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Sequential recommenders that are trained on implicit feedback are usually learned as a multi-class classification
task through softmax-based loss functions on one-hot class labels. However, one-hot training labels are sparse
and may lead to biased training and sub-optimal performance. Dense, soft labels have been shown to help
improve recommendation performance. However, how to generate high-quality and confident soft labels from
noisy sequential interactions between users and items is still an open question.

We propose a new learning framework for sequential recommenders, CSRec, which introduces confident
soft labels to provide robust guidance when learning from user–item interactions. CSRec contains a teacher
module that generates high-quality and confident soft labels and a student module that acts as the target
recommender and is trained on the combination of dense, soft labels and sparse, one-hot labels. We propose
and compare three approaches to constructing the teacher module: (i) model-level, (ii) data-level, and (iii)
training-level. To evaluate the effectiveness and generalization ability of CSRec, we conduct experiments using
various state-of-the-art sequential recommendation models as the target student module on four benchmark
datasets. Our experimental results demonstrate that CSRec is effective in training better-performing sequential
recommenders.
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and ranking; Novelty in information retrieval;
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1 Introduction
Generating next-item recommendations from sequential implicit user feedback is a widely adopted
approach to training recommender systems. This method is common in scenarios like e-commerce
[70], video platforms [66], and streaming music services [40]. The problem of learning sequential
recommenders based on implicit feedback can be formulated as a multi-class classification task,
where each candidate item corresponds to a class. A list of recommendations is then generated by
selecting items with the highest classification logits.

Deep neural networks have been widely used to address such classification tasks through softmax-
based loss functions over one-hot class labels. The items with which a user has interacted can be
viewed as being labeled as 1 s, while all other items in the item set are labeled as 0 s [23, 25, 41, 61].
Thus, the items a user has interacted with are interpreted as the user’s positive preferences and are
pushed toward higher classification logits during the training process, while all other candidate
items are assumed to represent negative user preferences. However, one-hot training labels are
sparse and can easily be corrupted [37, 69]. For example, interactions with an item may only be
due to presentation bias [6, 7], and a lack of interaction may be attributed to user unawareness, as
the item may not have been exposed to the user [43]. Hence, simply promoting high values for
items labeled with a 1 and demoting other candidate items can lead to a misunderstanding of user
preferences.

Soft Labels. Recent work [8, 28] has shown that compared with sparse one-hot training labels, soft
labels can help improve recommendation performance. Soft labels use class probabilities produced
by models instead of the hard zero-one representation, i.e., one-hot labels. They can be seen as a
dense distribution over candidate items given the current sequence of items. Liu et al. [28] propose
a debiasing recommendation framework based on soft labels derived from knowledge distillation
of uniformly exposed data. Cheng et al. [8] use popularity-based or user-based soft labels to train
recommenders.

Motivated by [8, 28], we hypothesize that high-quality and confident soft labels can help train
more robust sequential recommenders. A soft label is confident if the supervision signals it provides
reflect actual user preferences and have low variance. A sequential recommender is robust if it can
generate recommendations that lead to a positive user experience, even if the training data are
corrupted or contains noise. Unfortunately, the uniformly exposed data used in [28] will always be
limited and expensive to collect, as doing so may negatively affect user experience by exposing
irrelevant items. The soft labels used in [8] can easily become biased or corrupted by the training
data and the teacher model itself.

As shown in Figure 1, niche-type users, who select niche items as their next choices, receive
worse recommendation results after using the soft labels proposed in [8]. The bias of the soft
labels used in [8] results in reduced exposure to niche items, which is detrimental to both users
and merchants in the long run. Hence, the challenge of creating confident, soft labels from noisy
sequential interactions between users and items remains an open question.
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Fig. 1. Performance of Base recommendation model and SoftRec method [8] on different groups of users. The
items are divided into two bins, 20% and 80%, based on the frequency. We then split users based on which
kind of items they choose as the next interactions, popular or niche items. The two user groups are referred to
as popular-type and niche-type users. We evaluate the recommendation performance of each group separately.
We choose GRU4Rec [41] as the Base recommendation model and SoftRec [8] as the comparison method on
the (a) Yelp and (b) Electronics datasets. The niche-type users receive worse recommendation results after
using the soft labels proposed in [8].

