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Abstract

We study the problem of explaining re-
lationships between pairs of knowledge
graph entities with human-readable de-
scriptions. Our method extracts and en-
riches sentences that refer to an entity pair
from a corpus and ranks the sentences ac-
cording to how well they describe the re-
lationship between the entities. We model
this task as a learning to rank problem for
sentences and employ a rich set of fea-
tures. When evaluated on a large set of
manually annotated sentences, we find that
our method significantly improves over
state-of-the-art baseline models.

1 Introduction

Knowledge graphs are a powerful tool for support-
ing a large spectrum of search applications includ-
ing ranking, recommendation, exploratory search,
and web search (Dong et al., 2014). A knowl-
edge graph aggregates information around enti-
ties across multiple content sources and links these
entities together, while at the same time provid-
ing entity-specific properties (such as age or em-
ployer) and types (such as actor or movie).

Although there is a growing interest in au-
tomatically constructing knowledge graphs, e.g.,
from unstructured web data (Weston et al., 2013;
Craven et al., 2000; Fan et al., 2012), the prob-
lem of providing evidence on why two entities
are related in a knowledge graph remains largely
unaddressed. Extracting and presenting evidence
for linking two entities, however, is an impor-
tant aspect of knowledge graphs, as it can enforce
trust between the user and a search engine, which
in turn can improve long-term user engagement,
e.g., in the context of related entity recommenda-
tion (Blanco et al., 2013). Although knowledge

∗This work was carried out while this author was visiting
Yahoo Labs.

graphs exist that provide this functionality to a
certain degree (e.g., when hovering over Google’s
suggested entities, see Figure 1), to the best of
our knowledge there is no previously published re-
search on methods for entity relationship explana-
tion.

Figure 1: Part of Google’s search result page for
the query “barack obama”. When hovering over
the related entity “Michelle Obama”, an explana-
tion of the relationship between her and “Barack
Obama” is shown.

In this paper we propose a method for explain-
ing the relationship between two entities, which
we evaluate on a newly constructed annotated
dataset that we make publicly available. In par-
ticular, we consider the task of explaining rela-
tionships between pairs of Wikipedia entities. We
aim to infer a human-readable description for an
entity pair given a relationship between the two
entities. Since Wikipedia does not explicitly de-
fine relationships between entities we use a knowl-
edge graph to obtain these relations. We cast our
task as a sentence ranking problem: we automat-
ically extract sentences from a corpus and rank



them according to how well they describe a given
relationship between a pair of entities. For rank-
ing purposes, we extract a rich set of features and
use learning to rank to effectively combine them.
Our feature set includes both traditional informa-
tion retrieval and natural language processing fea-
tures that we augment with entity-dependent fea-
tures. These features leverage information from
the structure of the knowledge graph. On top of
this, we use features that capture the presence in
a sentence of the relationship of interest. For our
evaluation we focus on “people” entities and we
use a large, manually annotated dataset of sen-
tences.

The research questions we address are the fol-
lowing. First, we ask what the effectiveness of
state-of-the-art sentence retrieval models is for
explaining a relationship between two entities
(RQ1). Second, we consider whether we can im-
prove over sentence retrieval models by casting the
task in a learning to rank framework (RQ2). Third,
we examine whether we can further improve per-
formance by using relationship-dependent models
instead of a relationship-independent one (RQ3).
We complement these research questions with an
error and feature analysis.

Our main contributions are a robust and effec-
tive method for explaining entity relationships, de-
tailed insights into the performance of our method
and features, and a manually annotated dataset.

2 Related Work

We combine ideas from sentence retrieval, learn-
ing to rank, and question answering to address the
task of explaining relationships between entities.

Previous work that is closest to the task we ad-
dress in this paper is that of Blanco and Zaragoza
(2010) and Fang et al. (2011). First, Blanco and
Zaragoza (2010) focus on finding and ranking sen-
tences that explain the relationship between an en-
tity and a query. Our work is different in that we
want to explain the relationship between two enti-
ties, rather than a query. Fang et al. (2011) explore
the generation of a ranked list of knowledge base
relationships for an entity pair. Instead, we try to
select sentences that describe a particular relation-
ship, assuming that this is given.

