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Learning semantic representations of documents is essential for various downstream applications,
including text classification and information retrieval. Entities, as important sources of informa-
tion, have been playing a crucial role in assisting latent representations of documents. In this work,
we hypothesize that entities are not monolithic concepts; instead they have multiple aspects, and
different documents may be discussing different aspects of a given entity. Given that, we argue that
from an entity-centric point of view, a document related to multiple entities shall be (a) represented
differently for different entities (multiple entity-centric representations), and (b) each entity-centric
representation should reflect the specific aspects of the entity discussed in the document.

In this work, we devise the following research questions: (1) Can we confirm that entities have
multiple aspects, with different aspects reflected in different documents, (2) can we learn a re-
presentation of entity aspects from a collection of documents, and a representation of document
based on the multiple entities and their aspects as reflected in the documents, (3) does this novel
representation improves algorithm performance in downstream applications, and (4) what is a
reasonable number of aspects per entity? To answer these questions we model each entity using
multiple aspects (entity facets'), where each entity facet is represented as a mixture of latent
topics. Then, given a document associated with multiple entities, we assume multiple entity-
centric representations, where each entity-centric representation is a mixture of entity facets for
each entity. Finally, a novel graphical model, the Entity Facet Topic Model (EFTM), is proposed
in order to learn entity-centric document representations, entity facets, and latent topics.

Through experimentation we confirm that (1) entities are multi-faceted concepts which we can
model and learn, (2) a multi-faceted entity-centric modeling of documents can lead to effective re-
presentations, which (3) can have an impact in downstream application, and (4) considering a small
number of facets is effective enough. In particular, we visualize entity facets within a set of documents,
and demonstrate that indeed different sets of documents reflect different facets of entities. Further, we
demonstrate that the proposed entity facet topic model generates better document representations in
terms of perplexity, compared to state-of-the-art document representation methods. Moreover, we
show that the proposed model outperforms baseline methods in the application of multi-label classi-
fication. Finally, we study the impact of EFTM’s parameters and find that a small number of facets
better captures entity specific topics, which confirms the intuition that on average an entity has a small
number of facets reflected in documents.
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1. Introduction

Understanding the content of documents by learning semantic representations can benefit various downstream applications, such
as information retrieval (Croft, 1981) and text classification (Sebastiani, 2002). Existing document representation methods include
(1) traditional bag of words (BoW), which represent documents using term frequencies; (2) topic distributions (Blei, Ng, & Jordan,
2003), which represent documents using mixed distributions of latent topics; and (3) dense vector representations (Le &
Mikolov, 2014), which represent documents as points in a low dimensional space.

Existing document representation methods assume a representation in terms of the semantic topics discussed in the document.
However, when it comes to understanding a document from the perspective of entities, it is natural to think of a document in terms of
the facets of the different entities it relates to. In other words, in this work we hypothesize that entities are not monolithic concepts;
instead they have multiple facets, and different documents may be discussing different facets of a given entity. Given that, we argue
that from an entity-centric point of view, a document related to multiple entities shall be (a) represented differently for different
entities (multiple entity-centric representations), and (b) each entity-centric representation should reflect the specific facets of the
entity discussed in the document. Let us illustrate this hypothesis with an example. Political world leaders, as entities, may have
different facets of them described in news articles, such as family, foreign policy, campaigning, economy, etc. A document related to
political world leaders is expected to reflect only specific facets of these leaders. For example, a document discussing a meeting
between the presidents of the USA and Russia in 2016 might mention multiple entities, such as Obama and Putin. Economic and
foreign policy facet of these entities are probably reflected in the document, but it is unlikely that presidential campaign facet or
family facet are discussed.

The main objective of our work is to explore representing documents based on entity facets. In particular, to accurately represent
a document, we propose to use entity specific topics that reflect the facet of the entity discussed in a document, which we call entity
facets. Further, we define an entity-centric document representation as a distribution over entity facets. Each entity facet is further
defined as a distribution over latent topics. Continuing our world leader example, Fig. 1 shows an example of an entity-centric
document representation involving the two leaders. Document d, is associated with two entities, while d, and d, are each associated
with a single entity. The entity-centric representation of each document is shown within the dashed rectangles above the documents;
for every associated entity, a distribution over its facets is learned for that entity. As we can see, facet 1 of Barack Obama (BO) and
facet 0 of Vladimir Putin (VP) are reflected in d,, while for dy and d,, the entity-centric representation also indicates the facet
reflected for the corresponding source entity, i.e., VP and BO, respectively.

We propose a new task, that of entity-centric document representation learning. For a document associated with multiple entities,
multiple facet distributions are learned for the document. To understand our modeling decisions and the contribution that we make,
we list different topic models, with their prime ingredients: words, entities, topics, and facets in Fig. 2. Previously proposed topic
models have considered words and topics (e.g., LDA, Fig. 2(a)); words and entities-as-sources-of-information (the Author Model,
Fig. 2(b)); words, entities-as-observables and topics (Link-LDA, Fig. 2(c)); and words, topics, and entities-as-sources (the Author Topic
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Fig. 1. Illustration of an entity-centric document representation. Documents d,, d; and d, are associated with the sets of source entities {VP}, {BO,
VP}, and {BO}, respectively. Each source entity has three facets. Each entity facet is a distribution over five latent topics, where each element of the
distribution indicates the relatedness between the facet and corresponding topic. The entity-centric document representations are mixed proportions
of facets shown above the corresponding documents.
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Model, Fig. 2(d)). We propose the Entity Facet Topic Model (EFTM) (Fig. 2(e)) as a model for learning entity-centric document
representations. In a generative perspective on representation learning, we model entities as a source of information (source layer);
such source entities are assumed to be given and could be labels or metadata assigned to a document, or in-text entities; they consist
of multiple entity facets (facet layer). Each facet is built upon general latent topics (topic layer), which are further used to generate
observed variables (observation layer) in documents. Since different types of observed variables (e.g., words and entities) might appear
in documents (Erosheva, Fienberg, & Lafferty, 2004) (Fig. 2(c)), we consider both words and entities. To differentiate between
entities in the source layer and the observation layer, we refer to the former as source entities, and the latter as document entities.

To illustrate how our work can be used in practical applications, we present the following examples.

Example 1. Knowledge Base Construction/Population Fetahu, Markert, and Anand (2015) propose to populate Wikipedia entity
pages by automated news article suggestion. Their approach consists of two steps, identifying articles relevant to entities and then
connect relevant articles to particular sections. By learning entity-centric document representations using news articles labeled by
their related entities (source entities), one might be able to cluster news articles into smaller groups on the per-entity basis. If groups
of articles match contents of particular sections of a Wikipedia page, we might update the section. If it does not match, we might
update the Wikipedia page by adding new sections using groups of articles identified as references.

Example 2. Entity Salience Detection Dunietz and Gillick (2014) propose a new entity salience task called entity salience detection,
which aim at identifying whether an entity is salient in a document it appears in. If a particular facet of an entity is reflected in a
document, it is likely to act as an important role in the document, and thus being considered as salient for the document. By learning
entity-centric document representation of the document using a model trained by available datasets, we can perform binary clas-
sification from the perspective of the entity and tell whether the document matches any facet of the entity.

Example 3: Personalized News and Blog Recommendation Kazai, Yusof, and Clarke (2016) presents a prototype mobile app that
provides personalized content recommendations to its users by combining various user signals. In the application, individual models
are built for each user. Similarly, our model learns individual facets for each user from news and blogs that each user is interested at.
Then, entity(user)-centric representations of documents are inferred and judged whether it should be recommended to each user.

