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Neural ranking models (NRMs) have shown remarkable success in recent years, especially with pre-trained
language models. However, deep neural models are notorious for their vulnerability to adversarial examples.
Adversarial attacks may become a new type of web spamming technique given our increased reliance on
neural information retrieval models. Therefore, it is important to study potential adversarial attacks to identify
vulnerabilities of NRMs before they are deployed.

In this paper, we introduce the Word Substitution Ranking Attack (WSRA) task against NRMs, which
aims to promote a target document in rankings by adding adversarial perturbations to its text. We focus
on the decision-based black-box attack setting, where the attackers cannot directly get access to the model
information, but can only query the target model to obtain the rank positions of the partial retrieved list.
This attack setting is realistic in real-world search engines. We propose a novel Pseudo Relevance-based
ADversarial ranking Attack method (PRADA) that learns a surrogate model based on Pseudo Relevance
Feedback (PRF) to generate gradients for finding the adversarial perturbations.

Experiments on two web search benchmark datasets show that PRADA can outperform existing attack
strategies and successfully fool the NRM with small indiscernible perturbations of text.
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1 INTRODUCTION
Ranking models are central to information retrieval (IR) research. With the advance of deep neural
networks, we are witnessing a rapid growth in neural ranking models (NRMs) [9, 18, 36, 40],
achieving new state-of-the-art results in learning query-document relevance patterns. Recent
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Fig. 1. Demonstration of the WSRA task. Given a neural ranking model, adversarial perturbation is added to
the target document 𝑑 and the adversarial example 𝑑𝑎𝑑𝑣 will be promoted in rankings with respect to the
query 𝑞.

research has explored pre-trained language models (e.g., BERT [11] and ELMo [44]) in the context
of document ranking, and shown that they can achieve remarkable success on a variety of search
tasks [17, 24, 32]. The impact of pre-trained models is not limited to academic research. In industry,
BERT and, more generally, transformers are being put to practical usage [see, e.g., 29].
Adversarial examples. Deep neural models are notorious for their vulnerabilities to adversarial
examples [14, 52]. For example, Goodfellow et al. [14] show that a panda image, added with
imperceptible perturbations, is misclassified as a gibbon by GoogLeNet [51]. Liang et al. [28]
prove that even tiny modifications to a character or a word can fool state-of-the-art deep text
classifiers. Recent observations have also shown that rankings can rapidly change due to small,
almost indiscernible changes of documents [15]. Hence, adversarial attacks may become a new
type of web spamming [19] in the neural network based methods which gain importance in IR.
Since adversarial examples are maliciously crafted by adding perturbations that are imperceptible
to humans to legitimate examples, they may not be detected by traditional anti-spamming methods
[50]. Up to now, little attention has been paid to adversarial attacks against NRMs, except for
analyses of the robustness of ranking models carried out by Goren et al. [15]. Therefore, we believe
it is critical to study potential adversarial attacks to identify the vulnerability of NRMs before they
are deployed and help facilitate the development of the corresponding countermeasures.
A new adversarial attack task. In this paper, we introduce the Word Substitution Ranking Attack
(WSRA) task against NRMs. As shown in Figure 1, given a neural ranking model, the WSRA task
aims to promote a target document in rankings with respect to the query by replacing important
words in its text with their synonyms in a semantic-preserving way. An effective adversarial sample
in WSRA needs to satisfy the following qualities: (1) imperceptible to human judges yet misleading
to NRMs; and (2) fluent in grammar and semantically consistent with the original document. We
clarify the reason why we focus on word substitutions in this work. We also discuss the major
differences between the WSRA task against NRMs and adversarial attacks for image retrieval and
text classification. Besides, we define different adversarial settings for the WSRA task in terms
of the information that attackers rely on, including white-box attacks and black-box attacks. The
black-box attacks are further divided into score-based attacks and decision-based attacks. For the
evaluation of the WSRA task, we define the Success Rate (SR) metric for the attacking and adapt
the Perturbation Percentage (PP) and Semantic Similarity (SS) from Natural Language Processing
(NLP) for automatic evaluation.
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In this work, we focus on the decision-based black-box attack setting for the WSRA task. This
attack scenario is realistic and important, because most of the real-world search engines are black-
boxes and only output hard rank positions. It is also challenging since the gradient cannot be
directly computed and the predicted probability is not provided.
An adversarial ranking attack method.We make the first attempt to address the WSRA task
under the decision-based black-box attack setting. Specifically, we introduce a novel Pseudo-
Relevance based ADversarial ranking Attack method, or PRADA for short, to generate adversarial
samples. The key idea is to learn a surrogate model to imitate the behaviors of the target NRM
for finding the adversarial perturbations. Inspired by the Pseudo Relevance Feedback idea [PRF,
10] in IR, we query the target NRM and take the top-ranked results as relevant examples to learn
a surrogate ranking model. Then, we identify the important words in a document which have a
high influence on the final ranking result via the prior-guided gradients generated by the surrogate
model. With the important words, we apply Projected Gradient Descent [PGD, 33] to generate
gradient-based adversarial perturbations to the embedding space according to the expected ranking
order. Finally, we replace the important word with its synonyms in a semantics-preserving way
and repeat this process by iterating the importance words list to find the final adversarial sample.
Experiments. We conduct experiments on two web search benchmark datasets, the MS MARCO
document ranking dataset and the MS MARCO passage ranking dataset. We compare with several
state-of-the-art adversarial attack strategies and our experimental results show that PRADA can
successfully promote the target document in rankings with the highest attack success. At the same
time, the perturbation percentage is considerably lower than for competing attack methods while
the semantic similarity score is comparably high.
Main contributions. The main contributions of this paper are (1) We introduce a new WSRA task
against NRMs for identifying the vulnerability of NRMs and consequently contributing to the design
of robust NRMs; (2) We make the first attempt to address the WSRA task under the decision-based
black-box attack setting, and propose a novel PRADA method based on PRF to generate adversarial
examples; and (3)We conduct rigorous experiments to demonstrate the effectiveness of our proposed
model.

2 RELATEDWORK
In this section, we briefly review three lines of related work, including web spamming, text ranking
models and adversarial attacks.

2.1 Web Spamming
For many queries in theWeb retrieval setting, there exists an on-going ranking competition: authors
of some Web pages may manipulate their documents so as to have them ranked high [15]. Web
spamming refers to these actions of manipulating web pages intended to mislead search engines
into ranking some pages higher than they deserve [19]. The consequences of web spamming are
that the quality of search results decreases and search engine indexes are inflated with useless
pages, which increases the cost of each processed query.

Existing spamming techniques can be divided into term spamming and link spamming [19]. Term
spamming refers to techniques that tailor the contents of a web page’s text field (e.g., document
body, title, meta tags), in order to make spam pages relevant to some queries [4]. For example,
Gyongyi and Garcia-Molina [19] summarized a list of different types of term spamming in the Web,
including repetition, weaving, dumping and stitching. Link spamming [53] creates link structures
that are meant to increase the importance of one or more of their pages. For example, Link farms [?
], honey pots [19] and spam link exchange are typical link spamming techniques. To combat such
manipulation, prior works studied the detection of web spamming from the perspective of content
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analysis [39, 45] and link analysis [3, 20, 54], respectively. For example, different content-based
features have been explored to build spam classifiers to detect term spammings [39]. Meanwhile, a
variety of trust and distrust propagation algorithms such as Trustrank [? ] and BadRank [? ] were
proposed to fight against link spamming.
Note that the spam is a concept which is different from the web spam. While spam refers to

unsolicited or undesired electronic messages (e.g., email spam or message), web spam is an IR
concept [19] which refers to the web pages that have been manipulated to be ranked higher in
search engines. So the works [? ? ? ] which talk about the spam detection are in fact irrelevant to
our work. For example, ? ] leverages the Generative Adversarial Network (GAN) to detect deceptive
reviews (e.g., to classify whether a review is a deceptive review). ? ] combined the CNN and LSTM
to do spam detection. ? ] propose an ensemble approach which combines global and local features
of e-mails together to detect spam effectively. Since they all study about the spam detection, they
are different from our work (e.g., as an adversarial attack). So they cannot become our baselines.
The proposed WSRA task can be viewed as a new type of web spamming against NRMs. The

difference between the proposed WSRA and traditional web spamming is that our WSRA task
promotes a target document in rankings by adding an imperceptible perturbation to its text. As a
result, it may not be detected by traditional anti-spamming methods [50].

