

receive almost equal exposure on average, i.e., the ranking is fair

w.r.t. disparate treatment ratio (DTR) definition [47]. As a result of

equal average relevance and exposure, we expect both groups to

receive an (almost) equal number of clicks from the employers. This
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is shown by the equal-length green bars in the “group average” part

of the figure. However, employers’ judgments are affected by group

bias: they think that candidates coming from the square group are

more suitable for this type of job, compared to the circle group

candidates. Consequently, while being equally relevant and equally

exposed, candidates from the circle group are selected less often,

as shown by the blue bars in the “group average” part of the fig-

ure. We refer to this behavior as group membership bias. Our study
focuses on the scenario of two groups, where the term “affected”

refers to the group whose items are prone to underestimation and

receive fewer clicks than they ideally should (the circle group in

the example). Considering clicks as the primary measure of user

interaction, we provide both theoretical and empirical analyses for

the impact of group biased clicks on ranking quality as well as two

merit-based fairness of exposure metrics.

Impact on ranking. Similar to other types of bias, group bias

can potentially degrade the ranking quality of systems. For example,

in Fig. 1, if the clicks are used to infer the relevance of the candi-

dates, without correcting for group bias, inference would be biased

towards members from the square group, negatively impacting the

ranking quality of the system. In this work, we first theoretically

quantify this degradation with an approximation formula for the

normalized discounted cumulative gain (NDCG) metric. Then, we

experimentally analyze the change in the ranking quality of an LTR

model trained on clicks that suffer from group bias, compared to the

full information case. Fig. 2 (left) shows an example of the impact of

group bias on the ranking performance, measured by NDCG on the

Yahoo! dataset with feature number 426 as the sensitive attribute

(see Section 6.1). In this plot, the bars associated with the “(non-)

affected group” label show the NDCG@10 when only the relevant

items from the (non-) affected group are considered relevant. Note

that a lower group underestimation factor means a higher group

bias, and a factor equal to 1 (the leftmost bars) means no group bias.

We observe that the affected group is hurt by group bias, while the

other group has gained. Importantly, the overall ranking quality is

degraded by increasing group bias.

Impact on fairness. Unlike other types of bias that may affect

fairness indirectly, group bias has a direct impact on fairness: Clicks

suffering from group bias can lead the system to undervalue the

utility scores of a particular group (see, e.g., Fig. 2). Consequently,

when the expected exposure is assigned to groups based on these

biased estimates of the utility, the ranking may not be truly fair.

For example, in Fig. 1, without correcting for group bias, the square

members are inferred to be noticeably more relevant than the circle

members and a fair system would swap 𝑆2 and 𝐶2 to give more

exposure to the group that is more relevant. This means that, based

on the observed clicks, the [𝑆1,𝐶1, 𝑆2,𝐶2] ranking is considered

fairer than the original ranking in the figure. But based on the latent
true relevance values, this ranking is far from being fair, giving the

square group too much exposure. For our analyses, we consider

two widely used metrics for fairness of exposure, namely disparate
treatment ratio (DTR) [47] and expected exposure loss (EEL) [4, 13].
Each metric has a definition for the ideal expected exposure in terms

of the utility, that leads to the fairest ranking. Distinguishing be-

tween the true (unbiased) utility and observed (biased) utility, we

provide formulas for the change in the true fairness metrics, when

Overall Affected group Non-affected group

Ranking quality ↑ (ideal: 1) DTR ↑ (ideal: 1)
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Figure 2: The impact of group bias on ranking performance
(left) and DTR fairness metric (right) for the Yahoo! dataset.

the target expected exposure is obtained from the biased utility.

Fig. 2 (right) shows an example of the impact of group bias on the

DTR fairness metric. With DTR, a ratio of 1 means the fairest expo-

sure, i.e., the leftmost bar with no group bias. Similar to the ranking

quality, here we also observe that group bias leads to noticeable

deviations from the full information case in DTR metric.

Correction. We follow previous work on implicit bias [26] and

model group bias with a multiplicative factor. This allows us to use

inverse propensity scoring (IPS) to correct for bias [21, 54]. Measuring

group bias, however, is not as simple as measuring position bias. We

argue that group bias measurement requires assumptions on the

distribution of the true utility scores. Following [8, 15, 26], one can

assume that the true utility scores of both groups come from the

same distribution. However, since equity (i.e., merit-based fairness)

is based on the premise that exposure should be distributed based on

utility, assuming that the utility of different groups is equal for each

query, means that different groups should receive equal exposure

all the time, which means equality. To counter this equality-instead-

of-equity issue, we propose to consider a set of queries (instead of

one query) with their corresponding associated items and measure

the group bias parameter over this aggregated set of scores. We

show that our correction method based on the above amortized

measurement of the bias parameter is effective for restoring both

the ranking quality and fairness metrics.

Research questions.We answer the following questions:

(RQ1) What is the impact of group bias on the ranking quality and

the true fairness metric of head and tail queries?

(RQ2) How can we effectively correct for group bias, without sub-

stituting equality for equity?

The rest of the paper is organized as follows. We first list several

existing user studies showing that group bias exists in user interac-

tions (Section 2). In Section 3 we give a formal definition of group

bias. Answering the research questions starts from Section 4 where

we derive mathematical formulas for the impact of group bias on

the ranking quality and fairness metrics. To do so, we put some

simplifying assumptions such as binary latent relevance and uni-

form distribution of the observed clicks (i.e., attractiveness) over

the items. These assumptions may not be precisely met in real-

world datasets, but we believe the derived formulas that are based

on these assumptions are beneficial in giving insights into the im-

pact of group bias on ranking. To close the gap between theory

and practice, we perform extensive experiments on various real-

world datasets and show the negative impact of group bias on the

ranking quality and fairness metrics in Section 6.2. Regarding the



Group Membership Bias SIGIR ’24, July 14–18, 2024, Washington, DC, USA

second research question, in Section 5 we discuss the challenges

and solutions for measuring and correcting for group bias from user

interactions. Then we experimentally examine the effectiveness of

our theoretical propositions for group bias correction in Section 6.