Summarizing, EFTM models entities as sources of information along with their multi-faceted properties. At the same time, EFTM
represents documents on the basis of the facet distributions of the source entities, which provides the desired entity-centric re-
presentations for documents. Our work aims at facilitating information processing applications, in which entities are central towards
understanding, and modeling text. Examples include multi-authored article collections, multi-labeled textual collections and so on.

The main contributions of this work are as follows:

1. We propose the task of entity-centric document representation learning.

. We propose a novel Entity Facet Topic Model (EFTM) to learn entity-centric document representations.

3. We confirm our hypothesis regarding the existence of multiple facets of an entity by analyzing the learned entity facets using
qualitative and quantitative analysis, and identify a effective number of facets per entity.

4. We demonstrate the effectiveness of EFTM in downstream applications using a multi-label classification task.
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Fig. 2. Different dependencies among words, entities, topics, facets, sources. The simplified plate representations of the models are: (a) LDA; (b)
Author Model (AM); (c) Link-LDA; (d) Author Topic Model (ATM); (e) EFTM.
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2. Related work
We discuss three lines of related work: document representation, topic modeling, and entity facet mining.
2.1. Document representation

Research on document representation dates back (at least) to the early days of the vector space model, which represents docu-
ments as vectors of index terms. Index terms are weighted to capture the importance of a term in describing the content of a particular
document (e.g., term frequency) and the discriminative power of a term (e.g., inverse document frequency). Many term weighting
methods have been proposed to achieve better document representations, including the widely used TF-IDF method.
Bouadjenek, Hacid, Bouzeghoub, and Vakali (2016) propose to integrate social information of users in the index structure of an IR
system. The index model provides a Personalized Social Document Representation of each document per user based on his/her
activities in a social tagging system. Similar with our work, they start from the intuition that each user has his/her own understanding
and point of view of a given document. However, our work differs from their work in that our entity-centric document re-
presentations are based on latent entity facets learned from document collections, while theirs are based on associated social an-
notations of users (entities).

In contrast to representing documents using weighted terms, dense vector representations became popular since the prevalence of
LDA (Blei et al., 2003). In LDA, a document is represented by a mixture of latent topics, which are further represented by multinomial
distributions of words and shared across all documents. By using topic distributions to represent documents, the topical difference
between documents is captured. Extensions of LDA usually model different document generative processes, while using topic dis-
tributions to represent documents. Traditionally, a single topic distribution is learned for each document and applied whenever
document representations are used. Our work aligns with this line of research and differs from existing work in that we propose to
learn multiple entity-centric representations for each document, where each representation corresponds to an entity and is a mixture
of facets of the entity.

Today, latent document representations such as doc2vec (Le & Mikolov, 2014) are often inferred using neural networks. Doc2vec
is an extension of word2vec (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013) that learns document-level embedding to predict the
next word given contexts sampled from a document. Van Gysel, de Rijke, and Kanoulas (2018) propose a neural vector space model
(NVSM), which learn document representations directly by gradient descent from sampled n-gram/document pairs extracted from a
given corpus. Compared to our proposed representation, doc2vec and NVSM consider neither entities in documents nor entities as
sources of information. Latest works on contextualized word representations, such as BERT (Devlin, Chang, Lee, & Toutanova, 2018)
and ELMo (Peters et al., 2018), are becoming increasingly popular. The major difference between our work and theirs is that we
consider document representations with respect to entities, while they infer word representations with respect to contexts around
words.

Recent work has extended the embedding paradigm to entities (Van Gysel, de Rijke, & Kanoulas, 2016a; Van Gysel, de Rijke, &
Worring, 2016b); however, their focus is restricted to the semantics of entities, whereas we focus on the relation between entities,
entity facets, topics and documents. Xiong, Callan, and Liu (2017) propose a word entity duet representation for ad-hoc retrieval,
which use entity based representation of documents. Dai, Tang, Wu, and Zhuang (2018) propose to learn entity mention aware
document representation, which learns representations of documents from semantics between not only document-word pairs, but
also document-entity pairs and entity-entity pairs. Raviv, Kurland, and Carmel (2016) devise an entity based language model which
takes into account both the uncertainty inherent in the entity-markup process and the balance between entity-based and term-based
information. Their work differs from ours in that they are using entities in documents as a bag-of-entities representation, while our
work considers learning multiple document representations, each of which corresponds to an entity semantically relevant to the
document.

2.2. Topic models

LDA (Blei et al., 2003) models a document as a mixture of topics, and automatically generates summaries of topics in terms of a
multinomial distribution over words. Many extensions based on it have been proposed to learn topics by assuming alternative
document generative process, thus leading to alternative semantics of learned document representations. E.g., Link-
LDA (Erosheva et al., 2004) (Fig. 2(c)) extends LDA by modeling words and references (viewed as entities) of an article separately.

In recent years, people focus on extending topic models to address specific tasks, such as short text modeling (Bicalho, Pita,
Pedrosa, Lacerda, & Pappa, 2017; Li et al., 2018; Zhang, Mao, & Zeng, 2016), user clustering (Qiu & Shen, 2017), dataless text
classification (Li, Xing, Sun, & Ma, 2016), and opinion mining (Ma, Zhang, Liu, Li, & Yuan, 2016). In contrast to designing topic
models for specific tasks, our work aims at mining entity facets so as to learn entity-centric document representations, which could be
used in downstream applications. Therefore, our work is particularly related to topic models which either considers entities in
documents or external labels associated to documents.

The Author Model (AM) (McCallum, 1999) (Fig. 2(b)) and Author Topic Model (ATM) (Rosen-Zvi, Griffiths, Steyvers, & Smyth,
2004) (Fig. 2(d)) have been proposed for multi-labeled documents, where each label (author) is viewed as an entity. In AM, words are
generated by first selecting an author and then sampling from an author-specific multinomial distribution over words. ATM extends
AM by introducing topics between authors associated with documents and words in documents. In particular, ATM chooses a latent
topic from an entity-specific multinomial distribution over topics; a word is then drawn from a topic-specific multinomial
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distribution. Similar to AM and ATM, we consider labels of documents as source entities. However, ATM focus on learning re-
presentation for entities (authors) and does not learn document representations, while our model aims at learning document re-
presentations. There are other entity topic models, such as an entity topic model for entity linking (Han & Sun, 2012), and a
hierarchical entity topic model designed for streaming data (Hu, Li, Zhang, & Shao, 2015). Newman, Chemudugunta, and
Smyth (2006) propose CorrLDA2 to learn the relationship between topics discussed in news articles and entities mentioned in
articles.Chang, Boyd-Graber, and Blei (2009) propose a topic model, which analyze free text to extract descriptions of relationships
between entities. These models differ with our work in that they aim at resolving particular tasks, while we focus on modeling entities
to learn better document representations.

The Entity Topic Model (ETM) (Kim, Sun, Hockenmaier, & Han, 2012) represents entities in the same way as latent topics. For
each document, a topic distribution is drawn from a Dirichlet prior and a joint multinomial distribution over words @ is obtained by
linearly combining entities and topics of a document. To generate a word, a topic is sampled from ® and a word is sampled from the
topic word distribution. Though ETM seems to be a valid baseline for our work, it is not applicable because of scalability issues. In
particular, given N words, E entities, F facets and K topics, the number of parameters of ETM is K X N + E X N + E X K X N, which
represents latent topics, entity topics and entity-topic pairs, while that of our model is K X N + E X F X K, which represents latent
topics and entity facets. The number of parameters of ETM increases fast with increasing number of entities because of the component
E X K x N. For example, given 10 entities, 100 topics and 10,000 words, the number of parameters becomes 10 million. In
comparison, E X F X K is much smaller than E X K X N due to the facet that F < N.

