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Cross-domain contract element extraction (CEE) aims to transfer knowledge from a source domain to facilitate
the extraction of legally relevant elements (e.g., contract dates or payments) from contracts in a target domain.
To achieve this goal, recent studies encode the domain-invariant relations between elements and legal clause
types and enhance performance through bidirectional supervision between the CEE task and the clause
classification task. However, two challenges remain unresolved—(i) data sparsity due to expensive annotation
costs and a large number of element types, and (ii) label discrepancies among element types across domains,
both of which severely impede effective knowledge transfer from the source to the target domain.

Recent developments in prompt learning have shown promising performance in low-resource settings.
Drawing inspiration from these advances, we propose a novel framework, graph-enhanced prompt learning
(GEPL), for the cross-domain CEE task to address these challenges. GEPL includes two kinds of prompt:
(i) instance-oriented prompts and (ii) label-oriented prompts. Given the input instances, instance-oriented
prompts are automatically generated by retrieving relevant examples in the training data, providing auxil-
iary supervision to enhance the transfer process in low-resource scenarios. To mitigate label discrepancies
across different domains, we identify relations among element types using mutual-information criteria and
transform these into label-oriented prompt templates. On this basis, a multi-task training strategy is designed
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to simultaneously optimize the representations of the original input sentence and prompts, enabling GEPL
to better understand the tasks and capture label relations in both source and target domains. Empirical
results on cross-domain CEE datasets indicate that GEPL significantly outperforms state-of-the-art baselines.
Moreover, extensive experiments reveal that GEPL achieves the state-of-the-art performance on cross-domain
named entity recognition datasets and demonstrates a high level of generalizability. Our code is released at
https://github.com/WZH-NLP/GEPL.

CCS Concepts: • Information systems → Information extraction; Specialized information retrieval;

Additional Key Words and Phrases: Legal information extraction and retrieval, Cross-domain information
extraction, Sequence labeling, Cross-domain learning
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1 Introduction
Every day, a multitude of contracts are drafted for various transactions, such as services, leases, or
sales. These contracts contain many crucial elements, such as termination dates and information
of parties involved [7, 9, 49]. The manual monitoring of legally relevant elements within a large
volume of contracts imposes a heavy burden for law firms, companies, and government agencies
[67]. Consequently, automatic Contract Element Extraction (CEE) has become an essential task
for businesses globally, aimed at identifying legally relevant elements within contract clauses. For
example, as shown in Figure 2, given the input clause “After Party A accepts the delivered goods
from Party B as satisfactory, … within 15 working days.” from a contract, our goal is to identify
the contract elements, such as Payment Condition “After Party A accepts the delivered goods
from Party B as satisfactory” and Payment Period (PP) “within 15 working days.” The automatic
CEE task enables a wide range of downstream applications like clause relation extraction and risk
assessment [4, 48, 74]. Nonetheless, due to the high costs associated with manual labeling, there
has been increasing research interest in cross-domain CEE, focusing on transferring knowledge
from a source domain to a low-resource target domain.

As mentioned in [7, 8], from multiple perspectives, cross-domain CEE is similar to cross-domain
Named Entity Recognition (NER) [27, 28, 77]. Despite these similarities, the cross-domain CEE
task presents two additional difficulties compared to cross-domain NER: (i) Cross-domain CEE
focuses on transferring a more extensive set of fine-grained contract element types. While a generic
named entity recognizer typically extracts a limited set of entity types, such as persons, organiza-
tions, or locations, the CEE task aims to identify a much broader range of specific contract elements
[72]. In the cross-domain setting, this larger number of fine-grained contract elements makes
transferring the element extractor from one domain to another challenging. (ii) The extraction
zones for contract elements (i.e., contract clauses) are substantially larger. Whereas the NER task
primarily focuses on identifying entities within a single sentence, the CEE task necessitates extract-
ing contract elements that often span multiple sentences within a clause. This larger extraction zone
with varied organizational structures across domains significantly impedes the effectiveness of
existing cross-domain methods [72]. To address these difficulties, a bidirectional feedback scheme
between the CEE task and the Clause Classification (CC) task has recently been designed by
Wang et al. [72]. The key idea is to identify domain-agnostic relations between elements and legal
clauses. However, current cross-domain CEE methods [72] still face two challenging problems:
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Fig. 1. (a) Data sparsity. Blue bars represent the number of instances for entity types (i.e., Person (PER),
Organization (ORG), Location (LOC), and Miscellaneous (MISC)) in the CoNLL03 dataset, and red bars
represent the number of instances for element types (i.e., Name of Party A (NPA), Penalty Payment Ratio
(PPR), Payment Date (PD), Price of Subject Matter (PSM), and Effective Date (ED)) in the Commercial dataset
[72]. (b) Label discrepancies. Blue bars represent the number of instances in the Commercial dataset, and red
bars represent the number of instances in the Individual dataset [72].

Challenge 1: Data Sparsity. As mentioned earlier, cross-domain CEE involves transferring a more
extensive range of fine-grained contract element types compared to tasks like cross-domain
NER. For example, the Commercial dataset [72] (a CEE dataset) contains over 70 types of
elements, while the widely used CoNLL03 dataset [63] for NER includes only four types of
named entity. Additionally, manual labeling of contract elements is expensive, labor-intensive,
and prone to errors [67]. Consequently, existing cross-domain CEEmethods suffer from severe
data sparsity problems. Specifically, Figure 1(a) demonstrates the notably lower number of
instances for element types in the Commercial dataset compared to entity types in CoNLL03.

Challenge 2: Label Discrepancies.Another key challenge that has not yet been fully addressed is
the inconsistency of labels between the source and target domains. Existing cross-domain
CEE methods incorporate domain-invariant knowledge about legal clauses and elements,
employing a multi-task framework with bidirectional feedback between CC and CEE [72].
Nevertheless, the discrepancies in element labels across different domains have often been
overlooked. For example, as Figure 1(b) shows, 17.2% of element types in the Individual dataset
do not appear in the Commercial dataset, significantly impeding the transfer of contract
element extractors from one domain to another. Additionally, there is a notable variance in
the distribution of instances for element types across different domains, and the dependencies
between element labels are not always consistent between the source and target domains.

To alleviate data sparsity (Challenge 1), we automatically generate auxiliary supervisions for a given
input instance by retrieving closely relevant examples in the training data. In order to mitigate
label discrepancies across domains (Challenge 2), we take steps to identify relationships among
different types of elements across domains. These relationships are then transformed into textual
templates, which serve as model input to capture dependencies among element labels.

In this article, we use prompt-based learning, which has been pioneered by the GPT series of
Large Language Models (LLMs) [5, 58, 59] and achieves promising performance in low-resource
scenarios [19, 34, 37, 44]. Prompt-based learning methods formulate the downstream task as a
(masked) Language Modeling (LM) problem by finding appropriate natural language prompts,
reducing or eliminating the need for large supervised datasets [37]. Inspired by this, we propose
a framework, named Graph-Enhanced Prompt Learning (GEPL), that incorporates auxiliary
supervision and relationships among element labels across domains. As Figure 2 shows, GEPL
includes two types of prompts: (i) instance-oriented prompts and (ii) label-oriented prompts.
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Fig. 2. An overview of the proposed GEPL. GEPL incorporates basic cross-domain CEE models with two types
of prompt—instance-oriented prompts and label-oriented prompts. We also develop a multi-task training
strategy that enhances the model’s understanding of the task and captures relationships between different
labels across domains.