Finally, Section 7 concludes the paper.

2 RELATEDWORK
An increasing number of studies indicate the existence of group bias.

Implicit bias, a special case of group bias, in which the preference of

one group over the other is unintentional, has been widely studied

in human behavior studies [e.g., 7, 17, 22]. More recently, implicit

bias has been formalized in the set selection problem [26] and

extended to the ranking scenario [8, 15].

Here, we list a small number of example studies indicating that

group membership affects users’ judgment. In [25], it is observed

in a user study that in a career search, results that are consistent

with stereotypes for a career are rated higher. Sühr et al. [49] pose

the important question of whether “fair ranking improve[s] mi-

nority outcomes?” and arrive at the result that persistent gender

preferences of employers can limit the effectiveness of fair ranking

algorithms. Krieg et al. [28] in their user study on gender sensitive

queries from [27] show that perceived gender bias affects judgment.

In [53] it is shown that societal and algorithmic gender bias affect

each other: the algorithmic outputs of search engines track pre-

existing societal-level gender biases; and, at the same time, exposure

of users to these biased results shape users’ cognitive concepts and

decisions. Liu et al. [34] study gender bias in the evaluation and

selection of future leaders.

We study the impact of group bias on ranking and fairness mea-

sures and propose a method to correct for it. Closest to our paper

are [8, 36], which show that implicit bias degrades ranking qual-

ity and that by ensuring equality of exposure, the ranking quality

can be improved. What we add on top of this work is to provide

a formalization of the change of ranking and merit-based fairness

metrics as a result of group bias. We also provide experimental

analyses of the impact of group bias on the output of an LTR model.

The idea of our amortized correction to counter sparsity and

equality-instead-of-equity has similarities to the notion of amor-

tized fairness of exposure [6], where the exposure and utility of

individuals (or groups) are aggregated across multiple queries and

the fairness metric is calculated according to the aggregated expo-

sure and utility. This corresponds to fairness evaluation. In contrast,

we aggregate the items associated with multiple queries to find

the group bias parameter that minimizes the distance between the

utility distribution of the affected and non-affected groups. This

corresponds to group bias correction.

Recently, Balagopalan et al. [2] have provided a set of desired

criteria that relevance scores should satisfy in order to meaningfully

guide fairness interventions, and show that, e.g., learning from click

data can violate some of the desiderata of relevance for fair ranking.

Though their focus is not on group bias, their approach to showing

that a violation of assumptions on the utility of items can misguide

fairness interventions has similarities to this work.

Remark 1. Our terminology of group bias should not be confused

with in-group bias, where a user favors members from their own

group over out-of-group members [37, 39, 57], or conformity bias,

where users tend to behave similarly to the others in a group [10, 23].

Hence, issues such as loyalty versus neutrality are out of scope.

3 GROUP MEMBERSHIP BIAS
As discussed in Section 2, prior work shows that the judgment of a

user about the relevance of an item may be affected by the item’s

group. Either unconsciously (as in implicit bias [15, 26]) or due to

stereotypical bias [25, 28, 46], users tend to rate one group higher

than the other. In this paper, we do not aim to deal with the source of

this biased behavior and only focus on its impact on algorithms and

metrics. We call this behavior the group membership bias. Following
the well-known examination hypothesis [11] that says that an item

is clicked by a user if it is (i) examined and (ii) found attractive by

that user, one can attribute group bias to the attractiveness part:

𝑃 (𝐴 | 𝑞, 𝑑, 𝑔) = 𝑓
(
𝑃 (𝑅 | 𝑞, 𝑑), 𝑔

)
, (1)

where 𝐴, 𝑅, 𝑞, and 𝑑 stand for attractiveness, relevance, query, and

document, respectively, and 𝑔 is the group of which 𝑑 is a member.

Eq. (1) states that the attraction of an item to the user not only

depends on the item’s true relevance to the query, but is also a

function of the item’s group. Following the literature on implicit

bias and gender bias [26, 46], we assume this dependency to have

a multiplicative form as follows:

𝑃 (𝐴 | 𝑞, 𝑑, 𝑔) = 𝛽𝑔 · 𝑃 (𝑅 | 𝑞, 𝑑) . (2)

We call 𝛽𝑔 the group underestimation factor, or group propensity1.
Our implicit assumption is that clicks for the affected group are

missing completely at random (MCAR) with 𝛽𝑔 being the miss-

ingness probability. This brings the bias-correction problem back

to IPS correction, since the clicks missing due to group bias are

analogous to clicks missing based on position. Notice that 𝛽𝑔 is

not necessarily fixed across all queries. For instance, in the Grep-

BiasIR dataset [27], bias-sensitive queries have different expected

gender stereotypes, and users are expected to be biased toward the

respective gender stereotype of each query.

Remark 2. Group bias is onlymeaningful in settings where there is

a global (objective) notion of relevance in contrast to personalized

(subjective) relevance. For example, when ranking students for

college entrance, or selecting among job applicants hiring, it is

desired to base the decision on an unbiased and unpersonalized
criterion. On the other hand, when searching for a roommate, the

relevance is subjective and the group bias concern does not apply.

3.1 Ranking Regimes
We distinguish between two LTR regimes: (i) tabular search for head

queries; and (ii) general LTR model for other queries. Note that

the majority of previous studies focused only on the general LTR

regime [e.g., 38, 48], or the tabular regime [e.g., 6, 47]. In contrast,

we follow [52] and consider both LTR regimes.