2.2 Text Ranking Models
Ranking models lie at the heart of research on IR. During the past decades, different techniques
have been proposed for constructing ranking models, from traditional heuristic methods [49],
probabilistic methods [46, 48], to modern learning to rank methods [25, 30]. For traditional heuristic
methods, Query likelihood (QL) [46] model and BM25 [48] are classical ranking models. For example,
QL is often based on Dirichlet smoothing [? ] to model the likelihood of a document being relevant
to a given query. For modern learning to rank methods, RankSVM [? ] and LambdaMART [? ] are
representative pairwise and listwise learning to rank models, respectively. RankSVM is based on
Structural Support Vector Machine to solve the ranking problem. And LambdaMART leverages
gradient boosting to produce an ensemble of retrieval models.

With the advance of deep learning technology, we have witnessed a substantial growth of inter-
est in NRMs [9, 18, 36, 40], which have shown to provide promising effectiveness improvements
compared to previous IR methods. Based on the different assumptions about the feature repre-
sentation and interaction, existing NRMs can be divided into representation-focused NRMs and
interaction-focused NRMs. For example, DSSM [? ] is a representative-focused deep matching
model designed for Web search, which contains a letter n-gram based word hashing layer, two
non-linear hidden layers and an output layer. DRMM [18] is an interaction-focused deep matching
model designed for ad-hoc retrieval. It consists of a matching histogram mapping, a feed forward
matching network and a term gating network. Conv-KNRM [? ] is an interaction-focused deep
matching model, which models n-gram soft matches for ad-hoc retrieval based on convolutional
neural networks (CNN) and kernel-pooling. Duet [36] is a hybrid deep matching model which
combines both the representation-focused architecture and the interaction-focused architecture.
Recently, pre-trained language representation models such as BERT [11] have been widely

adopted for text ranking, showing great success when fine-tuned on a wide range of search
tasks [17, 24, 32]. BERT applies the multi-layer bidirectional Transformer encoder architecture for
language modeling. For example, monoBERT [? ] concatenates the query and the document with
special token (e.g., [CLS] and [SEP]) as the input to BERT. The relevance score of the document to
a given query is then computed by a sigmoid function over the [CLS] representation. Furthermore,
ColBERT [? ] leverages contextualized late interaction over BERT for efficient retrieval. The queries
and documents are independently encoded into fine-grained representations that interact via
cheap and pruning-friendly computations. In this paper, we use BERT and several representative

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: May 2022.



PRADA: Practical Black-Box Adversarial Attacks against Neural Ranking Models 1:5

NRMs (e.g., Conv-KNRM [? ] and Duet [36]) as the target ranking models to evaluate the attack
effectiveness.

Since neural networks become ever more sophisticated, it is costly to obtain massive amounts of
annotated training data. Dehghani et al. [10] proposed to address this problem by taking advantage
of existing unsupervised methods such as BM25 [48] for constructing a weakly annotated training
set. A neural ranking model was then trained with these weakly annotated training data. Besides,
Izsak et al. [21] also studied how can a search engine with a relatively weak relevance ranking
function compete with a search engine with a much stronger relevance ranking function. Inspired by
the idea, we propose to train the surrogate ranking model with weak supervision signals generated
by the target model.

2.3 Adversarial Attacks
Adversarial attacks aim to find a minimal perturbation that maximizes the model’s risk of making
wrong predictions. Depending on the degree of access to the target model, adversarial examples
can be crafted in two different settings: white-box and black-box settings [? ]. In the white-box
attack setting, attackers have complete access to the target model. Early researchers [14, 33, 52]
have extensively studied adversarial attacks for continuous data, e.g., images. For example, the Fast
Gradient Sign Method [FGSM, 14] utilized the error function of the model output and the target
category to generate the adversarial perturbation. Moreover, Projected Gradient Descent [PGD, 33]
is an iterative version of FGSM, which is regarded as one of the most powerful attacks [2].
In the black-box attack setting, attackers only have access to the outputs of the target model

[6]. Prior work has explored the black-box attack for many NLP tasks, including text classification
[13, 28], sentiment analysis [1, 26, 28], and natural language inference [1, 35]. Adversarial attacks for
text are challenging due to the discrete input space. To alleviate the problem, Goodfellow et al. [14]
adopted FGSM to generate perturbations in the word embedding space and utilized nearest neighbor
search to find the closest words. However, such methods treat all words as equally vulnerable and
replace them with their nearest neighbors, which leads to non-sensical and word-salad outputs [56].
To tackle the problem, a number of publications [22, 23, 28] have adopted heuristic rules to find
important words and substitute these words with synonyms. Note that our work is different from
BERT-ATTACK [27]. While BERT-ATTACK conducts the adversarial attack for text classification,
we conduct the adversarial attack for text ranking. Specifically, BERT-ATTACK first finds vulnerable
words by the output score difference between the original sentence and the modified sentence
(e.g., by masking the important word). Then, it replaces these important words by a test and try
method. For example, it iterates over the candidate word list for each important word and checks
the output score with the replaced word. The replacement will be kept if it lowers the prediction
score. However, this method relies on score-based assumption where attackers can obtain the
output score of classification model, which is not practical in ranking. In this paper, we propose
to train a surrogate ranking model to obtain the gradient information to conduct the adversarial
attack.

Adversarial attacks have also been extensively studied in the context of recommendation systems.
Initially, studies [? ] focused on hand-engineered fake user profiles against rating-based collaborative
filtering to harvest recommendation outcomes toward an illegitimate benefit (e.g., pushing some
targeted items into the top-𝐾 list of users for market penetration) [? ]. Later, ? ] first leveraged
machine learning methods to propose attacks on factorization-based recommendation systems,
which applies the adversarial learning paradigm to generate poisoning input data. Recently, machine-
learned adversarial attacks against recommendation systems have received great attention [? ? ]
and numerous works [? ? ] have reported the failure of machine-learned recommendation models.
For example, ? ] showed that the value of nDCG is decreased by -21.2% by exposing the model
parameters of BPR [? ] on adversarial perturbations of the BPR model parameters.
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Besides, adversarial attacks have been widely studied in the context of image retrieval. For
example, Yang et al. [57] degraded the ranking quality by maximizing the Hamming distance
to its own embedding. Chen et al. [7] proposed a query-based black-box attack against image
retrieval models to subvert the top-𝑘 retrieval results. ? ] proposed to generate retrieval-against
universal adversarial perturbations to attack the image retrieval system. The universal adversarial
perturbations has been proved could fool deep learning models on most of the data samples. ? ]
and ? ] proposed a data-centric proactive privacy-preserving learning algorithm for hashing based
retrieval, which utilizes a generator to transfer the original data into the adversarial data with
quasi-imperceptible perturbations before releasing them to achieve the data privacy protection.
They leverages the adversarial attack to conduct the privacy protection for image retrieval while
we propose an adversarial attack for text ranking models. Zhou et al. [60] designed a triplet-
like objective function, and combined it with PGD to efficiently obtain the desired adversarial
perturbation. In this work, we adopt the PGD to perturb the embedding space according to the
expected ranking order.

In text ranking, Raval and Verma [47] explored to lower the rank of a document by token changes.
Recently, Goren et al. [16] proposed to promote the rank of a document by replacing a passage in
it with some other passages. However, their evaluation for content-quality maintenance highly
depends on the human judges, and their study is conducted on feature-based learning to rank
models. In this work, we propose automatic evaluation metrics to facilitate the evaluation and
study the adversarial attack against prevalent NRMs.

3 PROBLEM STATEMENT
In the Web, there exists an on-going ranking competition: authors of some Web pages may manip-
ulate their documents so as to have them ranked high for many queries [15]. While the traditional
retrieval is performed on a relatively static corpus snapshot, nowadays the Web environment
becomes competitive [? ]. Since more and more NRMs are deployed into the real-world applications,
the competitive effect needs to be considered for designing NRMs to better fit practical search
scenarios. However, there has been little attention paid to consider this effectiveness on NRMs. So
we make the first attempt to propose the adversarial attack on NRMs to simulate this real world
competitive search [? ].
In the follows, we will introduce the Word Substitution Ranking Attack (WSRA) task against

NRMs, and then describe different adversarial attack settings for the WSRA task.

