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ABSTRACT
Session-based recommendation is the task of predicting the next
item to recommend when the only available information consists
of anonymous behavior sequences. Previous methods for session-
based recommendation focus mostly on the current session, ignor-
ing collaborative information in so-called neighborhood sessions,
sessions that have been generated previously by other users and
reflect similar user intents as the current session. We hypothesize
that the collaborative information contained in such neighborhood
sessions may help to improve recommendation performance for
the current session.

We propose a Collaborative Session-based Recommendation
Machine (CSRM), a novel hybrid framework to apply collabora-
tive neighborhood information to session-based recommendations.
CSRM consists of two parallel modules: an Inner Memory En-
coder (IME) and an OuterMemory Encoder (OME). The IMEmodels
a user’s own information in the current session with the help of
Recurrent Neural Networks (RNNs) and an attention mechanism.
The OME exploits collaborative information to better predict the
intent of current sessions by investigating neighborhood sessions.
Then, a fusion gating mechanism is used to selectively combine
information from the IME and OME so as to obtain the final rep-
resentation of the current session. Finally, CSRM obtains a recom-
mendation score for each candidate item by computing a bilinear
match with the final representation.

Experimental results on three public datasets demonstrate the
effectiveness of CSRM compared to state-of-the-art session-based
recommender systems. Our analysis of CSRM’s recommendation
process shows when and how collaborative neighborhood infor-
mation and the fusion gating mechanism positively impact the
performance of session-based recommendations.

CCS CONCEPTS
• Information systems→ Recommender systems.
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1 INTRODUCTION
Conventional recommendation methods are often based on explicit
user-item preferences (e.g., ratings), for which information about
users and items is essential [21, 22, 30]. For example, content-based
methods generate lists of recommendations by evaluating similari-
ties between user profiles and item features [26, 42]. However, in
many realistic scenarios users are not logged in and no past interac-
tions of users are known: no explicit preferences but only positive
observations (e.g., clicks) are available. Under these circumstances,
conventional recommendation methods [21, 24, 36] do not perform
well. To address this issue, session-based recommendation has been
proposed to generate recommendations based only on anonymous
behavior sessions. Given the short-term history of a user’s behav-
ior in the current session, session-based recommendation aims to
predict the next item that she/he might be interested in.

Early studies on session-based recommendation aremainly based
on item-to-item recommendation [24, 36] and produce predictions
relying on computing similarities (e.g., based on co-occurrence)
between items within sessions, ignoring sequential information of
click sequences in an ongoing session. Later work investigates the
use of Markov chains to exploit sequential behavior data and predict
a user’s next action based on their last action [38, 46]. However,
this work only models local sequential behavior between adjacent
items. A major issue for Markov chain-based methods is that the
state space quickly becomes unmanageable when trying to include
all sequences of potential user selections over all items [23].

Recent studies use deep learning (e.g., RNNs) for session-based
recommendations, so that information of the entire session can be
considered [15, 23, 31]. For example, Hidasi et al. [15] use Gated
Recurrent Units (GRUs) to model sequences of actions in a ses-
sion. Li et al. [23] achieve further improvements by introducing
an attention mechanism to capture the user’s main purpose in the
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current session. Although these RNN-based methods show notice-
able improvements over traditional recommendation approaches,
they usually have limited short-term memory and have difficulty
in performing memorization. Memory networks [44] have been
introduced to recommender systems motivated by the advantage of
having a long-termmemorymodule. Chen et al. [2] improve sequen-
tial recommendations by first introducing user memory networks
to make use of a user’s historical records and explicitly capture item-
and feature-level sequential patterns. Huang et al. [16] propose a
knowledge enhanced sequential recommender that integrates RNN-
based networks with Key-Value Memory Networks (KV-MNs) [29].

Existing memory network-based methods for session-based rec-
ommendations have achieved encouraging results. But they only
exploit a user’s own information while ignoring the potential of col-
laborative information in so-called neighborhood sessions, which are
sessions generated by any user (not necessarily the same user of the
current session) that display similar behavior patterns and reflect
similar user intents as the current session. Consider, for example,
the session [Phone1, Phone2, Phone3] and a later session [Phone1,
Phone3, Phone4]. While interacting with the recommender system,
the users generating these sessions both click on some phones,
presumably with similar specifications to make a comparison. The
two users may have similar intents to find a suitable phone, and,
hence, Phone2 might be of interest to the user generating the second
sequence. We hypothesize that neighborhood sessions may help to
improve recommendations in the current session.

We propose a novel neural network framework, namely Col-
laborative Session-based Recommendation Machine (CSRM), for
session-based recommendations that consists of two parallel mod-
ules: an Inner Memory Encoder (IME) and an Outer Memory En-
coder (OME). The IME models the information contained within
the current session with the help of an RNN’s inherent dynamic
memory. It learns a unified representation combining two encoding
schemes: a global encoder and a local encoder. The OME exploits
collaborative-filtering techniques to better predict the intent of
a current session by employing an external memory module to
investigate neighborhood sessions. The OME contains an associa-
tive addressing mechanism to automatically identify neighborhood
sessions. Finally, CSRM introduces a fusion gating mechanism to
combine the representations resulting from the IME and OME, and
computes a recommendation score for each candidate item based
on the fused representation.

