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ABSTRACT
Learned recommender systems may inadvertently leak information
about their training data, leading to privacy violations. We investi-
gate privacy threats faced by recommender systems through the
lens of membership inference. In such attacks, an adversary aims to
infer whether a user’s data is used to train the target recommender.
To achieve this, previous work has used a shadow recommender
to derive training data for the attack model, and then predicts the
membership by calculating difference vectors between users’ histor-
ical interactions and recommended items. State-of-the-art methods
face two challenging problems: (i) training data for the attack model
is biased due to the gap between shadow and target recommenders,
and (ii) hidden states in recommenders are not observational, re-
sulting in inaccurate estimations of difference vectors.

To address the above limitations, we propose a Debiasing Learn-
ing for Membership Inference Attacks against recommender sys-
tems (DL-MIA) framework that has four main components: (i) a
difference vector generator, (ii) a disentangled encoder, (iii) a weight
estimator, and (iv) an attack model. To mitigate the gap between
recommenders, a variational auto-encoder (VAE) based disentan-
gled encoder is devised to identify recommender invariant and
specific features. To reduce the estimation bias, we design a weight
estimator, assigning a truth-level score for each difference vec-
tor to indicate estimation accuracy. We evaluate DL-MIA against
both general recommenders and sequential recommenders on three
real-world datasets. Experimental results show that DL-MIA effec-
tively alleviates training and estimation biases simultaneously, and
achieves state-of-the-art attack performance.
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1 INTRODUCTION
The success of today’s recommender systems is largely attributed
to the increased availability of large-scale training data on users’
private information (e.g., browsing and purchase history). Unfor-
tunately, various studies show that recommender systems are vul-
nerable to attacks, leading to the leakage of their training data and
severe privacy problems [4, 46].

In this paper, we study privacy threats faced by recommender
systems through the lens of membership inference [46]. Specifically,
membership inference attacks (MIAs) against recommender sys-
tems enable the adversary to infer whether a user’s data is used to
train the target recommender [53]. The main reason for the feasibil-
ity of MIA is overfitting, since the learned model tends to perform
better on the training data [5]. Revealing the membership may
cause serious harm, and leak sensitive information about specific
individuals, such as shopping preferences, social relationships, and
location information [9].

Existing MIA methods show promising performance in vari-
ous domains, ranging from biomedical data [2, 13, 18] to mobility
traces [37]. Despite the success, previous MIA methods [9, 29, 35,
42, 46, 52] cannot be directly applied to recommender systems,
since they either require knowledge of the target model or use
the predicted confidence scores of the classifier. In MIAs against
recommender systems, the target recommenders are considered
inaccessible, and only recommended items, rather than confidence
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scores, are observational to the adversary [53]. In fact, this setting
is prevalent in real-world scenarios.

In recent work, Zhang et al. [53] infer the membership of the
target recommender based on the similarity between users’ his-
torical interactions and recommended items. The key idea here
is, for users in the training set, their historical interactions tend
to be more similar to output items of the recommender. Specifi-
cally, a shadow recommender is first established to simulate the
target recommender and generate training data for the attackmodel.
Then, difference vectors between users’ historical interactions and
recommended items are computed by factorizing the user-item
rating matrix. On this basis, the attack model is able to predict the
membership using difference vectors. This framework faces two
challenging problems:

(1) Training data for the attack model is biased. As mentioned
above, the algorithm and dataset used by the target recom-
mender are inaccessible [53]. In that case, the adversary may
construct a shadow recommender in a completely distinct man-
ner, resulting in a biased training dataset for the attack model.
In Figure 1(a), feature vectors from the MIA datasets generated
by target and shadow recommenders (that use different meth-
ods) are visualized by the t-SNE algorithm [50], respectively.
And there exist huge differences between the distributions of
features obtained from the shadow recommender (blue) and
target recommender (red). Besides, as mentioned in [53], the
attack performance drops dramatically when target and shadow
recommenders use different algorithms and datasets.
To mitigate the gap between recommender systems, we employ
a variational auto-encoder (VAE) based encoder to disentan-
gle features, and model recommender invariant and specific
characteristics using two different distribution families.

(2) The estimations of difference vectors are inaccurate. In
this attack, as explained above, the hidden states (e.g., user
and item representations) in the target recommender are not
available to the adversary. As a result, difference vectors be-
tween user historical interactions and recommended items may
be estimated inaccurately for the target recommender, leading
to incorrect membership predictions. For example, as demon-
strated in Figure 1(b), the difference vectors generated by the
target recommender (red) and matrix factorization (MF) (blue)
are divergently distributed.
To reduce the influence of the estimation bias, we develop a
weight estimator, and learn a truth-level score for each differ-
ence vector to indicate the estimation accuracy during training.

To address the above problems, we propose a framework, named
Debiasing Learning for Membership Inference Attacks against rec-
ommender systems (DL-MIA), to simultaneously mitigate training
data and estimation biases. As illustrated in Figure 2, DL-MIA has
four main components: (i) a difference vector generator, (ii) a disen-
tangled encoder, (iii) a weight estimator, and (iv) an attack model.
During training, to simulate behavior of the target model, a shadow
recommender is first constructed and learned on a shadow dataset.
Then, the generator represents users’ history interactions and rec-
ommended items by factorizing the user-item rating matrix, and cal-
culates difference vectors. To mitigate the training data bias caused
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Figure 1: Visualization results for the training data and esti-
mation biases. (a) The bias between the MIA datasets gener-
ated by the shadow recommender (blue) and target recom-
mender (red). (b) The bias between difference vectors gener-
ated using MF (blue) and hidden states in the recommender
(red).

by the gap between target and shadow recommenders, the disen-
tangled encoder is developed, and a variational auto-encoder (VAE)
based on two distribution families is employed to identify recom-
mender invariant and specific features. Next, to reduce the influence
of the estimation bias, we establish a weight estimator, and assign
a truth-level score for each difference vector. Finally, the disentan-
gled and re-weighted difference vectors, as well as membership
labels, are input for the multilayer perceptron (MLP) based attack
model. In addition, to facilitate the model parameter update and
weight learning, an alternating training strategy is applied among
the disentangled encoder, weight estimator, and attack model.