Our approach builds on sentence retrieval,
where one retrieves sentences rather than docu-
ments that answer an information need. Docu-
ment retrieval models such as tf-idf, BM25, and

language modeling (Baeza-Yates et al., 1999) have
been extended to tackle sentence retrieval. Three
of the most successful sentence retrieval methods
are TFISF (Allan et al., 2003), which is a vari-
ant of the vector space model with tf-idf weight-
ing, language modeling with local context (Mur-
dock, 2006; Fernández et al., 2011), and a recur-
sive version of TFISF that accounts for local con-
text (Doko et al., 2013). TFISF is very competi-
tive compared to document retrieval models tuned
specifically for sentence retrieval (e.g., BM25 and
language modeling (Losada, 2008)) and we there-
fore include it as a baseline.

Sentences that are suitable for explaining rela-
tionships can have attributes that are important for
ranking but cannot be captured by term-based re-
trieval models. One way to combine a wide range
of ranking features is learning to rank (LTR). Re-
cent years have witnessed a rapid increase in the
work on learning to rank, and it has proven to be a
very successful method for combining large num-
bers of ranking features, for web search, but also
other information retrieval applications (Burges et
al., 2011; Surdeanu et al., 2011; Agarwal et al.,
2012). We use learning to rank and represent each
sentence with a set of features that aim to capture
different dimensions of the sentence.

Question answering (QA) is the task of provid-
ing direct and concise answers to questions formed
in natural language (Hirschman and Gaizauskas,
2001). QA can be regarded as a similar task to
ours, assuming that the combination of entity pair
and relationship form the “question” and that the
“answer” is the sentence describing the relation-
ship of interest. Even though we do not follow the
QA paradigm in this paper, some of the features
we use are inspired by QA systems. In addition,
we employ learning to rank to combine the devised
features, which has recently been successfully ap-
plied for QA (Surdeanu et al., 2011; Agarwal et
al., 2012).

3 Problem Statement

We address the problem of explaining relation-
ships between pairs of entities in a knowledge
graph. We operationalize the problem as a prob-
lem of ranking sentences from documents in a
corpus that is related to the knowledge graph.
More specifically, given two entities ei and ej that
form an entity pair ⟨ei, ej⟩, and a relation r be-
tween them, the task is to extract a set of can-



didate sentences Sij = {sij1 , . . . , sijk} that refer
to ⟨ei, ej⟩ and to impose a ranking on the sen-
tences in Sij . The relation r has the general form
⟨type(ei), terms(r), type(ej)⟩, where type(e) is
the type of the entity e (e.g., Person or Actor)
and terms(r) are the terms of the relation (e.g.,
CoCastsWith or IsSpouseOf).

We are left with two specific tasks: (1) extract-
ing candidate sentences Sij , and (2) ranking Sij ,
where the goal is to have sentences that provide
a perfect explanation of the relationship at the top
position of the ranking. The next section describes
our methods for both tasks.

4 Explaining Entity Relationships

We follow a two-step approach for automatically
explaining relationships between entity pairs.
First, in Section 4.1, we extract and enrich sen-
tences that refer to an entity pair ⟨ei, ej⟩ from a
corpus in order to construct a set of candidate sen-
tences. Second, in Section 4.2, we extract a rich
set of features describing the entities’ relationship
r and use supervised machine learning in order to
rank the sentences in Sij according to how well
they describe the relationship r.

4.1 Extracting candidate sentences

To create a set of candidate sentences for a given
entity pair and relationship, we require a corpus of
documents that is pertinent to the entities at hand.
Although any kind of document collection can be
used, we focus on Wikipedia in this paper, as it
provides good coverage for the majority of entities
in our knowledge graph.

First, we extract surface forms for the given en-
tities: the title of the entity’s Wikipedia article
(e.g., “Barack Obama”), the titles of all redirect
pages linking to that article (e.g., “Obama”), and
all anchor text associated with hyperlinks to the ar-
ticle within Wikipedia (e.g., “president obama”).
We then split all Wikipedia articles into sentences
and consider a sentence as a candidate if (i) the
sentence is part of either entities’ Wikipedia arti-
cle and contains a surface form of, or a link to,
the other entity; or (ii) the sentence contains sur-
face forms of, or links to, both entities in the entity
pair.