Recommendations with Confident Soft Labels. We propose Recommendations with Confident
Soft Labels (CSRec), a learning framework for training robust sequential recommenders from
implicit user feedback. The core idea is to introduce confident, soft labels that complement one-hot
labels during the learning process. CSRec consists of a teacher module that generates confident,
soft labels from noisy sequential interactions between users and items, and a student module that
serves as the target recommender. We propose three methods for constructing the teacher module:
(i) model-level, (ii) data-level, and (iii) training-level. These alternatives are motivated as follows:

—Recent research [11, 62] has shown that different models, or even a set of instances of the
same model initialized with different random seeds, introduce different kinds of bias into
model outputs. Our model-level method constructs confident, soft labels from a multi-model
ensemble to reduce the bias and variance from the model itself.

—Our data-level method reduces the bias or noise signals originating from the data by employing
sub-sampling procedures to feed the teacher models with different subsets of the data. The
confident, soft labels are, once again, generated from a multi-data ensemble.

—The model-level and data-level methods use ensemble approaches to obtain confident soft
labels. Instead, the training-level method focuses on directly training a teacher module in an
end-to-end fashion. The key insight is to minimize the Kullback–Leibler (KL) divergence
between the predictions of two teacher models, as confident, soft labels from different models
should be consistent to provide more robust guidance.

Given confident, soft labels from the teacher module, the target student recommender is trained
using a combination of dense, soft labels and sparse, one-hot labels. Although knowledge distillation
also utilizes soft labels, the motivation is quite different. Knowledge distillation aims to compress
a large neural network model into a relatively smaller model for more efficient inference, while
we aim to utilize robust soft labels to generate robust recommendations from biased data, rather
than to speed up inference. Additionally, existing ensemble methods perform ensembling in both
training and inference stages, whereas our method involves multiple models to generate confident
soft labels during the training stage, with only a single robust target recommender used during
inference, thus achieving higher recommendation efficiency.
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Technical Comparison. A commonly adopted strategy for enhancing the one-hot representation
with soft labels is label smoothing [32, 45], where another rectification distribution is mixed as
the soft label. Cheng et al. [8] use the popularity distribution as the soft label, which is a fixed
empirical prior distribution over the entire item set. We, however, use the distribution generated
from the collaboration of multiple models, which is more accurate, adaptive, and less biased, e.g.,
with less popularity bias. Moreover, we use the recommendation models to build the supervision
signal for themselves without the need for additional labels, as used by Liu et al. [28], which are
usually unavailable in practice. Hu et al. [21] recently proposed a decoupled progressive distillation
framework, DePoD, for the sequential recommendation. They distill peer models into each other
and also use these models during inference. In contrast, we propose a general learning framework
to enhance the current target model and directly utilize the collaboration from multiple models for
additional robust supervision signals.
Experimental Comparison. To assess the effectiveness and generalization capability of recom-

mender systems trained using the labels produced by CSRec, we conduct experiments on four
benchmark datasets using different state-of-the-art sequential recommendation models as the target
recommendation module: (i) the recurrent neural network (RNN)-based GRU4Rec [41], (ii) the
convolutional neural network (CNN)-based Nextitnet [61], (iii) the attention-based NARM [25],
and (iv) the self-attentive SASRec [23]. Experimental results demonstrate the effectiveness and
generalization capability of the CSRec learning framework.

Contributions. In summary, the contributions of our work are as follows:

—We propose CSRec, a learning framework to enhance implicit feedback-based sequential
recommenders through a teacher module that provides confident, soft labels and a target
student recommender trained on both sparse, one-hot labels and dense, soft labels.

—We propose three methods for constructing the teacher module: (i) a model-level method, (ii)
a data-level method, and (iii) a training-level method, all aimed at reducing the effect of bias
and noisy interaction signals.