Given the input instances, instance-oriented prompts are automatically generated by selecting
semantically relevant examples from the training data, providing auxiliary supervision to mitigate
the data sparsity problem. To further reduce the impact of label discrepancies across different
domains, we begin by constructing a label graph based onmutual information criteria.The identified
relationships between element labels are then transformed into natural language templates for label-
oriented prompts. Moreover, we develop a joint training strategy that refines the representations
of both the original input sentence and the prompts, empowering GEPL to better understand the
tasks and effectively encode label relations in both source and target domains.

Note that GEPL functions as a fully automated approach, free from the reliance on supplementary
hand-labeled data or human interventions. GEPL is capable of seamlessly integrating with various
cross-domain CEE and NER frameworks. Experimental results using both the cross-domain NER
and CEE datasets demonstrate the effectiveness of GEPL.

The contributions of this article can be summarized as follows:

—To the best of our knowledge, our work is the first to investigate prompt learning for the
cross-domain CEE task.

—Given input sentences, we design instance-oriented prompts by retrieving semantically similar
examples in train data to alleviate the data sparsity problem.

—To address label discrepancies, we initially employ mutual information criteria to construct a
label graph. Subsequently, we transform the extracted relationships between element types
into label-oriented prompts, capturing the dependencies among labels across various domains.

—Experimental results reveal that the proposed GEPL model significantly outperforms the
baselines in both cross-domain NER and CEE tasks. Furthermore, GEPL exhibits a robust
ability to align prompts with input sentences and to effectively model the relationships
between various element labels.

The rest of this article is organized as follows: Related work is reviewed in Section 2. The prelim-
inaries and the proposed GEPL framework are detailed in Sections 3 and 4. Evaluations of both
cross-domain CEE and NER tasks, along with detailed analyses, are presented in Sections 5 and 6.
Finally, our conclusions and future work are formulated in Section 8.
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2 Related Work
We survey related work along four dimensions: (i) legal Information Retrieval (IR) and Infor-
mation Extraction (IE), (ii) cross-domain CEE, (iii) cross-domain NER, and (iv) prompt learning.

2.1 Legal IR and IE
The identification of pertinent materials and elements is fundamental in legal practice. However,
due to the heavy burden on the worldwide legal system and high dependence on professional
knowledge, automatic legal IR and IE systems are urgently needed. In recent years, with the
digitization of legal documents, numerous datasets focusing on legal IR and IE tasks, such as
COLIEE [57], CAILIE [6], AILA [3], and CUAD [24], have been released. These benchmarks have
spurred extensive research in this field [2, 17, 31, 48], and various challenges have been presented
[12, 30]. Traditional legal search systems, primarily keyword-based, depend heavily on the user’s
expertise. Recent advancements aim to reduce this dependency and enhance retrieval effectiveness
by automatically classifying legal documents and queries [16, 31, 53, 71]. Additionally, semantic
matching methods and user-system interactions have been incorporated to enhance legal case
retrieval [46, 61, 65, 66]. Furthermore, current studies indicate that extracting key legal concepts can
streamline the retrieval process [4, 70]. In light of this, Chen et al. [11] introduce a triplet extraction
system to jointly recognize entities and relations from unstructured crime judgment documents.
Martín-Chozas and Revenko [47] use legal thesauri to automatically perform entity annotation and
minimize manual efforts by expanding the initial training set of relations. Kwak et al. [32] present
an IE dataset focusing on complex legal wills and evaluate an in-context learning-based framework
in both in-domain and out-of-domain settings.

In this article, we conduct a detailed investigation into the challenges of data sparsity and label
discrepancies in cross-domain CEE.

2.2 Cross-Domain CEE
The CEE task focuses on extracting key legal elements from documents, such as execution dates,
jurisdictions, and amounts, as highlighted in prior studies [13, 26]. Initial methods in CEE are
predominantly rule-based or employ traditional statistical techniques. Chalkidis et al. [8], for
instance, define 11 types of contract elements and implement their extraction using Logistic
Regression and SVM, augmented with hand-crafted features. Similarly, García-Constantino et al.
[20] develop the CLIEL system to extract core information from commercial law documents,
utilizing rule-based techniques for recognizing five distinct types of contract elements. Additionally,
Azzopardi et al. [1] propose a hybrid approach that combines regular expressions with a dedicated
contract editing tool for legal practitioners. The evolution of CEE methods has recently shifted
toward deep learning, approaching the task as a sequence labeling problem. In this context, Chalkidis
and Androutsopoulos [7] delve into deep learning, specifically using a BiLSTM model that omits
the need for manually crafted rules. Sun et al. [67] classify clauses into seven distinct semantic
categories and introduce a TOI pooling layer to manage nested elements. Moreover, Chalkidis et al.
[9] reassess the CEE task, focusing on how sequence encoders, CRF layers, and input representations
influence extraction outcomes. Nevertheless, a major challenge faced by these CEE methods is
how to transfer knowledge from one domain to another [72, 76]. To address this, Wang et al.
[72] employ a multi-task framework that conducts both CC and element extraction, integrating
invariant knowledge about clauses and element types.

However, as discussed in Section 1, the current cross-domain CEE methods still suffer from
challenges of data sparsity and label discrepancies, which seriously impede knowledge transfer
from the source domain to the target domain.
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2.3 Cross-Domain Named Entity Recognition
Similar to cross-domain CEE, cross-domain NER aims to recognize crucial information (i.e., named
entities) in a target domain by using knowledge transferred from a source domain [72]. Recent
cross-domain NER methods are designed using either parameter transfer or label representation
techniques. Parameter transfer methods focus on modeling domain-invariant features with shared
components or auxiliary tasks [10, 27, 28, 33, 35, 36, 39, 56, 62, 76]. For example, Qu et al. [56]
model the correlation between source and target entity types with a two-layer neural network. Jia
et al. [27] propose a parameter generation network and incorporate the LM task to deal with zero-
shot learning settings. Jia and Zhang [28] transfer entity type level knowledge using a multi-cell
compositional LSTM structure and model each entity type using a separate cell state. Chen et al.
[10] study the augmentation for the cross-domain NER task, modeling patterns (e.g., style, noise,
abbreviation) and transforming the data representation from a high-resource to a low-resource
domain. Liu et al. [40] collect a new dataset, named CrossNER, containing five diverse domains
and propose BERT-based competitive baselines for domain adaptation. Moreover, Hu et al. [25]
use subsequence-level features that help the model distinguish different meanings of the same
word in different domains. In a line of work on label representation methods, Pan et al. [52] project
both labels and features into the same low-dimensional space, fully exploiting relations between
labels and reducing distance in data distribution across domains. Liu et al. [39] propose a template
regularization framework to enhance the adaptation robustness by regularizing the representation
of utterances. To reduce the complexity of the labeling scheme, Zhang et al. [77] and Xu and
Cai [73] decompose the monolithic NER task into two sub-tasks: entity span detection and type
classification. Tang et al. [69] aim to mitigate entity type conflicts and design a machine reading
comprehension-based framework to identify domain-specific semantic differences. Notably, several
recent studies have conducted analyses of the performance of current LLMs, such as the GPT series
[5, 51], in the context of the NER tasks [21, 22, 68]. Nevertheless, these investigations have revealed
a substantial performance gap between recent LLMs and state-of-the-art methods.

Despite their success, cross-domain NER methods cannot be directly applied to the cross-domain
CEE task [72] due to two main challenges, namely the need for more granular element type
identification and the requirement to handle broader extraction scopes within cross-domain CEE.

