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ABSTRACT
Medicine Combination Prediction (MCP) based on Electronic Health
Record (EHR) can assist doctors to prescribe medicines for complex
patients. Previous studies on MCP either ignore the correlations
between medicines (i.e., MCP is formulated as a binary classifi-
cation task), or assume that there is a sequential correlation be-
tween medicines (i.e., MCP is formulated as a sequence prediction
task). The latter is unreasonable because the correlations between
medicines should be considered in an order-free way. Importantly,
MCP must take additional medical knowledge (e.g., Drug-Drug In-
teraction (DDI)) into consideration to ensure the safety of medicine
combinations. However, most previous methods for MCP incorpo-
rate DDI knowledge with a post-processing scheme, which might
undermine the integrity of proposed medicine combinations.

In this paper, we propose a graph convolutional reinforcement
learning model for MCP, named Combined Order-free Medicine
Prediction Network (CompNet), that addresses the issues listed
above. CompNet casts the MCP task as an order-free Markov Deci-
sion Process (MDP) problem and designs a Deep Q Learning (DQL)
mechanism to learn correlative and adverse interactions between
medicines. Specifically, we first use a Dual Convolutional Neu-
ral Network (Dual-CNN) to obtain patient representations based
on EHRs. Then, we introduce the medicine knowledge associated
with predicted medicines to create a dynamic medicine knowledge
graph, and use a Relational Graph Convolutional Network (R-GCN)
to encode it. Finally, CompNet selects medicines by fusing the com-
bination of patient information and the medicine knowledge graph.
Experiments on a benchmark dataset, i.e., MIMIC-III, demonstrate
that CompNet significantly outperforms state-of-the-art methods
and improves a recently proposed model by 3.74%pt, 6.64%pt in
terms of Jaccard and F1 metrics.
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1 INTRODUCTION
Recently, deep learning techniques have impacted various Clinical
Decision Support (CDS) applications, including, e.g., disease diag-
nosis [26, 44, 46], and mortality prediction [13, 49]. While medical
professionals will not be replaced by AI systems in the foreseeable
future, they have already benefited a great deal from the assistance
of AI systems [8]. Medicine Combination Prediction (MCP) plays an
important role in treating multiple complex diseases [5]. Given a
patient’s health condition, the MCP task is to predict a combination
of medicines that can assist doctors to offer increased therapeutic
efficacy and reduced toxicity [42].

Some previous work casts MCP as a multi-label binary classifi-
cation problem, e.g., [2]. However, these approaches assume that
the medicines involved are independent and ignore correlations
between medicines [23, 40]. This is unreasonable because medicine
correlations are common in reality, e.g., in the treatment of “Heli-
cobacter pylori infection,” if a patient takes “proton pump inhibitors,”
then there is a high probability that “antibiotics” and “pectin” will
be taken together. Li et al. [23] model MCP as a sequence prediction
problem, where they predict a medicine at each timestamp. The
medicine predicted at the current step is affected by previously pre-
dicted medicines. In this way, these methods can capture sequential
correlations between medicines to some extent. However, these
methods assume that there are orders among medicines. During
training, they need to pre-set the orders for medicines, and different
medicine orders may produce different results [48].

Unlike conventional decision making tasks, there is an addi-
tional challenge for MCP, i.e., how to effectively introduce medi-
cal knowledge to leverage correlative medicine interactions while
avoiding adverse medicine combinations. In reality, when prescrib-
ing medicines for patients, doctors must fully consider patients’
conditions and the interactions between different medicines, espe-
cially adverse interactions [42]. For example, the combination of
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Figure 1: Complex medical relationships in Medicine Com-
bination Prediction (MCP).

“sulfonamides”and “insulin” can cause severe hypoglycemia. Ad-
verse medicine combinations can be avoided with a simple and
intuitive post-processing approach, i.e., removing adverse medicine
combinations from the prediction results based on a Drug-Drug In-
teraction (DDI) knowledge base. For example, Zhang et al. [48] first
use Multi-Instance Multi-Label Learning (MIML) to train a MCP
model, and then they employ reinforcement learning to fine-tune
the model’s parameters based on a DDI knowledge base. How-
ever, this post-processing approach undermines the integrity of
the medicine combination [48]. In other words, post-prediction
fine-tuning will influence the optimal parameters learned in the
prediction procedure. For example, as shown in Fig. 1, adverse DDI
exists between “sulfonamides” and “insulin”. If “sulfonamides” is
removed, the disease “respiratory tract bacterial infection” will not
be treated. Similarly, if “insulin” is removed, the disease “diabetes
mellitus” will not be treated.

Recently, Shang et al. [34] have proposed to aggregate the Elec-
tronic Health Record (EHR) medicine graph, the DDI medicine
graph, and longitudinal patient records to predict medicines. How-
ever, they use all of the knowledge in the EHR and DDI graphs
for medicine prediction. This is problematic because most of the
knowledge in the EHR and DDI is irrelevant whenmaking medicine
predictions for an individual patient, and only a small portion of
knowledge should be considered. When the EHR and DDI graphs
are large, this introduces unnecessary computing costs and noise.