3.1 Task Description
Typically, given a query 𝑞 and a set of document candidates D = {𝑑1, 𝑑2, . . . , 𝑑𝑁 } selected from a
document collection C (D ⊆ C), a ranking model 𝑓 aims to predict the relevance score {𝑓 (𝑞, 𝑑𝑛) |𝑛 =

1, 2, . . . , 𝑁 } between every pair of query and candidate document for ranking the whole candidate
set. For example, the ranking model outputs the ranked list 𝐿 = [𝑑𝑁 , 𝑑𝑁−1, . . . , 𝑑1] if it determines
𝑓 (𝑞, 𝑑𝑁 ) > 𝑓 (𝑞, 𝑑𝑁−1) · · · > 𝑓 (𝑞, 𝑑1).
Based on these, the WSRA task aims to fool the NRMs to promote a target document in rankings

by replacing important words in its text with their synonyms in a semantic-preserving way. In
particular, we assume that the attacker is inclined to select D from the top ranked documents, as
the ranked lists returned to the clients are usually “truncated” (i.e., only the partial top-ranked
documents will be shown).
In fact, to promote a target document in ranking, there exist multiple ways to design the

imperceptible perturbation to the document, e.g., (1) character-level modifications; (2) deleting,
adding, or swapping words, and (3) word substitution using semantically similar words. The first
two ways are likely to break the grammaticality and naturality of the original input document, and
thus can be easily detected by spell or grammar checker [? ]. In contrast, the third way substitutes
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words with semantically similar words, which can preserve semantic consistency and language
fluency to the most considerable extent and is often indistinguishable from legitimate ones for
human observers [? ]. Therefore, such word substitutions is a fundamental stepping stone towards
identifying the vulnerability of ranking models and helping improve the robustness, which is the
focus of this work. That is, the WSRA task aims to promote a target document in rankings by
replacing important words in its text with their synonyms.
In this paper, the imperceptibility is reflected in two aspects. Firstly, the adversarial document

should be semantic similar to the original document. Secondly, as a feature of adversarial attacks in
IR, the adversarial document should easily escape the spam detection. As a verification, we also
asked human judges to qualitatively evaluate the imperceptibility.
Formally, given an original target document 𝑑 , the goal of an attack is to generate a valid

adversarial example 𝑑𝑎𝑑𝑣 in the vicinity of 𝑑 that is ranked higher by NRMs. Specifically, 𝑑𝑎𝑑𝑣 is
crafted to conform to the following requirements, i.e.,

𝑅𝑎𝑛𝑘𝐿 (𝑞, 𝑑𝑎𝑑𝑣) < 𝑅𝑎𝑛𝑘𝐿 (𝑞, 𝑑) such that Sim(𝑑, 𝑑𝑎𝑑𝑣) ≥ 𝜖, (1)

where the adversarial example 𝑑𝑎𝑑𝑣 can be regarded as 𝑑 + 𝑝 , and 𝑝 denotes the perturbation to 𝑑 .
Rank𝐿 (𝑞, 𝑑) and Rank𝐿 (𝑞, 𝑑𝑎𝑑𝑣) denote the position of the original 𝑑 and its adversarial example
𝑑𝑎𝑑𝑣 in the ranked list 𝐿 with respect to the query 𝑞, respectively. A smaller rank position value
represents a higher ranking.

Sim refers to the similarity function between the original 𝑑 and its adversarial example 𝑑𝑎𝑑𝑣 , and
𝜖 is the minimum similarity. In the field of natural language, the universal sentence encoder [USE,
5] is often leveraged as the similarity function Sim. USE first maps the two inputs into vector using
Transformer encoder, and then computes their cosine similarity as the semantic similarity [23, 27?
].
Note we can find clear differences between the WSRA task and adversarial attacks in image

retrieval and text classification: (1) The WSRA task needs to ensure that the perturbed document is
semantically consistent with the original document by imposing a semantic similarity constraint,
while the attack against image retrieval makes the pixel-level perturbations bounded in the budget.
In essence, continuous image data is tolerant of perturbations to some extent while discrete text
data is not [14]; and (2) The WSRA task needs to promote the rank positions in a partial retrieved
list, instead of misclassifying the single adversarial sample as in text classification. In this way,
existing adversarial attacks against text classifiers for misclassification are incompatible with text
ranking models, and we need to thoroughly study the WSRA task to promote the rank positions in
a partial retrieved list.
Specifically, in this work, we choose the fine-tuned BERT model on downstream search tasks

for adversarial ranking attack, due to the following: (1) the pre-trained language model BERT
has shown good superiority on many text ranking problems [17, 24, 29, 32] in both academia and
industry in recent years; and (2) previous studies have shown that it is challenging to adversarially
attack a fine-tuned BERT on downstream tasks due to its strong performance [23].

3.2 Attack Setting
Attacks that cause the neural ranking model to purposefully promote a target document in the
ranking come in two kinds:
White-box: Under the white-box setting, the target model can be fully accessed by attackers. The

attackers can directly obtain the real gradient of the loss for the gradient-based attack, which is
often conducted by optimizing an attack objective function [? ].

Black-box: Compared with the white-box attack, the black-box attack is more realistic, since
no model information (e.g., parameters and gradients) is available for attackers in reality. The
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Fig. 2. The overall architecture of the PRADA method. We first query the target NRM to learn a surrogate
ranking model based on the PRF idea. Then, we select the important words in a document based on the
surrogate model. We apply PGD to generate gradient-based adversarial perturbations to the embedding
space towards the expected ranking order. Finally, we iteratively replace the important words with synonyms
to find the final adversarial sample.

attackers can only query the target model to achieve the corresponding output. Generally, we
can divide black-box attacks into score-based attacks and decision-based attacks.
Score-based: “Score-based” means that the attacker could leverage the relevance score of each
candidate document with respect to the query to conduct the attack.

Decision-based: While attackers can still obtain the relevance score under the score-based
setting, only the final decision (i.e., rank positions of the partially retrieved list) could be
accessed by attackers under the decision-based setting. Therefore, the decision-based setting
is more challenging.

In this work, we focus on the decision-based black-box attack setting for the WSRA task. Although
this setting is significantly more challenging than white-box and score-based black-box attacks to
NRMs, it is more practical and enables to apply our methods to attack a real-world search engine.
Since more and more NRMs are deployed into the real-world applications, this adversarial attack
will reveal the vulnerabilities of real-world search engines and enlighten the design of more robust
NRMs in the future.

4 OUR ATTACK METHOD
In this section, we introduce our proposed attack method for the WSRA task under the decision-
based black-box attack setting. We first give an overview of the model architecture and then describe
each component of the model in detail.

4.1 Model Overview
In this work, we formulate the attack goal of the WSRA task that promotes the target document
𝑑 in rankings with respect to a query 𝑞 ∈ 𝑄 = {𝑞1, . . . , 𝑞 |𝑄 | } by perturbation 𝑝 as the following
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Algorithm 1 PRADA
Inputs: a query 𝑞, a pre-collected query collection 𝑄𝐶 , a set of document candidates D, a target

ranking model 𝑓 , a target document 𝑑
Output: an adversarial document 𝑑𝑎𝑑𝑣
1: Procedure Surrogate Model Training
2: for 𝑞𝑐 ∈ 𝑄𝐶 do
3: Get the ranked list 𝑳𝑐 by querying the target model with 𝑞𝑐 .
4: end for
5: Train the surrogate model 𝑓𝑠 in terms of Eq.(6).
6: Procedure Token Importance Ranking
7: 𝐻 = {ℎ1, ℎ2, ..., ℎ𝑖 , ...} // sub-word token list of 𝑑
8: Compute the importance score 𝐼ℎ𝑖 for each ℎ𝑖 in terms of Eq.(7).
9: Rank 𝐻 in descending order to create 𝑇 [:𝑚]
10: Procedure Embedding Space Perturbation
11: for 𝑡 ← 1 to 𝜂 do
12: Compute the gradient 𝒈𝑑𝑎𝑑𝑣𝑡

of Eq. (4) using Eq.(8)
13: Update the adversarial candidate 𝑑𝑎𝑑𝑣𝑡+1 in terms of Eq.(9)
14: end for
15: Obtain the perturbed vectors o𝑝 of the𝑚 important tokens
16: procedure Important Word Replacement
17: Initialization: 𝑑𝑜𝑝𝑡 ← 𝑑

18: for 𝑜𝑖 ∈ 𝑇 [:𝑚] do
19: Find the corresponding whole word𝑤𝑜𝑖 , 𝒆𝑐 𝑓 (𝑤𝑜𝑖 ) ← map(𝑤𝑜𝑖 )
20: Obtain the 𝑆 synonyms {𝑤𝑠 }𝑆𝑠=1 in terms of Eq.(10)
21: e𝑤𝑠

← encode(𝑤𝑠 )
22: 𝑤𝑠∗ = argmax𝑤𝑠 ∈{𝑤𝑠 }𝑆𝑠=1

CosSim(e𝑤𝑠
, 𝒆𝑐 𝑓 (𝑤𝑜𝑖 ))

23: if 𝑅𝑎𝑛𝑘𝐿 (𝑞, 𝑑𝑡𝑒𝑚𝑝 ) < 𝑅𝑎𝑛𝑘𝐿 (𝑞, 𝑑𝑜𝑝𝑡 ) then
24: 𝑑𝑜𝑝𝑡 ← 𝑑𝑡𝑒𝑚𝑝

25: end if
26: end for
27: return 𝑑𝑎𝑑𝑣 = 𝑑𝑜𝑝𝑡

problem:

𝑝 = argmin𝑅𝑎𝑛𝑘𝐿 (𝑞, 𝑑 + 𝑝). (2)

The optimization problem cannot be directly solved due to the discrete nature of the rank position
Rank𝐿 (𝑞, 𝑑). To solve the problem, we design a surrogate objective function following [60]. The
attacking goal in Eq. (2) can be converted into a series of inequalities, i.e.,

𝑅𝑎𝑛𝑘𝐿 (𝑞, 𝑑 + 𝑝) < 𝑅𝑎𝑛𝑘𝐿 (𝑞, 𝐿\𝑑 ), (3)

where 𝑑 and 𝐿\𝑑 denote the target document and the remaining documents from the ranked list
𝐿, respectively. Each inequality represents a pairwise ranking sub-problem between 𝑑 and other
documents 𝐿\𝑑 . The adversarial candidate 𝑑𝑎𝑑𝑣 = 𝑑 + 𝑝 should be ranked ahead of other documents
with respect to 𝑞.