2.4 Prompt-Based Learning
Prompting is the practice of adding natural language texts or continuous vectors to the original
inputs or outputs to empower LLMs to perform specific tasks. By reformulating downstream
Natural Language Processing (NLP) tasks, prompting enables a better alignment of the new
task formulation with the pretraining objectives (e.g., masked text prediction). In this way, prompt-
based methods are able to better use the knowledge captured in the pretraining phases and have
shown remarkable performance in low-resource scenarios [5, 19, 34, 37, 44, 64]. For example, given
appropriate prompts and only a few input-output pairs, GPT-3 produces the desired outputs for
unseen inputs [5]. Scao and Rush [64] also show that a good prompt can be worth hundreds of
labeled data points, effectively reducing the number of task-specific training examples required to
achieve similar performance to previous approaches or even eliminating the reliance on supervised
datasets. Prompt-based learning is currently implemented for a growing list of NLP tasks. For
instance, for the NER task in low-resource settings, Lee et al. [34] propose a demonstration-
based learning approach that uses automatically constructed auxiliary supervision. Furthermore,
Das et al. [14] incorporate contrastive learning techniques with prompts to enhance the capture of
label dependencies. For the event extraction task in cross-lingual settings, Fincke et al. [18] present
a language-agnostic approach, augmenting the transformer stack’s language model differently
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depending on the question(s) being asked of the model at runtime. Besides, prompts also enable
knowledge probing to quantify knowledge presented in the LLMs for the specific tasks of interest
[23, 29, 38, 54, 55, 80]. For instance, Jiang et al. [29] investigate model knowledge with discrete
prompt templates, while Qin and Eisner [55] apply continuous prompts to factual knowledge
probing. Please refer to [37, 50] for a thorough review of prompt-based learning and its applications.

In this article, we mainly focus on the cross-domain CEE task. The work most closely related to
ours is [72]. However, the previous cross-domain CEE methods still face two challenging problems:
(i) data sparsity and (ii) label discrepancies across domains. To alleviate data sparsity, our proposed
GEPL generates instance-oriented prompts by retrieving the most relevant example to the input
sentence. To mitigate label mismatches in different domains, we design label-oriented prompts to
capture relations among element types across domains. To the best of our knowledge, ours is the
first study to explore prompt learning for the cross-domain CEE task.

3 Preliminaries
Prior to presenting the details of the proposed GEPL method, we introduce the problem formulation
of cross-domain CEE and three types of basic model used in the experiments.

3.1 Problem Formulation
Following Wang et al. [72], we write C = (s1, s2, . . . , s=) for a clause from a contract, where s8 is
the ith sentence in the clause C; s8 = (G8,1, G8,2, . . . , G8,<), where G8, 9 is the jth word in sentence s8 . A
contract element e in the clause C is a sequence of words in one sentence: e = {(G8,start, G8,start+1, …,
G8,end), l4 }, where l4 ∈ E is the type label of the element e (such as PP or Payment Condition). The
aim of the CEE task is to find the element e in the clause C. For the cross-domain CEE task, our
goal is to transfer the contract element extractor to the target domain from the source domain.
Specifically, the extractor is trained on the labeled clauses in the source domain DB and the target
domain DC to detect all the elements for the test set from the target domain.

A similar task is cross-domain NER, which focuses on identifying several types of named entities
in a single sentence. In contrast, cross-domain CEE aims at extracting much more fine-grained
elements in multiple sentences. As mentioned before, the transfer of larger extraction zones
and more element categories brings new challenges to cross-domain CEE over and above cross-
domain NER.

3.2 Basic Models
Given that the proposed GEPL method is designed to be model-agnostic, we select three recent
cross-domain CEE (or NER) methods as our basic models—BERT [40], Bi-FLEET [72], and MTD
[77]. In the following sections, these three types of basic model are outlined briefly. Note that, as
mentioned in Section 2, due to their high costs and inferior performance on the NER task, we do
not include recent LLMs, such as the GPT series [5, 51], as our basic models

3.2.1 BERT. Following previous work [40, 72], we employ pre-trained language models BERT
[15] to conduct the CEE (or NER) task. Specifically, BERT first generates contextualized word
embeddings. These embeddings are then input into a linear classifier with a softmax function
to predict the probability distribution of element (or entity) types. The process involves feeding
each token G ∈ s into the feature encoder BERT to obtain the corresponding contextualized word
embeddings h:

h = BERT(s), (1)
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where h represents the sequence of contextualized embeddings derived from the pre-trained
language models. To recognize contract elements (or entities), we optimize the following cross-
entropy loss Lbasic as:

Lbasic = −
∑
;4 ∈E

~G,4 log
(
?G,4

)
, (2)

where N denotes the number of classes, y is a binary indicator (0 or 1) indicating whether the gold
label ;4 is the correct prediction for observation x, and p is the predicted probability of ;4 for x.
Following Liu et al. [40], we consider two training settings, namely BERT-PF and BERT-JF, for the
cross-domain CEE (or NER) task in our experiments:

—BERT-PF . We initially pre-train BERT using data from the source domain and then fine-tune it
with samples from the target domain.

—BERT-JF . We perform joint fine-tuning of BERT using data samples from both the source
and target domains. Given that the data sample size in the target domains is smaller than in
the source domain, we apply upsampling to the target domain data. This approach helps to
balance the data samples between the source and target domains.

3.2.2 Bi-FLEET. Bi-FLEET [72], as the first work to formulate the cross-domain CEE task,
captures domain-invariant knowledge about element types and introduces a bidirectional feedback
scheme between the CEE and CC tasks. BI-FLEET contains three main components—a context
encoder, a clause-element relation encoder, and an inference layer. The context encoder embeds
every word x in a sentence s from a given clause. The clause-element relation encoder is shared by
the source and target domain and calculates representations of clause and element types using a
hierarchical graph neural network. The word embeddings and type representations are input to the
inference layer for CC and CEE across domains. To simultaneously conduct the CEE and CC tasks,
the overall loss function Lbasic of Bi-FLEET is defined as follows:

LCEE = − 1
#

#∑
==1

log(? (y���= |s=)),

L�� = − 1
#

#∑
==1

y��= log(? (ŷ��= )),

Lbasic =
∑

3∈{DB ,DC }
_3 (L3

��� + _CL3
�� ),

(3)

where L��� and L�� are loss functions for the CEE and CC tasks, respectively. N is the size of the
training dataset. For the input sentence s= , y��= and y���= represent the ground truth labels for
the CC and CEE tasks, respectively. Furthermore, ŷ��= represents the predicted label for s= in the
CC task. The output probabilities ? (y���= | s=) and ? (ŷ��=) are calculated by the standard CRF
[45] and softmax layers, respectively. _3 is the domain weight, and _C is the task weight. Given
that the BERT-based Bi-FLEET demonstrates superior performance in the cross-domain CEE task
compared to other variants [72], we choose BERT as the context encoder for Bi-FLEET in our
experiments.