A different line of extensions to LDA focuses on leveraging supervised labels. The supervised topic model in (Mcauliffe &
Blei, 2008) is designed for single-labeled documents, while our model is mainly designed for multi-labeled documents. Though also
designed for multi-labeled documents, the hierarchically supervised topic model proposed in Perotte, Wood, Elhadad, and
Bartlett (2011) considers the scenario where labels of documents form a hierarchy, while our models do not consider label hierarchy.
One work considering both supervised and flat labels is Labeled LDA (Ramage, Hall, Nallapati, & Manning, 2009); it focuses more on
credit attribution within tagged documents or visual analysis, instead of learning better document representation. The constraint that
one label corresponds to one topic helps in their task but limits the representation ability of Labeled LDA in that a label is a high
granularity semantic unit that might have various facets. Compared to Labeled LDA, we consider the labels of a document as source
entities, which themselves consist of smaller semantic units, i.e., entity facets. The advantage of our model is that different facets
related to labels are captured by entity facets, instead of being mixed under the same topic. Other topic models that are relevant to
our work include DFLDA (Li, Ouyang, & Zhou, 2015b) and CPTM (Li, Ouyang, & Zhou, 2015a). Since these models are targeted on the
task of multi-label classification and make use of global prior information, such as label frequency, we do not consider them as
baselines.

Another family of topic models that look similar to our model are topic models with a hierarchy of topics. To generate a document
using the hierarchical topic model (Griffiths & Tenenbaum, 2004), a path with L nodes from the root node of a tree to a leaf is selected
and a vector of topic proportions 0 is drawn from an L-dimensional Dirichlet distribution. Then, words in the document are drawn
from a mixture of the topics along the path with mixing proportions 6. Since different nodes in the topic hierarchy represent different
topics, the semantics of the topic proportions representation of different documents are different. While somewhat similar to a two-
layer hierarchy of topics, our model is different in that the second layer of topics in our model are entity facets (entity specific topics),
which makes it specific to entities compared to general topics defined in a two layer hierarchical topic model.

2.3. Entity facet mining

With the growing importance of semantic search and knowledge graphs in recent years, mining and leveraging entity information
has received considerable attention (Balog, 2018; Bast, Buchhold, & Haussmann, 2016). Among various categories of information of
entities, such as facts and entity relations, entity facets are also considered useful for entity related tasks; Eg. Reinanda, Meij, and
de Rijke (2016) use entity aspect similarity as a feature to help filtering documents for long-tail entities.

Significant work in entity facet mining has been conducted in relation to product facets and online reviews. Applications includes
product related QA (Yu & Lam, 2018), online review mining (Alam, Ryu, & Lee, 2016; Dragoni, Federici, & Rexha, 2018; Xiao, Ji, Li,
Zhuang, & Shi, 2018), review summarization (Liu, Fang, Choulos, Park, & Hu, 2017). Titov and McDonald (2008) propose to first
extract ratable facets of objects from online user reviews and then cluster them into coherent topics. Yu, Zha, Wang, and Chua (2011)
automatically identify important product (entity) aspects from online consumer reviews. Sikchi, Goyal, and Datta (2016) propose an
aspect based product comparator to help consumers in purchasing decision making. Yu and Lam (2018) propose to learn aspects of
product categories to predict answers for product-related questions. Li, Wang, Gao, and Jiang (2011) develop an event-aspect topic
model to cluster sentences into aspects for events. The related works above focus on particular category of entities, while our work is
targeted on mining facets for general purpose entities related to textual documents.

In addition to focusing on particular categories of entities, there are also works on mining facets of general purpose entities from
various sources, such as Wikipedia (Fetahu et al., 2015; Nanni, Ponzetto, & Dietz, 2018), query logs (Reinanda, Meij, & de Rijke,
2015) and microblog posts (Spina et al., 2012). Spina et al. (2012) propose to identify entity aspects from social web streams (such as
tweets) in the field of online reputation management. Given all queries containing an entity, Reinanda et al. (2015) propose to obtain
query contexts by removing mentions of the entity in queries. Then all query contexts are clustered and entity facets are identified as
clusters which includes similar query contexts. Our work differs from existing works in that we identify entity facets from document
collections where documents are associated to entities. The major advantage is that information related to entities can be widely and
mostly found in textual collections.
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On the other hand, our work differs from existing work in terms of facet representation. In existing works, entity facets are
represented by a bag of text segments (Reinanda et al., 2015; Spina et al., 2012), textual description (Nanni et al., 2018), or sentence
patterns (Li, Wang, & Jiang, 2013). Spina et al. (2012) consider terms as aspects and try to rank list of aspects that are being discussed
with respect to a given company. Li et al. (2013) propose a model to perform clustering, and use the clustered sentences and words as
aspects. Nanni et al. (2018) directly use sections in Wikipedia pages as aspects of corresponding entities. In comparison, our work
represents entity facets as a mixture of latent topics and use it as the basis of entity-centric representations. The facet representations
are useful in existing work with regard to their end goal. However, our choice is advantageous in our case for the following reasons.
First, we are not targeted on particular categories of entities, which makes it impossible to simply find sentence patterns by clustering.
Second, our end goal is to learn entity-centric representations, which are based on entity facets. By representing entity facets as a
mixture of topics, we can jointly learn entity-centric representations and entity facets using our proposed topic model.

Overall, we extend the state-of-the-art in three ways: a new task (learning entity-centric document representations), a new topic
model to address this task (the entity facet topic model), and a new way of capturing and reasoning about entity-related facet
information.

3. Research objectives

The key objective of our research is to model documents with respect to the specific facets of the entities that are discussed in each
document. In particular, our work derives from the hypothesis that entities are not monolithic concepts, but instead have different
facets, and documents associated with certain entities discuss these entities from a specific facet perspective. Our goal is to auto-
matically identify entity facets from documents and derive multi-faceted entity-centric representations of the documents in a col-
lection.

We set forth the following research objectives: RO1 Modeling entity facets, as a mixture of latent topics, and learning them from
documents associated to these entities.

Our first research objective aims to set up a theoretical definition of entity facets based on latent topics. By defining entity facets
as a mixture of latent topics, we connect the specificity of entities (entity facets) to the generality of documents (topics in documents).

RO2 Learning multiple entity-centric document representations based on entity facets.

The focus of our second research objective is to model the generative process of documents as a joint effort of particular facets of
entities. In this way, we attempt to learn both facets and representations of documents which are based on these facets.

RO3 Confirming that considering entity facets has practical implications in downstream applications.

The focus of the third objective is to understand whether considering entities as multi-faceted concepts makes a difference when it
comes to downstream applications, i.e. whether denoising entity and document representation by focusing on specific facets dis-
cussed in a document can help in applications such as text classification.

RO4 Identifying by the means of predictive modeling what should one consider as an effective number of facets an average entity has, and
how many topics, in traditional terms, are good enough to effectively define these facets.

The focus of the last objective is to gain a better understanding of how many facets an average entity has within a collection of
documents. Clearly different entities may have different number of facets, but in this work, we focus on what is the effective number
of them on average. Further, one could explore different ways to validate the number of facets. In this work we focus on the predictive
power of the multi-faceted entity-centric document representation to fulfil this objective.

Table 1
Notation.
Symbol Description
D document collection
Vw word vocabulary
Ve document entity set
S source entity set
Wy bag of words in document d
eq bag of entities in document d
Sa set of source entities associated with document d
Sq s-th source entity in d
F number of entity facets
K number of topics
fs facet f of source entity s
Zs topic selected from f;
P word distribution of topic k
P document entity distribution of topic k
o~ topic token distribution of topic k
s weight of ¢; when doing linear combination
Pfs facet topic distribution of f;
0, multinomial distribution of facets of s
Wq, i the i-th word in document d
eq; the j-th entity in document d
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To address the above objectives, we propose to learn entity facets and entity-centric document representations, where each
representation corresponds to an entity and is a mixture of entity facets of the entity.