To address the issues listed above, we propose a graph convo-
lutional reinforcement learning model, namely Combined Order-
free Medicine Prediction Network (CompNet), for the MCP task. To
effectively leverage medicine correlations while alleviating unrea-
sonable assumption on the order of medicines, we cast MCP as
a Markov Decision Process (MDP) problem and design a Deep Q
Learning (DQL) mechanism to learn CompNet. To take correlative
and adverse medicine interactions into consideration, we employ
Relational Graph Convolutional Network (R-GCN) in a recurrent
way to encode the correlations between predicted medicines and
relevant adverse knowledge from a knowledge base. Specifically,
we first use a Dual Convolutional Neural Network (Dual-CNN)
network to obtain patient representations based on EHRs. Then,
we introduce knowledge associated with predicted medicines to
create a dynamic medicine knowledge graph, which is encoded
using a R-GCN. Finally, a DQL network is used to select medicines
step by step according to the current state consisting of the patient

representation, the medicine graph representation, and the hidden
state representation of CompNet from the previous step.

Our key technical contributions can be summarized as follows:
• To the best of our knowledge, we are the first to propose a frame-
work, CompNet, that combines reinforcement learning with a
relational graph convolutional network to perform Medicine
Combination Prediction (MCP) and that considers correlations
between medicines while eliminating previously made unreason-
able assumptions about the order of different medicines.
• We incorporate dynamicmedical knowledge in amedicine knowl-
edge graph to capture the correlative and adverse relations be-
tweenmedicines, which can adaptively adjust medical knowledge
according to the current predicted medicines.
• We demonstrate the effectiveness and safety of CompNet by
comparing it with several state-of-the-art methods on a real EHR
dataset.

2 METHOD
2.1 Preliminaries
Given diagnoses Cdi (represented by a sequence of ICD-9 codes,1

e.g., { “1125”, “v433”, “v4581” }) and procedures Cpi (represented
by a sequence of ICD-9 codes, e.g., {“0066”, “3761”, “3950” }) of a
patient pi , the task of Medicine Combination Prediction (MCP) is to
select an optimal medicine set Yi ⊆ M , whereM are all candidate
medicines and Yi is a subset ofM prescribed for patient pi . Without
loss of generality, we omit the notation i in the following sections.

We formulate MCP as a Markov Decision Process (MDP) (S, A,
T , R, γ ), where S is an infinite set of states, A is a finite set of
actions, T is the transition probability function of state, R is a
reward function, and γ ∈ (0, 1] is the discount factor. Our goal is to
learn a policy π (θ ) parameterized by θ to maximize the accumulated
discounted rewards:

π (θ )∗ = max
∞∑
t=0

γ t rt , (1)

where rt is the immediate reward at timestamp t . With DQL, the
goal of Eq. 1 is transformed to minimize the following loss function:

L(θ ) = E(st ,at ,rt ,st+1)[(rt +γ max
a

Q(st+1,a;θ )−Q(st ,at ;θ ))2], (2)

where Q(st ,at ;θ ) is the Q-function, which estimates the expected
future reward of action a at state s . The update formula of parameter
θ can be described as follow:

θ ← θ+α(rt+γ max
a

Q(st+1,at ;θ )−Q(st ,at ;θ ))∇θQ(st ,at ;θ ), (3)

where α is the learning rate.

2.2 CompNet
We propose CompNet to implement the above MDP process. As
shown in Fig. 2, CompNet employs a Deep Neural Network (DNN)
to approximate the Q-function, which outputs a Q-value for each
given state-action pair (st , at ) at timestamp t . Here, st is defined
as a combination of patient representation ẑt and medicine knowl-
edge graph representation дt associated with the current predicted
medicines. At each timestamp t , CompNet greedily selects amedicine
1https://en.wikipedia.org/wiki/List_of_ICD-9_codes
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Figure 2: The architecture of CompNet. White dots and grey dots represent candidate medicines and selected medicines, re-
spectively. Pink dots indicate medicines that appear in the adverse DDI knowledge base (KB), which holds adverse DDI pairs.
The black edges connecting two grey dots indicate correlative relation while the red edges connecting grey and pink nodes or
two pink dots indicate adverse relation. The green dot is “END” marker which indicates the end of one episode.

at according to the Q-value. The selected medicine at receives a
reward rt from the doctor, based on which CompNet updates its pol-
icy with Eq. 3. Meanwhile, the selected medicine will introduce new
knowledge (nodes and edges) to the medicine knowledge graph,
which requires CompNet to update its state to st+1. This process is
iterated until the current episode ends. Next, we introduce how we
model Q(st ,at ;θ ), S, T , and R in detail.

Q-function Q(st ,at ;θ ). We use a DNN with l layers to approxi-
mate the Q-function, which can be formulated as:

Q(st ,at ;θ ) = Fl (. . . F2(F1(st ,at ;θ1);θ2) . . .),
Fi (st ,at ;θi ) = f (W θi st + bi ),

(4)

where Fi is the output of the i-th layer with ReLU activation func-
tion;W θi is the parameter matrix, and bi is bias. Q(st ,at ;θ ) corre-
sponds to the output vector of the last layer.

State S. The state st ∈ S is calculated as follows:

st = σ (W sht ), (5)

whereW s is the learnable parameter matrix; σ is the sigmoid acti-
vation function; ht is the hidden state, which consists of two parts
as in Eq. 6:

ht = σ (W hxt +U hht−1), (6)
whereW h andU h are parameter matrices, and ht−1 is the hidden
state representation of CompNet at the previous step t − 1; h0 is ini-
tialized with a zero vector; and xt is the interaction representation
between patient and medicine knowledge graph at step t , which is

further calculated as follows:

xt = дt ⊙ ẑt , (7)

where дt is the medicine knowledge graph representation at step t
(see §2.3 for details); ẑt is the patient representation at step t (see
§2.4 for details); and ⊙ is the element-wise multiplication operation.
We also tried other choices for the interactions, including addition
xt = дt + ẑt and concatenation xt = дt ⊕ ẑt . In preliminary
experiments we have found that different interaction choices have
little influence on the results.