3.2.3 MTD. In MTD [77], the NER task is segmented into two subtasks, entity span detection
and entity type classification, aimed at reducing the label space and enhancing the transfer process.
Specifically, MTD initially employs two distinct BERT-based encoders to extract unique represen-
tations for each subtask and then combines these representations to derive the final outcomes.
Additionally, to facilitate mutual enhancement between the subtasks, MTD incorporates a modular
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interaction mechanism for dual-loss reweighting and linguistic consistency learning, along with
target-domain adversarial regularization for robust training. To effectively fulfill the cross-domain
CEE (or NER) task, given an input sentence X = (F1, . . . ,F=), MTD undergoes joint training in a
supervised manner by minimizing the following total loss, Lbasic :

Lspan = −
=∑
8=1

W
tp
8

21∑
:=1

~8,C log(? (spanC | F8 ))

Ltype = −
=∑
8=1

W
sp
8

22∑
C=1

~8,C log(? (typeC | F8 ))

Lbasic = LDB
span + LDC

span + LDB

type + LDC

type

+ _

(
L� + LSha + LAT1 + LAT2

)
,

(4)

where Lspan and Ltype are the loss functions for entity span detection and entity type classification,
respectively. W tp

8
and W sp

8
denote the weights for these loss functions. The terms 21 and 22 represent

the number of span types and entity categories, respectively. ? (spanC | F8 ) and ? (typeC | F8 )
indicate the predicted distributions for entity span and entity type, respectively, while _ is the
weight coefficient. Moreover, L� and LSha are the loss functions for soft labeling and linguistic
consistency, respectively. LAT1 and LAT2 pertain to target domain regularizations. For more details,
please refer to [77].

4 Method
In this section, we provide a detailed description of the GEPL framework. As Figure 2 illustrates,
GEPL incorporates basic models with two types of prompts—(i) instance-oriented prompts and (ii)
label-oriented prompts. Specifically, to construct instance-oriented prompts, we retrieve instances
in training data that are semantically similar to the given input sentences. Next, a label graph is
established based on mutual information criteria, and identified relationships between element
labels are then modified into natural language prompt templates. On this basis, both instance-
oriented and label-oriented prompts, along with the original sentences, serve as the input to the
basic model. Finally, a multi-task joint training algorithm is designed to further fine-tune the
representations of both the original input sentence and the prompts.

Below, we first present the process for retrieving and incorporating instance-oriented prompts
(Section 4.1). Then, the construction of the label graph and the generation of prompts for the
identified relationships between element labels are explained (Section 4.2). Finally, we demonstrate
the overall loss function and joint training algorithm (Section 4.3).

4.1 Instance-Oriented Prompts
Given an input sentence s, our aim is to retrieve an instance example sio that is relevant to the
input from both the source and target domains. To this end, we employ the widely used sentence
embedding method, SBERT [60], using a BERT-based Siamese network to retrieve semantically
similar sentences. By deriving the embeddings of the “[CLS]” token independently for the input s
and sio, we compute the cosine similarity between these two sentence embeddings to rank sio within
DB ∪DC . Following Reimers and Gurevych [60], we use mean squared loss as the objective function
for SBERT pretraining. To reduce computational complexity in our experiments, we consider only
the relevant instances sio that contain at least one type of element found in the original input
sentence s and select the training instance sio with the highest similarity score.
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Then, to provide auxiliary supervision to the basic model, we modify the original input s,
along with the retrieved relevant instance sio and its containing elements and labels, denoted as
{(e1, l1), . . . , (e�, l�)}, using the following prompt template function 5io (·):

5io (s) = “[CLS]s[SEP]sio[SEP]e1 is l1[SEP], . . . , [SEP]e� is l�”. (5)

For example, as Figure 2 shows, given the input sentence s1 = “After Party A accepts the delivered
goods from Party B as satisfactory, … within 15 working days,” the instance-oriented prompt 5io (s1)
is represented as follows:

5io (s1) = “[CLS]After Party A … within 15 working days.
[SEP]Party A shall … VAT special invoice.[SEP]
After receiving Party B’s VAT special invoice
is Payment Condiction[SEP]within 15 working
days is Payment Period”.

(6)

4.2 Label-Oriented Prompts
In this section, we detail the construction of the label graph and the generation of label-oriented
prompts.

4.2.1 Label Graph Construction. Given the training dataset DB ∪DC and the set of element types
E, our goal is to construct a label graph that spans across domains and captures the relationships
between various element types. To accomplish this, we develop the mutual information criteria
to identify dependencies between different element types. Specifically, for a given domain D, we
define D8 to be the set that contains all sentences from the domain D where elements of type
l8 ∈ E, and D\D8 to be the set that contains sentences without entities of type l8 .

To investigate the relationships between element types l8 and l9 within E, we calculate the
mutual information between D8 and all elements of type l9 , as well as between D9 and all elements
of type l8 . Then, we introduce a filtering condition as follows:

�D\D8
(l9 )

�D8
(l9 )

≤ d,
�D\D9

(l8 )
�D9

(l8 )
≤ d, �D8

(l9 ),�D9
(l8 ) > 0, (7)

where �D8
(; 9 ) denotes the count of elements of type l9 within D8 . The term �D\D8

(l9 ) represents
the count of type l9 elements in all sentences excluding those in D8 . The hyperparameter d is
defined as the element frequency ratio. Element types l8 and l9 are connected in the label graph
when they satisfy the mutual information criteria in Equation (7). By applying this condition, we
ensure that element types l8 and l9 are strongly associated with each other while also being related
to other element types in D\D8 . Given that the number of sentences in D8 may be much smaller
than the number of examples in D\D8 , we set d ≥ 1 but avoid setting it to a large value. In our
experiments, we opt for d = 3 according to the performance in the validation set. As depicted
in Figure 3, we initially identify edges between element types from the source domain (blue and
yellow nodes) by setting D = DB in Equation (7). Subsequently, we retain these established edges
and incorporate new ones between element types from the target domain (yellow and green nodes)
by setting D = DC in Equation (7).

4.2.2 Prompt Generation. To integrate dependencies between element types into the basic
model, we generate the label-oriented prompt for each input sentence. Specifically, given an input
sentence s with its containing element types {l1, l2, . . . , l�}, our aim is to train the basic model to
distinguish the presence or absence of a relationship between any pair of element types found
within the sentence s. To this end, we formulate the incorporation of relations between element
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Fig. 3. Label graph construction across domains. Nodes are color-coded to indicate their domain associations:
blue nodes represent element types specific to the source domain, yellow nodes denote shared element types
across domains, and green nodes correspond to element types specific to the target domain. Edges denote
the identified relationships between element types.

types as a cloze-style task for the basic model (see Section 3.2), and the prompt template function
5;> (·) with K [MASK] tokens is defined as follows:

5;> (s) = 58> (s) + “[SEP]l1[MASK]l2[SEP] . . . [SEP]l�−1[MASK]l�”, (8)

where 58> (s) is the instance-oriented prompt template function for sentence s (see Section 4.2).
Note that we remove all pairs of element types l9 and l8 with 9 > 8 to avoid redundancy. Dur-
ing inference, since element type labels of the input sentence are not available, we construct
label-oriented prompts with element types appearing in the retrieved relevant instance (see
Section 4.1).

For example, as depicted in Figure 2, the label-oriented prompt 5;> (s1) corresponding to s1 =

“After Party A accepts the delivered goods from Party B as satisfactory, … within 15 working days.”
with the Payment Condition and PP element types can be represented as follows:

5;> (s1) = 58> (s1) + “[SEP] Payment Condition[MASK]Payment Period”. (9)

By inputting 5;> (s) into the basic model, we obtain the hidden vector h[MASK] of “[MASK]”. Following
this, we compute the probability that token r can fill the masked position:

? ([MASK] = A |5;> (x))) =
exp(r · h[MASK])∑
Ã exp(r̃ · h[MASK])

, (10)

where r and Ã are two distinct tokens within the label l[MASK] for the “[MASK]” tokens, where
l[MASK] ∈ {“’s connected to”, “’s not connected to”}. The embeddings r and r̃, corresponding to
tokens r and Ã , respectively, are generated by the basic model.The token with the highest probability
is then selected as the prediction for each input “[MASK]” token.