Our contributions can be summarized as follows: (i) To the best
of our knowledge, ours is the first work to study debiasing learn-
ing for membership inference attacks against recommender sys-
tems. (ii) We develop a VAE based disentangled encoder to mitigate
training data bias caused by the gap between shadow and target
recommenders. (iii) We introduce truth-level scores, and learn the
weight estimator with the alternating training strategy to alleviate
the estimation bias of difference vectors. (iv) Experimental results
show that DL-MIA achieves the state-of-the-art attack performance
against both general and sequential recommender systems.

2 RELATEDWORK
We survey related work along three dimensions: (i) membership
inference attacks, (ii) general and sequential recommenders, and
(iii) debiasing learning.

2.1 Membership inference attacks
Recently, membership inference attacks (MIAs) have achieved pro-
mising performance in various domains, such as biomedical data [2,
13, 18] and mobility traces [37]. The goal of membership inference
attacks is to infer the membership of individual training samples
for a target model. Shokri et al. [46] specify the first membership
inference attack against machine learning models. The authors pro-
pose a general formulation of membership inference attack against
machine learning models, and train multiple shadow models to
simulate the target model’s behavior. In that case, the training sets
for multiple attack models (one for each class) are generated. Salem
et al. [42] further relax several key assumptions from [46], includ-
ing knowledge of the target model architecture and target dataset
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distribution. Yeom et al. [52] explore the relationship between at-
tack performance and overfitting, and propose the first decision-
based attack. Nasr et al. [35] study membership inference attacks
in both black-box and white-box settings. Instead of using output
scores, several recent membership attacks [9, 29] assume only pre-
dicted hard labels of models are exposed, and demonstrate that
label-only exposures are also vulnerable to membership leakage. In
addition, Zhang et al. [53] investigate MIA against recommender
systems, leveraging the differences between user history behaviors
and output items from recommenders.

To mitigate the attacks, some defense mechanisms, including
model stacking [42], dropout [42], adversarial training [34], differ-
ential privacy [9, 29], regularization [9, 29], and jointly maximizing
privacy and prediction accuracy [19], have been proposed. To pro-
tect membership privacy of recommender systems, Zhang et al.
[53] design a defense mechanism, named Popularity Randomization,
and randomly recommend popular items to non-member users.

2.2 General and sequential recommenders
A generic recommender system aims to model users’ preferences
from their historical behavior. Early attempts on recommender
systems, including matrix factorization (MF) [26, 27, 36, 41] and
item-based neighborhood methods [20, 25, 31, 43], typically ap-
ply collaborative filtering (CF) on users’ interaction histories. Re-
cently, deep learning has been used to improve the performance
of recommender systems by incorporating with auxiliary infor-
mation [21, 23], or replacing the conventional matrix factoriza-
tion [15, 45].

None of the above methods considers the order in users’ behav-
iors or is designed for sequential recommendation. The earliest
work on sequential recommendation, FPMC [39], utilizes Markov
chain to capture the transition in behavior sequences. To further en-
hance the capability of modeling complex behavior, deep learning
based models [16, 22, 48, 49, 55] are devised, including recurrent
neural network based [16, 55], and attention based [22, 48] methods.

2.3 Debiasing learning
Bias is a critical issue in modern machine learning since trained
models often fail to identify the proper representations for the tar-
get predictions [10]. To tackle the limitation, a large number of
methods have been proposed to eliminate the biases. Specifically,
to address selection bias [32] in datasets, propensity score [44, 51],
ATOP [47], and data imputation [40] are utilized. Besides, debi-
asing strategies such as rebalancing [1], adversarial learning [3],
and causal modeling [28] are proposed to mitigate unfairness [30]
caused by algorithm and unbalanced data. In survey [6], seven types
of biases with their definitions and characteristics are summarized
and introduced in detail. However, the work listed does not consider
the biases in MIA against recommender systems.

In this paper, we mainly focus on the membership inference
attack (MIA) against recommender systems. To the best of our
knowledge, ours is the first work to study debiasing learning for
this task. The most closely related work is [53]. However, the pre-
vious MIA against recommender systems still face two challenging
problems: (i) biased attack model training, (ii) inaccurate estima-
tions of difference vectors. In our proposed DL-MIA, to mitigate

the gap between target and shadow recommenders, the VAE based
encoder is employed to model recommender invariant and specific
features. In addition, to reduce the impacts of inaccurate estima-
tions, the weight estimator is employed, and truth-level scores for
difference vectors are calculated to facilitate the model update.

3 METHOD
We first formulate the membership inference attack (MIA) against
recommender systems. Then, we give an overview of DL-MIA. Next,
we explain DL-MIA’s disentangled encoder and weight estimator.
Finally, the learning algorithm is presented.