Transition T . T represents the function of transition to next state,
where each state is considered to be a possible result of selecting an
action in a particular state. In our case, the transition function T is
deterministic, which means the next state st+1 is not stochastic and
only depends on the current state and action pair (st ,at ). Specifi-
cally, the transition function transforms the medicine knowledge
graph representation дt to дt+1 and further changes the interaction
representation xt and hidden state ht−1, and finally obtains the
new state st+1. So the transition can be expressed as:

T(st ,at ) = T((xt ,ht−1),at ) = T(xt+1,ht ) = st+1. (8)

Reward R. The reward rt ∈ R indicates how well the selected
medicine is at step t . During online learning, we can define the
reward based on feedback from real doctors who interact with
our model. In this paper, we define the reward with an offline
simulation. Specifically, we know the prescribed medicines for each
patient, so if themedicine predicted by CompNet is in the prescribed



medicine set by a doctor, we give CompNet a positive reward rt = 1,
otherwise we give it a negative reward rt = −1.

2.3 Medicine knowledge graph representation
module

This module encodes the medicine knowledge graph to obtain
representation дt , which is used to update the state st in Eq. 5.
We propose an adaptive medicine knowledge graph mechanism to
create an undirected multi-relational medicine knowledge graph
Gt = (Vt , Et ,℧) at t . Here, Vt = V<t ∪ V

′
V<t is the set of all

nodes, whereV<t is the set of currently predicted medicines and
V ′V<t is the set of one-hop neighbors of V<t ; Et is the set of
all edges between two nodes in Vt ; and ℧ is the set of relation
types. Here, we consider two types of medicine relation for Et , i.e.,
adverse medicine relation and correlative medicine relation. The
adverse medicine relation is obtained from a DDI knowledge base,
as indicated by red edges between nodes in Fig. 2. The correlative
medicine relation is obtained by the CompNet model. The medicine
selected at the current step has a correlative relationship with each
of the selected medicines at previous steps. In Fig. 2, the correlative
medicine relations are indicated by black edges between nodes.

We use a Relational Graph Convolutional Network (R-GCN) [32]
to encode Gt , which is an extension of the Graph Convolutional
Network (GCN) [19] on multi-relational graphs. Given a specific
node vi in the medicine knowledge graph, we use the following
convolution operation to calculate the representation of node vi at
the l-th layer:

hli =
∑
r ∈℧

∑
j ∈N r

i

1
ci , j

W l−1
r hl−1j +W l−1

o hl−1i , (9)

wherehli ∈ R
cl is the representation of nodevi at the l-th layer; cl is

the number of output channels of the l-th graph convolution layer;
℧ is the set of all relations considered in the medicine knowledge
graph Gt ; N r

i represents neighbors of node vi according to the
relation r ; ci , j is a problem-specific normalization constant that
can either be learned or chosen in advance, here we set ci , j = |N r

i |;
andW l−1

r andW l−1
o are parameter matrices.

In ourmodel, we need to get the representation of entiremedicine
knowledge graphGt . Inspired by [47], we use the following formula
to obtain the representation дt :

дt =

|℧ |∗ |M |∑
j=1

H1:L
j , (10)

where дt ∈ R
∑L

1 cl is obtained by adding each row of H1:L ∈

R |℧ |∗ |M |×
∑L

1 cl ; |℧| is the number of relations; |M | is number of
medicine nodes; and L is the number of graph convolution layers.
The matrix H1:L is calculated by concatenating the output of the
R-GCN in each layer along the last axis:

H1:L = H1 ⊕ H2 ⊕ · · · ⊕ H l ⊕ · · · ⊕ HL, (11)

where ⊕ is the concatenation operation. H l ∈ R |℧ |∗ |M |×cl is ob-
tained by concatenating all the node representation hli at the l-th

layer along the first axis, which can be formalized as:

H l = hl1 ⊕ h
l
2 ⊕ · · · ⊕ h

l
i ⊕ · · · ⊕ h

l
|M |,

H1 = Aa ⊕ Ac ,
(12)

where hli is the representation of medicine node vi at the l-th layer
(Eq. 9). The representation of the first layer H1 is initialized by
concatenating the adverse adjacency matrix Aa and correlative
adjacency matrix Ac of the medicine knowledge graph Gt .

2.4 Patient representation module
This module encodes the patient representation ẑt , which is used
to update the state st in Eq. 5. We calculate ẑt as follows:

ẑt = Zα t , (13)

where Z = zd ⊕ zp , which is the concatenation of the diagnoses
representation zd and procedures representation zp along the first
axis; Due to the effectiveness of the attention mechanism [? ? ],
attention weights α t are used to balance zd and zp ; α t is assigned
by a softmax function based on the medicine graph representation
дt :

α t = softmax(ZT дt ). (14)
The diagnoses representation zd and procedures representation zp
can be calculated by the following formulas:

zd = σ (W dv
d + bd )

zp = σ (W pv
p + bp ),

(15)

whereW d andW p are the weight matrices, and bd and bp are
the biases. The vectors vd and vp are obtained by flattening ma-
trices V d and V p . V d and V p are obtained by a linear convolution
operation followed by a non-linear transformation function as in
Eq. 16:

V d = tanh(W d
conv ∗ E

d + Bd )

V p = tanh(W p
conv ∗ E

p + Bp ),
(16)

where ∗ denotes the convolution operator and tanh represents the
tanh activation function;W d

conv andW
p
conv are the parameter matri-

ces; Bd and Bp are biases; and Ed and Ep are diagnose embedding
and procedures embedding, respectively, which are obtained by
linear projections as follows:

Ed =W d
em

d

Ep =W
p
em

p ,
(17)

whereW d
e andW p

e are the embedding matrices, which are jointly
learnedwithmodel parameters;md andmp are bag-of-word vectors
that are converted from diagnosis codes Cd and procedure codes
Cp , respectively.