To train the basic model for selection, we define the loss function Lgen as follows:

Lgen = − 1
|Ds ∪ Dt |

∑
s∈Ds∪Dt

 ∑
8=1

log? ([MASK]8 = A8 | 58> (s)), (11)

where A8 ∈ l[MASK]
8

represents the ground truth token for the ith “[MASK]” token in the prompt
58> (s). Here, l[MASK]

8
specifies the ground truth label for this ith “[MASK]” token.

4.3 Joint Training
To simultaneously refine the representations of the original input and its corresponding prompts,
we train our model using a multi-task framework. The overall loss function is defined as follows:

L = (1 − U) · L′
basic + U · Lgen, (12)
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where L′
basic

denotes the normalized loss function for the basic model loss Lbasic (see Section 3.2).
1 − U is the weight assigned to L′

basic
with prompts as inputs. The weight U is assigned to the loss

function Lgen for label-oriented prompt generation (see Equation (11)). In our experiments, we
optimize the overall loss function using AdamW [41].

During each epoch, GEPL is trained on all sentences from both source and target domains. Note
that instance-oriented and label-oriented prompts are generated in the pre-training stage. For
instance-oriented prompt generation, cosine similarities between sentences in the training dataset
are computed, resulting in a computational complexity of O(|Dtrain |2), where |Dtrain | denotes the
number of sentences in the training dataset. The computational complexity of label-oriented prompt
generation is O(|Dtrain | · ;avg · |L|), where ;avg and L represent the average sentence length and the
set of element types, respectively. The mutual information criteria in Equation (7) can be computed
for all pairs of element types by traversing the tokens in each training sentence just once. In future
work, we plan to retrieve semantically relevant instances by computing cosine similarities between
clauses instead of sentences. This strategy would considerably improve the computational efficiency
of instance-oriented prompt generation from O(|Dtrain |2) to O(|Dclause |2), where |Dclause | is the
number of clauses in the training dataset.

5 Experiments
5.1 ResearchQuestions
We aim to answer the following research questions:

(RQ1) Does GEPL outperform the state-of-the-art methods on the cross-domain CEE taks? (Section
6.1)

(RQ2) Can GEPL be generalized to the cross-domain NER task? (Section 6.2)
(RQ3) How do the instance-oriented and label-oriented prompts contribute to the improvements?

(Section 7.1)
(RQ4) How do the amount of target-domain data and loss weight U influence the performance of

cross-domain CEE? (Sections 7.2 and 7.3)
(RQ5) Is GEPL able to outperform baselines at element type level and generate appropriate prompts?

(Sections 7.4 and 7.5)

5.2 Datasets
In our experiments, our proposed GEPL is evaluated on both the cross-domain CEE and NER
datasets. Detailed statistics of the datasets that we use are provided in Table 1.

5.2.1 Cross-Domain CEE Datasets. To conduct cross-domain CEE, we used datasets curated by
Wang et al. [72]. Specifically, 340 individual Chinese contracts are gathered from online sources to
form the Individual dataset, and 1,422 business Chinese contracts are acquired from various partners
to compose the Commercial dataset. Each contract undergoes annotation by at least two legal
experts. Initial preprocessing involves segmenting contracts into sentences, excluding elements
occurring fewer than 20 times, and removing sentences exceeding 100 characters. Subsequently,
the sentences were partitioned into training, validation, and test sets in an 8:1:1 ratio. Following
Wang et al. [72], we construct two cross-domain CEE datasets, namely I2C and C2I. For the I2C (or
C2I) dataset, the Individual (or Commercial) dataset serves as the source domain, while the other
dataset functions as the target domain.

ACM Transactions on Information Systems, Vol. 43, No. 3, Article 66. Publication date: March 2025.



Graph-Enhanced Prompt Learning for Cross-Domain CEE 66:13

Table 1. Statistics of the Datasets Used

Task Domain #Elements or entities #Train #Valid #Test

CEE Individual 70 13.6K 1.7K 1.7K
Commercial 79 4.8K 0.6K 0.6K

NER

CoNLL03 4 14,041 - -
Politics 9 200 541 651
Science 17 200 450 543
Music 13 100 380 465
Literature 12 100 400 416
AI 14 100 350 431

5.2.2 Cross-Domain NER Datasets. For cross-domain NER, we leverage the CrossNER datasets
curated by Liu et al. [40]. We conduct experiments on five domain pairs, aiming to transfer NER
models from the source domain, CoNLL03 (English) [63], to five distinct target domains—Politics,
Natural Science, Music, Literature, and Artificial Intelligence [40]. The source domain dataset,
CoNLL03, is derived from the Reuters News domain and encompasses four general entity cate-
gories—person, Location (LOC), organization, and miscellaneous. In contrast, each target domain
introduces domain-specific entity types, such as “Politician” and “Scientist,” posing a challenge
for model adaptation from a high-resource source domain to a low-resource target domain. In
addition, the vocabulary overlaps between domains are generally small, indicating the diversity of
the constructed cross-domain NER datasets [40].

5.3 Baselines
In our experiments, we compare our proposed GEPL with the following competitive cross-domain
baselines:

—BiLSTM-CRF [33] models output dependencies via a simple conditional random field and a
transition-based algorithm to explicitly construct and label chunks of the input.

—Coach [39] employs a coarse-to-fine detection framework to address the unseen type issue.
—LM-NER [27] bridges NER domains by leveraging cross-domain LM and designs a novel
parameter generation network for cross-task knowledge transfer.

—MultiCell-LM [28] investigates a multi-cell compositional LSTM structure on top of BERT,
modeling each entity type using a separate cell state.

—Liu et al. [40] explore two domain adaptation settings for the BERT model. BERT-JF jointly
fine-tunes BERT on both source and target domain data with upsampling in the target domain,
while BERT-PF first pretrains BERT on the source domain data and then fine-tunes it on the
target domain.

—Style-NER [10] projects data representations from a high-resource to a low-resource domain
by learning the patterns, such as style, noise, and abbreviation.

—DoSEA [69] applies a machine reading comprehension framework, identifying domain-specific
information and mitigating entity-type conflicts.

—BMRU [25] transfers more fine-grained local information within dense subsequences, distin-
guishing different meanings of the same word in different domains.
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—Bi-FLEET [72] pioneers the formulation of the cross-domain CEE task, capturing domain-
invariant relations between clauses and elements and implementing a bidirectional feedback
scheme between the CEE and CC tasks.

—MTD [77] incorporates the modular task decomposition by segregating the monolithic NER
into two sub-tasks—entity span detection and entity type classification. This strategy aims to
mitigate label space disparity across domains.

In our experiments, we evaluate all the aforementioned baselines for the cross-domain NER task.
Following Wang et al. [72], we carefully select representative baselines for cross-domain CEE,
including BiLSTM-CRF [33], LM-NER [27], BERT-JF [40], BERT-PF [40], Bi-FLEET [72], and MTD
[77], since not all cross-domain NER methods are applicable to the cross-domain CEE task. As
mentioned in Section 2, our proposed GEPL is able to seamlessly integrate with various cross-
domain NER or CEE frameworks. Consequently, we consider three basic models for our proposed
GEPL. Specifically, GEPL (BERT) uses BERT-PF or BERT-JF [40] as the basic model, and we report
the best results obtained from our experiments for this model variant. Additionally, GEPL (Bi-
FLEET) and GEPL (MTD) employ the state-of-the-art baselines Bi-FLEET [72] and MTD [77] as
their basic models, respectively. In addition to the baselines mentioned above, we further compare
our proposed GEPL with recent LLMs, specifically GPT-3.5 (gpt-3.5-turbo-01251) and Qwen2.5
(Qwen2.5-7B-Instruct2) (see Section 6.1).