3.1 Problem formulation
Membership leakage in recommender systems happens when the
adversary aims to determine whether a user’s data is used to train
the target recommender. Formally, given a user’s data x, a trained
target recommender Mtarget , and external knowledge of the adver-
sary Ω, a membership inference attack model A can be defined as
follows:

A : x,Mtarget ,Ω → {0, 1}, (1)
where 0 means x is not a member of Mtarget ’s training dataset
while 1 indicates x is a member. The attack model A is essentially
a binary classifier.
Adversarial knowledge. In this attack, the adversary only has
black-box access to the target recommender. Specifically, only the
recommendations to users, and users’ historical behaviors (e.g.,
ratings or interaction sequences) are observational. In that case, as
explained in [53], the adversary can infer the membership using the
similarity between users’ historical behaviors and recommended
items from the target model.

3.2 Model overview
Figure 2 shows the four main components of DL-MIA: (i) a differ-
ence vector generator, (ii) a disentangled encoder, (iii) a weight
estimator, and (iv) an attack model. In this section, we give an
overview of the DL-MIA framework.

3.2.1 Difference vector generator. Following Zhang et al. [53], to
conduct MIA against the target recommender, a shadow recom-
mender Mshadow is established, and difference vectors between
users’ historical behaviors and recommended items are calculated.
To achieve this, we first factorize the user-item rating matrix to
obtain item representations Mitem. Then, a shadow recommender
Mshadow is established and trained to simulate the target recom-
mender. Next, for the 𝑖-th user in Mshadow , we project her/his
interacted and recommended items into representations, denoted
as Ishadow,𝑖 and Rshadow,𝑖 , respectively. Finally, the difference vector
for the 𝑖-th user is computed as:

fdiffshadow,𝑖 = Ishadow,𝑖 − Rshadow,𝑖 , (2)

where Ishadow,𝑖 and Rshadow,𝑖 are the averages of item vectors in
Ishadow,𝑖 and Rshadow,𝑖 , respectively.

3.2.2 Disentangled encoder. To mitigate the training data bias, the
disentangled encoder aims to identify features invariant and specific
to shadow and target recommenders. Specifically, given generated
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difference vector fdiff , a VAE based encoder, composing two kinds
of prior distributions, is employed to disentangle fdiff into the
invariant feature f inv and specific feature f spe . And the disentangled
difference vector fdis is obtained by concatenating f inv and f spe , i.e.,
fdis = [f inv ; f spe].

3.2.3 Weight estimator. To further alleviate the influence of the
estimation bias, the weight estimator assigns a truth-level score 𝑝 to
each disentangled difference vector fdis . To learn 𝑝 , the estimation
constraint is constructed. Moreover, to facilitate the model update
and weight learning, an alternating training scheme is developed.
In this way, the disentangled and reweighted difference vector f rew

is derived.

3.2.4 Attack model. For membership inference, a generic attack
modelA is essentially a binary classifier with the input of difference
vectors. Following Zhang et al. [53], we adopt a MLP with 2 hidden
layers for the attack model, i.e., A : y = MLP (f rew). The output
y = (𝑦1, 𝑦2) is a 2-dimensional vector indicating the probability of
the user belonging to members (𝑦1) or non-members (𝑦2). And the
binary cross-entropy loss is used to train the attack model:

LBCE = −
𝑁shadow∑︁
𝑖=1

(
𝑦∗𝑖 log𝑦𝑖,1 + (1 − 𝑦∗𝑖 ) log𝑦𝑖,2

)
, (3)

where 𝑦∗
𝑖
is the ground truth label for 𝑖-th user, and 𝑁shadow is the

size of training data generated by the shadow recommender.
Since we use the difference vector generator and attack model

of the same architecture as the previous work [53], only the disen-
tangled encoder and weight estimator are explained in detailed in
the following sections.

3.3 Disentangled encoder
Given the difference vector fdiff from the generator, the disentan-
gled encoder aims to identify recommender invariant and specific
features (i.e., f inv and f spe). To achieve this, inspired by [8], we
construct a variational auto-encoder (VAE) using Gaussian and von
Mises Fisher (vMF) distributions to model recommender invariant
and specific characteristics, respectively.

Specifically, in the encoder, we assume a difference vector is
generated by conditioning on two independent latent variables: the
recommender invariant feature f inv and the recommender specific
feature f spe . Thus, the joint probability in our model is computed
as follows:

𝑝𝜃 (fdiff , f inv, f spe) = 𝑝𝜃 (f inv)𝑝𝜃 (f spe)𝑝𝜃 (fdiff |f inv, f spe), (4)

where 𝑝𝜃 (f inv) and 𝑝𝜃 (f spe) are the priors for f inv and f spe , respec-
tively. And 𝑝𝜃 (fdiff |f inv, f spe) denotes the likelihood. Following
previous work [7, 54], we assume a factored posterior probability
𝑞𝜙 (f inv, f spe |fdiff ) = 𝑞𝜙 (f inv |fdiff )𝑞𝜙 (f spe |fdiff ). Therefore, learn-
ing of our encoder maximizes an evidence lower bound on marginal
log-likelihood:

LELBO

def
== E

f inv ,f spe

[
log 𝑝𝜃

(
fdiff

��f spe, f inv ) − log
𝑞𝜙 (f spe |fdiff )
𝑝𝜃 (𝑓 spe)

− log
𝑞𝜙 (f inv |fdiff )

𝑝𝜃 (f inv)

]
(5)

= E
f inv ,f spe

[
log𝑝𝜃 (fdiff |f spe, f inv)

]
−KL(𝑞𝜙 (f spe |fdiff )∥𝑝𝜃 (f spe))

− KL
(
𝑞𝜙 (f inv |fdiff )∥𝑝𝜃 (f inv)

)
,

where f inv ∼ 𝑞𝜙 (f inv |fdiff ) and f spe ∼ 𝑞𝜙 (f spe |fdiff ). 𝑞𝜙 (f inv |fdiff )
and 𝑞𝜙 (f spe |fdiff ) are the posteriors. KL(𝑝 ∥𝑞) denotes the KL di-
vergence between the distribution 𝑝 and 𝑞. In our disentangled
encoder, two distribution families, i.e., the vMF and Gaussian dis-
tributions, are used to define the posteriors. Further details on the
parameterization are provided below.