2.5 Learning process
The learning process of CompNet is shown in Algorithm 1. In order
to avoid predicting duplicate medicines for the same patient, we
use the set C to record candidate medicines and set B to record
selected medicines. For each episode, we first empty B and reset
C = A. Then, we run ε-greedy policy [39] using CompNet on
the candidate medicine set C . Specifically, we select a medicine



Algorithm 1: Learning CompNet for MCP.

1 Initialize replay memory D, the whole medicine set A;
2 for epoch = 1: EPOCHS do
3 for each patient do
4 Initialize candidate medicine set C = A;
5 Initialize selected medicine set B as empty set;
6 Initialize state s0 with Eq. 5 and 6;
7 for t=1:T do
8 Select medicine at from candidate medicine set

C using ε-greedy policy;
9 Get reward rt for medicine at ;

10 Update medicine knowledge graph and compute
next state st+1 according to Eq. 5;

11 Store transition (st ,at , rt , st+1) to D;
12 Store medicine at into selected medicine set B;
13 Update candidate medicine set C = A − B;
14 Update st with st+1;
15 Select |DS | samples from D randomly;
16 Compute loss on DS with Eq. 2 and update the

parameters of CompNet with Eq. 3;
17 end
18 end
19 end

at by either following the greedy policy argmaxa Q(st ,a) with
probability 1 − ε or following a random policy with probability
ε from C (line 8). With the selected at , we can get the reward rt
from doctors (simulated doctors in our experiments). After that,
we update the medicine knowledge graph based on the selected
at (see §2.3 for details) and derive the next state st+1 (line 10).
We store the tuple (st ,at , rt , st+1) into the replay memory D and
update the selected medicine set B and candidate medicine set C
accordingly (line 11–13). Finally, we sample a set of tuples DS from
D and compute the loss to update CompNet based on DS (line 16).

3 EXPERIMENTAL SETUP
We set up a series of experiments to evaluate the performance of
CompNet. Details of our experimental setting are given below.

3.1 Research questions
Our experiments are meant to answer the following research ques-
tions.

(RQ1) What is the performance of CompNet on the MCP task?
Does it outperform state-of-the-art methods? (See §4.)

(RQ2) Where do the improvements of CompNet come from? What
are the effects of different components? (See §5.1.)

(RQ3) Which one is more effective, incorporating all DDI knowl-
edge or adaptively incorporating DDI knowledge associated
with the predicted medicines? (See §5.2.)

(RQ4) Is the training process of CompNet stable? How do different
evaluation metrics change with respect to training itera-
tions? (See §5.3.)

3.2 Datasets
We perform experiments on a publicly available dataset, namely
MIMIC-III [17].2 Descriptive statistics of MIMIC-III dataset are
given in Table 1. As with previous studies [e.g., 34], we choose
medicines that are prescribed by doctors for each patient within
the first 24 hours as medicine set since it is usually a critical period
for each patient to get accurate and rapid treatment in the first
24 hours [9, 10]. All methods in our experiments use DDI knowl-
edge from the TWOSIDES dataset [38] to avoid adverse medicine
combinations. We use the top-40 severe DDI types and transform
medicine codes from NDC to ATC Level 3 for integration with the
MIMIC-III dataset. Besides, we filter out samples whose prescrip-
tions contain adverse DDI.

Table 1: Statistics of the MIMIC-III datasets.

MIMIC-III Quantity

# patients 5,847
# clinical events 13,727
# diagnoses 1,954
# procedures 1,352
# medicines 138

avg # of visits 10.824
avg # of diagnoses 6.441
avg # of procedures 3.883
avg # of medicines 2.348

# related DDI pairs 460
# medicine in DDI knowledge base 123

3.3 Implementation details
We randomly divide the MIMIC-III dataset into training, validation
and test sets with 2/3 : 1/6 : 1/6 ratios. We use a DNN with 3 hidden
layers to implement the deep Q network, where the hidden size of
each layer is set to 512 (Eq. 4). In the medicine knowledge graph
representation module, the output channel for each graph convolu-
tional layer is set to 50, and we use two layers (Eq. 9). In the patient
representation module, the hidden size of diagnoses representation
zd and procedures representation zp are set to 100 (Eq. 15). We use
3 convolutional layers, and the filter sizes are all set to 128. The
kernel size of each convolutional layer is set to 3. After the last
convolutional layer, we apply dropout [35] and the drop ratio is set
to 0.5 (Eq. 16). The embedding sizes of bothW d

e andW p
e are set to

100 (Eq .17). During CompNet training phase, the size of the replay
memory D is set to 2,000 (Algorithm 1). The initial exploration rate
ε is 0.995, and minimum exploration rate is 0.05. We initialize model
parameters randomly with the Xavier method [12] and set the train-
ing batch size to 64.We choose Adam [43] to optimize all parameters
in CompNet. The learning rate α = 0.00001 and the momentum
parameters are set to default β1 = 0.9 and β2 = 0.999. CompNet
has been implemented in PyTorch and trained on a GeForce GTX
TitanX GPU.3

2The dataset used in this paper is available at https://mimic.physionet.org
3The source codes are available at https://github.com/WOW5678/CompNet

https://mimic.physionet.org
https://github.com/WOW5678/CompNet


3.4 Methods used for comparison
We compare CompNet to the following baselines:

K-frequent. K-frequent predicts medicines by counting the co-
occurring frequency of each diagnosis with each medicine. For
each diagnosis, it simply selects the top K most frequently
occurring medicines. We tried K from 1 to 8 and finally set K
to 5 according to its performance on validation set.