—We evaluate CSRec with eight kinds of state-of-the-art deep learning-based sequential rec-
ommendation models and conduct experiments on four benchmark datasets. The results
demonstrate the effectiveness of the CSRec learning framework.

2 Related Work
We review related work on sequential recommendation and learning from soft labels.

2.1 Sequential Recommendation
Early work on sequential recommendation mainly relied on factorization methods [46, 50] or
Markov chains [15, 58]. Recently, deep learning-based approaches for sequential recommendation
have gained significant attention due to their superior learning capacity. These models can be
categorized into: (i) RNN-based models [17, 31, 41], (ii) CNN-based models [42], (iii) attention-based
models [23, 30, 39], (iv) graph neural network (GNN)-based models [36, 38, 49, 67], (v) contrastive
learning-based models [33, 55, 68], (vi) generative model-based methods [12, 27, 59], and (vii) large
language model-based methods [10, 19, 20, 26].

GRU4Rec [41] is a representative RNN-based model that utilizes gated recurrent units to capture
sequential signals. Caser [42] and Nextitnet [61] are CNN-based models that effectively capture
skip signals within interaction sequences. NARM [25] introduces an attention mechanism that
assigns varying levels of importance to items a user interacts with within a sequence. SASRec [23]
employs self-attention and a transformer decoder [44] for sequential recommendation. Unlike the
causal decoding used by SASRec, BERT4Rec [39] applies the masked language model objective for
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training the recommender. SRGNN [51] represents session sequences as graph-structured data,
leveraging GNNs [36] to capture complex item transitions. CL4SRec [55] uses the contrastive
learning framework to extract self-supervision signals from original user behavior sequences.
DreamRec [59] reshapes sequential recommendation into a learning-to-generate paradigm using a
guided diffusion model. Recformer [26] is a large language model-based approach that represents
an item sequence as a sentence by flattening item key-value attributes described in the text.

Traditionally, sequential recommenders trained with implicit feedback use either point-wise
binary cross-entropy loss or pairwise ranking loss, e.g., Bayesian Personalized Ranking [35]. Both
approaches require a negative sampling strategy to sample negative instances from unobserved
interactions. The size and distribution of these samples can significantly impact recommendation
performance [2]. Although non-sampling-based training methods have been proposed, they often
suffer from high computational costs [4] or are limited to shallow linear models [56].

Deep learning-based approaches to sequential recommendation are often formulated as multi-
class classifiers, where each candidate item corresponds to a class. These deep models are typically
trained using softmax classification loss over sparse one-hot class labels, where items that users
interact with are labeled as 1 s, and all other candidate items are labeled as 0 s [3, 23, 25, 39, 41, 61].
This approach assumes that items with which users interact indicate positive preferences, while
all other candidate items reflect negative preferences. However, this assumption rarely holds in
real-world scenarios [43]. User interactions may be influenced by various types of presentation
biases [6], and in some cases, a lack of interaction may simply be due to the user’s unawareness.
Thus, sparse one-hot training labels can easily become corrupted and fail to capture unobserved
user–item interactions. Relying on these labels for sequential recommendation leads to biased
training and sub-optimal performance [6, 28, 69].

In this article, we propose to enhance sequential recommenders by incorporating confident,
soft labels in addition to the conventional sparse one-hot labels when learning from implicit
feedback data.

2.2 Learning from Soft Labels
Soft labels have been successfully utilized in fields such as computer vision (CV) and natural
language processing (NLP). Knowledge distillation [18] is a widely adopted framework that
compresses large complex models into simpler, smaller models to enable faster inference. In this
process, knowledge distillation extracts hidden knowledge from large teacher networks in the form
of soft labels to guide the training of smaller student networks. Multi-model distillation has also
been explored in CV and NLP. A common approach involves averaging the responses from multiple
teacher models as part of the supervision signal for the student [14, 60, 63]. For example, You et al.
[60] average the outputs of different teachers and reduce the dissimilarity between the student
and teachers; Du et al. [13] use multi-objective optimization to determine the best direction that
accommodates different teachers; and Liu et al. [29] average the outputs of teachers with weights
generated by the teachers themselves.