Tabular search for head queries. In tabular search, users’ his-

torical interactions with head queries are directly used to estimate

items’ utility [24, 30–33, 42, 58]. In this regime, we assume that

𝑃 (𝐴) can accurately be inferred from clicks: other types of bias

such as position and trust bias are corrected for and only group

1
We consider one sensitive attribute here. Extending our discussions to more attributes

with intersectional groups is possible using the formulation in [8, 36].
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bias remains in the signals. Our theoretical results on the impact

of group bias on different metrics, lie in this regime.

General LTR model for tail queries. For new queries and ones

that a tabular model is not confident about, an LTR model is used.

We assume that this LTR model is trained over accurate estimations

of 𝑃 (𝐴) from the head queries. Writing 𝑟𝑞,𝑑 for the relevance of item

𝑑 to query 𝑞, ranking metrics per query can usually be expressed as:

Δ𝑞 =
∑
𝑑 _𝑞,𝑑 · 𝑟𝑞,𝑑 , where _ is a metric-specific coefficient. Using

attractiveness instead of the true relevance to train an LTR model,

means that instead of Δ𝑞 , the following metric is being optimized:

Δ̂𝑞 =
∑︁
𝑑

_𝑞,𝑑 · 𝑃 (𝐴 | 𝑞, 𝑑) (2)

=
∑︁
𝑔

𝛽𝑔

∑︁
𝑑∈𝑔

_𝑞,𝑑 · 𝑃 (𝑅 | 𝑞, 𝑑). (3)

Comparing Δ𝑞 and Eq. (3), it is easy to see that Δ̂𝑞 is biased:

E𝑅
[
Δ𝑞

]
=
∑
𝑑 _𝑞,𝑑 · 𝑃 (𝑅 | 𝑞, 𝑑) ≠ Δ̂𝑞, (4)

unless 𝛽𝑔 is equal across all groups, i.e., there is no group bias.

4 THEORETICAL RESULTS
We assume that there are two groups𝐺A (affected) and𝐺N (non-

affected), with 𝛽A < 1 and 𝛽N = 1. We further assume binary

latent relevance, and that within each group, relevant items are

more attractive than non-relevant items:

∀𝑑,𝑑′ ∈𝐺𝑖 , if 𝑟𝑑 = 1 and 𝑟𝑑 ′ = 0, then 𝑃 (𝐴 | 𝑞, 𝑑)>𝑃 (𝐴 | 𝑞, 𝑑′) . (5)
For brevity, we write 𝑎𝑑 for the attractiveness probability of item

𝑑 , assuming that there is no confusion about the query. Let the

number of candidate items for a query be 𝑛, out of which 𝑛A and

𝑛N items belong to groups 𝐺A and 𝐺N , respectively. We indicate

the number of relevant items with 𝑛+A and 𝑛+N . To assess the impact

of group bias on different metrics, we measure the change in the

target metric when the observable attractiveness probabilities are

considered as a proxy for the true relevance scores.

4.1 Ranking Quality
For ranking quality, we calculate the NDCG of the list obtained from

sorting items based on their attractiveness probability and measure

its deviation from the ideal NDCG, i.e., 1. By definition, group bias

affects the attractiveness probabilities for 𝐺A only. Let 𝑎∗ be the
minimum attractiveness value for the relevant items of 𝐺N :

𝑎∗ = min

𝑑∈𝐺N
{𝑎𝑑 | 𝑟𝑑 = 1}. (6)

Items in 𝐺A with higher attractiveness values than 𝑎∗ are ranked
correctly with probability 1: Group bias has dampened their attrac-

tiveness probabilities, but still none of the non-relevant items is

ranked higher than them. We define an auxiliary random variable

a to be the fraction of relevant items from the affected group 𝐺A
that are ranked correctly with probability 1:

a =
| {𝑑 |𝑑∈𝐺A∧𝑟𝑑=1∧𝑎𝑑>𝑎∗ } |

| {𝑑 |𝑑∈𝐺A∧𝑟𝑑=1} | . (7)

For uniformly distributed scores in the interval of [0, 1], we have
E [a] = max(2 − 𝛽−1

A , 0).

Theorem 4.1. In the presence of group bias, for uniformly dis-
tributed attractiveness scores, the change in the NDCG of the list,
sorted based on items’ attractiveness, can be approximated by a linear
function of E [a], i.e., the fraction of affected relevant items that are

still as attractive as the non-affected relevant items.

Proof. Our monotonicity assumption of the within-group at-

tractiveness (Eq. (5)) ensures that no relevant item is ranked lower

than non-relevant items of𝐺A . This means that the 1−a fraction of
the affected relevant items lies somewhere between 𝑛+N + a𝑛+A and

𝑛N+𝑛+A positions. The expected discounted cumulative gain (DCG)

of the list would be as follows:

E [𝐷𝐶𝐺] =
𝑛+
N+a𝑛+

A∑︁
𝑖=1

1

log(1 + 𝑖) +
𝑛N+𝑛+

A∑︁
𝑖=𝑛+

N+a𝑛+
A+1

b𝑖

log(1 + 𝑖) , (8)

where b𝑖 depends on the distribution of the attractiveness scores.

For a uniform distribution, we have:

b𝑖 =
(1−a )𝑛+

A
𝑛N−𝑛+

N+(1−a )𝑛+
A
. (9)

Finally, using numerical analysis to approximate the average DCG

in Eq. (8) by a linear function of a , leads to a small approximation

error, e.g., a relative error of at most 5% in a top-20 setup. □

4.2 Merit-Based Fairness Metrics
Next, to see the impact of group bias on fairness metrics, we an-

alyze two well-known merit-based fairness of exposure metrics,

viz. EEL [4, 13] and DTR [47]. For both, we calculate the target

exposure in two cases: (i) the full information case where the true

relevance scores are used to compute target exposure, and (ii) the

group biased case where attractiveness probabilities are used as

proxies for relevance to compute target exposure. By change in true
target exposure we mean the difference between these two cases.

