
Pre-Trained Models for Search and Recommendation:
Introduction to the Special Issue—Part 1

1 Introduction
The emergence of pre-trained models, particularly large language models (LLMs) like GPT-4
[17] and Llama [6], has revolutionized the field of information retrieval, driving unprecedented
advancements in search and recommendation systems. LLM-empowered AI search [1, 2, 10],
based on retrieval-augmented generation (RAG) paradigms, shows the potential to transform
traditional search systems. Recommender systems have also greatly benefited from pre-trained
models, ranging from BERT [3] and T5 [19] to LLMs like GPT [17] and Llama [6], all of which
have profoundly influenced the technological evolution across various recommendation tasks
[14, 20, 28]. Generally speaking, by leveraging their remarkable representation, reasoning, and
generalization capabilities, pre-trained models have introduced promising solutions to longstanding
challenges in search and recommendation [11, 13, 21, 23]. Their applications span dense retrieval,
neural ranking, user modeling, content generation, and evaluation, garnering significant attention
from both academia and industry. However, despite promising progress, integrating pre-trained
models effectively into search and recommendation tasks still faces many unresolved challenges,
especially concerning foundational paradigm exploration, robustness in diverse scenarios, and
trustworthiness.

This special issue aims to explore the dynamic interplay between pre-trained models and search
and recommendation tasks, offering a platform to present significant innovations. For search
systems, we emphasize advancements in leveraging pre-trained models across different stages of
search systems and diverse real-world scenarios, as well as exploring new retrieval paradigms and
evaluation frameworks. For recommendation systems, the focus includes leveraging pre-trained
models to enhance user modeling, recommendation accuracy, personalized content generation, eval-
uation, and trustworthiness aspects. Through this special issue, we hope to catalyze groundbreaking
research and deliver valuable insights in search and recommendation domains.
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2 Overview of Articles
The submission deadline for this special issue was March 31, 2024. A total of 60 valid submissions
were received. We introduce 14 accepted papers in Part 1, with the remaining accepted papers to be
included in the forthcoming Part 2. This issue explores various topics related to pre-trained models
for search and recommendation, featuring seven papers on search and seven on recommendation.

2.1 Search
This search session introduces seven accepted submissions, comprising four research papers focused
on enhancing pre-trained models for various search applications through novel algorithms and
architectures. The remaining three papers explore RAG, introducing new mechanisms to improve
the quality and cost-effectiveness of RAG systems.

As for pre-trained models for search, Guo et al. [7] identify the problem that traditional ensemble
method cannot effectively leverage the diverse matching patterns during the training process.
To address this problem, the authors propose a novel architecture based on mixture-of-expert.
The new model utilizes shared semantic layers, specialized experts, and a competitive learning
mechanism to enhance expertise, leading to state-of-the-art performances for both in-domain and
out-of-domain retrieval tasks. Zhang et al. [27] focus on efficient code search. It introduces a novel
approach that enhances semantic coherence directly at the code and query representation levels,
thus improving alignment without extensive processing. The empirical study demonstrates its
significant performance gains across a variety of settings, with the implementation made publicly
available on GitHub. Ge et al. [5] address the challenge associated with the accurate reasoning of
ambiguous user intents in multi-modal queries for composed image retrieval. It introduces the
IUDC model, combining LLM-based triplet augmentation, dual semantic-visual matching channels,
and probabilistic intent encoding to enhance intent reasoning and visual alignment. The approach
achieves state-of-the-art performance, leveraging synthetic data andmulti-modal fusion for superior
retrieval accuracy. Finally, Parastoo et al. [8] focus on solving factoid entity questions by effectively
leveraging textual relationships and semantic similarities in knowledge graphs. It uses a two-step
process, Triple Retrieval and Answer Selection, where knowledge graph embeddings are employed
to effectively align question and answer entities.
While for RAG, Li et al. [9] aim to improve the code generation tasks by enhancing the under-