5.4 Evaluation Metrics
Following previous work [28, 40, 67, 72, 77], we assess Precision (P), Recall (R), and F1-score (F1)
at the entity (or element) level. Precision signifies the percentage of named entities (or elements)
correctly identified by the method. Recall indicates the percentage of entities (or elements) within
the datasets that the method successfully predicts. In this context, an entity (or element) is deemed
correct only when it exactly matches the corresponding entity (or element) in the dataset. The
F1-score represents the harmonic mean of Precision and Recall. In our experiments, we present P,
R, and F1 for the cross-domain CEE task and F1 for the cross-domain NER task.

5.5 Implementation Details
Our parameter settings mainly follow prior studies [72, 77]. In line with Wang et al. [72], we use the
base-sized BERT [15], pretrained on the Chinese Wikipedia corpus, and employ the NCRF++ toolkit
[75] for the cross-domain CEE. The AdamW optimizer [41] is used to optimize the overall loss
function L, as defined in Equation (12), with a warmup ratio of 0.1. We experiment with different
learning rates, exploring values from the set {1e-5, 3e-5, 5e-5}, to find the optimal rate for various
model variants and tasks. The batch size is set to 30 for cross-domain CEE and 4 for cross-domain
NER. To determine the optimal loss weight U , we conduct a search over the range 0.1, 0.25, 0.5, 0.75,
0.9, based on validation set performance, and find that the optimal value for U is 0.5. The maximum
input and output lengths for all model variants are standardized at 256, and the frequency ratio
hyperparameter d is consistently set to 3 across all tasks.

6 Experimental Results
To answer RQ1 and RQ2, we assess the performance of GEPL on both cross-domain CEE and NER
tasks.

1https://platform.openai.com/docs/models/gpt-3-5-turbo
2https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
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Table 2. Precision, Recall, and F1-Scores on the Two Cross-Domain CEE
Datasets [72]

Model I2C C2I

P R F1 P R F1

BiLSTM-CRF [33] 63.21 67.50 65.28 65.30 70.36 67.73
LM-NER [27] 62.57 66.96 64.69 65.45 70.84 68.04
BERT-JF [40] 67.57 71.25 69.36 68.72 75.70 72.04
BERT-PF [40] 67.42 71.33 69.32 68.72 75.70 72.41
Bi-FLEET [72] 70.17 73.75 71.92 70.71 78.69 74.49
MTD [77] 72.78 74.96 73.85 71.13 78.66 74.71
GPT-3.5 40.35 47.19 43.50 38.62 35.49 36.99
Qwen2.5 36.15 40.53 38.21 30.56 33.95 32.17
GEPL (BERT)  71.70∗  74.15∗  72.90∗  72.20∗ 78.84∗ 75.37∗

GEPL (Bi-FLEET) 73.50∗ 75.73∗ 74.60∗ 73.35∗ 80.84∗ 76.91∗

GEPL (MTD) 74.19∗ 77.21∗ 75.67∗ 74.48∗ 80.12∗ 77.20∗

Significant improvements against the corresponding basic models are marked with ∗ (t-test,
p < 0.05). The bold numbers represent the highest performance for each metric.

6.1 Cross-Domain CEE (RQ1)
We turn to RQ1. Following Wang et al. [72], we compare GEPL with the state-of-the-art baselines
on the cross-domain CEE task. Table 2 shows the experimental results on the I2C and C2I datasets,
where Precision (P), Recall (R), and F1-score (F1) are reported. Based on Table 2, we have the
following observations:

—The cross-domain CEE task is challenging, and most baseline models struggle to achieve
an F1-score above 70%. This observation aligns with the conclusion mentioned by Wang
et al. [72]. In sharp contrast, our proposed framework, GEPL, can effectively transfer contract
element extractors from one domain to another. By leveraging our proposed GEPL, models
consistently surpass an F1-score of 70% on both the I2C and C2I datasets, demonstrating their
ability to effectively transfer knowledge across different contract domains.

—GEPL delivers substantial performance improvements over the baselines. Notably, GEPL
(BERT), GEPL (Bi-FLEET), and GEPL (MTD) consistently outperform corresponding basic
models (i.e., BERT, Bi-FLEET, and MTD) in terms of Precision (P), Recall (R), and F1-score
(F1). For instance, GEPL (MTD) exhibits a 5.79% improvement over MTD on average. This
remarkable improvement demonstrates the superiority of GEPL in CEE.

—To assess the influence of different base models on performance, we examine three base
models, including BERT [40], Bi-FLEET [72], and MTD [77]. The results, presented in Table 2,
suggest a correlation between the chosen base model and the overall performance of GEPL.
For instance, on both the I2C and C2I datasets, GEPL based on BERT demonstrates the lowest
F1-scores, whereas GEPL based on MTD achieves the highest performance. This performance
difference may be attributed to MTD surpassing both BERT-JF and BERT-PF by a significant
margin. This observation sheds light on the crucial role played by the selection of the basic
model.

—Furthermore, we compare GEPL with recent LLMs, specifically GPT-3.5 (gpt-3.5-turbo-
0125) and Qwen2.5 (Qwen2.5-7B-Instruct). To implement LLMs for cross-domain CEE, we
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Table 3. F1-Scores on the CrossNER Dataset [40]

Politics Science Music Literature AI

BiLSTM-CRF [33] 56.60 49.97 44.79 43.03 43.56
Coach [39] 61.50 52.09 51.66 48.35 45.15
LM-NER [27] 68.44 64.31 63.56 59.59 53.70
BERT-JF [40] 68.85 65.03 67.59 62.57 58.57
BERT-PF [40] 68.71 64.94 68.30 63.63 58.88
MultiCell-LM [28] 70.56 66.42 70.52 66.96 58.28
Style-NER [10] 68.78 63.95 65.43 60.94 58.73
DoSEA [69] 75.52 71.69 73.10 68.59 66.03
BMRU [25] 71.31 68.65 72.42 67.05 60.89
Bi-FLEET [72] 70.57 66.63 71.53 67.22 58.74
MTD [77] 75.53∗∗ 71.51∗∗ 76.10∗∗ 69.22∗∗ 68.07∗∗
GEPL (BERT) 73.56∗ 70.09∗ 75.33∗ 69.45∗ 61.36∗

GEPL (Bi-FLEET) 74.67∗ 71.91∗ 77.21∗ 69.86∗ 63.35∗

GEPL (MTD) 77.56∗ 73.48∗ 77.40∗ 72.05∗ 68.72∗

Significant improvements against the corresponding basic models are marked with ∗ (t-test,
p < 0.05). Reproduced results for MTD are highlighted with ∗∗. The bold numbers represent the
highest performance for each metric.

employ few-shot in-context learning [22], prompting the LLMs to extract the given contract
element types from input sentences and using semantically relevant instances retrieved in
Section 4.1 as task demonstrations. Based on the results in Table 2, we observe that LLMs
achieve substantially lower precision, recall, and F1-scores compared to smaller fine-tuned
models, including our proposed GEPL and even BERT-based baselines. Two possible reasons
for this outcome are as follows: (i) Large gaps exist between cross-domain CEE and the
pretraining tasks of LLMs. (ii) Without costly fine-tuning, LLMs lack specialized knowledge
for cross-domain CEE.

In summary, GEPL shows its effectiveness in recognizing contract elements across various do-
mains. The incorporation of instance-oriented and label-oriented prompts is beneficial for cross-
domain CEE.