4.2.1 EEL. In the next theorem, we calculate the change in the

target exposure of 𝐺N as a result of group bias.

Theorem 4.2. In the presence of group bias, assuming the Position-
BasedModel (PBM) as the user browsingmodel with logarithmic decay
of exposure as in DCG,2 the change in the target exposure of EEL can
be approximated as follows:

Δ(EEL) = 𝑐 · log

(
# True relevant items

# Perceived relevant items

)
, (10)

where 𝑐 is a constant depending on 𝑛+N , 𝑛N , and 𝑛+N .

Proof. As we are working with two groups, and the sum of

the group exposures is fixed, to measure the change in the target

exposure vector, it is sufficient to measure the change in the target

exposure of one group and multiply it by 2.

To compute the expected exposure for EEL, the utility values

should be discrete. With a slight abuse of notation, we assume that

𝑎∗ (instead of Eq. (6)) is the threshold used for discretization of

the attractiveness probabilities,
3
and we use 𝑎𝑑 for the discretized

value of 𝑎𝑑 . Since 𝛽N = 1, we assume that 𝑎𝑑 = 𝑟𝑑 for 𝑑 ∈ 𝐺N .

However, for the affected items, because 𝛽A < 1, not all the scores

are necessarily correct. We re-use a from Eq. (7) to show the fraction

of affected relevant items that are still recognized as relevant.

For the average exposure of the relevant and non-relevant items

we use the following two approximations:

1

𝑚

∑𝑚
𝑖=1

1

log(1+𝑖 ) ≈ 𝛼 log(𝑚) + 𝑐 (11)

2
Here we follow [14, 52]. Similar analyses can be performed for other exposure models.

3
Usually, 𝑎∗ = 0.5 is the least controversial threshold.
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1

𝑛−𝑚
∑𝑛
𝑖=𝑚

1

log(1+𝑖 ) ≈ 𝛼 ′ log(𝑚) + 𝑐′, (12)

where 𝛼 and 𝛼 ′ are constants, obtained by numerical analysis. For

example, for 𝑛 = 20, 𝛼 = −0.146 and 𝛼 ′ = −0.022 lead to relative ap-

proximation errors of at most 5%. In the full information case, there

are a total of 𝑛+N + 𝑛+A relevant items, i.e.,𝑚 = 𝑛+N + 𝑛+A in Eq. (11)

and (12). But with group bias, only 𝑚 = 𝑛+N + a𝑛+A of the items

are recognized as relevant. Consequently, the change in the target

exposure as a result of group bias can be approximated as follows:

Δ(EEL) = 2

(
𝛼𝑛+N + 𝛼 ′ (𝑛N − 𝑛+N)

)
log

(
𝑛+
N+𝑛+

A
𝑛+
N+a𝑛+

A

)
. □

4.2.2 DTR. DTR is a multiplicative metric. To have a meaningful

measure for the change in DTR in the presence of group bias, one

has to compute the ratio of the target expected exposure in the full

information (𝐸) and group-biased (𝐸) settings.

Theorem 4.3. In the presence of group bias, the change in the
target exposure of DTR, equals the fraction of affected relevant items
that are still as attractive as the non-affected relevant items.

Proof. Using the same notation as in previous sections, and

noting that because of the binary relevance assumption the utility

of each group is equal to the number of its relevant items, this ratio

is computed as follows:

𝜌 (DTR) = �̃�A
�̃�N

· 𝐸N
𝐸A

=
a𝑛+

N+a𝑛+
A

𝑛+
N+𝑛+

A
= a. □

Upshot. In this section we derived formulisations of the nega-

tive effect of group bias on ranking. In proving our theorems, we

relied on some assumptions on the relevance and distribution of

attractiveness. The objective of this section is to provide theoretical

insights on the impact of group bias on ranking, i.e., RQ1. Since our

assumptions here may not be precisely met in real-world scenarios,

in Section 6.2 we get back to RQ1 in a semi-synthesized experimen-

tal setup with real-world utility scores and show that, though not

necessarily in complete alignment with the formulisations of this

section, the message is the same: group bias does hurt the quality
and fairness of ranking in real-world scenarios, and the degradation

gets stronger with more severe group bias.

5 GROUP BIAS CORRECTION
Our multiplicative formulation of group bias in Eq. (2) allows us

to use IPS to correct for group bias, once we know the value of

the propensity 𝛽 . The unbiasedness proof of IPS for this case is

exactly the same as that of position bias in [21, 54]. However, similar

to position bias, the unbiasedness proof depends entirely on an

accurate estimation of the bias parameter [50].

Unlike position bias, group bias cannot be measured by interven-

ing in the ranked list of items. The reason is that the bias attribute in

position bias can be changed without modifying the content of the

items: Each item can be shown in different positions, hence, detach-

ing propensity from relevance. In contrast, for group bias, the bias

attribute, i.e., group membership, is a characteristic of the item that

cannot be changed. As such, users’ interactions with items cannot

be measured for different values of the bias attribute. Instead, to

measure group bias, previous work on implicit bias (with the same

problem formulation as Eq. (2)), assumes that the utility scores of

different groups come from the same distribution [8, 15, 26]. We

use the same assumption, but extend it to an amortized criterion.

5.1 Measurement
Let AA and AN be the set of (observed) attractiveness scores, and

RA and RN the set of (latent) relevance scores of 𝐺A and 𝐺N ,

respectively. Let ΔD be a non-parametric test for the equality of

one-dimensional probability distributions such as the Kolmogorov-

Smirnov (KS) [35] test. The assumption that the utility scores of

the two groups come from the same distribution means that:

lim

|RA |, |RN |→∞
ΔD (RA ,RN) = 0. (13)

Assuming Eq. (2) to be the relation between AA and RA , the best

estimation of 𝛽A is given by the following optimization problem:

ˆ𝛽A = argmin

𝛽A

ΔD

(
AA
𝛽A

,AN
)
, (14)

where AA/𝛽A is the set obtained by dividing all the scores in AA
by 𝛽A . In our experiments, we choose the KS test for ΔD and use

grid search to solve the one-dimensional optimization of Eq. (14).