3.3.1 Gaussian Distribution. We assume that 𝑞𝜙 (f inv |fdiff ) fol-
lows a Gaussian distribution [38]N(𝜇𝛽 (fdiff ), diag(𝜎𝛽 (fdiff ))), and
that the prior 𝑝𝜃 (f inv) follows the standard distribution N(0, 𝐼 ),
where 𝐼 is an identity matrix. In our encoder, we only consider
a diagonal covariance matrix, and thus the KL divergence term
KL(𝑞𝜙 (f inv |fdiff )∥𝑝𝜃 (f inv)) can also be obtained as follows:

1
2

(
−
∑︁
𝑖

log𝜎𝛽𝑖 +
∑︁
𝑖

𝜎𝛽𝑖 +
∑︁
𝑖

𝜇2
𝛽𝑖

− 𝑑

)
. (6)

3.3.2 vMF Distribution. vMF can be recognized as a Gaussian dis-
tribution on a hypersphere with two parameters, 𝜇, and 𝜅 . 𝜇 ∈ R𝑚
is a normalized vector (i.e., ∥𝜇∥2 = 1 ) and defines the mean direc-
tion. 𝜅 ∈ R≥0 denotes the concentration parameter analogous to
the variance in a Gaussian distribution.

In our encoder, we assume that 𝑞𝜙 (f spe |fdiff ) follows a vMF dis-
tribution vMF(𝜇𝛼 (fdiff ), 𝜅𝛼 (fdiff )) and the prior 𝑝𝜃 (f spe) follows
the uniform distribution vMF(·, 0). TheKL(𝑞𝜙 (f spe |fdiff )∥𝑝𝜃 (f spe))
term in L𝐸𝐿𝐵𝑂 can then be computed in closed form:

𝜅𝛼
I𝑚/2 (𝜅𝛼 )
I𝑚/2−1 (𝜅𝛼 )

+ (𝑚/2 − 1) log𝜅𝛼 − (𝑚/2) log(2𝜋)

− logI𝑚/2−1 (𝜅𝛼 ) +
𝑚

2
log𝜋 + log 2 − log Γ(𝑚/2),

(7)

where I𝑣 is the modified Bessel function of the first kind at order
𝑣 and Γ(·) is the Gamma function. Following Davidson et al. [11],
we use an acceptance-rejection scheme to sample from the vMF
distribution.

3.3.3 Reconstruction error. We assume the conditional likelihood
distribution 𝑝𝜃 (fdiff |f spe, f inv) follows N(𝑓 ( [f inv ; f spe]), I), where
a MLP with 3 hidden layers is adopted for 𝑓 (·). Thus, the recon-
struction error (the first term) in L𝐸𝐿𝐵𝑂 can be rewritten as:

E
f inv ,f spe

[
−1
2




𝑓 ( [f inv ; f spe]) − fdiff



2] . (8)

During training, we use a linear layer to produce 𝜇𝛽 , 𝛿𝛽 , 𝜇𝛼 , and 𝜅𝛼 .
The difference vectors from both shadow and target recommenders
are disentangled by the encoder. Note that membership labels in
the target recommender are not exposed to DL-MIA. Through the
encoder, the disentangled difference vector, i.e., fdis = [f inv ; f spe],
is obtained to mitigate the gap between shadow and target recom-
mender.
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Figure 2: An overview of DL-MIA. DL-MIA has four main components: a difference vector generator, a disentangled encoder, a
weight estimator, and an attack model.

3.4 Weight estimator
Given fdis from the disentangled encoder, the weight estimator aims
to alleviate the estimation bias of difference vectors. Specifically, we
introduce the truth-level score to indicate the estimation accuracy.
Then, we establish the estimation constraint, and assign a truth-
level score for each difference vector. Moreover, to update model
parameters and learn scores simultaneously, an alternating training
strategy among the disentangled encoder, weight estimator, and
attack model is adopted.

3.4.1 Truth-level score. As mentioned in Sec. 3.1, the hidden states
in the target recommender, including item representations, are not
observational to the adversary. As a result, difference vectors for
recommenders may be computed inaccurately by MF in the gener-
ator. In the estimator, we write f ′ for the ground truth difference
vector, and define the truth-level score 𝑝 for fdis as follows:

𝑝 =
𝛿 (A (f ′) , 𝑦∗)
𝛿 (A(fdis), 𝑦∗)

, (9)

where A(·) denotes the attack model, and 𝑦∗ is the membership
label. 𝛿 (·) is the error measure, for which we adopt the binary
cross-entropy loss.