We carry out extensive experiments on three benchmark datasets.
The results show that CSRM outperforms state-of-the-art session-
based recommendation baselines on all three datasets in terms of
Recall andMRR.We conduct further experiments to analyze the IME
and the OME in depth so as to explore CSRM’s recommendation
process and determine how collaborative neighborhood informa-
tion and the fusion gating mechanism influence the performance
of session-based recommendations.

We summarize our contributions as follows.
• To the best of our knowledge, we are the first to consider col-
laborative modeling in session-based recommendations with an
end-to-end neural model.

• Wepropose a novel CSRMmodel that integrates an IME andOME
to take information from the current session and neighborhood
sessions into account for session-based recommendations.

• We introduce a fusion gating mechanism to selectively combine
information from the current and neighborhood sessions for
better recommendations.

• We carry out extensive experiments on three benchmark datasets.
CSRM significantly outperforms state-of-the-art models in terms
of Recall and MRR on the session-based recommendation task.

2 RELATEDWORK
We survey related work on recommender systems in two areas:
collaborative filtering and memory augmented neural networks.

2.1 Collaborative filtering
Collaborative filtering is a widely used recommendation method [3,
4, 20]. It identifies user preferences by modeling user-item interac-
tions and recommends items to users based on the assumption that
people who have similar preferences tend to make similar choices
[7, 28]. Previouswork on collaborative filtering can be classified into
two groups: KNN-based methods [9, 13] and model-based methods
[22, 30, 34, 37, 43].

KNN-based methods use predefined similarity functions to find
similar users or items to promote recommendations. They can be
further classified into user-based KNN methods [1] and item-based
KNN methods [36]. User-based KNN methods compute similari-
ties between users and recommend items that similar users might
like [1]. Jin et al. [18] present an algorithm to learn weights for
different items when identifying the similarity between two users.
Liu et al. [25] propose a heuristic similarity measure approach to
improve collaborative filtering that combines context information
of user ratings and the preference of user behavior. Item-based col-
laborative filtering approaches calculate similarities between items
and use these scores to predict ratings for user-item pairs [24, 36].
Sarwar et al. [36] propose to use the same correlation-based and
cosine-based techniques to compute similarities between items.
Deshpande and Karypis [6] extend item-to-item similarities to a
notion of similarity between all consumed items of a user and a
candidate item for top-N recommendation.

Given the user-item rating matrix, model-based methods map
users and items into a shared latent factor space to characterize
items and users, and generate predictions via the inner product
of user and item latent factors. Example methods include matrix
factorization [21], Singular Value Decomposition (SVD) and SVD++
[20]. Wu et al. [45] generalize collaborative filtering models by
integrating a user-specific bias into an auto-encoder. He et al. [12]
model user-item interactions by using deep learning instead of an
inner product.

Although these methods have achieved promising results by ex-
ploring collaborative filtering, they all have limitations. On the one
hand, KNN-based methods cannot identify sequential signals. On
the other hand, model-based methods cannot be used for session-
based recommendations when user profiles are not available. Re-
cently, Jannach and Ludewig [17] have proposed to combine a GRU
model and a co-occurrence-based KNN model to explore collabora-
tive information in session-based recommendations. The differences
between their method and our work are at least two-fold. First, our
model is an end-to-end memory network, while they use a simple
weighting scheme to combine the scores of a GRUmodel and a KNN



model with hand-crafted hyperparameters. Second, the similarities
used to find k-nearest neighbors are learned in our model, while
Jannach and Ludewig [17] use a heuristic co-occurrence-based sim-
ilarity measure.

2.2 Memory augmented neural networks
Memory Augmented Neural Networks (MANNs) [40, 44] generally
consist of two components: a memory that stores long-term histor-
ical information [10, 35] and a controller that performs read/write
operations on the memory [2, 11, 40].

Recently, memory networks for recommender systems have
received considerable attention because of their state-of-the-art
performance [2, 8]. Chen et al. [2] are the first to propose to in-
tegrate matrix factorization with a MANN for sequential recom-
mendations. They propose Recommendation with User Memory
networks (RUMs) with two variants: item-level RUMs and feature-
level RUMs [2]. An item-level RUM regards each item as a unit
and directly stores the item embeddings in the memory matrix.
Feature-level RUMs store the embeddings of user preferences on
different latent features in the memory matrix. Huang et al. [16]
propose a knowledge enhanced sequential recommender that incor-
porates knowledge base information to capture attribute-level user
preferences. Ma et al. [27] combine MANNs with a cross-attention
mechanism to perform the mention recommendation task for multi-
modal tweets, where they use a MANN to store the image and tweet
history interests. Although these methods have achieved promising
results, they all ignore collaborative neighborhood information.