It only remains to define how the setsAA andAN should be con-

structed. Naively constructing these sets per query has two issues:

(i) Sparsity: Usually, we do not have a large number of items with

non-zero exposure, associated with one query in real-world search

engines. On the other hand, statistical tests measuring the distance

between probability distributions work best with large numbers

of data points. (ii) Equality-instead-of-equity: Assuming the same

distribution for the utility of different groups can make the notion

of equity meaningless, as the implicit assumption in merit-based

fairness metrics is that different groups may have different utilities.

Remark 3. Our assumption that the utility scores come from the

same distribution derives from the principle of maximum entropy:

unless there are explicit and justified reasons indicating that dif-

ferent groups have different utility score distributions, it is only

reasonable to assume the same distribution. Prior work on implicit

bias [8, 15, 26] is based on this same assumption.

5.2 Amortized Correction
Instead of using Eq. (14) per-query, in the amortized correction

method we consider a set of queries with the same group propen-

sity and aggregate the utility scores of their associated items. The

sets AA and AN contain the attractiveness scores of these aggre-

gated items. This aggregation addresses both issues mentioned in

Section 5.1: (i) With multiple queries, the size of the sets AA and

AN grows, reducing the variance. (ii) Amortized equality does not

force per-query equality. Fig. 3 shows an example of the difference

between per-query and amortized correction. In this example, there

are three queries, each with two results from the squares group and

two from the circles group. In all of the queries, the circles group is

the affected group. In per-query correction for group bias, the bias

parameter is over-estimated for query 1 (the blue bar is shorter than

the relevance for the circles group members), but under-estimated

for query 2 (the blue bar is longer). For query 3, since the square

members have a lower average number of clicks compared to the cir-

cle members, the per-query correctionwrongly detected the squares

group as the affected group and the discrimination between the
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Figure 3: Contrasting per-query and amortized correction.

groups has been boosted after the correction. On the other hand, by

aggregating the clicks on all six square members and six circle mem-

bers and measuring a single group bias parameter for all the queries,

the amortized correction has a noticeably better performance at re-

covering the true relevance (the green bars are close to the red bars).

The amortized correction, however, introduces a new challenge:

How to detect queries with the same group propensity, before

measuring their group propensity? One way to break this cyclic

dependency is by using extra knowledge. Notice that in order to

detect queries with almost the same group propensity, it is only

required to have a clustering of queries. Previous work shows that

such a clustering exists for a number of group attributes such as

gender [27]. In this paper, we first assume that such a clustering of

queries is given. Then, in an ablation experiment, we further show

that even loosely clustering the queries, when an accurate and more

specific clustering is not available, improves the ranking quality and

fairness metrics over the naive case of not correcting for group bias.

Upshot.We relied on prior studies for the existence of group bias

in user interactions and provided theoretical results about its impact

on the ranking andmerit-based fairness metrics. Then, we proposed

an amortized correction method for group bias that addresses the

equality-instead-of-equity issue of the per-query correction. Next,

we test our theoretical findings and arguments experimentally.

6 EXPERIMENTAL RESULTS
In our experiments we investigate the following questions regarding

group bias: (i) Is the impact of group bias on degrading the rank-

ing quality and fairness metrics consistent for different sensitive

attributes and in different datasets? (ii) Can our correction method

effectively correct for group bias? (iii) How does the amortized ap-

proach compare to the per-query approach for correction? (iv) How

robust is our correction method to the accuracy of clustering the

queries based on their group propensity?

6.1 Setup
Dataset. We use four datasets with provided sensitive attributes

and two with synthesized sensitive attributes. (i) IIT-JEE: The
dataset comprises the scores of candidates who took the Indian

Institutes of Technology Joint Entrance Exam (IIT-JEE) in 2009.

This information was made public in June 2009, following a Right

to Information request [29]. It contains the scores of about 385𝑘

students, the student’s gender (98𝑘 women and 287𝑘 men), their

birth category (see [3]), and zip code. This dataset was used in

prior work on implicit bias [e.g., 8]. We normalize the scores to

Yahoo! MSLR

𝐺
A
/𝐺

N

Population Relevance

0.5

1.0

1.5

2.0

2.5

Figure 4: Ratio of affected to non-affected group members in
terms of population and average utility score (relevance) for
different sensitive attributes in Yahoo! and MSLR datasets.

the [0, 1] interval using min-max normalization. Furthermore, we

simulate queries by grouping the students based on their birth

category and zip code. This gives 48.6𝑘 queries, among which we

only keep the ones with both genders and at least one normalized

score above 0.5 and one below 0.5. The filtering gives us 2.9𝑘 queries

with a total of 205𝑘 scores. (ii–iii) TREC 2019 and 2020: The
academic search dataset provided by the TREC Fair Ranking track

2019 and 2020 [5]. These datasets come with 632 and 200 training

queries, respectively, with an average of 6.7 and 23.5 documents

per query. Following [45, 52], we divide the items (i.e., papers) into

two groups based on their authors’ h-index. (iv)MovieLens 1𝑀 :

The classic movie recommendation dataset comprising 1𝑀 movie

ratings that were provided by 6𝑘 users for 3.9𝑘 different movies.

We scraped IMDB to obtain the country of origin and box office

cumulative worldwide gross values for each item (i.e., movie). For

the sensitive attributes, we consider two groupings as follows. In

MovieLens[𝐶𝑜.] , we divide the movies based on their first listed

country of origin into United States (US) and non-US groups with

2.7𝑘 and 1.2𝑘 movies and 807𝑘 and 193𝑘 ratings, respectively. In

MovieLens[𝐵𝑂 ] , we divide the movies based on their box office

with a threshold of 100𝑀$ into high and low-grossing groups with

388 and 3.5𝑘 movies and 324𝑘 and 676𝑘 ratings, respectively.