K-nearest. To prescribe medicines for a patient pi , K-nearest se-
lects the medicines prescribed for patient pj who has the most
similar diagnoses with pi . Similarity between two patients is
measured by Jaccard distance; Here, we set K to 1.

Multi-layer Perceptron (MLP). MLPs are conventional methods
to solve multi-label classification problem. We learn a multi-
label classification model with a three-layer perceptron. The
last layer uses sigmoid as activation function to predict the
probability of each medicine [11].

Classifier Chain (CC). CC [31] is another commonly used multi-
label learning method. We use 3 base classifiers to form a clas-
sifier chain to predict medicines and each base classifier is a
decision tree [29].

SGM. SGM [45] views multi-label classification as a sequence gen-
eration task and uses a seq2seq model to predict labels. Here,
we use SGM for predicting medicine combinations.

LEAP. LEAP [48] formulates the medicine prediction problem as
a Multi-Instance Multi-Label Learning (MIML) problem. Similar
to SGM, it uses a Recurrent Neural Network (RNN) to predict
medicines. Reinforcement learning is used to tune parameters.

GAMENet. GAMENet [34] uses a memory network to embed the
DDI knowledge graph and EHR graph based on a GCN. Then it
concatenates the patient representation and the memory output
to predict medicines.

3.5 Evaluation metrics
We use the Mean Jaccard Coefficient [20], Average Recall, Average
Precision and Average F1 to measure the performance of all meth-
ods. For a particular patient pi , assume that the predicted medicines
are Yi , and Ŷi is the ground truth medicines that doctors prescribe
for the patient. The Mean Jaccard Coefficient is defined as the size
of the intersection divided by the size of the union of predicted
medicines and ground truth medicines. Recall can measure the com-
pleteness of predicted medicines and Precision can measure the
correctness of predicted medicines. F1 is the harmonic mean of Pre-
cision and Recall, and is often used as a comprehensive evaluation
metric of prediction model:

Jaccard =
1
m

m∑
i

|Yi ∩ Ŷi |

|Yi ∪ Ŷi |

Recall =
1
m

m∑
i

|Yi ∩ Ŷi |

|Ŷi |

Precision =
1
m

m∑
i

|Yi ∩ Ŷi |

|Yi |

F1 =
1
m

m∑
i

2 ∗ Precisioni ∗ Recalli
Precisioni + Recalli

,

where i is a sample index in the test set andm is the size of the
test set. Precisioni and Recalli denote the precision value and recall
value of patient pi , separately.

In addition, we use the DDI Rate to measure the safety of MCP
models. The DDI Rate is defined as the number of DDI pairs oc-
curring in predicted medicines divided by the pair number of all
possible medicine combinations:

DDI Rate =
1
m

m∑
i

|(c j , ck ) ∈ Yi & (c j , ck ) ∈ Eddi |∑
j ,k 1

,

where Eddi represents all DDI pairs in the DDI knowledge base.

4 RESULTS (RQ1)
The results of comparing all methods are shown in Table 2. CompNet
outperforms all baselines in terms of multiple metrics. From the
results, we can gain several insights.

Table 2: Performance comparison (%) of different methods.

Method Jaccard Recall Precision F1 DDI Rate

K-frequent 29.64 48.01 48.57 43.65 5.32
K-nearest 22.39 39.74 40.41 34.12 7.02

MLP 23.03 34.36 44.30 34.38 2.29
CC 16.16 31.69 30.07 25.93 2.01

SGM 27.90 52.08 40.32 41.66 5.45
LEAP 25.76 42.74 45.53 42.74 7.08

GAMENet 28.77 43.00 50.02 41.04 6.94

CompNet 32.51∗ 57.05∗ 45.53 47.68∗ 2.78
Bold face indicates the best result in terms of the corresponding metric.
Significant improvements over the best baseline results are marked with ∗
(t-test, p < 0.01).

First, CompNet significantly outperforms all baselines in terms
of most evaluation metrics (i.e., Jaccard, Recall and F1). The im-
provements over CC and K-frequent are 16.35% (at most) and 2.87%
(at least) in terms of Jaccard. The improvements over CC and SGM
on Recall are 25.36% (at most) and 4.97% (at least) respectively.
And on F1, the improvements reach to 21.75% (at most) and 4.03%
(at least) over CC and K-frequent. The reasons for the improve-
ments are three-fold. (1) CompNet uses a recurrent DQL structure
to predict medicines. Medicine selection in a given step depends
on selected medicines in previous steps, so the correlation between
medicines can be captured. (2) CompNet is not sensitive to the order
of medicine combinations and does not have to make unreason-
able order assumptions during training. (3) CompNet dynamically
introduces knowledge related with selected medicines and uses
R-GCN to distinguish between different types of knowledge. The
introduction of medical knowledge makes the model perform well
(see §5.1 for an in-depth analysis).