Here, we leverage the pairwise hinge loss to model the expected ranking order, i.e.,

𝐿𝑅𝐴 (𝑞, 𝑑 + 𝑝;𝐿) =
∑︁

𝑑 ′∈𝐿\𝑑

max(0, 𝛽 − 𝑓𝑠 (𝑞, 𝑑 + 𝑝) + 𝑓𝑠 (𝑞, 𝑑 ′)), (4)
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where 𝛽 is the margin for the hinge loss function, which is often set to 1, and 𝑓𝑠 denotes the
relevance score given by the surrogate ranking model, which will be described next; 𝑑 ′ denotes the
remaining documents in the ranked list 𝐿 without the target document 𝑑 .

In this way, the original problem in Eq. (2) can be reformulated into the following optimization
problem:

𝑝 = argmin𝐿𝑅𝐴 (𝑞, 𝑑 + 𝑝;𝐿). (5)
To ensure the quality of the adversarial examples that are being generated, we further impose

constraints on the ranking attack on the following three aspects: (1) the maximum number of
modified tokens in a document,𝑚, (2) the maximum number of one word’s synonyms, 𝑆 , and (3) the
minimum semantic similarity between the original target document and the adversarial example, 𝜖 .
To solve the optimization problem in Eq. (5) and satisfy the required constraints, we introduce

a novel Pseudo-Relevance based ADversarial ranking Attack method, or PRADA for short. The
overall architecture of PRADA is depicted in Figure 2. A pseudo algorithm for PRADA is provided
in Algorithm 1.
Briefly, PRADA can be decomposed into four dependent components: (1) Surrogate Model

Training, to learn a surrogate model that can imitates the behaviors of the target NRM based on
the PRF idea; (2) Token Importance Ranking, to find the important words in the document that
have a strong influence on the rankings; (3) Embedding Space Perturbation, to generate the desired
adversarial perturbation in the embedding space for the important words; and (4) Important Word
Replacement, to iteratively replace the important words one by one based on their perturbed vectors
and synonyms to find adversarial samples that can mislead the target model. Below, we discuss
each of the components.

4.2 Surrogate Model Training
In adversarial attacks, the gradients for guiding the attack process are usually calculated based on
knowledge of the target model, which is unavailable under the black-box setting. Hence, based on
the PRF idea in IR, we propose to train a surrogate ranking model [41, 42] with similar behaviors of
the target model. Then, we can obtain prior-guided gradients, and attack the target ranking model
based on the surrogate model due to the transferability [41].

Document
collection

Target
ranking model

User

Retrieve
Ranked
documents

Query

Ranked document list

…

N

Relevant Irrelevant

Pseudo feedback

Results

top k
Surrogate
model

Fig. 3. The training process for the surrogate model.

As shown in Figure 3, given a random query 𝑞𝑐 from a pre-collected query collection 𝑄𝐶 , the
target model returns a ranked list 𝐿𝑐 with 𝑁 documents. To obtain the priors for attacks, we
query the target model with all |𝑄𝐶 | queries collected from the downstream search tasks. We
generate pseudo-labels as the ground-truth by treating the top-𝑘 ranked documents as relevant
while treating the other documents as irrelevant, for training the surrogate ranking model 𝑓𝑠 . The
objective function is defined as

𝐿𝑠 =
1
|𝑄𝐶 |

|𝑄𝐶 |∑︁
𝑐=1

max(0, 𝛽 − 𝑓𝑠 (𝑞𝑐 , 𝐿𝑐 [: 𝑘]) + 𝑓𝑠 (𝑞𝑐 , 𝐿𝑐 [𝑘 + 1 : 𝑁 ])), (6)
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where 𝐿𝑐 [: 𝑘] denotes the top 𝑘 ranked documents, and 𝐿𝑐 [𝑘 + 1 : 𝑁 ] denotes the remaining
documents in the list; 𝛽 is the margin for the hinge loss function, which is often set to 1.

Specifically, for the surrogate model, we initialize it using the original BERT since it can achieve
substantial performance improvements in recent IR studies [17, 32? ]. For the target attack model,
we choose the fine-tuned BERT as discussed in Section 3.1. Meanwhile, to further verify the
effectiveness of our method when the surrogate model is dissimilar to the attack model, we also
leverage our method with the surrogate model as BERT, to attack other target NRMs, e.g., Conv-
KNRM [? ] and Duet [36]. The experimental results are in Section 6.5, which show that our method
can still work well under this setting.

4.3 Token Importance Ranking
Given a target document 𝑑 , which is tokenized into sub-word token list 𝐻 = [ℎ1, ℎ2, . . . , ℎ𝑖 , . . .]
by BERT, we observe that only some important tokens act as influential signals for the surrogate
ranking model 𝑓𝑠 , echoing the observation in [23] that BERT attends to the statistical cues of
some words. That is, perturbations over these important tokens can be most beneficial in crafting
adversarial samples. Therefore, we propose a scoring mechanism to identify the important tokens
in a document which have a high impact on the final ranking result.

Following [26, 55], we first calculate the gradient magnitude with respect to each input unit. Then,
we sum up the score for each dimension in the embedding space as the token-level importance
score. Specifically, we introduce a scoring function that determines the importance 𝐼ℎ𝑖 of the 𝑖-th
token ℎ𝑖 in 𝑑 as

𝐼ℎ𝑖 =






 𝜕𝐿𝑅𝐴𝜕𝒆𝑜
ℎ𝑖






2
2

, (7)

where 𝒆𝑜
ℎ𝑖
is the original embedding vector of ℎ𝑖 in the surrogate model; 𝐿𝑅𝐴 denotes the adversarial

ranking objective function, which is defined in Eq. (4).
We rank all the tokens according to the importance score 𝐼ℎ𝑖 in descending order to create

the candidate token list 𝑇 . We only attack the top𝑚 important tokens for each 𝑑 , i.e., 𝑇 [: 𝑚] =
[𝑜1, 𝑜2, . . . , 𝑜𝑚], since we intend to keep the perturbation to a minimum.

4.4 Embedding Space Perturbation
NRMs usually map samples (i.e., queries and documents) to an embedding space, where the distances
among them determine the final ranking order [60]. A document’s position in the embedding space
may be changed by adding a perturbation to its important tokens. Therefore, we generate gradients
based on the surrogate model for finding a proper perturbation to the important tokens, which
could push the document to a desired position.
Specifically, we adopt the Projected Gradient Descent [PGD, 33] method, which is one of the

most effective first-order gradient-based algorithms. Note that in this work, the perturbation 𝑝 is
achieved at the token-level instead of at the document-level.

For all𝑚 important tokens 𝑜𝑖 ∈ 𝑇 [:𝑚], the PGD algorithm alternates two steps at every iteration
𝑡 = 1, 2, . . . , 𝜂:
• Calculating the gradient 𝒈𝑑𝑎𝑑𝑣𝑡

of Eq. (4), i.e.,

𝒈𝑑𝑎𝑑𝑣𝑡
=
𝜕𝐿𝑅𝐴 (𝑞, 𝑑𝑎𝑑𝑣𝑡 ;𝐿)

𝜕𝑑𝑎𝑑𝑣𝑡

, (8)

where 𝑑𝑎𝑑𝑣𝑡 denotes the adversarial document with the embedding of all the important tokens
perturbed at the 𝑡-th step.
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• Leveraging the gradient 𝒈𝑑𝑎𝑑𝑣𝑡
to update the adversarial candidate, i.e.,

𝑑𝑎𝑑𝑣𝑡+1 = 𝑑𝑎𝑑𝑣𝑡 − 𝛼
𝒈𝑑𝑎𝑑𝑣𝑡


𝒈𝑑𝑎𝑑𝑣𝑡




2
2

, (9)

where 𝛼 denotes a constant hyper-parameter indicating the PGD step size and 𝑑𝑎𝑑𝑣1 is initialized
as the original 𝑑 . Note that we removed the clip operation in the original PGD algorithm since
we have found that it limits the perturbation in the embedding space, which leads to poor
experimental results.
After 𝜂 iterations for all the important token 𝑜𝑖 , we obtain the final perturbed vectors of the𝑚

important tokens 𝑇 [:𝑚], i.e., o𝑝 = {𝒆𝑝𝑜1 , 𝒆
𝑝
𝑜2 , . . . , 𝒆

𝑝
𝑜𝑚 }.