Next, we apply two sentence enrichment steps
for (i) making sentences self-contained and read-
able outside the context of the source document
and (ii) linking the sentences to entities. For (i),

we replace pronouns in candidate sentences with
the title of the entity. We apply a simple heuristic
for the people entities, inspired by (Wu and Weld,
2010):1 we count the frequency of the terms “he”
and “she” in the article for determining the gender
of the entity, and we replace the first appearance
of “he” or “she” in each sentence with the entity’s
title. We skip this step if any surface form of the
entity occurs in the sentence.

For (ii), we apply entity linking to provide links
from the sentence to additional entities (Milne and
Witten, 2008). This need arises from the fact
that not every sentence in an article contains ex-
plicit links to the entities it mentions, as Wikipedia
guidelines only allow one link to another article in
the article’s text.2 The algorithm takes a sentence
as input and iterates over n-grams that are not yet
linked to an entity. If an n-gram matches a surface
form of an entity, we establish a link between the
n-gram and the entity. We restrict our search space
to entities that are linked from within the source
article of the sentence and from within articles to
which the source article links. This way, our entity
linking method achieves high precision as almost
no disambiguation is necessary.

As an example, consider the sentence “He
gave critically acclaimed performances in the
crime thriller Seven. . . ” on the Wikipedia page
for Brad Pitt. After applying our enrichment
steps, we obtain “Brad Pitt gave critically
acclaimed performances in the crime thriller
Seven. . . ”, making the sentence human read-
able and link to the entities Brad Pitt and
Seven (1995 film).

4.2 Ranking sentences

After extracting candidate sentences, we rank
them by how well they describe the relationship
of interest r between entities ei and ej . There
are many signals beyond simple term statistics that
can indicate relevance. Automatically construct-
ing a ranking model using supervised machine
learning techniques is therefore an obvious choice.
For ranking we use learning to rank (LTR) and rep-
resent each sentence with a rich set of features. Ta-
ble 1 lists the features we use. Below we provide

1We experimented with the Stanford co-reference reso-
lution system (Lee et al., 2011) and Apache OpenNLP and
found that they were not able to consistently achieve the level
of effectiveness that we require.

2http://en.Wikipedia.org/wiki/
Wikipedia:Manual_of_Style/Linking



# Name Gloss

Text features
1 Sentence length Length of s in words
2 Sum of idf Sum of IDF of terms of s in Wikipedia
3 Average idf Average IDF of terms of s in Wikipedia
4 Sentence density Lexical density of s, see Equation 1 (Lee et al., 2001)

5–8 POS fractions Fraction of verbs, nouns, adjectives, others in s (Mintz et al., 2009)

Entity features
9 #entities Total number of entities in s

10 Link to ei Whether s contains a link to the entity ei
11 Link to ej Whether s contains a link to the entity ej
12 Links to ei and ej Whether s contains links to both entities ei and ej
13 Entity first Is ei or ej the first entity in the sentence?
14 Spread of ei, ej Distance between the last match of ei and ej in s (Blanco and Zaragoza, 2010)

15–22 POS fractions left/right Fraction of verbs, nouns, adjectives, others to the left/right window of ei and ej in
s (Mintz et al., 2009)

23–25 #entities left/right/between Number of entities to the left/right or between entities ei and ej in s
26 common links ei, ej Whether s contains any common link of ei and ej
27 #common links The number of common links of ei and ej in s
28 Score common links ei, ej Sum of the scores of the common links of ei and ej in s

29–30 #common links prev/next The number of common links of ei and ej in previous/next sentence of s

Relationship features
31 Match terms(r)? Whether s contains any term in terms(r)
32 Match wordnet(r)? Whether s contains any phrase in wordnet(r)
33 Match word2vec(r)? Whether s contains any phrase in word2vec(r)

34–36 or’s Boolean OR of feature 31 and one or both of features 32 and 33
37–38 or(31, 32, 33) prev/next Boolean OR of features 31, 32, 33 for the previous/next sentence of s

39 Average word2vec(r) Average cosine similarity of phrases in word2vec(r) that are matched in s
40 Maximum word2vec(r) Maximum cosine similarity of phrases in word2vec(r) that are matched in s
41 Sum word2vec(r) Sum of cosine similarity of phrases in word2vec(r) that are matched in s
42 Score LC Lucene score of s with titles(ei, ej), terms(r), wordnet(r), word2vec(r) as

query
43 Score R-TFISF R-TFISF score of s with queries constructed as above

Source features
44 Sentence position Position of s in document from which it originates
45 From ei or ej? Does s originate from the Wikipedia article of ei or ej?
46 #(ei or ej) Number of occurrences of ei or ej in document from which s originates, inspired

by document smoothing for sentence retrieval (Murdock and Croft, 2005)

Table 1: Features used for sentence ranking.

a brief description of the more complex ones.