6.2 Cross-Domain NER (RQ2)
To investigate the generalizability of GEPL, we move on to RQ2 and conduct experiments on the
cross-domain NER task. Table 3 presents the experimental results on the CrossNER dataset [40]. In
line with previous studies [28, 77], F1-scores are employed to assess the overall performance. For
the MTD baseline, we employ our reproduced results, derived from the source code provided by
Zhang et al. [77], which are highlighted with “∗∗”. Based on the results in Tables 2 and 3, we arrive
at the following conclusions:

—GEPL demonstrates strong generalizability, enabling effective transfer of named entity rec-
ognizers across diverse domains. Notably, GEPL-based models achieve the state-of-the-art
performance on five distinctive target NER domains, considerably exceeding an F1-score of
70%. For example, GEPL (MTD) attains F1-scores of 77.56% and 77.40% on the Politics and
Music domains, respectively.

—GEPL significantly outperforms the state-of-the-art cross-domain NER methods. Specifically,
GEPL (MTD) achieves the highest F1-score across five target domains. Additionally, GEPL
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Table 4. Precision, Recall, and F1-Scores on the Two Cross-Domain CEE Datasets

Model I2C C2I Science Music

P R F1 P R F1 F1 F1

GEPL (BERT) 71.70 74.15 72.90 72.20 78.84 75.37 70.09 75.33
- lo prompts 69.29 72.75 70.98 71.23 77.68 74.31 69.27 74.72
- io prompts 67.57 71.25 69.36 68.72 75.70 72.04 65.03 67.59

GEPL (Bi-FLEET) 73.50 75.73 74.60 73.35 80.84 76.91 71.91 77.21
- lo prompts 71.56 74.71 73.10 71.67 79.77 75.50 68.86 72.68
- io prompts 70.17 73.75 71.92 70.71 78.69 74.49 66.63 71.53

GEPL (MTD) 74.19 77.21 75.67 74.48 80.12 77.20 73.48 77.40
- lo prompts 73.67 75.35 74.50 73.90 80.08 76.87 72.89 76.86
- io prompts 72.78 74.96 73.85 71.13 78.66 74.71 71.51 76.10

The bold numbers represent the highest performance for each metric.

gains substantial improvements compared to the corresponding basic NER methods. For
instance, GEPL(BERT), GEPL (Bi-FLEET), and GEPL (MTD) achieve substantial F1-score
boosts over BERT, Bi-FLEET, and MTD of 7.58%, 6.66%, and 2.40% on average, respectively.

—GEPL’s overall performance is highly influenced by the capabilities of its backbone models.
For both cross-domain CEE and NER tasks, GEPL achieves higher F1-scores with a stronger
backbone model. For example, on the cross-domain CEE datasets, MTD outperforms BERT by
an average of 3.86% in F1-scores, while GEPL (MTD) achieves an average 3.12% increase in
F1-scores over GEPL (BERT). Therefore, selecting an appropriate backbone model is crucial
for enhancing GEPL’s effectiveness across domains.

In conclusion, our proposed GEPL exhibits strong generalizability. The GEPL framework not only
effectively addresses the cross-domain CEE problem but also consistently delivers the state-of-the-
art experimental results on the cross-domain NER task.

7 Analysis
Now that we have answered our research questions, we take a closer the look at GEPL to analyze
its performance. We examine how instance-oriented and label-oriented prompts contribute to
its performance, how the amount of target-domain data influences the performance, and how
performance varies across element types.

7.1 Ablation Studies (RQ3)
To delve into the individual contributions of each component to GEPL’s performance, we conduct
ablation studies on a range of cross-domain CEE and NER datasets. Similar to the experimental
setting employed in Sections 6.1 and 6.2, our evaluation includes three basic models—BERT, Bi-
FLEET, and MTD. The outcomes for the I2C, C2I, Science, and Music datasets are detailed in
Table 4. In tests where label-oriented prompts are purposefully excluded (indicated as “- lo prompts”),
these prompts are omitted from the input of the basic models, and the loss associated with masked
text prediction in Equation (12) is also discarded. This exclusion leads to a significant decrease in
GEPL’s performance across all evaluated metrics. For instance, on the I2C dataset, GEPL (MTD)
surpasses its model variant without label-oriented prompts by 2.47% in Recall and 1.57% in F1-score.
In scenarios where we ablate both the label-oriented and instance-oriented prompts (indicated as “-
io prompts”), our models revert to their basic forms (i.e., BERT, Bi-FLEET, and MTD). Based on the
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Fig. 4. Influence of target domain data size on the I2C and Science datasets.

results, we find that the integration of instance-oriented prompts into GEPL significantly enhances
performance compared to the basic models in all settings. For example, GEPL (MTD) with only
instance-oriented prompts achieves F1-score improvements of 2.89%, 1.93%, and 1.00% over the
basic MTD model on the C2I, Science, and Music datasets.

In summary, the inclusion of both label-oriented and instance-oriented prompts plays a crucial
role in elevating GEPL’s effectiveness in cross-domain CEE and NER tasks.

7.2 Influence of Target-Domain Data (RQ4)
Next, we investigate the impact of target-domain data size on the cross-domain CEE and NER tasks.
We compare the F1-scores of the baselines and GEPL, using different amounts of target-domain data
ranging from 10% to 100% of the original training set. Based on the results in Figure 4, we find that
GEPL outperforms baselines with different target domain data sizes. Initially, GEPL demonstrates a
substantial improvement of over 10% compared to the baselines. For example, GEPL (MTD) achieves
19.13% F1-score improvements over the baseline MTD with only 10% target domain data on the
I2C dataset. As the amount of target-domain data increases, the performance gap between GEPL
and the baselines becomes smaller. For example, GEPL (MTD) improves the F1-score on the I2C
dataset by 3.89% over MTD, training on 85% of the target domain training data. Notably, both GEPL
(Bi-FLEET) and GEPL (MTD) consistently outperform the baselines across different amounts of
target-domain data, showcasing the effectiveness of our proposed methods.

7.3 Influence of Loss Weight (RQ4)
To analyze the influence of the loss weight U in Equation (12), we vary U from 0.1 to 0.9 to observe
performance changes in GEPL with different backbones on the I2C dataset. The results are shown
in Figure 5. We observe that as U increases, GEPL’s F1-scores initially improve, as a larger U enables
the model to better encode dependencies between element types across domains. For example,
GEPL (MTD) with U = 0.5 achieves 2.84% higher F1-scores compared to GEPL (MTD) with U = 0.1.
However, performance declines when U becomes too large. Consequently, in our experiments, we
set GEPL’s optimal loss weight U to 0.5.

7.4 Fined-Grained Comparisons (RQ5)
To thoroughly assess the performance of GEPL at the element or entity type level, we conduct fine-
grained comparisons on the I2C, Science, and Music datasets. The results for the cross-domain CEE
and NER tasks are presented in Table 5, where we examined five contract element types—Invoice
Type (IT), Arbitration Commission (AC), Currency of Payment (CP), Name of Subject
Matter (NSM), and PP, and four entity types—LOC, Country (COU), Band (BAN), and Album
(ALB). Among these, IT, CP, PP, and LOC are shared across both the source and target domains,
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Fig. 5. Influence of loss weight U on the I2C dataset.