4.5 Important Word Replacement
Based on the perturbed vectors of𝑚 important tokens𝑇 [:𝑚], we replace the important token with
semantically similar and grammatically correct words and repeat this process by iterating the list
𝑇 [: 𝑚] to find the final adversarial sample. Specifically, we generate a set of synonyms for each
important token for replacement, to satisfy the requirement of semantic similarity in Eq. (1).

For a target document 𝑑 , the word replacement phase includes the following steps:
Extracting synonyms for each important token. For each important token 𝑜𝑖 ∈ 𝑇 [: 𝑚], we

first find its corresponding whole word𝑤𝑜𝑖 . If 𝑜𝑖 is a single word, the corresponding whole word
is itself. Otherwise, we search back and forth to recover the corresponding whole word. Then,
𝑤𝑜𝑖 is mapped into the counter-fitted word embedding space [37] where only synonyms are
close to each other, to obtain the word vector 𝒆𝑐 𝑓 (𝑤𝑜𝑖 ). For each 𝒆𝑐 𝑓 (𝑤𝑜𝑖 ), we obtain the top 𝑆
synonyms {𝑤𝑠 }𝑆𝑠=1 via

Sim(𝒆𝑐 𝑓 (𝑤𝑜𝑖 ), 𝒆𝑐 𝑓 (𝑤𝑠 )) ≥ 𝜆, (10)
where Sim denotes the cosine similarity between two counter-fitted embeddings, 𝑤𝑠 denotes
the synonym of𝑤𝑜𝑖 , and 𝜆 denotes the minimum similarity between𝑤𝑜𝑖 and𝑤𝑠 . Furthermore,
for each synonym 𝑤𝑠 with respect to 𝑤𝑜𝑖 , we encode it back to the embedding space of the
surrogate model to obtain the embedding e𝑤𝑠

. Note that if the synonym is tokenized by BERT,
e𝑤𝑠

is obtained by the average of sub-word token embeddings.
Greedy word replacement strategy. We calculate the cosine similarity between the candidate
synonym vector e𝑤𝑠

and the corresponding perturbed word vector 𝒆𝑝𝑜𝑖 ∈ o𝑝 . The synonym𝑤∗𝑠
which has the highest cosine similarity with𝑤𝑜𝑖 is chosen to replace𝑤𝑜𝑖 . Suppose the document
before this word replacement process is 𝑑𝑜𝑝𝑡 = {𝑤1,𝑤2, . . . ,𝑤𝑜𝑖 , . . .}, the document after the
word replacement is 𝑑𝑡𝑒𝑚𝑝 = {𝑤1,𝑤2, . . . ,𝑤𝑜𝑖−1 ,𝑤

∗
𝑠 ,𝑤𝑜𝑖+1 . . .}. Simply replacing a token by its

synonym cannot guarantee a successful attack. Therefore, we adopt a greedy word replacement
strategy. Specifically, we obtain the rank of 𝑑𝑡𝑒𝑚𝑝 by querying the target model. If the rank
of 𝑑𝑡𝑒𝑚𝑝 has improved, i.e., 𝑅𝑎𝑛𝑘𝐿 (𝑞, 𝑑𝑡𝑒𝑚𝑝 ) < 𝑅𝑎𝑛𝑘𝐿 (𝑞, 𝑑𝑜𝑝𝑡 ), we accept the replacement and
denote 𝑑𝑜𝑝𝑡 as the 𝑑𝑡𝑒𝑚𝑝 , i.e., 𝑑𝑜𝑝𝑡 ← 𝑑𝑡𝑒𝑚𝑝 . Otherwise, we will discard this word replacement
and turn to the next round.
The process described above is repeated by iterating over the importance word list 𝑇 [: 𝑚] to

find the final adversarial sample 𝑑𝑎𝑑𝑣 .

5 EXPERIMENTAL SETUP
In this section, we introduce our experimental settings.

5.1 Datasets
To evaluate the effectiveness of our proposed methods, we conducted experiments on two web
search benchmark datasets.
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• MS MARCO Document Ranking dataset [38] (MS-MARCO-Doc) is a large-scale benchmark
dataset for web document retrieval, with about 3.21 million web documents.
• MS MARCO Passage Ranking dataset [38] (MS-MARCO-Pas) is a large-scale benchmark
dataset for passage retrieval, with about 8.84 million passages from web pages.

Table 1. Data statistics. #w denotes the number of words.

MS-MARCO-Doc MS-MARCO-Pas

Training queries 0.37M 0.5M
Dev queries 5,193 6,980

Documents/passages 3.21M 8.84M
Documents/Passages: avg #w 1,129 58

Detailed dataset statistics are shown in Table 1. We take these datasets for experiments since
(1) Relevant documents for each user’s query are retrieved using Bing from its large-scale web index,
which is representative of real web search scenario. (2) It is practical to promote irrelevant documents
instead of relevant documents in rankings. The probability of selecting relevant document for
attack is low since each query has only one relevant document.

5.2 Baselines
We adopt two types of baselines for comparison, including step-wise methods and traditional term
spamming methods.

5.2.1 Step-wise Methods. For step-wise methods, we apply two steps to attack the target document,
where the first step is to select 𝑛 words in the document, and the second step is to substitute these
words. For the word selection step, we employ four methods:
• First selects the first 𝑛 words in the document to attack.
• Last selects the last 𝑛 words in the document to attack.
• Tf-idf selects the top 𝑛 words with the highest tf-idf scores in the document to attack.
• TextRank selects 𝑛 words by TextRank [34], a graph-based method inspired by the PageRank
algorithm.
For the word replacement step, we employ two methods:
• Random Replacement (RR) replaces the selected word with a random word.
• Nearest Replacement (NR) replaces the selected word with the nearest word in the Glove [43]
using cosine similarity.
By combining these two-step methods, we obtain eight types of attack methods denoted as

First+RR, First+NR, Last+RR, Last+NR, Tf-idf+RR, Tf-idf+NR, TextRank+RR, and Tex-
tRank+NR.

5.2.2 Traditional Term Spamming Methods. Term spamming [19] refers to techniques that tailor
the contents of a web page’s text fields to rank it higher than they deserve. Here, we apply two
traditional term spamming methods:
• Repetition (TS𝑅𝑒𝑝 ) promotes the rank of 𝑑 by adding a small number of query terms [19]. We
randomly choose a starting position in 𝑑 and replace the following successive 𝑛 words with 𝑛
query terms.
• Stitching (TS𝑆𝑡𝑖 ) is to manually glue together sentences from other documents [19].We randomly
choose a starting position in𝑑 and replace the following successive𝑛wordswith𝑛words extracted
from a sentence pool 𝑆𝑝𝑜𝑜𝑙 . Following [16] where authors tend to mimic content in documents
that were highly ranked in the past for a query of interest, we construct 𝑆𝑝𝑜𝑜𝑙 by collecting
sentences in documents that are ranked higher than 𝑑 .
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5.3 Evaluation Metrics
For the evaluation of the WSRA task, we set up various automatic evaluation metrics and
human evaluation metrics, respectively.

5.3.1 Automatic Evaluation Metrics. For automatic evaluation metrics, we first set up the Success
Rate (SR) metric to measure the document ranking attack effect, i.e.,
Success Rate (SR) evaluates the percentage of the after-attack documents that are ranked higher

than original documents. We define SR as

SR =
1
|𝑄 |

|𝑄 |∑︁
𝑡=1

1
𝑁𝑞

𝑁𝑞∑︁
𝑖=1
I{𝑅𝑎𝑛𝑘𝐿 (𝑑𝑖 + 𝑝) < 𝑅𝑎𝑛𝑘𝐿 (𝑑𝑖 )},

where |𝑄 | denotes the number of evaluated queries, 𝑁𝑞 the number of attacked documents with
respect to each query, and 𝑑𝑖 the attacked document with respect to the query 𝑞 ∈ 𝑄 . I{·} is the
indicator function. The effectiveness of an adversarial attack is better with a higher SR (%).
Furthermore, we adapt the Perturbation Percentage (PP) and Semantic Similarity (SS) from NLP

to measure the quality of the generated samples:
Perturbation Percentage (PP) evaluates the word-level perturbation percentage of candidate
documents following [27]. Specifically, it will compare each word in the adversarial document
with the original document to see how many words have been changed. The PP is the number of
changed words divided by the total number of words in the document. A lower PP (%) results in
higher semantic consistency.