Second, CompNet performs better than all baselines except for
GAMENet on Precision. Although the Precision of GAMENet is
4.49% higher than CompNet, the Recall value of GAMENet is sig-
nificantly lower (14.05%) than CompNet. This phenomenon shows
that GAMENet is more inclined to the correctness of predicted
medicines, but misses most of the ground truth medicines. However,



in medical cases, the Recall metric is significantly more meaning-
ful than Precision metric. The reason is that current MCP mod-
els cannot totally replace doctors and only help doctors prescribe
medicines for patients as an assistant [21]. As a result, the more im-
portant function of MCP models is to help doctors screen possible
medicines more comprehensively.

Third, CompNet performs better than all baselines except for
MLP and CC on DDI Rate. The DDI Rate of CompNet is 2.78%
which is lower than the DDI Rates of K-frequent, K-nearest, SGM,
LEAP and GAMENet. But it is higher than CC and MLP, whose DDI
Rates are 2.01% and 2.29% respectively. Since the number of correct
medicines for each patient is much smaller (the average number of
medicines is 2.348 for each patient, see Table 1) than the number
of candidate medicines (138 medicines, see Table 1), MLP and CC
tend to select fewer medicines [14]. Because of this, their DDI
Rates are lower than CompNet. In fact, MLP predicts each medicine
separately, regardless of correlations between different medicines,
which means that MLP does not have the ability to avoid adverse
medicine combinations like CompNet. As to CC, it uses multiple
concatenation classifiers and utilizes the classification results of the
previous classifiers, the correlations between medicines preserve.
But the results can vary for different orders of classifier chains [15].

Fourth, the K-frequent method performs better than many other
baselines, including recently proposed deep learning models, such
as LEAP and GAMENet. K-frequent is a rule-based approach that
performs medicine prediction through the co-occurrence of medi-
cines and diagnoses. This implies that many doctors choose fre-
quently used medicines for the same or similar diseases (diagnoses).
This does not imply that K-frequent is the most effective and useful
method in practice: doctors are already familiar with frequently
used medicines. As an assistant, K-frequent cannot recommend
novel and less frequently used medicines to doctors. Besides, be-
cause frequently used medicines are seldom updated, K-frequent
cannot learn from historic data to adaptively adjust its strategy.

5 ANALYSIS
5.1 Ablation study (RQ2)
The effectiveness and safety of CompNet have been demonstrated in
the previous section. To showwhere the improvements of CompNet
come from, we report the results of CompNet with 4 different set-
tings, as shown in Table 3 and described next:
No Graph. To test the effect of the medicine knowledge graph

and the proposed R-GCN, we replace R-GCN with an MLP to
project selected medicines into the vector дt at timestamp t , and
then together with the patient representation ẑt to constitute
the current state st .

No CMR. To verify the effectiveness of the correlative medicine
relation, we remove this relation from the medicine knowledge
graph.

No AMR. To test the effect of adverse medicine relations, we re-
move the DDI knowledge from the medicine knowledge graph.

With COR. GAMENet shows that the medicine co-occurrence
relation helps to improve performance. We also tried this re-
lation by adding it to the medicine knowledge graph. The co-
occurrence relation is extracted from the training set. If two

medicines are co-occurring in an EHR, we consider there to be
a co-occurrence relation between them.

Table 3: Analysis of different components in CompNet (%).

Method Jaccard Recall Precision F1 DDI Rate

No Graph 12.56 28.32 19.27 21.68 1.90
No CMR 31.01 51.30 48.03 46.15 2.22
No AMR 32.13 49.78 52.08 47.31 8.33
With COR 27.64 53.64 39.16 42.23 3.85
CompNet 32.51∗ 57.05∗ 45.53 47.68∗ 2.78

The superscript ∗ indicates that CompNet significantly outperforms other
models with different settings, using a t-test with p < 0.01.

From the results in Table 3, we obtain the following insights. First,
the performance of CompNet decreases dramatically after removing
medicine knowledge graph (i.e., No Graph). Specifically, the results
of all evaluation metrics drop more than 20%. Although the DDI
Rate ofNo Graph is slightly better than CompNet, this improvement
comes at the expense of its effectiveness. The result shows that
medicine knowledge graph plays a crucial role in CompNet.

Second, the performance of CompNet decreases after removing
the correlative medicine relation or adverse medicine relation. No
CMR only uses adverse medicine knowledge while No AMR only
uses correlative medicine knowledge. The Jaccard, Recall and F1
results ofNo CMR drop a lot compared with CompNet, whichmeans
that correlative medicine knowledge helps. The DDI Rate of No
AMR is the worst, which means adverse medicine knowledge plays
a key role in the safety of CompNet. Besides, the DDI Rate of No
CMR is 0.56% lower than CompNet. This is because No CMR only
needs to focus on adverse knowledge, while CompNet needs to
take two kinds of knowledge (i.e., correlative and adverse medicine
knowledge) into consideration.

Third, the performance of CompNet drops after adding the co-
occurrence medicine relation (i.e.,With COR). This is because the
co-occurrence relation actually brings a lot of noise and interferes
with the model’s learning. Some patients have multiple diseases
which are not related. The prescribed medicines for these patients
do not have any co-effects or correlations [7]. However, this will
mislead the learning of the model.