Recent work has also explored the use of soft labels to improve recommendation systems.
Although the predictions from well-trained teacher models contain useful knowledge that could
provide additional supervision for student models, naive distillation might introduce unwanted
bias and noisy signals. This issue arises because recommendation data, compared to data in CV
and NLP, often contains more noise and biases. Chen et al. [5] identified the biased student
phenomenon during model compression using knowledge distillation. They proposed a grouping
method specifically to address popularity bias in general recommendation systems, though their
approach heavily depends on prior knowledge of the bias. Their method aims to enhance the
distillation process in the presence of biased soft labels, whereas our research focuses on inferring

ACM Transactions on Information Systems, Vol. 43, No. 1, Article 21. Publication date: December 2024.



21:6 S. Wu et al.

more robust and confident soft labels, which addresses a different stage of the process. Liu et al. [28]
introduced a debiasing framework for recommendations using soft labels learned from uniform
interaction data. However, collecting uniform interaction data is often challenging and costly
as it can negatively impact user experience. Cheng et al. [8] used popularity-based and user-
based soft labels to enhance sequential recommenders, but their generated soft labels are prone to
corruption from noisy implicit feedback. There has also been considerable work on using distillation
to enhance GNN-based recommendation models. Ren et al. [34] proposed extracting knowledge
from user-bundle graphs and distilling it into a graph-masked autoencoder designed to capture
significant local and global user–item relationships. Xia et al. [52] directly applied distillation
and contrastive learning to tackle the over-smoothing issue and scalability problems. Xia et al.
[54] employed a self-supervised knowledge distillation framework to reduce the model size for
on-device recommendation systems. Xia et al. [53] utilized distilled global collaborative effects
among users and items, maintained by a hyper-graph transformer network, to enhance user
representations in GNN-based models. These methods primarily use distillation to address data
sparsity, over-smoothing, and scalability challenges in GNN-based models.

In conclusion, while knowledge distillation in CV and NLP primarily focuses on using soft labels
for model compression or transfer learning, the challenge of generating confident soft labels from
noisy implicit feedback for robust sequential recommendation remains an open research question
(RQ) in recommender systems. We address this challenge directly by proposing a new learning
framework that leverages soft labels to achieve robust sequential recommendations from implicit
feedback data.

3 Method
In this section, we first present our notation and task formulation.We then describe three approaches
for constructing a teacher module that provides confident, dense, and soft labels. Finally, we detail
the training procedure for the target student recommender.

3.1 Notation and Task Formulation
We focus on the task of learning sequential recommenders from implicit user feedback. We denote
the user set as U and the item set as I. Each user D ∈ U interacts with a sequence of items
sD = (81, 82, . . . , 8 |sD | ), sorted by time. Ideally, the next interacted item is the one with the highest
probability in the user’s true preference distribution % (8 | sD).

However, the observed next interacted item 8 |sD |+1 may be corrupted by various types of noise or
bias. For example, the user–item interaction might be influenced by popularity bias [6], which can
lead to a negative user experience as indicated by Wang et al. [48]. Additionally, in E-commerce,
many clicks do not result in purchases, and some purchases receive negative reviews [47]. In our
study, we model the noisy signal as an additive error [9] resulting from unknown noise or bias,
which can be formulated as follows:

8 |sD |+1 = argmax
8∈I

% (8 | sD) + n, (1)

where n denotes the noisy signal. The task is to train a target recommender 5 that can approximate
the user’s true preference, such that %5 (8 | sD) ≈ % (8 | sD). Duringmodel inference, recommendations
can be generated as follows:

8̃ = argmax
8∈I

5 (sD), (2)

where 5 (sD) denotes the output logits of the recommender 5 . This task can be formulated as a
multi-class classification problem, with I being the candidate class set. Conventional methods

ACM Transactions on Information Systems, Vol. 43, No. 1, Article 21. Publication date: December 2024.