Semantic Similarity (SS) evaluates the semantic similarity between the original document and
the adversarial example. Following [23, 26], we use the USE to measure the semantic similarity.
We set the encoding model to the released deep averaging network1 since it can encode long
documents quickly. In this work, we evaluate SS at both the document-level (SS𝑑𝑜𝑐 ) and sentence-
level (SS𝑠𝑒𝑛). For SS𝑑𝑜𝑐 , we directly input two documents and evaluate the semantic similarity
between them. For SS𝑠𝑒𝑛 , we first split two documents into sentence pairs and then evaluate the
average sentence semantic similarity between these sentence pairs. A higher SS (%) results in
higher semantic consistency.

5.3.2 Human Evaluation Metrics. Besides the automatic evaluation metrics, we further conduct
human evaluations to measure the quality of the attacked documents from three aspects: (1) fluency
in grammar; (2) imperceptibility to human judges; and (3) semantically consistency with original
documents.
We first randomly sample 40 test queries from MS-MARCO-Doc and take the corresponding

9 original documents for each query. Then, we find the 360 adversarial samples generated by
PRADA and TR𝑟𝑒𝑝 , respectively. We shuffle a mix of original and adversarial documents (i.e., 1,080
in total) and asked three labelers to evaluate them. For (1), annotators score the quality of the mixed
examples from 1–5 following [27]. For (2), annotators judge each example whether it is attacked
(i.e., labeled as 0) or not (i.e., labeled as 1). For (3), we compare adversarial samples generated by
PRADA and TR𝑟𝑒𝑝 with the original documents, using the following criteria: i) 2: the adversarial
sample is completely semantically consistent with the original document; ii) 1: the adversarial
sample is partially relevant with the original document and human can still understand the original
information; and iii) 0: the adversarial sample is not relevant with the original document. Note
that for (3), we conduct a separate evaluation after (1) and (2). We first mix adversarial documents
generated by PRADA and TR𝑟𝑒𝑝 . For each adversarial document, we give the human judge its
original document as a reference to obtain the semantic consistency between these two documents.

1https://tfhub.dev/google/universal-sentence-encoder/2
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Agreements to measure inter-rater consistency among three labelers are calculated with the Fleiss’
kappa [12].

5.4 Implementation Details
In the surrogate model training process: (1) For the target attack model, we obtain it by fine-tuning
BERT on the training queries of the MS-MARCO-Doc and MS-MARCO-Pas, respectively. Following
[9], we apply BERT𝑏𝑎𝑠𝑒 released by Google. Besides, to verify the effectiveness of our method
to attack other NRMs (i.e., Section 6.5), we choose the Conv-KNRM [? ] and Duet [36] as the
target model which are implemented and trained following the previous work [? ]. (2) For the
surrogate ranking model, we initialize it using the original BERT. To train it, we leverage the
test queries of the MS-MARCO-Doc and MS-MARCO-Pas as 𝑄𝑐 , respectively. Following [9], we
apply BERT𝑏𝑎𝑠𝑒 released by Google. For the MS-MARCO-Doc, we use the official top 100 ranked
documents retrieved by the QL model following [8]. For the MS-MARCO-Pas, initial retrieval
is performed using the Anserini toolkit [58] with the BM25 model to obtain the top 100 ranked
passages following [31]. The ranked list 𝐿𝑐 is obtained by utilizing the target ranking model to
re-rank the above initial ranked list and the length 𝑁 is set to 100. We set 𝑘 = 1 in Eq. (6) since every
query in the MS-MARCO-Doc and most queries in the MS-MARCO-Pas have only one relevant
document.

In the token importance ranking process, the number of top important tokens𝑚 in PRADA is set
to 50 and 20 for the MS-MARCO-Doc and MS-MARCO-pas, respectively. For fair comparison with
the baselines, we also set 𝑛 to 50 and 20 for the MS-MARCO-Doc and MS-MARCO-pas, respectively.
Besides, we will analyze the effect of𝑚 in PRADA on the attack performance.

In the embedding space perturbation process, the PGD step size 𝛼 is set to 45 and the number of
iteration 𝜂 is set to 3. In the important word replacement process, we set the minimum similarity 𝜆
to 0.5.
We evaluate PRADA on 200 queries (i.e., |𝑄 | = 200) randomly sampled from the dev set in the

MS-MARCO-Doc and MS-MARCO-Pas datasets, respectively. For each query, we attack 9 target
documents in the top 100 documents, which are obtained by picking 1 out of every 10 documents.
Specifically, we randomly choose 1 document from 9 ranges in the document list, i.e., [11, 20], [21,
30], . . . , [91, 100], respectively. Note that we do not choose documents from the range of [1,10]
since it is not necessary to attack the top-10 documents for ranking promotion.

6 EXPERIMENTAL RESULTS
In this section, we report and analyze the experimental results to demonstrate the effectiveness of
the proposed PRADA method. Specifically, we target to answer the following research questions:

• RQ1: How does PRADA perform compared with baselines under the automatic and human
evaluations?
• RQ2: Can PRADA evade detection by an anti-spamming method?
• RQ3: How do different components of the PRADA affect the performance?
• RQ4: How does PRADA perform under the white-box attack setting?
• RQ5: How does PRADA perform when attacking different NRMs?
• RQ6: How does PRADA perform for different rank positions in the document list?
• RQ7: How does the number of important tokens𝑚 affect the PRADA performance?

6.1 Baseline Comparison
To answer RQ1, we compare PRADA with different baselines under both the automatic evaluations
and human evaluations.
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Table 2. Comparisons between PRADA and the baselines under the automatic evaluation; * indicates signifi-
cant improvements over the next-best approach (two-tailed t-tests, p-value < 0.05).

Method
MS-MARCO-Doc MS-MARCO-Pas

SR PP SS𝑑𝑜𝑐 SS𝑠𝑒𝑛 SR PP SS𝑑𝑜𝑐 SS𝑠𝑒𝑛

First+RR 65.9 13.0 90.9 92.0 9.3 24.5 78.1 79.7
First+NR 41.9 13.0 94.3 94.9 14.8 24.5 85.9 86.3
Last+RR 10.7 13.0 91.1 91.9 20.7 24.5 78.7 81.5
Last+NR 8.2 13.0 94.7 95.1 22.7 24.5 86.2 87.1
Tf-idf+RR 48.1 13.0 90.5 90.5 8.8 24.5 80.5 80.5
Tf-idf+NR 43.8 13.0 93.1 93.0 10.1 24.5 81.5 81.1
TextRank+RR 55.4 13.0 87.4 88.8 8.7 24.5 74.2 73.7
TextRank+NR 37.5 13.0 90.8 92.7 13.9 24.5 84.2 83.6

TS𝑟𝑒𝑝 93.1 12.8 87.9 89.1 99.5 24.0 85.6 87.5
TS𝑠𝑡𝑖 70.9 12.9 91.2 91.7 59.9 24.3 86.8 87.0

PRADA 96.7∗ 4.0∗ 95.2∗ 96.2∗ 91.4 7.8∗ 93.2∗ 93.1∗

Automatic evaluation. The performance comparisons between our model and the baselines are
shown in Table 2. For the MS-MARCO-Doc, we have the following observations: (1) Step-wise
methods generally perform worse than term spamming methods and PRADA in terms of SR,
indicating that promoting the document in rankings is a non-trivial problem. (2) For step-wise
methods, the methods based on NR perform better than that based on RR in terms of SS𝑑𝑜𝑐 and SS𝑠𝑒𝑛 .
(3) Term spamming methods perform the best in terms of SR among the baselines. TS𝑟𝑒𝑝 performs
better than TS𝑠𝑡𝑖 , indicating that replacing words in a document with the query terms is better than
words from other documents. (4) PRADA performs best in terms of all the automatic evaluation
metrics. That is, PRADA achieves a high success rate while maintaining a minimum perturbation,
indicating the perturbation of the important words would be easier to result in ranking promotion
from the target model, which is consistent with previous observations [27].
When we look at the performance of different models on the MS-MARCO-Pas, we find that

PRADA performs worse than TS𝑟𝑒𝑝 in terms of SR when dealing with short texts. A potential
reason is that there are few options in the passage for determining important tokens. This result is
consistent with the previous observation [27], where the sequence length plays an important role
in the high-quality perturbation process and the word replacement would be less reasonable when
dealing with extremely short sequences. For TS𝑟𝑒𝑝 , it directly adds query words into the target
document to promote its ranking. This way, it will contribute to rank promotion significantly for
short texts. By analyzing the MS-MARCO-Pas dataset, we found that in average, there are about
24% words in a perturbed document generated by term spamming are query words. When applying
this method to neural ranking models, each added query word contributes significantly to the rank
promotion since the exact matching signal is of great importance By conducting further analysis,
we find that PRADA prefers to keep the original words due to the unsuccessful attack under the
greedy word replacement strategy, which contributes to the semantic consistency. In future work,
we aim to consider a more advanced objective towards both long text and short text for developing
robust NRMs.
Human evaluation. Table 3 shows the human evaluation results. Note that the Semantic con-
sistency is evaluated between the adversarial documents and the original documents. So there is
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Table 3. Comparisons between PRADA and TS𝑟𝑒𝑝 under the human evaluation.