The work most similar to ours concerns the Collaborative Mem-
ory Network (CMN) [7]. It unifies two classes of collaborative filter-
ing models: matrix factorization and neighborhood-based methods.
CMN exploits three memory states to model user-item interactions,
including an internal user-specific memory, an item-specific mem-
ory, and a collective neighborhood state. The differences between
our work and CMN are at least three-fold. First, CMN cannot be
directly applied to session-based recommendations because there
is no user information available. Although we can make it work
with some changes, we find it is not effective for session-based rec-
ommendations (see below). Second, CMN performs collaborative
filtering by finding similar user-item interaction patterns. In con-
trast, our model leverages collaborative information by exploring
neighborhood sessions. Third, CMN simply combines the collabo-
rative features and the user-item latent features to predict rating
scores. Instead, we introduce a fusion gating mechanism to learn
to selectively combine different sources of features.

3 METHOD
Let I denote the set of all items. We useXt = [x1, x2, . . . , xτ , . . . , xn ]
to represent a session at timestamp t (t ≥ 1) in the recommendation
process, where each xτ ∈ I is an item that the user has interacted
with during the session, e.g., listening to a song, watching a video.
Given a session X , the task of a session-based recommender system
is to predict the next item that users might interact with. Formally,
given a current session Xt = [x1, x2, . . . , xτ , . . . , xn ] as defined
above, the goal is to predict xn+1 by recommending top-N items
(1 ≤ N ≤ |I|) from all items I that might be interesting to the
user.

We propose a Collaborative Session-based Recommendation Ma-
chine (CSRM) framework to generate session-based recommenda-
tions. The key idea behind CSRM is to leverage information from
neighborhood sessions to improve the recommendation perfor-
mance of the current session. Neighborhood sessions are sessions
that display similar behavior patterns as the current session. Specif-
ically, we store the last m sessions in an outer memory as the
potential neighborhood sessions. Given the current session, CSRM
automatically finds neighborhood sessions from the memory and
extracts useful features to promote the recommendation for this
session.

As illustrated in Figure 1, CSRM consists of three main com-
ponents: an Inner Memory Encoder (IME), an Outer Memory En-
coder (OME), and a recommendation decoder. A fusion gating
mechanism is used to control the flow of information between
the IME and OME components. First, the IME converts the input
session into two high-dimensional hidden representations: one is
meant to summarize the whole session and the other is meant to se-
lect relatively important items in the current session when sessions
contain items that are clicked accidentally or due to curiosity [23].
These two representations are concatenated into a unified session
representation. Second, the OME encodes collaborative neighbor-
hood information of the current session into a collaborative session
representation with the help of an outer memory network. This
process can be viewed as a session-based nearest neighbor method
that places higher weights on specific subsets of sessions that have
similar behavior patterns as the current session. Finally, the out-
puts of the IME and OME form the input for the recommendation
decoder where a fusion gating mechanism is used to selectively
combine information from the IME and OME for recommendation.
The output is a recommendation score for each candidate item
based on a bi-linear decoding scheme.

Next, we introduce each part in detail.

3.1 Inner memory encoder
The IME tries to encode useful information contained in the cur-
rent session. It consists of two components: the global encoder
and the local encoder following [23]. The former is used to model
the sequential behavior in the whole session. The latter is used to
pay attention to specific behavior, which is reflected by relatively
important items in the current session [23]. We use a GRU as the
global encoder because GRUs have shown better performance than
a Long Short-Term Memory (LSTM) for session-based recommen-
dations [15]. The activation of the GRU is a linear interpolation
between the previous hidden state hτ−1 and the candidate hidden
state ĥτ :

hτ = (1 − zτ )hτ−1 + zτ ĥτ , (1)
where the update gate zτ is determined by

zτ = σ (Wzxτ +Uzhτ−1) (2)

and xτ is the item embedding of xτ , andWz and Uz are weight
matrices. The candidate activation function ĥτ is computed as
follows:

ĥτ = tanh(Wxτ +U (rτ ⊙ hτ−1)), (3)
where the reset gate rτ is computed as

rτ = σ (Wrxτ +Urhτ−1), (4)



Figure 1: Overview of the Collaborative Session-based Recommendation Machine (CSRM). CSRM is composed of three main
components: an Inner Memory Encoder (IME), an Outer Memory Encoder (OME) and a recommendation decoder. To reflect
the collaborative process, we use different colors to indicate different session intents, where the same colors indicate similar
session intents.

whereW ,U ,Wr andUr are weight matrices. Finally, we use the
final hidden state hn as the representation of the current session’s
sequential behavior:

c
g
t = hn . (5)

Although this global encoder considers behavior reflected by the
whole sequence, it is difficult to accurately capture the current ses-
sion’s behavior pattern due to the noise item [23]. To this end, we
use another GRU with an item-level attention mechanism as the
local encoder. After the global encoder, the current session Xt is
encoded into the inner memory matrix Ht = [h1, h2, . . . , hτ , . . . ,
hn ]. The local encoder dynamically reads from the inner memory
network relying solely on the session’s own information. The at-
tention mechanism pays close attention to the current session’s
intent by emphasizing some specific behavior and ignoring other.
We assign higher weights to relatively more important items.