Text features This feature type regards the im-
portance of the sentence s at the term level. We
compute the density of s (feature 4) as:

density(s) =
1

K ⋅ (K + 1)
n

∑
j=1

idf(tj) ⋅ idf(tj+1)
distance(tj , tj+1)2

, (1)

where K is the number of keyword terms in
s and distance(tj , tj+1) is the number of non-
keyword terms between keyword terms tj and
tj+1. We treat stop words and numbers in s as non-
keywords and the remaining terms as keywords.
Features 5–8 capture the distribution of part-of-
speech tags in the sentence.

Entity features These features partly build
on (Tsagkias et al., 2011; Meij et al., 2012) and de-

scribe the entities and are dependent on the knowl-
edge graph. Whether ei or ej is the first appearing
entity in a sentence might be an indicator of impor-
tance (feature 13). The spread of ei and ej in the
sentence (feature 14) might be an indicator of their
centrality in the sentence (Blanco and Zaragoza,
2010). Features 15–22 capture the distribution of
part-of-speech tags in the sentence in a window of
four words around ei or ej in s (Mintz et al., 2009),
complemented by the number of entities between,
to the left of, and to the right of the entity pair
(features 23–25).

We assume that two articles that have many
common articles that point to them are strongly
related (Witten and Milne, 2008). We hypothesize
that, if a sentence contains common inlinks from
ei and ej , the sentence might contain important in-
formation about their relationship. Hence, we add
whether the sentence contains a common link (fea-



ture 26) and the number of common links (feature
27) as features. We score a common link l between
ei and ej using:

score(l, ei, ej) = sim(l, ei) ⋅ sim(l, ej), (2)

where sim(⋅, ⋅) is defined as the similarity between
two Wikipedia articles, computed using a vari-
ant of Normalized Google Distance (Witten and
Milne, 2008). Feature 28 then measures the sum
of the scores of the common links.

Previous research shows that using surrounding
sentences is beneficial for sentence retrieval (Doko
et al., 2013). We therefore consider the number of
common links in the previous and next sentence
(features 29–30).

Relationship features Feature 31 indicates
whether any of the relationship-specific terms oc-
curs in the sentence. Only matching the terms
in the relationship may have low coverage since
terms such as “spouse” may have many synonyms
and/or highly related terms, e.g., “husband” or
“married”. Therefore, we use WordNet to find
synonym phrases of r (feature 32); we refer to this
method as wordnet(r).

Alternatively, we use word embeddings to find
such similar phrases (Mikolov et al., 2013). Such
embeddings take a text corpus as input and learn
vector representations of words and phrases con-
sisting of real numbers. Given the set Vr consist-
ing of the vector representations of all the relation-
ship terms and the set V which consists of the vec-
tor representations of all the candidate phrases in
the data, we calculate the distance between a can-
didate phrase represented by a vector vi ∈ V and
the vectors in Vr as:

distance(vi, V ) = cos
⎛
⎝
vi, ∑

vj∈Vr

vj
⎞
⎠
, (3)

where ∑vj∈Vr
vj is the element-wise sum of the

vectors in Vr and the distance between two vec-
tors v1 and v2 is measured using cosine similarity.
The candidate phrases in V are then ranked using
Equation 3 and the top-m phrases are selected, re-
sulting in features 33, 39, 40, and 41; we refer to
the ranked set of phrases that are selected using
this procedure as word2vec(r).

In addition, we employ state-of-the-art retrieval
functions and include the scores for queries that
are constructed using the entities ei and ej , the re-
lation r, wordnet(r), and word2vec(r). We use

the titles of the entity articles titles(e) to repre-
sent the entities in the query and two ranking func-
tions, Recursive TFISF (R-TFISF) and LC,3 (fea-
tures 42–43). TFISF is a sentence retrieval model
that determines the level of relevance of a sentence
s given a query q as:

R(s, q) =∑
t∈q

log(tf t,q + 1)⋅

log(tf t,s + 1) ⋅ log( n + 1
0.5 + sf t

) , (4)

where tf t,q and tf t,s are the number of occur-
rences of term t in the query q and the sentence
s respectively, sf t is the number of sentences in
which t appears, and n is the number of sentences
in the collection. R-TFISF is an improved ex-
tension of the TFISF method (Doko et al., 2013),
which incorporates context from neighboring sen-
tences in the ranking function:

Rc(s, q) = (1 − µ)R(s, q)+ (5)

µ[Rc(sprev(s), q) +Rc(snext(s), q)],

where µ is a free parameter and sprev(s) and
snext(s) indicate functions to retrieve the previous
and next sentence, respectively. We use a maxi-
mum of three recursive calls.