LTR dataset. To analyze the impact of group bias in the general

LTR regime, following prior work on unbiased LTR [21, 50, 51], we

the Yahoo! Webscope [9] and MSLR-WEB30k [41] datasets that are

represented by query-document feature vectors of lengths 501 and

131, respectively, and both have graded relevance labels from 0 to

4. For our experiments on the tabular regime, we use the training

set of the Yahoo! and MSLR datasets, with 20𝑘 and 19𝑘 queries

together with 473𝑘 and 2.2𝑀 documents, respectively. The test set

of Yahoo! and MSLR dataset contains 6.7𝑘 and 6𝑘 queries together

with 163𝑘 and 749𝑘 documents, respectively. Test queries are used

for our experiments on the general LTR regime.

Sensitive attribute for LTRdatasets. Weextend priorwork [13,

52, 56] and use a data-driven approach for selecting features as

sensitive attributes and dividing items into two groups based on

some threshold on that feature. We notice that synthetic sensitive

attributes are not a substitute for the real sensitive attributes in

real-world datasets. As mentioned above, we perform experiments

on four real-world datasets with provided meaningful sensitive
attributes. Our objective for using LTR datasets with synthetic

sensitive attributes is to extend and complement the results on

real-world sensitive attributes with 32 new setups with various

group utility and population dynamics as will be discussed shortly.

Our criterion for selecting a feature as a sensitive attribute is as
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Figure 5: The impact of group bias on ranking quality for the
Yahoo! and MSLR datasets with different sensitive attributes.

follows: For each feature we divide the items in two groups based

on a threshold equal to the mean minus one standard deviation

of that feature. If more than 95% of queries have at least one item

from both groups, we select the feature as a candidate for sensi-

tive attribute. Based on this criterion, we have selected features

{5, 88, 100, 141, 155, 264, 393, 426} and {11, 14, 15, 126, 127, 130, 131,

132} from the Yahoo! and MSLR datasets, respectively. Fig. 4 gives

an overview of the ratio of affected to non-affected group members

in terms of population and average utility score. In what follows

we use, e.g., Yahoo![426] for the Yahoo! dataset with feature num-

ber 426 as the sensitive feature. For each feature, we assume two

groupings based on two thresholds: (i) mean value; and (ii) mean

minus one standard deviation. This yields a total of 32 setups.

Bias simulation. To simulate group bias, we use Eq. (2), but

to make the simulation more realistic, we add a normal noise to

the 𝛽A value for each query. We experiment with two propensities

𝛽A ∈ {0.6, 0.8} and use 𝜎𝛽 = 0.1 for the standard deviation of the

normal noise. In Sec. 6.4.2, to add to the uncertainty of the setup,

we also experiment with higher noise variances of 𝜎𝛽 ∈ {0.2, 0.3}.
For our correction method, we found that adding a small amount

of noise to the scores for breaking the ties, without swapping the

order of the grades, helps to have a smoother curve for 𝛽 in Eq. (14).

LTR model. For the general LTR model (for tail queries) we use

a neural network with attention and LambdaRank Loss as in [40].

6.2 Impact of Group Bias
First, we show that group bias, on both tabular and LTR regimes,

consistently has a negative impact on the ranking quality and fair-

ness metrics. To do so, we run experiments on two datasets, namely

Yahoo! and MSLR, each with 8 different features as the sensitive

attribute, and two thresholds for separating the groups (see the

“Sensitive attribute” paragraph in Section 6.1). This gives us a total

of 32 different setups. For each setup, we simulate the attractiveness

probabilities with 𝛽A ∈ {0.8, 0.6} as mild and severe cases of group
bias, and compare the NDCG@10, DTR, and EEL metrics against

the full information case. Our experiments with other values of bias

parameters led to consistent results.

Fig. 5 shows a summary of the impact of group bias on the rank-

ing performance of both tabular and LTR regimes. These results

confirm that group bias degrades the ranking quality of the affected

group in the tabular regime and this damage is also reflected in

the LTR output, trained over the biased training labels. As a result

of pushing down the relevant members of the affected group, the

non-affected group gains ranking quality, i.e., the NDCG of the

non-affected group with group bias is higher than the full infor-

mation case. However, the overall ranking is worsened with group

Tabular (train labels) LTR output
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𝜌
(D

T
R
)

0.8 0.6

0.5

0.6

0.7

0.8

0.9

1.0

Δ
(E
E
L
)

0.8 0.6
0

2

4

6

Group propensity Group propensity

Figure 6: The impact of group bias on fairness metrics for the
Yahoo! and MSLR datasets with different sensitive attributes.

bias. Comparing the tabular (left) and LTR output (right) plots in

Fig. 5, we observe that increasing the severity of group bias from

0.8 to 0.6, affects the tabular regime more. This may be because the

impact of group bias on the LTR outputs is indirect.

Fig. 6 shows a summary of the change in fairness metrics of both

tabular and LTR regimes as a result of group bias. For example, a

value of 𝜌 (DTR) = 0.5 in the left plot means that on average, the

target (i.e., ideal) exposure computed by the biased attractiveness

scores differs from the true target exposure computed in the full

information case by a factor of 0.5. Similarly, a value of Δ(EEL) = 3

in the right plot means that on average, the target exposure of the

biased case has an ℓ2 distance of 3 to the full information target

exposure. These results confirm that group bias changes the target

exposure in the tabular regime and this change is reflected in the

LTR output, trained over the biased training labels. Consequently,

when the system distributes the exposure according to the target

exposure to make a ranking fair, if the scores are suffering from

group bias, the result is not truly fair.