4. Problem formulation

The task of entity-centric representation learning is formulated as follows. Given a collection of documents D, in which each
document d consists of a bag of words w; and a bag of entities e, and is associated with a set of source entities S;, our goal is to learn
entity-centric document representations for all documents in D. The elements in wy, e4, and S; belong to a word vocabulary Vyy, an
entity vocabulary Vg, and a source entity set S, respectively. The association between source entities and documents is assumed to be
predefined. Table 1 lists the main notation we use.

Here, we define entities as unique identifiers, such as tags of pictures and entities in documents as represented by identifiers in a
collaborative knowledge base (e.g., machine IDs in Freebase). Source entities are entities that satisfy the following two conditions: (1)
Source entities are topically multi-faceted; (2) each source entity is associated with a group of documents. For example, in Example 1
in Section 1, entities can be viewed as source entities because entities usually have multiple facets (multi-faceted) and each entity is
related to many documents that centred around them. Note that source entities are usually different from document entities. For
example, tags in news articles, or authors of papers are considered as source entities, while mentions of people or location entities in
news articles are document entities. However, the sets of source entities and document entities could also overlap or be identical. For
example, if someone wants to learn facet information of Freebase entities in an entity-annotated document collection, they can define
the source entities to be the salient entities of a document.

To make matters concrete, Fig. 1 provides an example of the entity-centric representation learning task. Given three documents,
do, d; and d,, which are associated with source entities {VP}, {BO, VP} and {BO}, respectively, our goal is to learn a document
representation of d, for VP, of d; for VP and BO, and of d; for BO, as shown in the figure.

5. Method

In this section, we introduce our method for learning entity-centric document representations. We first provide an overview of
how we define entity-centric document representation. Then we propose a novel topic model to model the process of generating
documents, which is followed by a Gibbs sampling-based learning algorithm.

5.1. Overview

To define entity-centric document representation, we first introduce the concept of an entity facet. An entity facet is a latent aspect
of a specific entity. Each facet is represented by a mixed proportion of latent topics. Unlike LDA’s topics that are defined as probability
distributions over words, each topic in our model is defined as two separate probability distributions, one over words and one over
document entities, respectively, which helps to account for the different observed variables.

An entity-centric document representation is defined as a mixed proportion of entity facets, called (entity) facet distributions.
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Fig. 3. A graphical representation of the entity facet topic model (EFTM). A concise overview of parameters is as follows: 7, a, f and p are Dirichlet
priors used to generate corresponding multinomial distributions; 5 is a Beta prior used to generate Binomial distribution; py is the facet topic
distribution of the f-th facet of an entity; ¢ and y are topic word distribution and topic (document) entity distribution respectively.
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Given a document d associated with a set of source entities S;, the entity-centric representation of d is a set of facet distributions
{6s]s € S4}. The goal of our model is to learn {&|s € Sy} for all d in the document collection D. As part of the model, we also learn:
(1) facet topic distributions py, i.e., a multinomial distribution over topics; (2) topic word distributions ¢, and (3) topic (document)
entity representations ¢, i.e., multinomial distributions over words and document entities.

5.2. Entity facet topic model

A graphical representation of the entity facet topic model (EFTM) is shown in Fig. 3; the generative process underlying EFTM is
given in Algorithm 1, while detailed explanations are given below.

5.2.1. Generative process

During model initialization, several multinomial distributions are drawn from Dirichlet priors. For each topic, a topic word
distribution ¢ and topic entity distribution ¢ are generated using Dirichlet priors a and f. For facet f of source entity s, the corre-
sponding facet topic distribution py is drawn from a Dirichlet prior <.

In the generative process, given a document d associated with a set of source entities Sy, a set of multinomial distributions
{6]s € Sq} is generated using a Dirichlet prior 1, where 6; is a distribution over entity facets of source entity s. To generate a token
(word or entity), we iterate over each source entity s in Sy, and draw a facet f; from 6;, a topic 2, from pg,, and a weight 7, from B(0).
Then, for each topic z, its topic word distribution and topic entity distribution are first weighted using #; and then concatenated to
obtain a new multinomial distribution ®;, which is referred to as the topic token distribution. In this way, words and entities under the
same topic are correlated. Finally, the final topic token distribution @ is obtained as an equally weighted combination of a set of topic
token distributions {®}|s € S;}, which is then used to generate a token, i.e., either a word or entity.

5.2.2. Joint facets

In existing topic models, a document is usually represented by one topic distribution, which is assumed to be used to generate the
document. To generate a word, a topic is selected from the topic distribution of the document, and a word is sampled from the topic
word distribution of the selected topic. For our model, in order to learn multiple representations for a document, we assume that all
source entities contribute to the generation of words and entities in documents. In particular, to generate a word or an entity, a facet
is sampled from the facet distribution of each source entity, and a topic is sampled from the facet topic distribution of selected facets.
Then, all selected topics are merged by a weighted combination of the corresponding topic word distribution and topic entity
distribution, and the resulting topic token distribution is used to sample a word or token. The intuition behind this is that the facet
distribution of all source entities of a document should contribute to the generation of words and entities in the document. For
example, given a document with three source entities: USA, Barack Obama, and Mitt Romney, the representation of this document

1: for eachtopiczdo

2 Draw ¢ ~ Dir (@)

3 Draw ¢ ~ Dir (B)

4; end for

5: for each source entitys € S do
6 Draw 65 ~ Dir (1)

7 for each facet of source entitys do
8 Drawpt s ~ Dir (1)

9 end for

10: end for

11: for eachdocumend do

12: for eachtokent, do

13: for each source entitys € Sq do
14: Draw fg ~ 05

15: Drawzs ~ pt s

16: Drawns ~ B(o)

17: DF = 1spz, O (1 = 15)¢z,

18: end for

19: D=5 Sezsj g

20: Drawty ~ @, ty € Vw U VE

21: end for

22: end for

Algorithm 1. Generativeprocess of the entity facet topic model.
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could be dependent on a facet that is semantically closest to the “presidential campaign.”

5.2.3. Parameters
The number of parameters to be estimated is K X (V| + 1Vgl) + ISI X F X K, where K is the number of topics, |S| is the size of the
source entity set, and F is the number of facets. We use symmetric Dirichlet priors to generate multinomial distributions.

5.2.4. Model advantage

The advantage of our model over existing document representation methods lies in two facets. First, the multi-faceted nature of
source entities is incorporated into our model, which captures the rich semantics captured by different facets of source entities.
Second, entity specific facets and general aspects (topics) are semantically connected, thus bridging the gap between entities and
topics.

6. Inference for EFTM

In this section, we present our Gibbs sampling algorithm for EFTM. Two key latent variables used to generate a word w; are
estimated, i.e., z! and fj. The former is the topic sampled from a given facet f;, while the latter is the facet selected from a given source
entity s. The parameter estimation process is described as follows.