Source features Here, we refer to features that
are dependent on the source document of the sen-
tences. We have three such features.

5 Experimental setup

In this section we describe the dataset, manual an-
notations, learning to rank algorithm, and evalu-
ation metrics that we use to answer our research
questions.

5.1 Dataset
We draw entities and their relationships from a
proprietary knowledge graph that is created from
Wikipedia, Freebase, IMDB, and other sources,
and that is used by the Yahoo web search engine.
We focus on “people” entities and relationships
between them.4 For our experiments we need to
select a manageable set of entities, which we ob-
tain as follows. We consider a year of query logs

3In preliminary experiments R-TFISF and LC were the
best performing among a pool of sentence retrieval methods.

4Note that, except for the co-reference resolution step de-
scribed in Section 4.1, our method does not depend on this
restriction.



from a large commercial search engine, count the
number of times a user clicks on a Wikipedia ar-
ticle of an entity in the results page and perform
stratified sampling of entities according to this dis-
tribution. As we are bounded by limited resources
for our manual assessments, we sample 1 476 en-
tity pairs that together with nine unique relation-
ship types form our experimental dataset.

We use an English Wikipedia dump dated July
8, 2013, containing approximately 4M articles, of
which 50 638 belong to “people” entities that are
also in our knowledge graph. We extract sentences
using the approach described in Section 4.1, re-
sulting in 36 823 candidate sentences for our enti-
ties. On average we have 24.94 sentences per en-
tity pair (maximum 423 and minimum 0). Because
of the large variance, it is not feasible to obtain ex-
haustive annotations for all sentences. We rank the
sentences using R-TFISF and keep the top-10 sen-
tences per entity pair for annotation. This results
in a total of 5 689 sentences.

Five human annotators provided relevance judg-
ments, manually judging sentences based on how
well they describe the relationship for an entity
pair, for which we use a five-level graded rele-
vance scale (perfect, excellent, good, fair, bad).5

Of all relevance grades 8.1% is perfect, 15.69%
excellent, 19.98% good, 8.05% fair, and 48.15%
bad. Out of 1 476 entity pairs, 1 093 have at least
one sentence annotated as fair. As is common in
information retrieval evaluation, we discard entity
pairs that have only “bad” sentences. We examine
the difficulty of the task for human annotators by
measuring inter-annotator agreement on a subset
of 105 sentences that are judged by 3 annotators.
Fleiss’ kappa is k = 0.449, which is considered to
be moderate agreement.

5.2 Machine learning

For ranking sentences we use a Random Forest
(RF) classifier (Breiman, 2001).6 We set the num-
ber of iterations to 300 and the sampling rate to
0.3. Experiments with varying these two parame-
ters did not show any significant differences. We
also tried several feature normalization methods,
none of them being able to significantly outper-

5https://github.com/nickvosk/acl2015-
dataset-learning-to-explain-entity-
relationships

6In preliminary experiments, we contrasted RF with gra-
dient boosted regression trees and LambdaMART and found
that RF consistently outperformed other methods.

Baseline NDCG@1 NDCG@10 ERR@1 ERR@10

B1 0.7508 0.8961 0.3577 0.4531
B2 0.7511 0.8958 0.3584 0.4530
B3 0.7595 0.8997 0.3696 0.4600
B4 0.7767 0.9070 0.3774 0.4672
B5 0.7801 0.9093 0.3787 0.4682

Table 2: Results for five baseline variants. See text
for their description and significant differences.

form the runs without feature normalization.
We obtain POS tags using the Stanford part-of-

speech tagger and filter out a standard list of 33
English stopwords. For the word embeddings we
use word2vec and train our model on all text in
Wikipedia using negative sampling and the con-
tinuous bag of words architecture. We set the size
of the phrase vectors to 500 and m = 30.