6.3 Amortized Correction
In the next set of experiments, we show the effectiveness of our

proposed correction method in Section 5 for compensating for the

negative effect of group bias. Table 1 compares the ranking quality,

in terms of NDCG@10, as well as two merit-based fairness metrics,

DTR and EEL, between the biased and corrected cases in the tabular

regime. Note here that in the tabular regime, it is assumed that

accurate relevance estimations, up to the group bias, are available,

meaning that the unbiased metrics get their ideal values, i.e., unbi-

ased NDCG@10 equals 1. When the corrected NDCG@10 reaches

1 (e.g., MovieLens with both bias parameter values), it means a

full recovery from group bias. In all setups, our correction method

improves the ranking quality and fairness metrics over the biased

case. With some exceptions for the ranking quality with mild group

bias (𝛽 = 0.8), the improvements are significant. For each bias pa-

rameter value, we have also included the estimated value obtained

from Eq. (14). We observe that our estimated bias values, i.e.,
ˆ𝛽A ,

are close to their corresponding true values 𝛽 .

We further analyze the effectiveness of our correction method in

the general LTR regime. Table 2 contains the comparison of ranking

quality and fairness metrics between the biased and corrected cases

in our tested LTR datasets. We also report the full information

case in the table. Here, we only report the results for one sensitive

attribute for each dataset, noting that the results for other sensitive

attributes lead to similar observations. Similar to the tabular regime,

here we also observe performance improvements as a result of our

correction method, compared to the biased case. Except for the
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Table 1: The impact of our amortized group bias correction on ranking and fairness metrics in the tabular regime. ˆ𝛽A shows the
estimated value of the bias parameter as in Eq. (14). For each metric, the columns “B” and “C” show the “Biased” and “Corrected”
performances, respectively. Superscripts ∗ indicate a significant improvement over the biased case with 𝑝 < 0.001.

𝛽 = 0.8 𝛽 = 0.6

ˆ𝛽A
NDCG@10 ↑ 𝜌 (DTR) ↑ Δ(EEL) ↓

ˆ𝛽A
NDCG@10 ↑ 𝜌 (DTR) ↑ Δ(EEL) ↓

B C B C B C B C B C B C

Yahoo![426] 0.825 0.987 0.996
∗ 0.820 0.955

∗ 0.447 0.120
∗

0.626 0.885 0.988
∗ 0.641 0.941

∗ 1.809 0.172
∗

MSLR[127] 0.843 0.975 0.991
∗ 0.813 0.948

∗ 1.687 0.308
∗

0.648 0.780 0.966
∗ 0.627 0.926

∗ 7.146 0.471
∗

IIT-JEE 0.727 0.989 0.991 0.799 0.906
∗ 0.504 0.341

∗
0.547 0.970 0.985

∗ 0.600 0.901
∗ 1.401 0.410

∗

MovieLens[𝐶𝑜.] 0.822 1.000 1.000 0.800 0.962
∗ 1.101 0.513

∗
0.612 0.998 1.000

∗ 0.602 0.958
∗ 7.113 1.908

∗

MovieLens[𝐵𝑂 ] 0.781 1.000 1.000 0.799 0.974
∗ 2.330 0.895

∗
0.579 0.994 1.000

∗ 0.600 0.961
∗ 24.800 2.831

∗

TREC 2019 0.838 0.997 1.000 0.888 0.954
∗ 0.041 0.020

∗
0.634 0.986 0.999

∗ 0.771 0.937
∗ 0.129 0.028

∗

TREC 2020 0.821 0.995 0.999 0.815 0.954
∗ 0.356 0.114

∗
0.614 0.945 0.995

∗ 0.627 0.941
∗ 1.152 0.137

∗

Table 2: The impact of our amortized group bias correction on ranking and fairness metrics in general LTR regime. For each
metric, the columns “B” and “C” show the “Biased” and “Corrected” performances, respectively.

Full info. 𝛽 = 0.8 𝛽 = 0.6

N
D
C
G

𝜌
(D
T
R
)

Δ
(E
E
L
) NDCG@10 ↑ 𝜌 (DTR) ↑ Δ(EEL) ↓ NDCG@10 ↑ 𝜌 (DTR) ↑ Δ(EEL) ↓

B C B C B C B C B C B C

Yahoo![426] 0.649 0.477 0.673 0.615 0.645
∗ 0.319 0.428

∗ 1.970 0.741
∗ 0.580 0.645

∗ 0.313 0.456
∗ 2.711 0.728

∗

MSLR[127] 0.320 0.681 1.779 0.283 0.313
∗ 0.675 0.684 4.380 2.016

∗ 0.265 0.309
∗ 0.671 0.683 5.803 2.147

∗

DTR metric in MSLR, all the improvements are significant with

𝑝 < 0.001. Compared with the full information case, we observe

that in the Yahoo! dataset, our correction method leads to full

recovery of NDCG@10, while in the MSLR dataset, there remains

a slight gap toward the full information quality. One reason for

this difference could be the distribution of relevant items in the

affected and non-affected groups: In Yahoo![426] the ratio between

the mean relevance of items in 𝐺A to 𝐺N is 1.05, whereas the

same quantity in MSLR[127] is 2.21. Therefore, the assumption of

similar utility score distributions for both groups is closer to reality

in Yahoo![426] than in MSLR[127] . Similarly to NDCG, we observe

that DTR and EEL are almost fully recovered from group bias in

the Yahoo! dataset, but not in the MSLR dataset.

Finally, Fig. 7 shows a summary of the ranking quality of biased

(left) and corrected (right) utility scores in the tabular regime on all

32 setups of the LTR datasets mentioned in Sec. 6.2. In all but two

cases, we observe that our correction method effectively improves

the ranking quality over the biased case and achieves NDCG@10

close to 1. The two outlier cases correspond to Yahoo![5] (for each
feature, two different thresholds for separating the groups are used),

where the ratio between the average utility of the affected group

and the non-affected group is as low as 0.3. This is the same outlier

as in Fig. 4. It is worth mentioning that in a slightly less severe

violation of the same distribution assumption, i.e., MSLR[130] with
a utility ratio of 0.45, our correction method is able to improve

the ranking quality over the biased case. One interesting future

direction would be to find out if this phenomenon, i.e., having the

true average utility of the underrepresented group considerably

lower than the other group, happens in real-world settings and how

to correct for the bias in such cases.