3.4.2 Alternating training. In the estimator, the truth-level score
serves as the weighting parameter for the estimation bias. After
debiasing by the truth-level score, the biased estimation should be
equal to the unbiased estimation. Motivated by this, we can rewrite
Eq. 9 as follows:

𝑝 · 𝛿
(
A

(
fdis

)
, 𝑦∗

)
= 𝛿

(
A

(
f ′
)
, 𝑦∗

)
. (10)

On this basis, to compute the truth-level score 𝑝 , the estimation
constraint is established:

Lestimate =∑︁
𝑗

𝜆 𝑗 ·
𝑁 𝑗∑︁
𝑖=1




𝑝𝑖, 𝑗 ·𝛿 (
A

(
fdis𝑖, 𝑗

)
, 𝑦∗𝑖, 𝑗

)
− 𝛿

(
A

(
f ′𝑖, 𝑗

)
, 𝑦∗𝑖 . 𝑗

)


2, (11)

where 𝑗 ∈ {𝑠ℎ𝑎𝑑𝑜𝑤, 𝑡𝑎𝑟𝑔𝑒𝑡}, and 𝜆 𝑗 is the weight for the shadow
or target recommender. Here, we set 𝜆 𝑗 = 1

𝑁 𝑗
, where 𝑁shadow

and 𝑁target are the size of training dataset generated by shadow
recommender, and the test dataset for the target recommender,
respectively.

However, membership labels y∗target of the target recommender
and the ground truth difference vector f ′ cannot be obtained di-
rectly. To address this issue and facilitate model update, we develop
an alternating training strategy among the disentangled encoder,
attack model, and weight estimator. Specifically, the re-weighted
loss for the disentangled encoder and attack model is defined as
follows:

Lreweight = L′
𝐵𝐶𝐸 + L′

𝐸𝐿𝐵𝑂 , (12)

L′
𝐵𝐶𝐸 = −

𝑁shadow∑︁
𝑖=1

wshadow,𝑖 (p) ·
(
𝑦∗𝑖 log𝑦𝑖,1 + (1 − 𝑦∗𝑖 ) log𝑦𝑖,2

)
,

L′
ELBO = −

∑︁
𝑗

𝑁 𝑗∑︁
𝑖

w𝑗,𝑖 (p) · L𝐸𝐿𝐵𝑂,𝑗,𝑖 , 𝑗 ∈ {shadow, target},

where wshadow (p) and wtarget (p) are the data sample weights for
shadow and target recommenders, obtained by applying a lin-
ear layer on the current truth-level scores p. We compute the re-
weighted and disentangled difference vector f rew =

[
f ′inv ; f ′spe

]
by minimizing Lreweight , where f ′inv and f ′spe are the re-weighted
invariant and specific vectors. Meanwhile, the trained attack model
is able to predict membership labels for the target recommender,
i.e., 𝑦target . Next, we approximate f ′ and 𝑦∗target by f rew and 𝑦target ,
and minimize Lestimate to refine the current truth-level scores p.
In this way, Lreweight and Lestimate are optimized in an alternating
fashion.

3.5 Learning algorithm
The training process of DL-MIA contains two stages: (i) Pretrain-
ing. We first pretrain the disentangled encoder and attack model
jointly by optimizing LBCE (Eq. 3) and LELBO (Eq. 5). In this stage,
the disentangled difference vector fdis is computed, and inputted
into the attack model for learning. (ii) Alternating training. After
obtaining the disentangled difference vectors, we adopt the alternat-
ing training strategy to reduce the estimation bias. Specifically, the
re-weighted loss Lreweight and the estimation constraint Lestimate
are minimized iteratively. In such manner, the re-weighted differ-
ence vector f rew is derived, and then used by the attack model to
conduct membership inference on the target recommender. Sec. A.1
gives the detailed training algorithm of DL-MIA.
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Table 1: Statistics of datasets. #Users, #Items, and #Interac-
tions denote the number of users, items, and user-item inter-
actions, respectively.

Dataset #Users #Items #Interactions

MovieLens-1M 6,040 3,706 1,000,209
Amazon Digital Music 840,372 456,992 1,584,082
Amazon Beauty 1,210,271 249,274 2,023,070

4 EXPERIMENTS
Research questions. We aim to answer the following research
questions: (RQ1) Does DL-MIA outperform the state-of-the-art
attack methods? Is DL-MIA able to generalize to the sequential
recommendation? (Sec. 5.1 and 5.2) (RQ2) How does the disentan-
gled encoder and weight estimator contribute to the performance?
(Sec. 6.1) (RQ3) What is the influence of the difference vector gen-
erator and defense mechanism? (Sec. 6.2 and 6.3) (RQ4) Is DL-MIA
able to identify features invariant and specific to shadow and target
recommenders, and alleviate the estimation bias? (Sec. 6.4)
Datasets. Following Zhang et al. [53], we evaluate the attack perfor-
mance on two real-world datasets, MovieLens [14] andAmazon [33].
MovieLens is a widely used benchmark dataset for evaluating col-
laborative filtering algorithms. We use the version (MovieLens-1M)
that includes 1 million user ratings for both general and sequential
recommenders. Amazon is a series of datasets, consisting of large
corpora of product reviews crawled from Amazon.com. Top-level
product categories on Amazon are treated as separate datasets. Sim-
ilar to Zhang et al. [53], we consider “Digital Music” for general rec-
ommenders, while “Beauty” is used for sequential recommenders,
since the number of the interacting users per item in “Digital Music”
is extremely low (less than 2). Table 1 summarizes the statistics of
datasets.