5.3 Evaluation metrics
We employ two main evaluation metrics in our
experiments, NDCG (Järvelin and Kekäläinen,
2002) and ERR (Chapelle et al., 2009). The for-
mer measures the total accumulated gain from
the top of the ranking that is discounted at lower
ranks and is normalized by the ideal cumulative
gain. The latter models user behavior and mea-
sures the expected reciprocal rank at which a user
will stop her search. We consider these ranking-
based graded evaluation metrics at two cut-off
points: position 1, corresponding to showing a sin-
gle sentence to a user, and 10, which accounts for
users who might look at more results. We report
on NDCG@1, NDCG@10, ERR@1, ERR@10,
and Exc@1, which indicates whether we have an
“excellent” or “perfect” sentence at the top of the
ranking. Likewise, Per@1 indicates whether we
have a “perfect” sentence at the top of the ranking
(not all entity pairs have an excellent or a perfect
sentence).

We perform 5-fold cross validation and test for
statistical significance using a paired two-tailed t-
test. We depict a significant difference in perfor-
mance for p < 0.01 with ▲ (gain) and ▼ (loss) and
for p < 0.05 with △ (gain) and ▽ (loss). Boldface
indicates the best score for a metric.

6 Results and Analysis

We compare the performance of typical docu-
ment retrieval models and state-of-the-art sentence
retrieval models in order to answer RQ1. We
consider five sentence retrieval models: Lucene
ranking (LC), language modeling with Dirichlet



Has one # pairs # sentences Method NDCG@1 NDCG@10 ERR@1 ERR@10 Exc@1 Per@1

fair 1 093 4 435 B5 0.7801 0.9093 0.3787 0.4682 – –
LTR 0.8489▲ 0.9375▲ 0.4242▲ 0.4980▲ – –

good 1 038 4 285 B5 0.7742 0.9078 0.3958 0.4894 – –
LTR 0.8486▲ 0.9374▲ 0.4438▲ 0.5208▲ – –

excellent 752 3 387 B5 0.7455 0.8999 0.4858 0.5981 0.7314 –
LTR 0.8372▲ 0.9340▲ 0.5500▲ 0.6391▲ 0.8298▲ –

perfect 339 1 687 B5 0.7082 0.8805 0.6639 0.7878 0.7729 0.6136
LTR 0.8150▲ 0.9245▲ 0.7640▲ 0.8518▲ 0.8909▲ 0.7227▲

Table 3: Results for the best baseline (B5) and the learning to rank method (LTR).

smoothing (LM), BM25, TFISF, and Recursive
TF-ISF (R-TFISF). We follow related work and
set µ = 0.1 for R-TFISF, k = 1 and b = 0 for BM25
and µ = 250 for LM (Fernández et al., 2011).

In our experiments, a query q is constructed us-
ing various combinations of surface forms of the
two entities ei and ej and the relationship r. Each
entity in the entity pair can be represented by its
title, the titles of any redirect pages pointing to
the entity’s article, the n-grams used as anchors in
Wikipedia to link to the article of the entity, or the
union of them all. The relationship r can be repre-
sented by the terms in the relationship, synonyms
in wordnet(r), or by phrases in word2vec(r).

First, we fix the way we represent r. Base-
line B1 does not include any representation of r
in the query. B2 includes the relationship terms
of r, while B3 includes the relationship terms of r
and the synonyms in wordnet(r). B4 includes the
terms of r and the phrases in word2vec(r), and B5
includes the relationship terms of r, the synonyms
in wordnet(r) and the phrases in word2vec(r).
Combining these variations with the entity repre-
sentations, we find that all combinations that use
the titles as representation and R-TFISF as the
retrieval function outperform all other combina-
tions.7 This can be explained by the fact that titles
are least ambiguous, thus reducing the possibility
of accidentally referring to other entities. BM25
and LC perform almost as well as R-TFISF, with
only insignificant differences in performance.

Table 2 shows the best performing combination
of each baseline, i.e., varying the representation
of r and using titles and R-TFISF. B4 and B5
are the best performing baselines, suggesting that
word2vec(r) and wordnet(r) are beneficial. B5
significantly outperforms all baselines except B4.

We also experiment with a supervised combina-

7We omit a full table of results due to space constraints.

tion of the baseline rankers using LTR. Here, we
consider each baseline ranker as a separate feature
and train a ranking model. The trained model is
not able to outperform the best individual baseline,
however.