standing of code structure and semantics. It proposes Code Assistant via Retrieval-augmented
Language Model (CONAN), which combines a code structure-aware retriever and a dual-view
code representation mechanism for more effective code generation. Experimental results show that
CONAN outperforms previous models, effectively assisting code generation by providing relevant
code snippets and documentation while filtering out unnecessary information. Mao et al. [16]
tackle the inefficiency and inaccuracy of black-box RAG systems, which struggle with irrelevant
factual information and excessive token usage. The paper introduces FIT-RAG, a novel framework
that improves factual retrieval with a bi-label document scorer and reduces token usage through a
self-knowledge recognizer and sub-document-level token reduction. FIT-RAG demonstrates supe-
rior effectiveness and efficiency, significantly boosting Llama2-13B-Chat’s accuracy across multiple
datasets while halving token consumption. Lyu et al. [15] focus on improving the evaluation of
RAG systems. It introduces a comprehensive benchmark based on CRUD actions, i.e., Create, Read,
Update, and Delete, thus spanning diverse RAG application scenarios with dedicated datasets. By
analyzing the impact of key RAG components like retrievers, context length, and knowledge base
construction, the study provides actionable insights for optimizing RAG systems across various
use cases.
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2.2 Recommendation
For recommendation, one survey paper explores how to leverage LLMs for recommendation [12],
two papers focus on learning fine-grained user intention representations [22, 24], two papers
address noise issues by robust representation learning [4, 18], and two papers investigate using
graphs to learn higher-order representations [25, 26].

Lin et al. [12] provide a comprehensive survey on the integration of LLMs into recommender sys-
tems. This paper explores where and how LLMs can be adapted within recommendation pipelines,
from feature engineering, scoring, and ranking to user interaction. It categorizes the adaptation
strategies based on whether LLM parameters are fine-tuned during training and whether con-
ventional models are involved during inference. Lastly, it discusses the key challenges and future
directions in this field.
Two papers focus on advancing the learning of fine-grained user intention representation for

recommendation [22, 24]. Wang et al. [24] propose to disentangle user intention representation
for sequential recommendation by the AutoDisenSeq model. AutoDisenSeq leverages neural ar-
chitecture search to automate the design of attention mechanisms, tailoring the search space to
disentangle user intentions effectively. The proposed AutoDisenSeq-LLM further incorporates
LLMs to refine candidate recommendations, showing significant performance improvements over
existing methods in diverse scenarios. Besides, Wang et al. [22] present a fine-grained pre-training
approach to generate multiple user preference factors for fine-grained representation learning. This
approach improves user representation learning by addressing the negative transfer problem and
providing a more precise alignment of user preferences across domains.
Two papers address noise issues through robust representation learning. Di et al. [4] focus

on denoising recommendation with generative models. By employing a diffusion augmentation
strategy and a guided denoising process, this work ensures diversity in the latent data distribution
and suppresses noise during the generation process. It demonstrates how generative models can
address sparsity while preserving recommendation quality. Furthermore, Peng et al. [18] target the
integration of textual semantics into GNN-based recommendation models. It integrates structural
representations from GNNs with textual embeddings from LLMs. Through a denoising contrastive
learning scheme, this work enhances the robustness of representations and captures intricate
user–item interactions.
The last two papers explore the use of graphs to learn higher-order representations. The first

tackles the limitations of high-order propagation in heterogeneous GNNs [26]. It enhances academic
paper recommendations by introducing low-pass propagation through relation-aware GNNs, where
the user–user and item–item relation graphs are constructed by side information like common
authors, venues, and text embeddings from pre-trained models. The second paper addresses the
issue of noisy data in contrastive learning-based recommendation models [25]. It introduces a dual
graph augmentation framework that combines topological and semantic adaptations with structural
optimization to create contrasting views. By reconstructing adjacency matrices and employing
PageRank-based node masking, this method filters noise while preserving data semantics, leading
to superior collaborative filtering performance.

3 Conclusion
In summary, this special issue contains a variety of studies on the application of pre-trained models
to search and recommendation, covering both survey papers and technical studies. The topics
include, but are not limited to, leveraging pre-trained models for fine-grained user representation
learning, denoising learning, and higher-order representation learning in recommendation, as well
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as multi-stage and multi-modal retrieval, and RAG optimization in search. Meanwhile, there remain
many unexplored avenues in this direction. We will introduce more papers in Part 2.
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