5.2 Effect of adaptive medical knowledge (RQ3)
To evaluate the rationality of the adaptive medicine knowledge
graph mechanism in CompNet (see §2.3.), we compare the perfor-
mance of CompNet with a modified version, named With all KG,
that loads all adverse medicine knowledge at each step for medicine
selection, rather than just introducing related medicine knowledge.
The results are shown in Table 4. The performance of CompNet

Table 4: Analysis of adaptive medical knowledge in
CompNet (%).

Method Jaccard Recall Precision F1 DDI Rate

With all KG 31.02 57.81 42.60 45.81 3.84
CompNet 32.51 57.05 45.53 47.68 2.78

with all knowledge added (i.e.,With all KG) drops in terms of Jac-
card, Precision and F1, while the DDI rate increases 1.06%. This



suggests that introducing all medical knowledge in each step will
result in a higher risk of predicting adverse medicine combinations.
This is because in each step, most knowledge in the DDI knowledge
base is irrelevant, which makes it harder for the model to recognize
useful knowledge. However, the Recall score ofWith all KG is a little
better, as is to be expected, which means that our adaptive medicine
knowledge graph mechanism also loses some useful knowledge.

5.3 Prediction results on different training
batches (RQ4)

In Fig. 3 we plot the results of different evaluation metrics with
respect to training batches. We change the number of training
batches from 0 to 18,000, and evaluate the model’s performance on
validation set every 100 training batches. The Jaccard, Recall, and F1
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Figure 3: Change curves of different metrics under different
batches on validation set.

scores show an increasing tendency generally, but are also in fluctu-
ation due to the instability of DQL [1]. During the training process,
the Precision values show a decreasing tendency. This is because
Precision is sensitive to the number of predicted medicines. For
example, in an extreme case, the model only predicts one medicine
for a patient. Even if the predicted medicine is in the ground truth
medicine set and then Precision reaches 100%, this does not mean
we obtain a good model. Therefore, we should pay more attention
to Jaccard, Recall, and F1 values.

5.4 Case study
We select a patient with complicated diagnoses from the test set to
analyze the results from different methods. Table 5 shows ground
truth medicines prescribed by doctors and medicines predicted by
different methods. In summary, CompNet has the best performance
with 6 correct medicines, 1 wrong medicine and 0 missing medicine.
K-frequent and K-nearest can correctly predict 5 and 4 medicines
respectively. K-frequent only focuses on the co-occurrence of di-
agnoses and medicines. As a result, it only correctly predicts 5
frequently used medicines. K-nearest predicts 17 medicines for this
patient, of which only 4 are correct. The MLP and CC methods
predict 0 and 2 medicines, respectively. This suggests that these
two methods tend to predict fewer medicines, resulting in a large
number of missing medicines. SGM, LEAP, and GAMENet predict
3, 3, 6 correct medicines and 4, 5, 5 wrong medicines, respectively.
CompNet predicts a total of 7 medicines for this patient and the

number of correct medicines is 6. We can see that CompNet is more
effective not only in predicting medicine combinations but also the
number of medicines.

6 RELATEDWORK
We consider three types of related work: medicine combination
prediction, reinforcement learning for healthcare, and graph con-
volutional networks for healthcare.

6.1 Medicine combination prediction
We survey Binary Relevance (BR) based methods and Sequence
Prediction (SP) based methods for MCP.

BR based methods. Binary Relevance (BR)-basedmethods formulate
MCP as multiple binary classification problems. Bajor and Lasko
[2] use an RNN to encode patients by taking patients’ historical
diagnoses into account; they then use an MLP to predict medicines
for patients. Choi et al. [6] propose a two-layer attention neural
network, named RETAIN, to detect past influential EHRs for the
current visit. Wang et al. [42] establish a patient-medicine bipartite
graph and a patient-disease bipartite graph, and then use knowl-
edge representation to model patients for MCP. Le et al. [22] design
a memory augmented neural network to performMCP based on his-
torical EHRs. Wang et al. [41] propose a trilinear model to integrate
multi-source patient information from EHRs, such as demographic
information and laboratory indicators, to predict medicines for
patients.

Furthermore, some methods use genomic information to predict
appropriate medicines for patients, such as [4]. But genomic infor-
mation is difficult to acquire. The methods mentioned above all
ignore complex correlations between differentmedicines.Medicines
are considered to be independent of each other, and each medicine
is predicted separately. Because of this, the methods listed above
(except for [42]) all ignore safety in the MCP task. That is, when
multiple medicines are used together, there is a high probability of
producing adverse DDI. Unlike the methods listed above, CompNet
captures medicine relationships by employing an adaptive medicine
knowledge graph to incorporate the correlative relations between
the predicted medicines and the adverse relations between the
related medicines.

SP based methods. Sequence Prediction (SP)-based methods formu-
late MCP as a sequence prediction problem, where they predict one
medicine at a time during both training and testing. For example,
Zhang et al. [48] propose LEAP, which uses an encoder-decoder
framework for MCP, and reinforcement learning to fine-tune the
model based on the DDI knowledge base so as to avoid adverse
medicine combinations. Shang et al. [33] utilize an encoder-decoder
framework to learn representations of diagnoses and medicines,
and then establish a mapping between them for MCP. Although the
methods above consider correlations between different medicines,
they need to pre-set the orders for medicine combinations dur-
ing training. Different pre-setting orders will affect the model re-
sults, which is unreasonable. Medicine combination should be es-
sentially an order-free set. In this paper, we propose CompNet,
where medicine selection at a given step is dependent on selected
medicines at previous steps, so the correlations between medicines



Table 5: Example of predicted medicines by different methods.