Similar to [53], we further divide each dataset into three disjoint
subsets. i.e., a shadow dataset, a target dataset, and a dataset for dif-
ference vector generation. We filter the target and shadow datasets
to make sure the dataset for difference vector generation contains
all the items. Then, target and shadow datasets are both randomly
separated into two disjoint parts for members and non-members,
respectively. For general recommenders, we remove users with less
than 20 interactions. For sequential recommenders, we filter out
users and items with less than 5 interaction records.
Recommender systems. Following [53], we evaluate membership
inference attacks against three general recommenders: (i) Item-based
collaborative filtering (ItemBase) [43], (ii) latent factor model (LFM)
[36], and (iii) neural collaborative filtering (NCF) [15]. To investi-
gate the generality of our proposedmodel, we also implement attack
models on three sequential recommendation methods in our exper-
iments, including GRU4Rec [16], Caser [49], and BERT4Rec [48].
Experimental settings. Table 4 shows the notation for our exper-
imental settings. Note that not all possible settings are listed due to
space limitations. In the experiments, there are two kinds of combi-
nations (i.e., 2-letter and 4-letter combinations) for experimental
settings. For the 2-letter combinations, the first letter indicates
the dataset, and the second letter denotes the recommendation
algorithm. For example, for general recommenders, “AI” denotes
that the recommender is implemented by ItemBase and trained

on Amazon Digital Music. For the 4-letter combinations, the first
two letters represent the dataset and algorithm used by the shadow
recommender, and the last two letters denote the dataset and algo-
rithm used by the target recommender. For instance, for sequential
recommenders, “ABMC” means the adversary establishes a shadow
recommender using BERT4REC on Amazon Beauty to attack a
target recommender using Caser on MovieLens-1M.
Baseline.We compare the proposed DL-MIA with the biased base-
line (Biased) [53], which is the first work studying the membership
inference attack against recommender systems. PreviousMIAmeth-
ods [9, 29, 35, 42, 46, 52] are not considered in our experiments,
since they cannot be directly applied to recommender systems.
Evaluationmetric.We adopt the area under the ROC curve (AUC)
as the evaluation metric. AUC signifies the probability that the
positive sample’s score is higher than the negative sample’s score,
illustrating the classification model’s ability to rank samples. For
example, if the attack model infers the membership with random
guessing, the AUC is close to 0.5.
Implementation details. For the attack model, we build a MLP
with 2 hidden layers. And the first layer has 32 units and the second
layer has 8 units. We employ the ReLU activation function, and
use the softmax function as the output layer. For optimizers, we
employ Adam with a learning rate of 0.001 for the disentangled
encoder and SGD with a learning rate of 0.01 and a momentum
of 0.7 for the attack model. During training, we first pretrain the
attack model and the disentangled encoder jointly for 200 epochs.
Then, truth-level scores and model parameters are alternatively
updated for every 10 epochs. The whole alternative training is
conducted for 100 epochs. Following [53], we consider the top 100
recommendations for members, and recommend the most popular
items to non-members. Table 5 lists detailed parameter settings.

5 EXPERIMENTAL RESULTS
For RQ1, we evaluate the attack performance of our proposed
DL-MIA over general and sequential recommender systems.

5.1 Attack performance over general
recommenders (RQ1)

Figure 3(a) shows the experimental outcomes for the attack perfor-
mance over general recommender systems. Based on the experi-
mental results, we have the following observations: (i) Membership
inference attack against general recommender systems is challeng-
ing, and for the biased baseline, AUC scores are less than 0.7 in most
settings (more than 60%). In contrast, our proposed DL-MIA is able
to effectively infer the membership of the target recommenders, and
AUC scores are over 0.8 for more than 80% experimental settings.
(ii) The proposed DL-MIA consistently outperforms the biased base-
line in all the settings. For example, for the “MLAI” setting, the AUC
score of DL-MIA is 0.980, while that of the biased baseline attack
is 0.608. That is, identifying features invariant and specific to rec-
ommenders, and computing the truth-level scores for difference
vectors substantially enhance the attack performance. (iii) Similar
to the conclusions mentioned in [53], with knowledge of the al-
gorithm and dataset distribution used by the target recommender,
the adversary is capable of conducting a strong attack, and AUC
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Figure 3: Attack performance (AUC) over general recom-
menders (a) and sequential recommenders (b).

scores of DL-MIA at the back-diagonal in Figure 3(a) are the highest
in most cases. In summary, the proposed DL-MIA can effectively
infer the membership for the target recommender. Identifying rec-
ommender invariant and specific features, as well as considering
estimation accuracy of difference vectors, are beneficial for the
membership inference attack.

5.2 Attack performance over sequential
recommenders (RQ1)

To investigate the generality of DL-MIA, we report the performance
of membership inference attacks against sequential recommenders.
Based on the results in Figure 3(b), we arrive at the following in-
sights: (i) Even with ordered user historical behaviors, DL-MIA can
still accurately calculate the difference vectors, and infer member-
ship. The AUC scores of DL-MIA are over 0.8 for more than 80%
settings. (ii) DL-MIA surpasses the biased baseline, and achieves
better attack performance over both general and sequential rec-
ommenders, demonstrating the effectiveness and strong general-
izability of our proposed framework. In summary, the DL-MIA
framework cannot only effectively conduct membership inference
attacks against general recommenders, but also attains the best
AUC scores over sequential recommenders.

6 ANALYSIS
In this section, we take a closer look at DL-MIA to analyze its
performance. We examine how the disentangled encoder, and the
weight estimator contribute to the performance. The influence of
the difference vector generator and defense mechanism is also
investigated. In addition, we conduct case studies to study whether
DL-MIA is able to recognize recommender invariant and specific
features, and mitigate the estimation bias.