Grammar kappa Imperceptibility kappa Semantic kappa

Original 3.50 0.373 0.88 0.475 - -
TS𝑟𝑒𝑝 1.69 0.177 0.06 0.647 0.43 0.298
PRADA 3.23 0.478 0.85 0.486 1.37 0.412

no “Semantic” and “kappa” for “Original”. We can observe that (1) The semantic consistency and
language fluency of the adversarial examples generated by PRADA are better than that generated
by TS𝑟𝑒𝑝 . The adversarial examples generated by PRADA are more imperceptible to human judges
than TS𝑟𝑒𝑝 . Intuitively, humans can easily identify an attacked document with multiple successive
repetitive words. All the human judgement results again demonstrate the effectiveness of our
PRADA method. (2) The kappa values of PRADA for all three aspects are larger than 0.4, considered
as “moderate agreement” regarding quality of adversarial examples. The largest kappa value (i.e.,
0.647) is achieved by TS𝑟𝑒𝑝 for imperceptibility, which seems reasonable since it is easy to reach an
agreement on the attacked documents with successive repetitive words.

6.2 Spam Detection
To answer RQ2, we adopt the representative utility-based term spamicity method [59], which can
online detect whether target pages are spam or not, to detect the adversarial examples generated by
PRADA and the best baseline model TS𝑟𝑒𝑝 on the MS-MARCO-DOC. Specifically, if the spamicity
score is higher than a utility threshold 𝛽 , such example is detected as a spam. We vary the threshold
𝛽 by setting it to seven different values (i.e., 0.080, 0.075, 0.070, 0.065, 0.060, 0.055, 0.050). The results
of detection rates are shown in Table 4. We have three main observations: (1) The detection rate
increases with the decrease of the threshold 𝛽 . (2) TS𝑟𝑒𝑝 can be very easily detected under the spam
detection algorithm since it puts many query terms into documents. (3) PRADA outperforms TS𝑟𝑒𝑝
significantly (p-value < 0.05). It is much easier for PRADA to evade the spam detection (e.g., for
𝛽 = 0.050, the detection rate of PRADA and TS𝑟𝑒𝑝 is less than 20% and over 99%, respectively).
Table 4. The detection rate (%) of PRADA and TS𝑟𝑒𝑝 via a representative anti-spamming method; * indicates
statistically significant improvements over TS𝑟𝑒𝑝 (two-tailed t-tests, p-value < 0.05).

𝛽 0.080 0.075 0.070 0.065 0.060 0.055 0.050
TS𝑟𝑒𝑝 81.0 85.8 90.2 93.4 96.2 98.2 99.4
PRADA 7.1∗ 8.2∗ 9.3∗ 11.4∗ 13.9∗ 15.6∗ 19.2∗

6.3 Model Ablation
To answer RQ3, we conduct an ablation analysis to investigate the effect of proposed different
components in our PRADA method. We implement several variants of PRADA by removing major
components, and adopting different strategies:
• PRADA−𝑇 𝐼𝑅 removes the step of finding important words described in Section 4.3, and randomly
selects words to attack.
• PRADA−𝐸𝑆𝑃 removes the embedding space perturbation described in Section 4.4, and applies
random perturbations on the embedding space.
• PRADA−𝐼𝑊𝑅 removes the important word replacement described in Section 4.5, and replaces all
important words in the document with words that are nearest to the perturbed word vectors.
• PRADA−𝐸𝑆𝑃−𝐼𝑊𝑅 removes both the embedding space perturbation and word replacement. It
applies random perturbations on the embedding space and directly selects the nearest word to
replace the important word.
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Based on Table 5, we observe that: (1) By removing important word replacement, the performance
of PRADA−𝐼𝑊𝑅 in terms of SR has a significant drop as compared with PRADA. The results indicate
that the greedy synonym replacement strategy does help the rank promotion. PRADA−𝐸𝑆𝑃 has
a similar performance with PARDA, which again demonstrates the effectiveness of the word
replacement with synonyms. (2) PRADA−𝐸𝑆𝑃−𝐼𝑊𝑅 performs much worse than the PRADA−𝐼𝑊𝑅 .
Without the limitation given by the word replacement, the embedding space perturbation has an
obvious influence on the results. (3) By including all the components, PRADA achieves the best
performance among the variants in terms of all evaluation metrics.
Table 5. Model analysis of PRADA under automatic evaluations; * denotes significant degradation w.r.t.
PRADA (two-tailed t-tests, p-value<0.05).

Method
MS-MARCO-Doc MS-MARCO-Pas

SR PP SS𝑑𝑜𝑐 SS𝑠𝑒𝑛 SR PP SS𝑑𝑜𝑐 SS𝑠𝑒𝑛

PRADA−𝑇 𝐼𝑅 86.1∗ 4.0 94.8 95.7 87.1∗ 7.8 92.7 89.9∗

PRADA−𝐸𝑆𝑃 94.7 4.0 94.6 95.3 90.2 7.8 92.6 89.8∗

PRADA−𝐼𝑊𝑅 39.6∗ 4.5 92.5 94.8 47.8∗ 8.5 82.6∗ 86.4∗

PRADA−𝐸𝑆𝑃−𝐼𝑊𝑅 5.8∗ 4.5 92.3 94.7 10.6∗ 8.5 82.4∗ 86.1∗

PRADA 96.7 4.0 95.2 96.2 91.4 7.8 93.2 93.1

6.4 Analysis between Black-box Setting vs. White-box Setting
As mentioned in Section 3.2, there are different adversarial settings for the WSRA task in terms of
the information that attackers rely on. In this work, we focus on the decision-based black-box attack
setting because it is close to real-world search engine scenario. This setting has been extensively
studied in the image domain, but has yet to be explored in the context of IR. While such setting is
more challenging than the white-box setting, it is also meaningful to explore the white-box setting
to further understand the ranking model’s robustness against the WSRA. To this end, we conduct a
white-box WSRA on the MS-MARCO-Doc and MS-MARCO-Pas to answer RQ4.

Specifically, we firstly show the performance of the surrogate ranking model compared with
the target ranking model on two datasets. Then, we compare the attack performance between the
black-box setting and the white-box setting under the automatic evaluations.
Table 6. The ranking performance of the surrogate ranking model vs. the target ranking model under the
MRR@10 and MRR@100.

Model
MS-MARCO-Doc MS-MARCO-Pas

MRR@10 MRR@100 MRR@10 MRR@100
Surrogate ranking model 0.3471 0.3547 0.3313 0.3376
Target ranking model 0.3813 0.3868 0.3437 0.3490

Surrogate ranking model vs. target ranking model.We evaluate the ranking performance of
the surrogate model and target model over all the queries on the dev sets of the MS-MARCO-Doc
and MS-MARCO-Pas, respectively. For both datasets, we report the Mean Reciprocal Rank at
10 (MRR@10 [? ]) and the Mean Reciprocal Rank at 100 (MRR@100 [? ]), as suggested in the
official instructions. The results are shown in Table 6. From the results, we can find that: (1) The
target ranking model performs well on the MS-MARCO-Doc and MS-MARCO-Pas datasets. (2)
The surrogate ranking model performs slightly worse than the target ranking model, because
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they are trained on the weakly annotated training set instead of the ground-truth label. (3) The
performance gap between the surrogate ranking model and the target ranking model is small. For
example, the MRR@10 of the surrogate model is only about 0.01 worse than the target model on
the MS-MARCO-Pas. The results indicate that our proposed surrogate model training method is
sufficient to mimic the behaviors of the target model, which provides high-quality foundation for
the subsequent attack steps in our method.
Table 7. Attack performance comparisons of PRADA between the black-box setting and the white-box setting
under the automatic evaluation.