For the current session Xt , the local encoder first finds out the
contribution of each clicked item to session intent with the help
of attention weights αnj . Specifically, the weighting factor αnj
models the relation between the final hidden state vector hn and
the representation of the previous clicked item hj by computing
their similarity:

αnj = v
Tσ (A1hn +A2hj ), (6)

where σ is an activation function such as the sigmoid function
σ (x) = 1/

(
1 + exp(−x)

)
, and matrices A1 and A2 transform hn

and hj into latent spaces, respectively. Then we can capture the
session’s intent in the current session by adaptively focussing (or
placing higher weights) on more important items:

c lt =
n∑
j=1

αnjhj . (7)

In summary, the current session can be converted into two fixed-
length vectors cgt and c lt , respectively, by reading from the inner

memory network Ht . Then we concatenate c lt and c
g
t into a unified

representation c innert as the final session representation:

c innert = [c lt ;c
g
t ] =


n∑
j=1

αnjhj ;hn
 . (8)

3.2 Outer memory encoder
The global encoder and the local encoder in the IME only exploit
information contained in the session on which it operates, which
ignores the importance of collaborative information in neighboring
sessions. To address this omission, we propose an Outer Memory
Encoder (OME). The outer memory matrixM stores the representa-
tions of them last sessions, in chronological order. The OME dynam-
ically selects previous neighborhood sessions from M that share
more similar behavior patterns with the current session. These
neighborhood sessions are used as auxiliary information to help un-
derstand the current session. The OME uses the following reading
and writing operations to accessM.

Reading operation. Intuitively, reading M can be considered as a
session-based nearest neighborhoodmethod that selectivelyweights
the retrieved neighborhoods related to the current session.

Given the current session Xt , we first want to determine its k
most similar previous sessions in M. Specifically, we compute the
cosine similarity between c lt of the current session and eachmi of
previous sessions stored in the memory matrixM:

sim(c lt ,mi ) =
c ltmi

∥c lt ∥ × ∥mi ∥
∀mi ∈ M. (9)

According to the k largest similarity scores [simt
1, sim

t
2, . . . , sim

t
k−1,

simt
k ], we create a subsample of k sessionsMt = [mt

1,m
t
2, . . . ,m

t
k−1,

mt
k ] fromM as the k nearest neighbors for the current session.



Then, the k largest similarity values are processed by a softmax
function to obtain reading weights:

wtp =
exp(βsimt

p )∑
j exp(βsimt

j )
∀p = 1, 2, . . . ,k, (10)

where β is the strength parameter. These weights also reflect each
neighbor’s unique impact on the current session, which allows
the model to place higher weights on more similar sessions in the
neighborhood.

Finally, we derive the output of the OME module, coutert , by ac-
cessing other sessions’ representations in the neighborhood mem-
ory network according to their influence on the current session:

coutert =

k∑
p=1

wtpm
t
p . (11)

Writing operation. At the beginning of each epoch of our experi-
ments, the outer memory matrix is empty. We adopt a first-in-first-
out mechanism to update the memory matrix, which always stores
the latestm sessions. When writing the outer memory, the earliest
session is removed from the memory and the new one is added
to the queue. Note that when the memory matrix is not full, the
session is directly added without removing any existing sessions.

3.3 Recommendation decoder
The recommendation decoder evaluates the probability of clicking
the next item based on the outputs of the IME and OME. As shown
in Figure 1, to selectively combine information from the IME and
OME, we construct the final session representation with a fusion
gating mechanism that balances the importance of a user’s own
information and the collaborative neighborhood information:

ct = ftc
inner
t + (1 − ft )c

outer
t , (12)

where the gate ft is given by

ft = σ (Wlc
l
t +Wдc

g
t +Woc

outer
t ). (13)

Then we utilize a bi-linear decoding scheme followed by a softmax
to compute recommendation scores as suggested in Figure 1. As-
suming that embi is the representation of a single candidate item,
we obtain the final recommendation probability for each candidate
item based on the final representation ct of the current session Xt :

P(i | Xt ) = softmax(embTi B ct ), (14)

where B ∈ Re×D , e is the dimension of each item embedding, and
D is the dimension of the final session representation ct .

3.4 Objective function
Our goal is to maximize the prediction probability of the actual item
given the current session. Therefore, we adopt the cross-entropy
loss function:

L = −
1
|X|

∑
X ∈X

∑
i ∈I

[1(i,X ) log(P(i | X )) +

(1 − 1(i,X )) log(1 − P(i | X ))] ,

(15)

where X is the set of all sessions in the training set; P(i | X ) is the
predicted probability value for item i given the session X ; 1(i,X )

is the ground truth. 1(i,X ) = 1 if item i is contained in the top-
N recommendations of session X , and 1(i,X ) = 0 otherwise. In
the learning process, we adopt a Back-Propagation Through Time
(BPTT) method to optimize CSRM.

4 EXPERIMENTAL SETUP
4.1 Research questions
We aim to answer the following research questions:

(RQ1) What is the performance of CSRM in session-based recom-
mendation tasks? Does it outperform the state-of-the-art
methods in terms of Recall and MRR? (See Section 5.1.)

(RQ2) How well does CSRM perform with different encoders in-
stead of combining the IME and OME? (See Section 5.2.)

(RQ3) Howwell does CSRM perform with different aggregation op-
erations instead of a fusion gating mechanism? (See Section
5.3.)

(RQ4) How well does CSRM perform with different numbers of
neighbors in the OME? (See Section 5.4.)

(RQ5) How does the session length influence the session-based
recommendation performance? (See Section 5.5.)