Table 2: Ablation studies over general and sequential rec-
ommenders. . . . (𝛽-VAE) and . . . (FactorVAE) are two model-
variants of DL-MIA with widely-used VAE models.

Model General Sequential

AI
M
I

AL
M
L

AI
M
L

AL
M
I

AG
M
G

M
GA

G
M
GM

C
AG

M
C

DL-MIA 0.999 0.995 0.993 0.998 0.999 0.986 0.992 0.999

-Reweight 0.553 0.518 0.531 0.526 0.723 0.915 0.936 0.707
Biased [53] 0.525 0.510 0.524 0.510 0.711 0.908 0.922 0.704

. . . (𝛽-VAE) 0.920 0.993 0.995 0.996 0.999 0.983 0.993 0.996

. . . (FactorVAE) 0.999 0.987 0.999 0.999 0.999 0.982 0.994 0.999

6.1 Ablation studies (RQ2)
We conduct ablation studies over both general and sequential recom-
menders. The results are shown in Table 2. AUC scores are adopted
here to evaluate the attack performance. When only employing
the difference vector generator and attack model, our framework is
reduced to the biased baseline. In that case, AUC scores over all the
settings suffer a dramatic drop. In the “-Reweight” setting, the dis-
entangled encoder and attack model are trained jointly whereas the
alternative training is removed. Compared to the biased baseline,
identifying features invariant and specific to shadow and target rec-
ommenders considerably alleviates the training data bias, and AUC
scores are consistently improved over both general and sequential
recommenders. Meanwhile, DL-MIA further enhances the attack
performance by reducing the estimation bias of difference vectors.
In a nutshell, both the disentangled encoder and weight estimator
contribute to the improvements in attack performance.

In Tabe 2, we also consider two model variants, DL-MIA (𝛽-VAE)
and DL-MIA (FactorVAE), with two widely-used VAE models 𝛽-
VAE [17] and FactorVAE [24], respectively. Based on the results in
Table 2, we observe that DL-MIA (𝛽-VAE), and DL-MIA (FactorVAE)
both achieve a similar attack performance as DL-MIA. That is, even
with a different VAE based encoder, our proposed framework is still
able to perform effective membership inference.

6.2 Influence of difference vector generator
(RQ3)

Table 3 shows the attack performance (AUC) with two kinds of
difference vector generators, “MF” and “BERT”. “MF” generates the
difference vectors by factorizing user-item matrices (explained in
Sec. 3.2). “BERT” employs the tiny-sized BERT [12] to embed item
descriptions, and takes the [CLS] vectors as item representations.
Since some item descriptions are missing, we do not consider exper-
imental settings using the Amazon Digital Music dataset. Based on
the results in Table 3, we find that DL-MIA performs better than the
biased baseline over both generators, indicating the effectiveness
of our framework.

6.3 Influence of defense mechanism (RQ3)
Following Zhang et al. [53], we investigate the influence of de-
fense mechanism, and apply the countermeasure named Popularity



KDD ’22, August 14–18, 2022, Washington, DC, USA Zihan Wang et al.

Table 3: Influence of the difference vector generator over
general and sequential recommenders. “Gen.” is short for
“Generator.”
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M
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Figure 4: Influence of the defense mechanism. “Biased-
defense” and “DL-MIA-defense” denote Biased [53] and
DL-MIA with the defense mechanism, respectively.

Randomization to the attack frameworks. Figure 4 shows the at-
tack performance (AUC) before and after deploying the defense
mechanism. With the defense mechanism, the attack performance
for both the biased baseline and DL-MIA consistently decreases
over all the settings. Meanwhile, compared to the biased baseline,
our proposed DL-MIA achieves higher AUC scores, and shows a
stronger robustness to the countermeasure.

6.4 Case studies (RQ4)
Figure 5 shows visualization results of the “ANML” setting for the
general recommender system by t-SNE [50]. Points in Figure 5(a)
and Figure 5(b) stand for the recommender invariant and specific
features, respectively. We can see that invariant features from the
shadow recommender (red) and target recommender (blue) are
distributed similarly, whereas specific features are scattered diver-
gently. That is, by employing the disentangled encoder, DL-MIA is
able to mitigate the gap between recommenders.

In addition, Figure 5(c) and Figure 5(d) demonstrate the visu-
alization results of difference vectors before and after debiasing,
respectively. Based on the results, we conclude that DL-MIA ef-
fectively reduce the gap between difference vectors generated by
the attack model (red) and recommender (blue), and alleviate the
influence of the estimation bias.

7 CONCLUSION AND FUTUREWORK
In this paper, we investigate the membership inference attack
against recommender systems. Previously published methods faces
two challenging problems: (i) the biased attack model training

(a) Invariant feature f inv (b) Specific feature f spe

(c) Biased difference vector (d) Debiased difference vector

Figure 5: Visualization results of the “ANML” setting for the
general recommender.

caused by the gap between target and shadow recommenders,
(ii) and inaccurate estimation of difference vectors since hidden
states in recommenders are inaccessible. To handle these problems,
we propose a novel framework named DL-MIA. To mitigate the gap
between target and shadow recommenders, the VAE based encoder
is devised to identify recommender invariant and specific features.
And to alleviate the estimation bias, the weight estimator is con-
structed, and truth-level scores for difference vectors are computed
to facilitate the model update. We evaluate DL-MIA against both
general recommenders and sequential recommenders on two real-
world datasets. Experimental results demonstrate that the DL-MIA
framework is able to effectively alleviate training and estimation
biases, and shows a strong generality.