The conditional posterior distribution for z!, the topic from the f-th facet of source entity s, to generate word w; is

Pzl =tz , z(__)i, f, w, e)x
P(Wi |ZSL =1, ZES’ W, e)P(ZSl = tlzi—ss Z(j’ f), (1)
where z' | is the assignment of all z related to word w; except for z/, z} is the assignment of all z for all words and entities except for
w,, f is the assignment of all facets for all words and entities, w_; are all words except word w;, e are all entities.
For the first item on the right hand side of Eq. 1, we have
Pwilzi =t, 21, w.;, @)=
S Pzl =t, 2, ®)P(Dlzi, w.;, €)dD. )
Here, ® is the joint word and entity distribution over all facets of source entities. In particular, given a |Vyy|-dimensional word
distribution and a |Vg|-dimensional entity distribution under topic ¢, a IV | + 1V;|-dimensional joint multinomial distribution over
words and entities @, can be obtained as a weighted concatenation. For the topic t sampled from a facet of source entity s, the topic

token distribution @] is obtained as a weighted concatenation of ¢, and ¢, with weights , and (1 — 7,), respectively. Since different
source entities are assumed to contribute equally, @ is obtained as follows:

1 !
@ = i > @ = 51 > 4@ -1)9).
dl 51,1841 d! sel1,1841) 3

where @ means concatenation of two distributions.
Based on how we obtain ®, we rewrite Eq. 2 as follows:

P(wilzl =t, 7', w, €)=

) . .
@(P(wi lzs =1t Wi, € + Xocq g P(Wi|2;’)}

“@
where P (w;|z :) is '}, the number of instances of w; under topic z/l. For the first item in Eq. 4, we have:
P(wilz! = t, wi, €)= [ P(wilz! = t, ®)P(® Wi, €)dP;. )
For the second item on the right-hand side of Eq. 5, we have:
P(®;|w;, €) &« P(W_;, e|D)P (D). 6)

Since P(¢,) and P(¢,) are Dirichlet priors Dir(a) and Dir(8), and P(y;) is Beta(0), the prior distribution P(®)) is:

g1 02
a+ s
g+ 0y g+ 0y

where o = [0y, 0,] is a Beta prior. Since ®, is conjugate to the likelihood function (the first item in Eq. 5), the posterior distribution in
Eq. 5 is obtained by putting the multinomial likelihood into the Dirichlet prior:

. 0 o X
Dir Lo+ —2—B+n"|
o+ 0y o+ 0y )

where n'}, is the number of words and entities that is assigned to ®,. Combining the previous equations, we have:
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P(W,l Zsi =1, Zi—:’ f’ Wi, e) = 5
Std Zx’ESd\(x) ni(,s)’

1 ( Tyesys) iy 4

(al+az)»n‘_mi€l+aloc+ a2 )

(@1+02)n8), + @1+ 528) (Vi 1+ Vi 1)

)

This addresses the first term on the right-hand side of Eq. 1.
For the second term on the right-hand side of Eq. 1, we have:

P( zi =tz zglH=
S P& =tfl, 0. )P (s |2y, £ dpr 8)
The second item on the right-hand of Eq. 8 is a posterior as follows:
P(py,lz;", £ o P(z5 |y £5)P oy ). ©)

Here, P(p;) is a Dirichlet prior Dir(z) and P (z;’ oy s £ 7)) is the number of all words and entities that are assigned to topic t because of
source entity s except w;, denoted as n;. Then, Eq. 8 can be written as:

. . . nil+t
P(zs = tlzt;, 23, f) = m 10
The conditional posterior distribution for fsi, the facet chosen to first generate a topic and then generate w;, is:

P(f; = fifLs, £}, 2) < P(z1f} = f. zOP(f; = fIESD. an
For the first item on the right-hand side of Eq. 11, we have:

PG =f. 2= [ PG =, 0, )Py, Iz ) doy . 12)
The second item on the right hand side of Eq. 12 is:

P(py I & P ('l )P (ay,). (13)

Since P(z;" loy;) is a likelihood function and P(py;) is a Dirichlet prior Dir(z), we have P(f) as Dir (t + nffé), where n;, ! is the number of
topics assigned to f; except for the current word.
We combine all equations and obtain:

P = fo5 = T
n's + Kt a4
The second term in Eq. 11 is obtained as follows:
P(f! = fifQ) = [ P(f! = fI6)P (&I dé,. 15)
The second term on the right-hand side of Eq. 15 is as follows:
P(&If;") o P(£716)P (). (16)
As a result, we have Eq. 15 as follows:

) net 4+ u
P(fi = fIf) = L ——.
ni + Fu 17)

Finally, by combining Eqs. 1, 7, 10 and 11,14,17, we obtain the desired estimates of posterior distributions of z} and f: re-
spectively:

P(zj = tlz',, z(j, f, w, e)

1 ZS'ESd\{s} Vli]fiir N (o1+ UZ)’"Y,-I:[ +o1a+ 02
L ' .
S\ Bgesp iy ©1+ornl) +(@ra+ o2 (Ve +I VD)
n;[i +7
nit ke (18)

) ) ) no+t oni+
P =i, £y o 2t = T TR
n's+ Kt ngy + Fu (19)

10



C. Wy, et al. Information Processing and Management 57 (2020) 102216

7. Experimental setup
We set up experiments to address the following research questions:

RQ1 Can entity-centric document representation capture entity facets reflected in documents?

RQ2 Is entity facet topic model better than existing topic models involving entities in terms of generative capability?

RQ3 Is the multi-faceted entity-centric document representation better than state-of-the-art document representations when used for
multi-label classification?

RQ4 What is the expected number of entity facets (and topics) in a document collection?

7.1. Datasets

Two datasets are used in our experiments. Both of them are extracted from the New York Times Corpus (Sandhaus, 2008). Since
we consider both words and entities in documents, we use the entity annotations of New York Times articles from 2003-2007
provided by Google (Dunietz & Gillick, 2014). Documents from 2003-2006 are used as a training set, while documents in 2007 are
used as the test set. Articles in the New York Times Corpus are all associated with multiple labels, called descriptors. Since a source
entity is a general concept referring to any semantic unit representing a source of information, descriptors are considered as source
entities in EFTM.

To examine the performance of EFTM on datasets of different sizes, we extract two datasets according to the following procedure:
We first count the frequency of the descriptors, and then select target descriptors based on their frequency. The statistics about
descriptors are presented in Fig. 4. We do not consider descriptors with either high or low number of associated documents, so that
our extracted datasets are under moderate size. Articles associated to at least two target descriptors are selected to be part of the
output dataset. For the first dataset (“datasetl” in Table 2), we select descriptors whose frequency ranges from 500 to 1,000, which
leads to a set of 56 descriptors. For the second dataset (“dataset2” in Table 2), we choose descriptors whose frequency is higher than
2,000, with 33 descriptors being selected.

We count the descriptive statistics of our two datasets and present them in Table 2. The definitions of label cardinality and label
density (Tsoumakas & Katakis, 2007) are as follows. Let D be a multi-label dataset consisting of D multi-label examples
(x;, Y;), i = 1...D. Label cardinality of D is defined as the average number of labels of the examples in D:

IDI

1
LC(D) = — Y Il
ID| &

Label density of D is defined as the average number of labels of the examples in D divided by L:

1 IDI
LeD) = - D IYGI/ILI
i=1

where L is the number of all labels.
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Fig. 4. Statistics of descriptors in NYT Corpus. The x-axis are descriptor sets grouped by the number of associated documents; the y-axis is the
number of descriptors in each set.
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Table 2
Statistics of our two datasets. Columns 2 and column 3 are the number of documents in the training and test set; column 4 is the number of labels in
the dataset; columns 5 and 6 are the label cardinality (LC) and label density (LD).

Dataset # training # test # Labels LD LC
1 6377 540 56 0.038 2.139
2 34,976 3146 33 0.077 2.533

7.2. Experimental design

7.2.1. Modeling and recovering entity facets

To answer RQ1 we conduct a qualitative analysis that seeks to uncover the correlation between the facets of source entities. Our
hypothesis is that in a set of documents associated with a pair of source entities, the facets of these entities that are mainly reflected in
the documents will be represented by similar topic distributions. If this is true, it would mean that our model is able to identify
matching facets of different entities in order to semantically represent a document and it will confirm that indeed entities are not
single-faceted. For example, given a set of documents associated with both Finance and Education and Schools, we expect to identify
the funding (education investment) facet of Education and Schools and Finance. Therefore, given two source entities, first the docu-
ments associated to both entities are selected. For each source entity, the corresponding entity-centric representation is computed as
the mean of the entity representations of all shared documents. The resulting facet distribution can be considered as a centroid across
these documents. Then we examine whether certain facets have a high probability in the facet distribution.