6.1 Learning to rank sentences
Next, we provide the results of our method us-
ing the features described in Section 4.2, exploring
whether our learning to rank (LTR) approach im-
proves over sentence retrieval models (RQ2). We
compare an LTR model using Table 1’s features
against the best baseline (B5). Table 3 shows the
results. Each group in the table contains the results
for the entity pairs that have at least one candidate
sentence of that relevance grade for B5 and LTR.

We find that LTR significantly outperforms B5
by a large margin. The absolute performance dif-
ference between LTR and B5 becomes larger for
all metrics as we move from “fair” to “perfect,”
which shows that LTR is more robust than the
baseline for entity pairs that have at least one high
quality candidate sentence. LTR ranks the best
possible sentence at the top of the ranking for
∼83% of the cases for entity pairs that contain an
“excellent” sentence and for ∼72% of the cases for
entity pairs that contain a “perfect” sentence.

Note that, as indicated in Section 5.1, we dis-
card entity pairs that have only “bad” sentences
in our experiments. For the sake of complete-
ness, we report on the results for all entity pairs in
our dataset—including those without any relevant
sentences—in Table 4.

6.2 Relationship-dependent models
Relevant sentences may have different properties
for different relationship types. For example, a
sentence describing two entities being partners
would have a different form than one describing
that two entities costar in a movie. A similar



Has one # pairs # sentences Method NDCG@1 NDCG@10 ERR@1 ERR@10 Exc@1 Per@1

- 1 476 5 689 B5 0.5776 0.6733 0.2804 0.3467 – –
LTR 0.6285▲ 0.6940▲ 0.3155▲ 0.3694▲ – –

Table 4: Results for the best baseline (B5) and the learning to rank method (LTR), using all entity pairs
in the dataset, including those without any relevant sentences.

Relationship # pairs # sentences NDCG@1 NDCG@10 ERR@1 ERR@10

⟨MovieActor ,CoCastsWith,MovieActor⟩ 410 1 403 0.8604 0.9436 0.3809 0.4546
⟨TvActor ,CoCastsWith,TvActor⟩ 210 626 0.8729 0.9482 0.3271 0.3845
⟨MovieActor , IsDirectedBy ,MovieDirector⟩
⟨MovieDirector ,Directs,MovieActor⟩ 112 492 0.8795 0.9396 0.4709 0.5261
⟨Person, isChildOf ,Person⟩
⟨Person, isParentOf ,Person⟩ 108 716 0.8428 0.9081 0.6395 0.7136
⟨Person, isPartnerOf ,Person⟩
⟨Person, isSpouseOf ,Person⟩ 155 877 0.8623 0.9441 0.6153 0.6939
⟨Athlete,PlaysSameSportTeamAs,Athlete⟩ 98 321 0.8787 0.9535 0.3350 0.3996

Average results over all data 1 093 4 435 0.8661 0.9395 0.4615 0.5287
LTR (Table 3; fair) 0.8489 0.9375 0.4242 0.4980

Table 5: Results for relationship-dependent models. Similar relationships are grouped together.

idea was investigated in the context of QA for as-
sociating question and answer types (Yao et al.,
2013). To answer (RQ3) we examine whether
learning a relationship-dependent model improves
over learning a single model for all types. We split
our dataset per relationship type and train a model
per type using 5-fold cross-validation within each.
Table 5 shows the results.8 Our method is ro-
bust across different relationships in terms of
NDCG. However, we observe some variation in
ERR as this metric is more sensitive to the distri-
bution of relevant items than NDCG—the distri-
bution over relevance grades varies per relation-
ship type. For example, it is much more likely to
find candidate sentences that have a high relevance
grade for ⟨Person , isSpouseOf , Person⟩ than for
⟨Athlete , PlaysSameSportTeamAs , Athlete⟩ in
our dataset. We plan to address this issue by ex-
ploring other corpora in the future.

The second-to-last row in Table 5 shows the av-
eraged results over the different relationship types,
which is a significant improvement over LTR at
p < 0.01 for all metrics. This method ranks the
best possible sentence at the top of the ranking for
∼85% of the cases for entity pairs that contain an
“excellent” sentence (∼2% absolute improvement
over LTR) and for ∼75% of the cases for entity
pairs that contain a “perfect” sentence (∼3% abso-
lute improvement over LTR).