Remark 4. This paper introduces a novel bias paradigm. Our
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Figure 7: The ranking performance of biased (left) and cor-
rected (right) scores for the Yahoo! and MSLR datasets with
different sensitive attributes.

study emphasizes that even the supposedly ideal fair rankings are

not actually fair when group bias is unaddressed (RQ1); and that

employing amortized correction yields more robust results (RQ2).

Baseline comparisons are only pertinent to RQ2. We compare our

amortized correction method to the per-query method which is the

only existing method for group bias measurement and correction.

6.4 Ablation Study
6.4.1 Impact of cluster size on correction. In Section 5.2 we argued

against measuring group propensity for each query. Here, we an-

alyze the impact of cluster size on the correction method. Fig. 8

shows the ranking quality of the corrected scores as a function of

the cluster size. The overall ranking quality (red line) improves as

the cluster size grows and it converges to its final value at around a

cluster size of 10. For severe group bias (𝛽A = 0.6), which we omit

due to space restrictions, the same pattern is observed, but with a

convergence point of 100. In both cases, using a cluster size below

the convergence point leads to corrected rankings that are even

worse than the biased ranking. Comparing the ranking quality of
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Figure 8: The impact of cluster size of group propensity on
the amortized correction for group bias (𝛽A = 0.8) for the
Yahoo![426] dataset. Ranking quality of corrected scores (a),
and accuracy of the inferred group propensity (b).
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Figure 9: Effectiveness of amortized correction method when
accurate clustering is not available. Yahoo![426] dataset.

the affected group (black line) with the non-affected group (golden

line), we observe that smaller clusters result in over-compensation

of group bias. The reason is revealed in Fig. 8(b): for smaller cluster

sizes, the inferred propensity is under-estimated, leading to larger

corrected scores for the affected group members. One other inter-

esting observation in Fig. 8(b) is the high variance of the inferred

propensity for small clusters (issue (i) in Section 5.2).

6.4.2 Impact of clustering accuracy. Finally, we address the chal-
lenge of inaccurate clustering of queries based on their group

propensity that we raised at the end of Section 5.2. The main goal

of the following sets of experiments is to show that our correction

method, even when accurate clustering of queries is not available, is

still effective in improving the ranking quality over the biased case.

To confirm this, we add to the uncertainty of our simulation setup in

two different ways: (i) Higher variance: We increase the variance of

the group propensity when simulating attractiveness. We consider

𝜎𝛽 ∈ {0.2, 0.3}. (ii) Two modes: Instead of using a unimodal normal

distribution to simulate group propensity, we use a mixture model

with two modes {0.6, 0.8}. This means that for half of the queries,

the group propensity follows a normal distribution with a mean of

0.6 while for the other half, the mean is 0.8 and during inference, we

are not given the information about which query belongs to which

mode. Fig. 9 shows the ranking quality of the corrected scores w.r.t.

different cluster sizes. In both plots, we observe that increasing

the variance of the simulated group propensity both increases the

negative impact of group bias on ranking (dotted lines) and makes

it harder to correct for the bias (solid lines). The important result

of these experiments, however, is that even though the uncertainty

about group propensity is high, our amortized correction method

almost always improves the ranking quality over the biased case.

Note that in all setups, per-query correction as well as clusters with

a small size lead to worse ranking qualities than the biased scores.

Interestingly, when there are two modes of group propensity (right

plot), our correction method, oblivious to the mode membership

and assuming a fixed propensity, is able to correct the scores and

achieve a ranking performance higher than the biased case.

7 CONCLUSION AND FUTUREWORK
We have addressed group membership bias, which is based on the

observation that a user’s perception of an item’s group membership

may affect their judgment about the utility of an item. We have

provided extensive theoretical and empirical analyses of the impact

of group bias on the ranking quality and two fairness of exposure

metrics, DTR and EEL. By utilizing an auxiliary variable a as the

fraction of affected relevant items that are still as attractive as the

non-affected relevant items, we have shown that, in the presence

of group bias, NDCG and DTR change linearly with a , while the

change in EEL has a more complex form in terms of a .

Correcting for group bias, which is a type of content-based bias,

is not as easy as context-based types of bias such as position and

trust bias. To measure group bias, assumptions based on fairness

constraints should be made about the utility distribution of differ-

ent groups. However, such assumptions can potentially make the

equity-based notion of fairness meaningless. Amortized correction

for the group bias is our solution to this issue, as global equality

does not contradict local equity. We have experimentally confirmed

that our correction method, when its assumptions are met, is able

to fully recover the scores suffering from group bias.

There are several future directions to this study. One way to ex-

tend our results is to propose measurement and correction methods

that perform better with increased uncertainty of group propensity.

Moreover, as group bias is based on users’ perception of group

membership, it can change over time. Analyzing group bias in a

dynamic setting is therefore another direction. This study deals

with the impact of group bias on fair exposure and, hence, we only

consider the so-called treatment-based fairness metrics. In contrast,

some studies focus on impact-based fairness [44], where the ob-

jective is to make sure that items receive a fair amount of impact,

e.g., clicks. While our work suggests a way to correct for group

bias in the historical clicks in order to make the exposure in future

rankings fair, a next direction would be to account for group bias

when optimizing for impact-based fairness.

CODE AND DATA
To ensure the reproducibility of the reported results, this work

only made use of publicly available data and our experimental

implementation can be accessed publicly at https://github.com/

AliVard/groupbias.
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