7.2.2. Generative capability of entity facet topic model

To answer RQ2 we perform a quantitative analysis, using perplexity as the evaluation measure. Perplexity is a standard measure
for estimating the performance of a probabilistic model. We evaluate EFTM by estimating the perplexity of unseen held-out docu-
ments given training documents. A better model will have a lower perplexity of held-out documents on average. We follow the
perplexity definition in Kim et al. (2012), which is defined as follows:

10gP (Dtest |Dtrain)
eXpl—"———""—"7"" 1|
ZdEDM[ Nd

Let @ denote the set of all parameters in a topic model; then
P(DtestlDtrain) — f P(D[95[|<D)P(¢|D"ai”)dq)_

This integral can be approximated by averaging P(D**|®) under samples from P(®|D™™). Note that EFTM can be seen as a generative
process that generates words and entities for a given set of source entities. Thus, P(D""|®) is defined as follows:

P(D™|®) = T eptest P (W, €4|Sq, ©).

If our model demonstrates lower perplexity it will confirm that indeed a document is better represented and understood by
considering the specific facets of an entity discussed in this document.

7.2.3. Multi-label text classification

To answer RQ3 we perform an extrinsic evaluation of EFTM, for which we consider a multi-label classification task. We assume
that a good document representation model should encode distinctive information about whether a document should be associated to
a label or not. Therefore, better document representations should yield better performance in multi-label classification.

A simple and straightforward method for multi-class classification is to train a binary classifier for each label using the re-
presentation of a document as features. We adopt this setting and use SVM as the binary classifier in our experiments. We have
experimented with a number of different classifiers and all of them support our conclusions. Since, the goal of this work is to compare
representations and not classification algorithms, we do not report the performance using other classifiers, such as Random Forests,
or Naive Bayes. The features are the elements of the vector representations, and the number of features is the dimensionality of the
vectors.

Given a label (i.e., a source entity), EFTM provides an entity centric representation of the document corresponding to that label.
However, for the purpose of training we also need an entity centric representation of documents that are not associated to this label,
to be used as negative instances. Pseudo inference (Rao & Wu, 2010) is performed on the document and the label, by assuming that the
label is the only source entity associated to the given document, hence inferring the entity-centric document representation using
EFTM.

For each label s, we collect Nj;,;,, documents associated to the label as positive instances for training. Then we randomly sample
Nj.in negative instances from documents not associated to this label for training. During testing, for each label and test instance, we
perform pseudo inference on the test instance, and input the obtained representation to the binary classifier corresponding to the
label. Then, the binary classifier outputs 1 if the test instance is considered to be associated to the label, and 0 otherwise.

To assess the performance of multi-label classification we use three evaluation measures (Bielza, Li, & Larranaga, 2011;
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Tsoumakas & Katakis, 2007): Multi-label accuracy, macro F1, and micro F1.> We conduct a statistical significance test in our ex-
periments via a paired t-test. Our experiments consist of two steps, i.e. model training and multiple binary classifications. Since we
focus on comparing representations, it is the model training step that is considered as the source of uncertainty. We train each model
5 times, and repeat the classification steps to obtain multiple results. All significance tests are performed at @ = .05 level.

If our model demonstrates a better performance than baseline methods it will confirm that multi-faceted entity-centric re-
presentation of documents has a positive effect not only towards better understanding documents but also in downstream applica-
tions.

7.2.4. Number of entity facets and topics in a collection
To answer RQ4 we perform a quantitative analysis similar to previous section altering the number of topics and the number of
entity facets in our model and quantifying the effect in terms of the performance of the model in the multi-label classification task.

7.3. Baselines and model variations

Table 3 lists the document representation methods considered in our experiments. In both our intrinsic and extrinsic evaluation
we seek to assess the quality of document representations, and not the ability of a machine learning algorithm to succeed in multi-
label classification. Our baselines include the traditional bag of words with TF-IDF weights representation (BoW) (Salton, Yang, & Yu,
1975); the LDA (Blei et al., 2003), LLDA (Erosheva et al., 2004) and Labeled-LDA (Ramage et al., 2009) topic model document
representations, that allow us to directly assess the quality of EFTM; and Mean Word Embedding (MWE) (Kraft, Jain, & Rush, 2016)
and Doc2vec (Le & Mikolov, 2014) as state-of-the-art dense vector representations, similar with the setup in (Van Gysel et al., 2018).
The word embeddings used here are 50d GloVE vectors (Pennington, Socher, & Manning, 2014) pre-trained using Wikipedia and
Gigaword 5 3, We use a pre-trained BERT model (Devlin et al., 2018) with a hidden layer size of 768, 12 Transformer blocks and 12
self-attention heads. Since the representations learned by baseline methods are not optimised for multi-label classification, we use
bert-as-service” to get the representation of an input sequence without fine-tuning with respect to multi-label classification to make
results comparable to other baseline methods, as well as our work. We truncate the input sequences to 512 tokens to meet the
restriction of maximum sequence length required by BERT. To get a feeling of how BERT performs on multi-label classification when
fine-tuning, we also fine-tune the same pre-trained BERT model for the task of multi-label classification, with a batch size of 32, max
sequence length of 512, learning rate of 5e-5. The maximum number of training epochs is set to 3 according to the parameter setup
in Devlin et al. (2018).

Note that even though ETM (Kim et al., 2012) is related to our work, it is not a valid baseline, as explained in Section 2. For
baseline models that do not distinguish entities from words, we feed unique identifiers of entities together with words, so that our
model does not benefit from being fed more data than baselines.

For EFTM, we consider different source entity and observed variables settings. In terms of source entity, we consider a multi-
source (MS) setting, where each document is associated with multiple source entities, and a single-source (SS) setting, where all
documents are assumed to be associated with one universal source entity. In terms of observed variables, we consider a word-only
(WO) setting, which is a simplified version of EFTM in which we only use words as observed variables, and a words and entities (WE)
setting, which is the full EFTM model. We write EFTMWO-MS, EFTMWO-SS, EFTMWE-SS and EFTMWE-MS, respectively, to denote
these variants. See Table 3 for a summary.

7.4. Parameter settings

Following standard practice (Kim et al., 2012), we set the hyperparameters of the baseline methods and EFTM to pre-defined
values. In LDA, LLDA and EFTM, we set both a and f3 as 0.1. In LLDA and our model, o is set to 0.5, which means no prior information
is known. Note that our model might perform better if o is set to a value that corresponds to the frequency of words vs. entities. We
use uninformative prior 0.5 and leave the impact of o as future work. In EFTM, we set 7 and y to 0.1. The number of iterations of Gibbs
Sampling is set to 2000 for all models. We set the number of topics to {10, 15, 20, 30, 40, 50, 80, 100}, and the number of facets to {5,
10}, so as to be able to compare the effectiveness under different parameter settings.