(RQ6) How does the collaborative neighborhood information influ-
ence the session-based recommendation performance? (See
Section 5.6.)

4.2 Datasets
To answer our research questions we conduct experiments on two
publicly available datasets: YOOCHOOSE1 and LastFM.2 We pre-
process the data with the following steps. First, we make sure that
all sessions are arranged in chronological order. Second, we filter
out items that only appear in the test set. Third, we perform data
augmentation to account for temporal shifts in sessions [41]. The
statistics of the datasets (i.e., YOOCHOOSE 1/64, YOOCHOOSE 1/4
and LastFM) are summarized in Table 1.

• YOOCHOOSE: The YOOCHOOSE dataset is a publicly available
dataset released by the RecSys Challenge 2015. It contains six
months of click-streams in an e-commerce website. We use the
sessions of the last day for testing and all others for training. We
follow Tan et al. [41] and filter out sessions of length 1 and items
that appear less than 5 times. Tan et al. [41] find that more recent
fractions of YOOCHOOSE are enough for the task and increasing
the amount of data does not further improve the performance.
We use the most recent 1/64 and 1/4 fraction of the training
sessions referred to as the YOOCHOOSE 1/64 and YOOCHOOSE
1/4 dataset, respectively. After preprocessing, the YOOCHOOSE
1/64 dataset contains 637,226 clicks on 17,702 items, which are
randomly divided into 124,279 training sessions, 12,309 validation
sessions, and 15,236 test sessions. The YOOCHOOSE 1/4 version
contains 8,253,617 clicks on 30,672 items, which are randomly di-
vided into 1,988,471 training sessions, 12,371 validation sessions,
and 15,317 test sessions.

• LastFM: LastFM is a music recommendation dataset and con-
tains (user, time, artist, song) tuples collected from 2004 to 2009

1http://2015.recsyschallenge.com/challenge.html
2https://www.dtic.upf.edu/ ocelma/MusicRecommendationDataset/lastfm-1K.html



Table 1: Statistics of the datasets used in our experiments.

Datasets all the clicks training sessions validation sessions test sessions all items

YOOCHOOSE 1/64 637,226 124,279 12,309 15,236 17,702
YOOCHOOSE 1/4 8,253,617 1,988,471 12,371 15,317 30,672
LastFM 3,804,922 269,847 5,996 5,771 39,163

obtained through the LastFM API. To simplify the dataset, we
use the dataset for music artist recommendation.
In our experiments, we select the top 40,000 most popular artists
as the item set. Then we manually partition the listening history
into sessions through a 8-hours time interval. That is, if two
consecutive actions happen within the time interval, they belong
to the same session. Otherwise, we think they belong to different
sessions. This time interval makes each session not only contain
enough interactions, but also independent of each other to some
extent. Finally, after we filter out sessions that are shorter than
2 and longer than 50 items, 281,614 sessions and 39,163 items
remain. This dataset is referred to as LastFM. After preprocessing,
the LastFM dataset contains 3,804,922 clicks on 39,163 items,
which are randomly divided into 269,847 training sessions, 5,996
validation sessions, and 5,771 test sessions.

4.3 Baselines
We consider three groups of baseline methods for comparison:
traditional, RNN-based, and memory network-based.

The commonly used traditional methods in previous studies on
session-based recommendations [15, 23] are the following:
• POP: POP always recommends the most popular items in the
training set. It is a very simple baseline, but it can perform well
in certain domains [12].

• S-POP: S-POP recommends themost popular items of the current
session. Ties are broken using global popularity values [15].

• Item-KNN: In this method, items similar to the actual item
are recommended. Similarity is defined as the number of co-
occurrences of two items in sessions divided by the square root
of the product of the number of sessions in which either item
occurs. Regularization is included to avoid coincidental high
similarities between rarely visited items [5].

• BPR-MF: BPR-MF [32] optimizes a pairwise ranking objective
function by using stochastic gradient descent. As with previous
studies [15, 23], we apply this method to session-based recom-
mendations by averaging the latent factors of items that occurred
in the session so far as its representation.

• FPMC: Factorizing PersonalizedMarkov Chain (FPMC) [33] com-
bines a Markov chain model and matrix factorization for the
next-basket recommendation task. In order to make it work on
session-based recommendations, we ignore the user latent repre-
sentations when computing recommendation scores.

The RNN-based methods used for comparison are the following:
• GRU-Rec: We denote the model proposed in [14, 15] as GRU-
Rec; it uses a session-parallel mini-batch training process and
also employs ranking-based loss functions for learning the model.

• RNN-KNN: RNN-KNN [17] combines a heuristics-based nearest
neighbor scheme and a GRU with hand-crafted weighting param-
eters for session-based recommendations, which demonstrates

further performance gains over GRU-Rec. RNN-KNN uses item
co-occurrences to determine the k-nearest neighbor sessions.

• Improved GRU-Rec: We denote the model proposed in [41] as
Improved GRU-Rec. Improved GRU-Rec adopts two techniques:
data augmentation and a method to account for shifts in the input
data distribution to improve the performance of GRU-Rec.

• NARM: TheNeural Attentive RecommendationMachine (NARM)
[23] is an improved encoder-decoder architecture used for session-
based recommendations. It improves over Improved GRU-Rec by
incorporating an attention mechanism into RNN.