Table 5. Fine-Grained Comparisons of F1-Scores on I2C, Science, and Music

Model I2C Science Music

IT AC CP NSM PP LOC COU BAN ALB

Bi-FLEET [72] 68.41 70.63 71.53 72.73 72.80 68.21 70.17 78.62 69.10
MTD [77] 69.18 70.13 72.24 73.74 74.25 75.50 76.90 80.45 69.48
GEPL (Bi-FLEET) 69.46 73.52 73.80 75.07 76.32 72.67 74.56 80.37 74.53
GEPL (MTD) 71.35 74.18 74.93 75.90 77.10 80.72 80.00 82.05 75.41

The bold numbers represent the highest performance for each metric.

while AC, COU, BAN, and ALB are specific types exclusive to the target domains. Based on the
findings in Table 5, GEPL demonstrates strong effectiveness in identifying both shared and domain-
specific types. For instance, GEPL (MTD) achieves F1-scores of 77.10% on the PP type and 74.18% on
the AC type, respectively. Furthermore, models based on GEPL consistently outperformed baselines.
Specifically, GEPL (MTD) achieved significant F1-score improvements of 3.85% and 8.54% on the PP
and ALB types, respectively, compared to the state-of-the-art baseline MTD. These observations
underscore the efficacy of leveraging instance-oriented and label-oriented prompts, effectively
mitigating data sparsity and minimizing label discrepancies across domains.

7.5 Case Studies (RQ5)
To study whether GEPL can generate appropriate prompts from original input sentences, we
conducted case studies on the I2C and Science datasets, as shown in Table 6. The first two examples
in the table are from the I2C dataset, while the last is from the Science dataset. The results demon-
strate that GEPL is able to identify instance-oriented prompts with similar semantics and relevant
elements, effectively providing auxiliary supervision and mitigating the issue of data sparsity.
For instance, the original input sentence in the first example involves a penalty clause with legal
elements of Penalty Payment Ratio and Penalty Payment Reference. Given the input sentence,
GEPL successfully retrieves an instance-oriented prompt that also includes the Penalty Payment
Ratio (i.e., “5%”) and Penalty Payment Reference (i.e., “total contract value”). This illustrates GEPL’s
capability to closely align the prompts with the original input contexts. Moreover, GEPL shows
proficiency in identifying and modeling the relationships between different element labels, thereby
considerably reducing label discrepancies across various domains. A notable example is its con-
struction of a label-oriented prompt, namely “Penalty Payment Ratio[MASK]Payment Period,” in the
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Table 6. Examples from the I2C and Science Datasets

Original input sentence Instance-oriented prompt Label-oriented prompt

“(iii) If Party B’s appointed personnel
fail to participate in the contract’s
technical services or are unilaterally
changed by Party B, Party B must pay
a penalty of 5% (Penalty Payment Ratio)
of the total technical service fee
(Penalty Payment Reference) to Party A.”

“(ii) If Party B’s delivered
goods fail to meet the
contract’s terms, hindering
Party A’s intended purpose,
Party B must pay Party A a
penalty of 5% (Penalty
Payment Ratio) of the total
contract value (Penalty
Payment Reference).”

“Penalty Payment Ratio
[MASK] Penalty Payment
Reference”

“After Party A accepts the delivered
goods from Party B as satisfactory
(Payment Condition), Party A shall pay
the total contract amount in full within
15 working days (Payment Period).”

“Party A shall make a
one-time payment for
the electricity to Party B
within 15 working days
(Payment Period) after
receiving Party B’s
VAT special invoice
(Payment Condition).”

“Payment Condition
[MASK]Payment Period”

“In 1917, he was appointed as the first
Palit Professor of Physics (Award) by
Ashutosh Mukherjee (Scientist) at the
Rajabazar Science College (University).”

“From 1916 to 1921, he
was a lecturer in the
physics department of the
Rajabazar Science College
(University).”

“Award[MASK]Scientist[SEP]
Award[MASK]University[SEP]
Scientist[MASK]University”

Table 7. Error Analysis on Sentence Lengths in Test Sets

Sentence length Sentence length

Method Dataset < 25 25–50 > 50 Avg. Dataset < 25 25–50 > 50 Avg.

GEPL (BERT)
I2C

68.88 70.04 74.86 72.90
C2I

72.22 73.38 77.49 75.37
GEPL (Bi-FLEET) 70.96 72.51 77.14 74.60 73.10 74.20 79.03 76.91
GEPL (MTD) 72.78 73.47 77.87 75.67 75.82 76.28 79.56 77.20

The scores are F1-scores.

second case. By filling in the “[MASK]” token, the basic model is capable of better comprehending
the interdependencies between the Penalty Condition and PP legal elements.

7.6 Error Analysis
Although GEPL outperforms the state-of-the-art baselines, it is important to understand where
it fails. Specifically, we compare the performance of GEPL on sentences of different lengths in
the test sets of the I2C and C2I datasets. The results based on BERT, Bi-FLEET, and MTD are
presented in Table 7. We observe that GEPL’s F1-scores on sentences with more than 50 characters
(> 50) are substantially higher than the average F1-scores. For instance, on the I2C dataset, GEPL
(MTD) achieves an F1-score of 77.87%, which is 4.25% higher than the overall F1-score (77.10%).
In contrast, the F1-scores on sentences with 25 to 50 characters (25–50) or less than 25 characters
(< 25) consistently fall below the average F1-scores. For example, on the I2C dataset, GEPL (MTD)
achieves F1-scores of 72.78% on sentences with 25 to 50 characters and 73.47% on sentences with less
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than 25 characters, which are considerably lower than the overall F1-score (77.10%). This suggests
that GEPL faces greater challenges in generating appropriate instance-oriented and label-oriented
prompts for input instances when presented with less context.

8 Conclusions
In this article, we have investigated the problem of cross-domain CEE, aiming to leverage knowledge
from a source domain to enhance the extraction of legally relevant elements in a target domain.
Prior work on cross-domain CEE still faces two major challenges: data scarcity due to the high
cost of annotations and label discrepancies across various contract domains. To overcome these
problems, we have proposed a novel framework named GEPL. GEPL effectively mitigates data
sparsity by generating auxiliary supervisions for each input instance and bridges the gap between
contract domains by automatically identifying label relations across distinct domains.

In our experiments, we conduct a comprehensive evaluation of GEPL on both cross-domain CEE
and NER tasks. Experimental results underscore that GEPL significantly outperforms the state-of-
the-art baselines and demonstrates a high degree of generalizability across the two cross-domain
CEE datasets and the five cross-domain CEE datasets. Additionally, by incorporating instance-
oriented and label-oriented prompts, GEPL effectively recognizes both shared and domain-specific
element or entity types, highlighting its robustness to data sparsity and ability to capture relations
for various labels across domains.

Building upon the current study, we envisage four lines of future work—(i) It is worth exploring
the prompt generation method developed for sentences with limited context. Our error analysis
revealed that GEPL struggles to retrieve semantically relevant instances or to generate effective
label-oriented prompts for input instances with limited context (see Section 7.6 for details). To
address this limitation, one solution could be to use the clauses inwhich the input instances appear to
obtain appropriate prompts. Another solution would be to treat preceding and following sentences
as additional context for the input sentences. These strategies could provide more context-rich
prompts for short input instances, potentially improving performance in these cases. (ii) In addition
to prompting relationships between contract element labels, we intend to incorporate prompts that
capture clause-element relations [72]. This would allow GEPL to leverage both domain-specific
and domain-invariant features, further enhancing its cross-domain transfer capabilities. (iii) Our
experiments focused on datasets from contract domains. To broaden the applicability of GEPL,
we plan to study its connection with other legally relevant tasks (e.g., legal judgment prediction
[42, 43, 78, 79]) and investigate how to leverage other legal contexts to further mitigate data sparsity
and improve generalizability. (iv) Last, apart from the basic models mentioned in the experiments,
we also plan to incorporate GEPL with different kinds of LLMs to further enhance its performance.
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