8We omit Exc@1 and Per@1 due to space constraints.

6.3 Feature type analysis
Next, we analyze the impact of the feature types.
Table 6 shows how performance varies when re-
moving one feature type at a time from the full
feature set. Relationship type features are the most
important, although entity type features are impor-
tant as well. This indicates that introducing fea-
tures based on entities identified in the sentences
and the relationship is beneficial for this task. Fur-
thermore, the limited dependency on the source
feature type indicates that our method might be
able to generalize in other domains. Finally, text
type features do contribute to retrieval effective-
ness, although not significantly. Note that calcu-
lating the sentence features is straightforward, as
none of our features requires heavy linguistic anal-
ysis.

Features NDCG@1 NDCG@10 ERR@1 ERR@10

All 0.8661 0.9395 0.4615 0.5287

All∖text 0.8620 0.9372 0.4606 0.5274
All∖source 0.8598 0.9372 0.4582 0.5261
All∖entity 0.8421▽ 0.9282▼ 0.4497 0.5202▽

All∖relation 0.8183▼ 0.9201▼ 0.4352▼ 0.5112▼

Table 6: Results using relationship-dependent
models, removing individual feature types.

6.4 Error analysis
When looking at errors made by the system, we
find that some are due to the fact that entity pairs
might have more than one relationship (e.g., ac-



tors that costar in movies also being partners) but
the selected sentence covers only one of the re-
lationships.9 For example, Liza Minnelli is
the daughter of Judy Garland, but they have
also costarred in a movie, which is the relationship
of interest. The model ranks the sentence “Liza
Minnelli is the daughter of singer and actress Judy
Garland. . . ” at the top, while the most relevant
sentence is: “Judy Garland performed at the Lon-
don Palladium with her then 18-year-old daughter
Liza Minnelli in November 1964.”

Sentences that contain the relationship in which
we are interested, but for which this cannot be
directly inferred, are another source of error.
Consider, for example, the following sentence,
which explains director Christopher Nolan
directed actor Christian Bale: “Jackman
starred in the 2006 film The Prestige, directed by
Christopher Nolan and costarring Christian Bale,
Michael Caine, and Scarlett Johansson”. Even
though the sentence contains the relationship of in-
terest, it focuses on actor Hugh Jackman. The
sentence “In 2004, after completing filming for
The Machinist, Bale won the coveted role of Bat-
man and his alter ego Bruce Wayne in Christopher
Nolan’s Batman Begins. . . ”, in contrast, refers to
the two entities and the relationship of interest di-
rectly, resulting in a higher relevance grade. Our
method, however, ranks the first sentence on top,
as it contains more phrases that refer to the rela-
tionship.

7 Conclusions and Future Work

We have presented a method for explaining rela-
tionships between knowledge graph entities with
human-readable descriptions. We first extract and
enrich sentences that refer to an entity pair and
then rank the sentences according to how well
they describe the relationship. For ranking, we
use learning to rank with a diverse set of fea-
tures. Evaluation on a manually annotated dataset
of “people” entities shows that our method sig-
nificantly outperforms state-of-the-art sentence re-
trieval models for this task. Experimental results
also show that using relationship-dependent mod-
els is beneficial.

In future work we aim to evaluate how our
method performs on entities and relationships of

9The annotators marked sentences that do not refer to the
relationship of interest as “bad” but indicated whether they
describe another relationship or not. We plan to account for
such cases in future work.

any type and popularity, including tail entities and
miscellaneous relationships. We also want to in-
vestigate moving beyond Wikipedia and extract
candidate sentences from documents that are not
related to the knowledge graph, such as web pages
or news articles. Employing such documents also
implies an investigation into more advanced co-
reference resolution methods.

Our analysis showed that sentences may cover
different relationships between entities or differ-
ent aspects of a single relationship—we aim to ac-
count for such cases in follow-up work. Further-
more, sentences may contain unnecessary infor-
mation for explaining the relation of interest be-
tween two entities. Especially when we want to
show the obtained results to end users, we may
need to apply further processing of the sentences
to improve their quality and readability. We would
like to explore sentence compression techniques
to address this. Finally, relationships between en-
tities have an inherit temporal nature and we aim
to explore ways to explain entity relationships and
their changes over time.
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