Finally, the memory network-based methods used for comparison
are:
• RUM: RUM [2] has two specific implementations. The item-level
RUM (RUM-I) directly stores item embeddings in the memory ma-
trix, while the feature-level RUM (RUM-F) stores embeddings of
user preferences on different latent features. We apply RUM-
I to the session-based recommendation task by representing
a new session with sequential latent factors of items through
RNN-based methods. However, RUM-F still cannot be applied to
session-based recommendations because it is hard to get a new
session’s preference on a specific feature in advance.

• CMN: CMN [7] exploits memory networks to address collabora-
tive filtering with implicit feedback. We make this method work
on session-based recommendations by representing a new ses-
sion with the average latent representations of items occurring in
the session when making predictions. CMN needs to evaluate a
score for each candidate item one by one during testing, which is
time consuming. Instead of evaluating all items, we only sample
1,000 negative items to speed up the process.

4.4 Implementation details
We implement CSRM with Tensorflow3 and carry out experiments
on a GeForce GTX TitanX GPU.4 To alleviate overfitting, we employ
two dropout layers [39]: the first dropout layer is between the
item embedding layer and the GRU layer with 25% dropout, the
second one is between the final representation layer and the bi-
linear decoding layer with 50% dropout.

During training, we randomly initialize model parameters with
a Gaussian distribution (with a mean of 0 and standard deviation
of 0.01), optimizing the model with mini-batch Adam [19]. For the
hyper-parameters of the Adam optimizer, we set two momentum
parameters β1 = 0.9 and β2 = 0.999, respectively, and ϵ = 10−8.
The learning rate is determined by grid search in the range of
[0.001, 0.0005, 0.0001] and the batch size is empirically set as 512.
The embedding dimension of items and hidden units of the GRU
are determined by grid search in the range of [50, 100, 150]. We
vary the number of nearest neighbors in the OME from [128, 256,

3https://www.tensorflow.org
4Source code available at: https://github.com/wmeirui/CSRM_SIGIR2019



Table 2: Performance comparison of CSRM with baseline methods on three datasets.

Method
YOOCHOOSE 1/64 YOOCHOOSE 1/4 LastFM

Recall@20(%) MRR@20(%) Recall@20(%) MRR@20(%) Recall@20(%) MRR@20(%)

Tr
ad
iti
on

al POP 4.51 0.72 1.34 0.31 4.43 1.15
S-POP 29.30 18.07 27.10 17.77 22.38 8.73
Item-KNN 52.13 21.44 51.52 21.21 11.59 4.19
BPR-MF 29.99 8.99 3.76 1.77 13.38 5.73
FPMC 57.01 21.17 61.14 23.84 24.08 8.23

RN
N
-b
as
ed GRU-Rec 66.70 28.50 65.66 28.24 21.42 8.21

RNN-KNN 68.66 28.64 68.02 28.38 24.64 9.33
Improved GRU-Rec 69.44 30.18 70.73 30.26 24.34 8.69
NARM 70.13 29.34 70.96 30.47 25.64 9.18

M
em

or
y

ne
tw

or
k-

ba
se
d RUM-I 27.45 8.46 30.16 8.64 9.55 5.06

CMN† 26.89 4.04 – – 22.59 6.44
CSRM‡ 71.45* 30.36* 73.01* 31.42* 27.55* 9.71*

†

On the YOOCHOOSE 1/4 dataset, we do not have enough memory to initialize CMN, so we cannot report the results of CMN
on this dataset.

‡

The superscript * indicates that CSRM significantly outperforms the best baseline NARM.

512] to study its effects. All hyper-parameters are tuned according
to the validation set, the size of which is a fraction of the size of the
training data [23].

4.5 Evaluation metrics
Our task is to predict what a user will click next given their current
session. Recommendation systems generate a recommendation list
that usually contains N items sorted by predicted scores for each
session at each time stamp. The actual item a user picks next should
be contained in the list of recommendations. Therefore, we use the
following metrics for evaluating the top-N recommendations:
• Recall@20: The primary evaluation metric is Recall@20, the
proportion of cases when the groundtruth item is ranked amongst
the top-20 items. It does not consider the actual rank of the item.

• MRR@20: We also use MRR@20 (Mean Reciprocal Rank), the
average of reciprocal ranks of the desired items. The reciprocal
rank is set to zero if the rank is larger than 20. MRR takes the rank
of the item into account, which is important in settings where
the order of recommendations matters (e.g., the lower ranked
items are only visible after scrolling).

For significance testing we use a paired t-test with p < 0.05.

5 RESULTS AND ANALYSIS
5.1 Performance comparison (RQ1)
Table 2 illustrates the performance of CSRM and the baseline meth-
ods on three datasets. It shows that CSRM consistently achieves the
best performance in terms of both Recall@20 and MRR@20 metrics
on all datasets. From the table, we have four main observations.

(1) Among the traditional methods, Item-KNN achieves signifi-
cant improvements over POP, S-POP and BPR-MF in most cases.
This means that KNN-based collaborative filtering methods can
help to improve session-based recommendations. As for FPMC, con-
sidering that the key difference between BPR-MF and FPMC is that

the latter models a user’s historical records in a sequential manner,
the observation that FPMC gets better results than BPR-MF con-
firms that sequential information contributes to recommendation
performance.