Method
MS-MARCO-Doc MS-MARCO-Pas

SR PP SS𝑑𝑜𝑐 SS𝑠𝑒𝑛 SR PP SS𝑑𝑜𝑐 SS𝑠𝑒𝑛

PRADA 96.7 4.0 95.2 96.2 91.4 7.8 93.2 93.1
White-PRADA 96.8 4.4 94.6 95.8 94.4 10.2 92.0 91.8

Attack performance comparison. We then compare the attack performance of our PRADA
between the black-box setting and the white-box setting under the automatic evaluations. To
conduct the white-box WSRA, we directly set the surrogate model as the target model (i.e., both of
them are the fine-tuned BERT) and keep other components the same in our method, denoted as
White-PRADA. The results are shown in Table 7. From the results, we can observe that: (1) White-
PRADA performs better than PRADA in terms of the SR. The major reason is that White-PRADA
can have full access to the target ranking model. In this way, the gradient White-PRADA produced
for token importance ranking and embedding space perturbation is more precise than PRADA based
a surrogate model. The result also shows an upper bound on the SR score that PRADA can achieve.
(2) PRADA performs better than White-PRADA in terms of PP, SS𝑑𝑜𝑐 and SS𝑠𝑒𝑛 . The reason might
be that the important word replacement in PRADA is more difficult to provide rank promotion
than White-PRADA, since the gradient information in PRADA is less precise than White-PRADA.
Due to the greedy word replacement strategy, PRADA prefers to keep the original words in the
target document, which contributes to the semantic consistency.
Table 8. Attack performance comparisons among different neural ranking models under the automatic
evaluation on the MS-MARCO-Doc dataset.

Target Model SR PP SS𝑑𝑜𝑐 SS𝑠𝑒𝑛

BERT 96.7 4.0 95.2 96.2
Conv-KNRM 96.1 3.0 96.1 97.0
Duet 95.7 2.9 96.3 97.2

6.5 Analysis of Attacking against Different NRMs
In real-world practice, it is often difficult for the attacker to know the target model. To simulate the
practical IR setting, we test the attack performance of our PRADA against different target ranking
models. Specifically, we leverage PRADA to attack different NRMs on the MS-MARCO-Doc and
MS-MARCO-Pas dataset to answer RQ5. Specifically, we take BERT, Conv-KNRM [? ] and Duet
[36] as the target model and keep BERT as the surrogate model. The results are shown in Table 8.
We have three main observations: (1) BERT achieves the best SR among different target models,
indicating that it is easier to attack when the target model and the surrogate model have the same
structure. (2) Using PRADA to attack other NRMs, the success rate is still high (e.g., 96.1 and 95.7
on Conv-KNRM and Duet, respectively). The reason might be that adversarial documents in IR
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have similar transferability as that in the computer vision field [41? ]. That is, adversarial examples
generated by a model (e.g., surrogate model BERT) could successfully attack an unrelated model
(e.g., target model Conv-KNRM/Duet). Besides, querying the target model in the important word
replacement step also plays an important role in making the attack successful.

6.6 Analysis at Different Rank Positions
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Fig. 4. Success rate at different ranges of the ranked list from PRADA on MS-MARCO-Doc.

To answer RQ6, we analyze the success rate for documents with different rank positions on
the MS-MARCO-DOC by PRADA. Specifically, we visualize the distribution of the success rate in
different ranges of the document list (i.e., [11, 20], [21, 30], . . . , [91, 100]) in Figure 4. As we can
see: (1) In general, it is harder to promote high-ranked documents in rankings than low-ranked
documents. Documents in the range of [11,20] are the most difficult to be attacked, with a SR value
as only 0.845. (2) It is surprising to find that documents in the last range (i.e., [91,100]) achieve a
low success rate (i.e., 0.875). One possible explanation is that these documents are too irrelevant to
be promoted in rankings. It is necessary to focus on the attack against low-ranked documents in
the future.

6.7 Analysis of the Number of Important Tokens
To answer RQ7, we analyze the effect of different numbers of important tokens𝑚 for PRADA
on the attack performance. Specifically, we compare PRADA with the best performing baseline
TS𝑟𝑒𝑝 on the MS-MARCO-Doc and set𝑚 to six different values (i.e., 10, 20, 30, 40, 50, 60). Note that
the selected number 𝑛 of TS𝑟𝑒𝑝 is equal to𝑚. As shown in Figure 5, we find that: (1) Overall, the
SS and PP increases with the increase of𝑚 for both PRADA and TS𝑟𝑒𝑝 . This result indicates that
attacking more words is more likely to promote the rank. (2) Intuitively, a larger𝑚 would result in
less semantic similarity. The SS𝑑𝑜𝑐 of TS𝑟𝑒𝑝 has a larger drop than PRADA in the range of [30,60],
and the performance of PRADA in terms of SR and PP is always better than TS𝑟𝑒𝑝 with different𝑚.
These results again illustrate the effectiveness of PRADA.

6.8 Case Study
To obtain a better qualitative understanding of how different models perform, we show the adver-
sarial examples from PRADA as well as that from TS𝑟𝑒𝑝 , with the number of important tokens𝑚
set to 50. We take one query “government does do” from the dev set of the MS-MARCO-Doc as an
example. Due to space limitations, we only show some key sentences in the document. As shown
in Table 9, we can observe that (1) Compared with TS𝑟𝑒𝑝 , the adversarial document generated by
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Fig. 5. Performance comparison between PRADA and TS𝑟𝑒𝑝 with different numbers of important tokens on
MS-MARCO-Doc. Dotted lines denote TS𝑟𝑒𝑝 ; solid lines denote PRADA.

Table 9. Adversarial samples generated by TS𝑟𝑒𝑝 and PRADA on the MS-MARCO-Doc dataset. The perturbed
words are marked as blue and red/magenta in the original document and adversarial example, respectively.

Method Query: “government does do” Rank Position

Original

. . . what kind of government does japan have today? answered

60

by the wiki answers community answers. com is making
the world better one answer at a time. japan is a constitutional
monarchy with a parliamentary government. the constitution.
it awards the vote to all men and women age 20 and older.
was this answer useful? what kind of government did japan
have? japan has the type of government like canada . . .

TS𝑟𝑒𝑝

. . . what kind of government does japan have today? answered

38

by the wiki answers community answers. com is making
the world better one answer at a time. japan is a does
do government does do government does do government
does do government does do government does do government
does do government does do government does do government
does do government does do government does do like canada . . .

PRADA

. . . what kind of government does japan have currently? answer

35

by the wiki answers community answers. com is making
the world better one answer at a time. japan is a constitution
monarchy with a parliamentary government. the constitution.
he awards the vote to all men and women age 20 and older.
was this answer helpful? what kind of government did japan
has? japan has the types of government like canadian . . .

PRADA is more semantically consistent with the original document by human judges, while the
rank position given by the target model is higher (i.e., 35 vs. 38). It indicates that while obvious
query term attack TS𝑟𝑒𝑝 still has little effect on the rank promotion of documents in some cases,
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our PRADA can generate human-imperceptible perturbations to the document and promote its
rankings to a greater extent. (2) The adversarial document generated by TS𝑟𝑒𝑝 has a wider range of
obvious replacements with query terms, making them distinguishable from the original document
and less fluent. Word-level synonyms seem more reasonable for guaranteeing fluency and semantic
preservation in adversarial samples than the query terms.

7 CONCLUSION AND FUTUREWORK
In this paper, we introduced a challenging WSRA task against NRMs, which aims to promote a
target document in rankings by adding adversarial perturbations to its text. We focused on the
practical decision-based black-box attack setting and developed a novel method PRADA based
on the PRF idea to generate the adversarial examples for effective attack. Empirical results show
that PRADA achieves a high success rate with small indiscernible perturbations. Besides, PRADA
can evade the detection of the anti-spamming method easily. The findings show that NRMs are
very vulnerable to adversarial attacks which promotes the document in rankings with human-
imperceptible perturbations.
One limitation of our PRADA is that the attack may fail the short documents or low-ranked

documents. Meanwhile, the computational cost is relatively high since it requires to generate the
adversarial document for any test document in the inference time.
In future work, we aim to pursue stronger black-box attacks against NRMs. Furthermore, ex-

ploring how to combine the adversarial objectives with original learning objectives in the training
phrase will also be a potential direction to mitigate the computational cost. It is also valuable to
attack a real-world search engine using PRADA to demonstrate its practical applicability. Since
the NRMs are very vulnerable to adversarial attacks, it is critical to develop the corresponding
defense methods to enhance the robustness of NRMs before they are widely deployed to real-world
search engines. A straightforward idea is to leverage the prevalent adversarial training [14] to
conduct the defense. In adversarial training, adversarial examples (e.g., generated by PRADA) are
found during training and used to augment the training set. Besides, since the empirical defense
offers no theoretical guarantee on the models’ robustness and may eventually be broken by other
sophisticated adversarial attacks, certified defense [? ] can also be developed to give rigorous
and provable certified robustness. The defense method needs to be elaborated to consider the
relationship between the attacked document and the query as well as other candidate documents
for IR. We hope our study provides useful clues for future research on adversarial ranking defense
and helps to develop robust real-world search engines.

REPRODUCIBILITY
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code for PRADA. See https://github.com/wuchen95/PRADA.
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