In this work we make the assumption that all entities have an equal number of facets. Clearly this can not the case with the
number of facets most likely changing across entities. Nonparametric Bayesian models could capture this and we leave it for future
work. Instead, we fixed the number of facets to 5 (or 10). Remember that the number of facets is a modeling choice and should be
decided by empirical evidence. Our choice is derived from the fact that the median number of sections of English Wikipedia articles
(which can be viewed as entity facets (Nanni et al., 2018)) is 4 for the entire collection and 7 for a high quality sub-
collection (Piccardi, Catasta, Zia, & West, 2018). Also note that the number of facets does not have to be accurate for all entities, as

2 Bielza et al. (2011) also define Mean Accuracy as an effectiveness measure. However, our data is rather skewed with respect to each label, i.e., for
each label there is a small fraction of documents that are associated with it. This allows a naive classifier that predicts each instance not being
associated with a label to achieve high performance when measured by Mean Accuracy. For instance, such a classifier, when applied to “Dataset1”
achieves a Mean Accuracy of 0.9629. Multi-label Accuracy, macro and micro F1 avoid this bias.

3 https://catalog.ldc.upenn.edu/LDC2011T07 .

“ https://github.com/hanxiao/bert-as-service .
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Table 3
Methods and baselines used for comparison.
Acronym Description Reference
EFTMWO-SS EFTM with a single and same source entity, and words as the only observed variables. §4.2
EFTMWO-MS EFTM with multiple source entities, and words as the only observed variables. §4.2
EFTMWE-SS EFTM with a single and same source entity, and considers two kinds of observed variables. §4.2
EFTMWE-MS EFTM with multiple source entities, and considers two kinds of observed variables. §4.2
BoW Bag of words weighted by TF-IDF; a traditional document representation. Salton et al. (1975)
LDA Latent Dirichlet Allocation, which learns a latent topic distribution to represent documents with; a Blei et al. (2003)
widely used document representation method.
LLDA Mixed membership of topics, which is similar to LDA, except that it considers words and entities Erosheva et al. (2004)
separately.
Labeled LDA A supervised topic model, which extends LDA to leverage supervised labels of documents. Ramage et al. (2009)
Doc2vec Dense vector representation, which is the state-of-the-art neural method for learning document Le and Mikolov (2014)
representations.
BERT A state-of-the-art vector representation method. Devlin et al. (2018)
MWE Mean word embedding, which is a strong state-of-the-art neural method for representing documents. Chen (2017); Le and Mikolov (2014)

Most-Frequent A naive baseline which always predict the most frequent label in train set. -

long as learned facets could be helpful for downstream applications, e.g. classification, as demonstrated in our experiments. A similar
scenario with the number of facets for our model is the number of topics for topic models, where the number of topics can be
predefined according to empirical evidence (rather than accurate estimation), as long as the learned topics are useful for inferring
meaningful topic distributions of documents.

Regarding runtime, we run our model on single core Intel Xeon CPU with 256GB RAM. We run our models under different setups
and against two datasets and the training time are presented in Table 4.

8. Results

In this section, we present the outcomes of our experiments and provide answers for our research questions.

8.1. Modeling and recovering entity facets

To answer RQ1, we perform a qualitative analysis of the outcomes of the EFTMWE-MS model trained on Dataset 2 with the
number of facets set to 5 and the number of topics set to 50. The setup of the qualitative analysis can be found in Section 7.2.1. We
choose three pairs of source entities for analysis, i.e., Finances, Law and Legislation, and Education and Schools, and the results are
shown in Fig. 5. As shown in Fig. 5(c), facet 1 of Education and Schools has a higher probability, indicating that facet 1 is related to the
law facet of Education and Schools, while facet 3 of Law and Legislation is related to its education facets. Further, we see that in
Fig. 5(a) and 5(b), while there is no particular facet with a strong presence in these documents, there is a reverse relation between
facet 1 and 2 of Finances. When documents are associated with Education and Schools, facet 2 of Finances has a higher presence than 1,
while the opposite is true when documents are associated with Law and Legislation. Hence, different facets of source entities are
captured by the entity facets proposed in EFTM.

To further investigate whether these facets indeed capture similar information, we present the facet topic distribution of those
facets, i.e., facet 4 of Finances, facet 1 of Education and Schools, facet 3 of Law and Legislation in Fig. 6. The topic distributions of all the
facets we consider are similar, demonstrating that similar information is captured by entity facets and understood from the per-
spective of source entities.

Therefore, the document representations we propose are able to discover and model facets of different entities within a document
that semantically align with each other and the theme of the document, while at the same time disagree with the facets learnt by
documents of different theme.

Table 4
The number of hours used to train our models under different setups.
EFTMWO-SS EFTMWO-MS EFTMWE-SS EFTMWE-MS
Dataset 1 4.0h 9.2h 39h 9.0 h
Dataset 2 13.2h 429h 12.6 h 389h
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Fig. 5. Analysis on three sets of documents, where each set of documents is associated with the same pair of source entities. Each line is the averaged
facet distribution of a specific source entity in the corresponding documents. The x-axis is the facet number, while the y-axis is the value of elements

in the facet distributions. The number of facets is 5.
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Finding 1
Entities are associated with documents by means of specific facets of them discussed in these documents, while different
documents may focus on different facets of an entity; this confirms our hypothesis that entities should be considered multi-

faceted concepts.

8.2. Generative capability of entity facet topic model

To answer RQ2, we compare the perplexity values obtained by the different topic models. The perplexity scores over the two
datasets are shown in Figs. 7 and 8, respectively. Note that the number of topics of Labeled-LDA is decided by the number of labels,
thus its perplexity value is fixed. EFTMWO-MS and EFTMWO-SS perform better than the baseline methods, whereas EFTMWE-MS and
EFTMWE-SS perform worse. The difference lies in the representation of topics. In the WE-version of EFTM, topics are represented by
two distributions, i.e., a topic-word distribution and topic-(document) entity distribution. The prior of o is set to 0.5, which means
that words and entities have the same chance of being selected to generate a document. However, in our dataset, there are much more
words than entities, which leads to a lower probability of generating the documents and higher perplexity values. By introducing
entity facets, we achieve better generative capability for unseen documents.

Finding 2
The generative capability of a model that considers entities as multi-faceted concepts is better compared to models that do

not.

8.3. Multi-label text classification

To answer RQ3, we present the performance of different document representation methods on the multi-label classification task.
Results over two datasets are shown in Tables 5 and 6.

As we can see, semantic representation methods, such as LDA, MWE, D2V and BERT, perform better than traditional Bow
representations. When comparing semantic representation methods, BERT is better than LDA but not as good as advanced topic
models, such as LLDA, indicating that advanced topic modeling has the potential to learn good representations. As mentioned earlier
we also fine-tuned BERT on the classification task. We did that for the small Dataset 1, since fine-tuning for the large dataset (Dataset
2) proved to be a rather computationally expensive task (the task was abandoned after 8 days of training). The BERT-fine-tuned
model obtained a ml-Acc of 0.0593, Micro F1 of 0.1082, and Macro F1 of 0.0163, better than many unsupervised representation
learning methods, but still not better than the unsupervised representation learning of our advanced topic modeling. Note that the
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Fig. 8. Perplexity values on Dataset 2 with different numbers of topics.
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Table 5

Comparing the performance of document representation methods on the task of multi-label classification on Dataset 1.
The number of facets of EFTM is set to 5, and the number of topics/dimensions is set to 50. We test the significance of
results of our models compared to baseline methods. Results of our model are significant compared to baseline methods
at a = .05 level.

ml-Acc Micro F1 Macro F1
Most-Frequent 0.0398 0.0571 0.0029
Bow 0.0135 0.0267 0.0272
D2V 0.0047 0.0091 0.0090
MWE 0.0047 0.0094 0.0097
BERT 0.0054 0.0106 0.0109
LDA 0.0064 0.0123 0.0128
LLDA 0.0358 0.0690 0.0632
Labeled LDA 0.0000 0.0033 0.0034
EFTMWO-SS 0.0377 0.0717 0.0710
EFTMWO-MS 0.0392 0.0745 0.0778
EFTMWE-SS 0.0390 0.0738 0.0000
EFTMWE-MS 0.0399 0.0758 0.0788