(2) We observe that the five RNN-based methods (GRU-Rec, Im-
proved GRU-Rec, RNN-KNN, NARM, and CSRM) outperform tradi-
tional methods. This indicates that RNN-based models are good at
dealing with sequential information in sessions.

(3) CSRM significantly outperforms all RNN-based baselinemeth-
ods. Generally, CSRM obtains improvements over the best base-
line NARM of 1.88%, 2.89%, and 7.45% in Recall@20 on the three
datasets, respectively. With regard to MRR@20, the relative im-
provements over the best baseline NARM are 3.48%, 3.12%, and
5.77%, respectively. Although both RNN-KNN and CSRM take col-
laborative filtering information into account, we notice that CSRM
achieves consistent improvements over RNN-KNN. The reason is
that RNN-KNN combines an RNNwith a co-occurrence-based KNN
through hand-crafted hyperparameters, which lacks the kind of
nonlinear interaction that is able to capture more complex relations.
These observations confirm that leveraging collaborative neigh-
borhood information with memory networks leads to substantial
performance improvements in session-based recommendations.

(4) As to the MANN-based methods, we find that CSRM outper-
forms RUM and CMN on all datasets. This is because there is no
user information available in session-based recommendations and
RUM and CMN are simply not applicable and effective in this case.

5.2 Influence of encoders (RQ2)
To further illustrate the effect of collaborative information and
memory networks, we compare the performance of CSRM and two
variants of CSRM. CSRMime refers to CSRM without the OME that
uses an RNN’s inherent internal memory to model the sequential
behavior in the current session. It actually amounts to the NARM
model because CSRM further considers collaborative neighborhood



Table 3: Performance comparison of CSRM with different encoders.

Model
YOOCHOOSE 1/64 YOOCHOOSE 1/4 LastFM

Recall@20(%) MRR@20(%) Recall@20(%) MRR@20(%) Recall@20(%) MRR@20(%)

CSRMime 70.13 29.34 70.96 30.47 25.64 9.18
CSRMome 65.91 24.32 65.97 24.12 21.37 6.92
CSRM 71.45 30.36 73.01 31.42 27.55 9.71
* CSRM further considers collaborative neighborhood information on the basis of NARM, so without the
OME part, CSRMime is actually NARM.

Table 4: Performance comparison of CSRM with different aggregation operations.

Method
YOOCHOOSE 1/64 YOOCHOOSE 1/4 LastFM

Recall@20(%) MRR@20(%) Recall@20(%) MRR@20(%) Recall@20(%) MRR@20(%)

Max pooling 70.67 29.79 72.23 30.67 26.94 9.04
Average pooling 70.64 29.94 72.89 31.38 27.40 9.49
Concatenation 71.26 30.24 72.58 31.21 27.40 9.47
Fusion gating 71.45 30.36 73.01 31.42 27.55 9.71

Table 5: Performance comparison of CSRM with different numbers of neighbors k .

k
YOOCHOOSE 1/64 YOOCHOOSE 1/4 LastFM

Recall@20(%) MRR@20(%) Recall@20(%) MRR@20(%) Recall@20(%) MRR@20(%)

k = 128 71.23 30.36 72.65 31.43 27.47 9.76
k = 256 71.35 30.39 72.76 31.34 27.56 9.65
k = 512 71.45 30.36 73.01 31.42 27.55 9.71

information on the basis of NARM. In this section, we use the
result of NARM to represent CSRMime . CSRMome refers to CSRM
without IME that uses an external memory to encode collaborative
neighborhood information. The empirical results on three datasets
are summarized in Table 3.

First, we find that CSRMime outperforms CSRMome . This demon-
strates that a session’s own sequential information is more impor-
tant for the session-based recommendation task. Second, CSRM
achieves better performance than CSRMime and CSRMome in terms
of both metrics on three datasets. This confirms the usefulness
of combining a user’s own information and collaborative neigh-
borhood information for better recommendations. Take the YOO-
CHOOSE 1/64 dataset as an example, when comparedwithCSRMime
and CSRMome , the relative performance improvements by CSRM
are around 1.88% and 8.41% in terms of Recall@20, and 3.48% and
24.84% in terms of MRR@20, respectively.

5.3 Influence of aggregation operations (RQ3)
Next we compare CSRMs with different aggregation operations, i.e.,
max pooling, average pooling, concatenation, and a fusion gating
mechanism. For max pooling, we aggregate the IME and OME by
taking the maximum value of every dimension for each session.
Then the i-th dimension of a session-representing vector cti is
formulated as

cti = max(c innerti ,couterti ) . (16)

The average pooling is to aggregate the IME and OME by taking
the average value of every dimension for each session, which can

be formulated as

ct =
1
2
(c innert + coutert ) . (17)

For the concatenation operation, the final representation is the
concatenation of vectors c innert and coutert :

ct = [c innert ;coutert ] . (18)

The fusion gating mechanism is actually a linear interpolation
between the users’ own representation c innert and collaborative
information coutert as defined in Eq. 12 and Eq. 13.