In future work, we intend to incorporate more kinds of disentan-
gled methods and explore other types of biases in the membership
inference attack against recommender systems.
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Table 4: Notation for different settings. “Rec.” is short for
“Recommender.” “∗” stands for any recommendation algo-
rithm or dataset.
Rec. Notation Description

G
en
er
al

A∗ Trained on the Amazon Digital Music dataset.
M∗ Trained on the MovieLens-1M dataset.
∗I Implemented by the ItemBase algorithm.
∗L Implemented by the LFM algorithm.
∗N Implemented by the NCF algorithm.

AI The recommender is implemented by Item algorithm
on the Amazon Digital Music dataset.

AIMN

The shadow recommender is implemented by the Item-
Base algorithm on the Amazon Digital Music dataset,
and the target recommender is implemented by NCF
algorithm on the MovieLens-1M dataset.

Se
qu

en
tia

l

A∗ Trained on the Amazon Beauty datset.
M∗ Trained on the MovieLens-1M dataset.
∗B Implemented by BERT4REC algorithm.
∗C Implemented by Caser algorithm.
∗G Implemented by GRU4REC algorithm.

AB The recommender is implemented by BERT4REC on the
Amazon Beauty dataset.

ABMC

The shadow recommender is implemented by
BERT4REC on the Amazon Beauty dataset, and the
target recommender is implemented by Caser on the
MovieLens-1M dataset.

Table 5: Parameter settings of different recommender sys-
tems.
Baseline Settings

ItemBase –

LFM Embed.-size=100, SGD optimizer, learning-rate=0.01

NCF Embed.-size=8, batch-size=256, Adam optimizer, hidden-
size=64, 32, 16, learning-rate=0.001

BERT4REC batch-size=128, Adam optimizer, dropout=0.1 hidden-
size=256, learning-rate=0.001

Caser Embed.-size=50, batch-size=512, Adam optimizer,
dropout=0.5 learning-rate=0.001

GRU4REC batch-size=50, Adagrad optimizer, dropout=0.5, hidden-
size=100, learning-rate=0.01, momentum=0

A APPENDIX
A.1 Learning algorithm of DL-MIA
Algorithm 1 gives the detailed learning algorithm ofDL-MIA. Specif-
ically, given the target recommender, we first establish the shadow
recommender Mshadow , calculate the difference vector fdiff by MF,
and initialize model parameter Θ for the disentangled encoder and
attack model (line 1–3). Then, to mitigate the gap between the
shadow and target recommenders, we train the disentangled en-
coder and attack model by jointly optimizing LBCE and LELBO
(line 4–7). In this way, the disentangled difference vector fdis is
computed. Next, to further reduce the influence of the estimation
bias, an alternating training strategy is adopted. By determining

data sample weights w using the current p, we are able to minimize
the reweighted loss Lreweight , and obtain the reweighted difference
vector f rew (line 10–15). With input of f rew and 𝑦𝑡𝑎𝑟𝑔𝑒𝑡 , the cur-
rent 𝑝 can be refined using the estimation constraint L𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛

(line 16–19). During the alternating training process, Lreweight and
Lestimation are optimized iteratively (line 9–20).

Algorithm 1 Training algorithm of DL-MIA.

Require: The trained shadow recommenderMshadow ; the differ-
ence vector fdiff from the generator; randomly initialized truth-
level scores p; the number of inner-loop epochs epochin and
outer-loop epochs epochout for the alternating training; the
number of epochs for pretraining epochpre ; parameters Θ for
the disentangled encoder and attack model.

Ensure: The disentangled and reweighted difference vector f rew

and trained attack model A;
1: Establish the shadow recommenderMshadow ;
2: Calculate the difference vector fdiff (Eq. 2);
3: Randomly initialize model parameters Θ;
4: while 𝑖 ≤ epochpre do
5: Calculate the disentangled difference vector fdis ;
6: Input fdis into the attack model A for predicting 𝑦𝑠ℎ𝑎𝑑𝑜𝑤 ;
7: Update Θ by jointly optimizing LBCE and LELBO (Eq. 3

and 5);
8: end while
9: while 𝑖 ≤ epochout do
10: Compute the data sample weights w using the current p;
11: while 𝑗 ≤ epochin do
12: Calculate the reweighted feature vector f rew ;
13: Input f rew into A for predicting 𝑦𝑡𝑎𝑟𝑔𝑒𝑡 and 𝑦𝑠ℎ𝑎𝑑𝑜𝑤 ;
14: Update Θ by minizing Lreweight (Eq. 12);
15: end while
16: Input f rew and 𝑦𝑡𝑎𝑟𝑔𝑒𝑡 into the weight estimator;
17: while 𝑘 ≤ epochin do
18: Refine the current truth-level scores p by optimizing

Lestimation (Eq. 9 and 11);
19: end while
20: end while

A.2 Notation
Table 4 shows the notation we use for different experimental set-
tings.

A.3 Implementation details
Table 5 demonstrate the parameter settings of different recom-
menders in our experiments. Note that, we do not give the pa-
rameter setting of ItemBase [43] since it is based on the statistical
method.

A.4 Reproducibility
To facilitate the reproducibility of the results reported in this work,
the code and data used in this work is available at https://github.
com/WZH-NLP/DL-MIA-KDD-2022.

https://github.com/WZH-NLP/DL-MIA-KDD-2022
https://github.com/WZH-NLP/DL-MIA-KDD-2022
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