Table 6

Comparing the performance of document representation methods on the task of multi-label classification on Dataset 2.
The number of facets of EFTM is set to 5, and the number of topics/dimensions is set to 50. We test the significance of
results of our models compared to baseline methods. Results of our model are significant compared to baseline methods
at o = .05 level.

ml-Acc Micro F1 Macro F1
Most-Frequent 0.0809 0.0983 0.0085
Bow 0.0234 0.0454 0.0478
D2v 0.0088 0.0173 0.0176
MWE 0.0082 0.0161 0.0171
BERT 0.0065 0.0125 0.0133
LDA 0.0082 0.0158 0.0170
LLDA 0.0620 0.1158 0.0948
Labeled LDA 0.0035 0.0069 0.0073
EFTMWO-SS 0.0684 0.1235 0.1185
EFTMWO-MS 0.0658 0.1216 0.0000
EFTMWE-SS 0.0758 0.1387 0.1375
EFTMWE-MS 0.0658 0.1207 0.1214

naive baseline Most-Frequent is a strong baseline in terms of multi-label accuracy. This is because that if we predict the most frequent
label, it is likely to get at least one right label for each instance. Together with the fact that the label cardinality is around 2, there
should be quite a few instances that get almost correctly predicted.

On both datasets, EFTMWO-SS outperforms LDA, indicating the effectiveness of introducing entity facets and representing
documents using facet distributions, especially given that the number of features of LDA in multi-label classification (i.e., the number
of topics, 50) is much more than that of EFTMWO-SS (number of facets, 5). Hence, representing documents in an entity-centric
fashion gives an explicit way to facilitate downstream entity related tasks, such as judging whether a document should be associated
with the entity (label) here.

We also study whether it is helpful to distinguish different kinds of observed variables, such as words and entities. The perfor-
mance of LLDA is better than LDA, showing the effectiveness of distinguishing different kinds of observations in relatively simple
topic models. As to variants of EFTM, the performance of EFTMWE-SS/EFTMWE-MS are consistently better than that of EFTMWO-SS/
EFTMWO-MS, which confirmed the superiority of considering both observed variables. Note that sometimes macro F1 could be zero
because of skewed performance across different labels. Specifically, the performance of many labels are close to zero except few other
labels.

To study the impact of multiple sources, we consider two pairs for comparison, i.e., EFTMWE-MS vs. EFTMWE-SS and EFTMWO-
MS vs. EFTMWO-SS. On Dataset 1, EFTM with multi-sources (MS) is consistently better than the single-source (SS) version of EFTM,
while EFTMWE-SS is better than EFTMWE-MS on Dataset 2. This appears to be related to the size of the set of labels. The number of
labels in Dataset 2 is smaller than that of Dataset 1, which lessens the impact of modeling multiple sources.

In sum, EFTMWE-MS and EFTMWE-SS are the preferred choices for the multi-label classification task, with a slight preference for
EFTMWE-MS in case where a dataset has many labels (source entities) and for EFTMWE-SS in case the dataset has fewer labels.
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Finding 3

By fixing supervised learning algorithm and using different document representations for multi-label classification, we
demonstrate that the proposed multi-faceted entity-centric representation outperforms state-of-the-art representations. The
smaller the dataset the more important it is to use a multi-source representation.

8.4. Number of entity facets and topics in a collection

To answer RQ4, we explore different parameter settings for EFTM. In particular, we consider two cases: (1) Varying the number of
topics (30, 50, 80, 100) under a fixed number of facets (5); (2) varying the number of facets (5, 10) under a fixed number of topics
(50). The results under fixed number of facets and varying number of facets are shown in Tables 7 and 8 respectively.

As we can see in Table 7, the full model (EFTMWE-MS) performs best on Dataset 1 and 2 when the number of topics is set to 30
and 80, respectively. Dataset 2 is a much bigger dataset compared to Dataset 1 and 30 topics appears to be enough to capture the
topical patterns of the smaller dataset but is insufficient for the bigger dataset. In terms of the number of facets, we can see in Table 8
that the performance with just five facets is consistently better than the performance with 10 facets, which indicates that a small
number of facets is probably enough to capture entity specific topics and a big number of facets might make things complicated.
Overall, we can see that the performance varies much under different parameter settings, indicating a space of improvements by
tuning parameters. We leave the tasks of finding the optimal number of facets and topics as future work.

Finding 4
A limited number of facets is enough to capture the different facets of an entity, on average.

9. Conclusions

In this work, we propose a model and an algorithm to learn entity-centric document representations, where a document asso-
ciated with multiple entities is represented by multiple representations and each representation is built on the basis of entity facets.
We demonstrate the effectiveness of our model, EFTM, by comparing it against state-of-the-art document representation methods on
the task of multi-label classification, confirming that multi-faceted entity-centric modeling of documents has an effect in downstream
applications. Although we evaluate our method on multi-label classification, our method is more broadly applicable to other multi-
labeled settings where documents are associated with multiple source entities, such as tag analysis (Li, Guo, & Zhao, 2008) and tag
suggestion (Katakis, Tsoumakas, & Vlahavas, 2008). We further investigated the notion of facets we learn by performing both an
intrinsic and an extrinsic evaluation and confirmed that learned facets can capture semantically similar facets of different entities.

The theoretical implication of this work is that entities should not be considered and modeled as monolithic concepts, with a
single representation for every document associated with them, but instead thought as multi-faceted concepts, with different facets
discussed in different documents. Gaining a deeper understanding of what do these facets precisely represent, how many facets each
specific entity has, and whether these facets can be mapped to explicit categories is left for future work that can enable interesting
methods of analyzing and visualizing document collections from the perspective of an entity, but also analyzing how entities are
presented in a document corpus. In practice, our work demonstrates that such a multi-faceted entity consideration can have an impact
in downstream applications.

Table 7

Comparing the performance of document representation methods on the task of multi-label classification, using Dataset 1 and Dataset 2. The
evaluation metric is multi-label accuracy (ml-Acc). For our models the number of facets is set to 5. The number of topics of our model and other
models considered are 30, 50, 80, and 100, as indicated in row two.

Number of Topics 30 50 80 100

Dataset 1 EFTMWO-SS 0.0377 0.0378 0.0303 0.0302
EFTMWO-MS 0.0455 0.0453 0.0437 0.0422
EFTMWE-SS 0.0356 0.0381 0.0389 0.0362
EFTMWE-MS 0.0488 0.0447 0.0402 0.0414

Dataset 2 EFTMWO-SS 0.0641 0.0681 0.0713 0.0568
EFTMWO-MS 0.0779 0.0737 0.0695 0.0659
EFTMWE-SS 0.0698 0.0767 0.0806 0.0781
EFTMWE-MS 0.0728 0.0717 0.0736 0.0661
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Table 8
Comparing the performance of document representation methods on the task of multi-label classification, using Dataset 1 and Dataset 2. The values
5 and 10 in columns 3-6 indicate the number of facets.

Micro F1 Macro F1
5 10 5 10
Dataset 1 EFTMWO-SS 0.0710 0.0679 0.0702 0.0677
EFTMWO-MS 0.0857 0.0661 0.0885 0.0718
EFTMWE-SS 0.0722 0.0680 0.0740 0.0685
EFTMWE-MS 0.0843 0.0618 0.0836 0.0657
Dataset 2 EFTMWO-SS 0.1217 0.1109 0.1182 0.1141
EFTMWO-MS 0.1361 0.1127 0.1331 0.1123
EFTMWE-SS 0.1395 0.1393 0.1366 0.1386
EFTMWE-MS 0.1323 0.1193 0.1332 0.1173
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