As illustrated in Table 4, CSRM with a fusion gating mecha-
nism outperforms the other three aggregation operations on three
datasets in terms of Recall@20 andMRR@20. This indicates that the
fusion gating mechanism is more helpful in modeling interactions
between the IME and OME. In most cases, CSRM with the con-
catenation operation and CSRM with the average pooling achieve
a similar performance and both outperform CSRM with the max
pooling on three datasets. This demonstrates that average pooling
and concatenation have advantage over max pooling in modeling
interactions among multiple factors.

5.4 Influence of the number of neighbors (RQ4)
To investigate the influence of collaborative neighborhood informa-
tion for session-based recommendations, we show the performance
of CSRMwith respect to the number of neighbors in Table 5. For the
YOOCHOOSE 1/64 and YOOCHOOSE 1/4 dataset, performance im-
proves as the number of neighbors increases in terms of Recall@20
and the best performance is almost the same as the performance



Table 6: Performance comparison of different session
lengths on the LastFM dataset. Numbers in the middle rep-
resent the number of sessions whose groundtruth items are
ranked amongst the top-20 items in each length interval.

Length without OME with OME Performance

1–5 5047 5463 +8.24%
6–10 3854 4172 +8.25%
11–15 2726 2913 +6.86%
16–20 1932 2072 +7.25%
21–25 1478 1563 +5.75%
26–30 1048 1101 +5.06%
31–35 695 747 +7.48%
36–40 457 486 +6.35%
41– 311 334 +7.40%

at k = 512 in terms of MRR@20. As for LastFM dataset, we can
get relatively good performance when k = 512. This shows that
accurately predicting session intent depends on the degree to which
the recommender system incorporates collaborative neighborhood
information into the model.

5.5 Influence of session length (RQ5)
To understand the influence of session length on utilizing collab-
orative neighborhood information, we compare diverse sessions
with different lengths on LastFM. We show the performance with
respect to session length in Table 6. Note that since the number
of session lengths is too large, we divide the test set into different
groups by the number of items per session. From the table, we
can observe that: (1) CSRM performs better overall. This indicates
that collaborative neighborhood information does help to capture a
session’s intent and make a better prediction. (2) The performance
improvements of CSRM are stronger when the session lengths are
between 1 and 10 in general. This may be due to that it’s hard to
capture sessions’ intent when sessions are short, where there are
limited less clicked items for each session. Under these circum-
stances, our model is good at capturing a session’s intent by means
of collaborative neighborhood information.

5.6 Case study (RQ6)
To intuitively grasp the effect of collaborative information, we select
some good and bad recommendation cases from the YOOCHOOSE
1/64 dataset, as shown in Figure 2. The numbers on the left are
the current session IDs. The numbers on the right are the ranking
of (positive) ground truths in the recommendation lists. The color
scale represents the intensities of the neighbor similarities given by
Eq. 9, where a darker color indicates a higher value and a lighter
color indicates a lower value. Each row in the figure represents
the top 10 neighbors for the current session. The difference be-
tween the similarities may be quite small and hence not visually
distinguishable.

(1) Overall, it is obvious that sessions that have highly similar
neighbors achieve better recommendation performance, i.e., session
12,475, 12,509 and 15,405 in Figure 2. Sessions that assign equal
low similarities to neighbors achieve worse recommendation per-
formance, i.e., session 12,600, 14,731 and 27,355 in Figure 2. This

Figure 2: Visualization of neighbors’ weights. The depth of
color corresponds to the importance of neighborhood ses-
sions given by Eq. 9. The numbers on the left are the session
IDs. The numbers on the right are the ranking of ground
truths in the recommendation lists.

confirms that collaborative neighborhood information has a great
influence on user intents for session-based recommendations.

(2) Not all neighbors of the current session are equally important.
E.g., the neighbors of session 12,475 have very different weights.

(3) Not all sessions need to rely on collaborative neighborhood
information to achieve good performance. Some sessions assign
equal low similarities to neighbors which means they use less col-
laborative information. But they still achieve good recommendation
performance, e.g., session 9,798, 17,028 and 27,197 in Figure 2.

6 CONCLUSION
We have proposed a novel hybrid architecture CSRM to model
collaborative filtering in session-based recommendations. CSRM
incorporates two parallel memory modules, i.e., the IME and OME,
to consider current session information and collaborative neighbor-
hood information, respectively. Features from these two modules
are selectively combined with a fusion gating mechanism to achieve
better session-based recommendations. Extensive experiments on
three datasets demonstrate significant improvements over state-of-
the-art baselines in terms of different evaluation metrics. Qualita-
tive experimental analyses on different features and the number
of neighbors demonstrate the rationality of applying collaborative
filtering to session-based recommendations.

Limitations of our work include the fact that the outer memory
networks have limited slots and we can only select neighbors from a
small number of recent sessions. In future work, we hope to incorpo-
rate a retrieval-based mechanism to enable OME to find neighbors
based on all previous sessions. We also hope to improve CSRM
by introducing user preferences information and item attributes
information, such as user reviews and item categories. Besides, the
attention mechanism and memory mechanism have a strong gener-
alization ability. So we want to explore the usage of this framework
in other application domains.
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