Diagnoses Method Predicted medicine combination

1125, 99592, 78552,
2760, 42731, 4254,
496, 4821, 78003,
70703, 70707, 70705,
51883, 27651, 5859,
v433, v4581, 25000,
v5867, 2720, 40390,
v441, v440, 2449,
1122

Ground Truth 7 (B05C, B01A, A12C, H03A, J01D, A02B, A07A)

K-frequent 5 correct +0 wrong + 2 missed (A12C, B05C, A02B, A07A, B01A)

K-nearest 4 correct+ 13 wrong + 0 missed (A07A, N02B, A01A, A02B, A06A, A12A, A12C, B05C, N07A,
A10A, C01C, N01A, C01D, A03F, N02A, D07A, B05A)

MLP 0 correct + 0 wrong + 7 missed (None)

CC 2 correct + 0 wrong+ 5 missed (A02B,A12C)

SGM 3 correct + 4 wrong + 0 missed (A06A, A02B, N02B, B05C, C02D, A12C)

LEAP 3 correct + 5 wrong +0 missed (A06A, A01A, A02B, A12C, B05C, A12A, C01C, N01A)

GAMENet 6 correct + 5 wrong + 0 missed (A07A, A06A, N02B, A01A,A02B, A12C, B05C, B01A, J01D,
R01A, R03A)

CompNet 6 correct + 1 wrong + 0 missed (A12C, A02B, B05C, J01D, A07A, N02A, B01A)

can be captured. Meanwhile, we do not make any sequential as-
sumptions during training. Instead, we make the model explore
order-free correlations in a reinforcement learning manner.

6.2 Reinforcement learning for healthcare
In healthcare, Reinforcement Learning (RL) can be used to perform
a variety of medical tasks, such as disease diagnosis [3, 18, 37].
Tang et al. [37] use RL to create an effective and efficient symptom
checker to predict disease by asking patient questions. This method
not only improves the accuracy of symptom checker, but also mini-
mizes interaction number of symptom checker and patients. Besson
et al. [3] focus on disease diagnosis based on RL by minimizing the
average number of medical tests. Kao et al. [18] use hierarchical
reinforcement learning for selecting symptoms to inquire and diag-
nose within the expertise of different anatomical part to improve
diagnosis accuracy. Nemati et al. [27] leverage a combination of
Hidden Markov Models and deep Q-networks to predict optimal
heparin dosing for ICU patients. Similar to Nemati et al. [27], Raghu
et al. [30] use RL to find optimal dosages of intravenous fluids and
vasopressors during the treatment of sepsis patients which can lead
to improved treatment. However, RL has rarely been applied to the
MCP task. Although LEAP [48] introduces RL in MCP problem, the
core of its MCP model depends on encoder-decoder framework and
RL is just for fine-tuning model. We formulate the MCP task as a
MDP and propose an RL model to solve it.

6.3 Graph convolutional networks for
healthcare

The Graph Convolutional Network (GCN) is used to extract nodes
and associated information from a graph so as to represent node
or graph structures [16, 19]. GCN has been successfully used in
healthcare. For example, Ma et al. [24] create drug association graph
with drugs as nodes and DDI as edges, and further extend a GCN
to encode multi-view drug features and edges to measure drug
similarity. Zitnik et al. [50] create a multimodal graph including
protein-protein interactions, drug-protein target interactions, and
DDI. And then they use a GCN to encode them for a multirelational
link prediction task. Mao et al. [25] propose MedGCN, which is a

heterogeneous medical graph including multiple types of medical
entities and relations. Then they employ a GCN to learn repre-
sentations based on MedGCN, which are used for lab test impu-
tation and medication recommendation. Most recently, [34] pro-
pose GAMENet which uses GCN to enhance performance on the
MCP task. They first create the EHR medicine graph and the DDI
medicine graph. Then they use GCN to encode two graphs and
integrate them for MCP. In this paper, we propose CompNet which
further combines R-GCN with RL. The former takes care of the
multiple relations between medicines while the later forces our
model to learn order-free dependencies out of the various relations.
Additionally, CompNet creates a dynamic multi-relational medicine
graph that adaptively introduces related medicine knowledge w.r.t.
current predicted medicines, which we have shown in the experi-
ments to be more effective than using the whole knowledge graph
for all predictions.

7 CONCLUSION AND FUTUREWORK
We have presented a novel model named CompNet for MCP, which
is meant to capture useful correlations between medicines while
eliminating the unreasonable assumption on medicine orders made
in previous work. We have verified the effectiveness of CompNet
through extensive experiments on a benchmark dataset for MCP.
The results demonstrate that the proposed modules in CompNet
bring improvements and CompNet achieves the best performance
compared with state-of-the-art methods. Especially, CompNet out-
performs GAMENet (a recently proposed model) by a large mar-
gin (3.74%pt, 6.64%pt in terms of Jaccard and F1 metrics, respec-
tively). Meanwhile, CompNet achieves a much lower DDI ratio than
GAMENet in terms of safety.

A limitation of CompNet is that the learning process will be
extremely hard and unstable when extended to a large medicine
space, which is a common issue for the current RL technologies. As
to future work, CompNet can be advanced in two aspects. Firstly,
we hope to make CompNet work on datasets with a larger number
of medicine candidates by proposing better learning algorithms.
Secondly, we also hope to learn a model that can simulate doctors
to give feedback to guide the learning of CompNet.
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