Learning Robust Sequential Recommenders through Confident Soft Labels 21:7

Fig. 2. Framework of CSRec, with (a) a model-level teacher module, (b) a data-level teacher module, (c) a
training-level teacher module, and (d) a training student model. (a) The model-level teacher module obtains
the soft labels by averaging the outputs of multiple teacher models. (b) The data-level teacher module trains
teacher models on different data subsets. (c) The training-level teacher module directly learns a robust teacher
module without relying on a post-training ensemble and uses the robustness loss function Equation (12) to
fuse different models. (d) We use the confident soft labels generated by the teacher module together with the
sparse one-hot label to train student recommender through the training loss Equation (20).

Table 1. Main Notation Used in This Work

Symbol Description

U, I User set, and item set
D ∈ U, 8 ∈ I User, and item
BD = (81, . . . , 8 |BD | ) A sequence of items interacted by user D, sorted by time
8 |BD |+1 Observed next interacted item, which contains noise and bias
9 Ideal next user-preferred item that cannot be directly observed
5 Student recommender
{61, . . . , 6<} Teacher modules
% (8 | BD), %5 (8 | BD) Real preference distribution, and approximated predicted distribution

by model 5

that ignore the noisy signal n use a softmax-based cross-entropy loss to train the recommender
5 by minimizing the difference between 8̃ and 8 |sD |+1. However, due to the presence of n , 8 |sD |+1 is
not truly sampled from % (8 | sD), resulting in a discrepancy between the potentially biased learned
distribution %5 (8 | sD) and the ideal unbiased distribution % (8 | sD).

To address this issue, the proposed CSRec framework treats the target recommender 5 as a
student module and introduces a teacher module that consists of a set of models {61, 62, . . . , 6<}.
The teacher module is designed to generate confident, soft labels to (i) provide dense supervision
signals for the many missing interactions; and (ii) alleviate the effect of the noisy signal n . The
student model 5 is then trained on a combination of dense, soft labels and sparse data observations
of 8 |sD |+1. Figure 2 illustrates three alternative teacher modules for CSRec, which we detail in the
following sections. We have summarized the main notations used in our study in Table 1.

3.2 Confident Teacher Module
We describe three alternative teacher modules for CSRec.

3.2.1 Model-Level Teachers. Recent research [11, 62] shows that different models, or even the
same models trained with different random seeds, can introduce various types of bias into model
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Algorithm 1: Model-Level Teachers
Require: {61, 62, . . . , 6<}: teacher models; [: learning rate; ℓ24 (·): loss for teacher models; \ (·):

parameters; � : training set
1: repeat
2: for all sD ∈ � do
3: \ (6: )←\ (6: )−[ · ∇ℓ24 (sD, 6: , 8 |sD |+1) ⊲: = 1, 2, . . . ,<
4: end for
5: until converged
6: for all sD ∈ � do
7: eD ←

∑
6: (sD)/< ⊲ ensemble of 6:

8: end for
9: return eD

outputs. This suggests that different models capture different aspects of n , referred to as model-
specific noisy signals n< . We propose constructing a confident teacher module frommultiple models
to leverage this insight. The key idea is to average the outputs of multiple teacher models. By
averaging the noisy signals n< from each model, we obtain a more uniform error distribution and
more robust predictions, which are used to generate soft labels.

We use a set of models {61, 62, . . . , 6<} that share the same architecture as the target student
recommender 5 , but with different random seeds. We train {61, . . . , 6<} individually on the entire
dataset using different training seeds. The softmax-based cross-entropy loss, denoted as ℓ24 , is used
as the training loss function for the teacher models. We then average the outputs to generate soft
labels that guide the student model.

The training process for model-level teachers is described in Algorithm 1. Model-level teachers
are expected to mitigate bias or noise introduced by the model itself, i.e., n< .

3.2.2 Data-Level Teachers. In addition to the noisy signal n< , which is related to the model-level
perspective, there may also be data-level bias, n3 , as part of the noisy signal n . We argue that n3 is
data-specific and has different distributions across various data subsets. Therefore, a multi-data
ensemble of models trained on different data subsets could help alleviate the effect of n3 and provide
more robust guidance for the target student recommender.

To achieve this, we propose constructing a confident teacher module from a data-level perspective.
We perform sub-sampling with a uniform probability ? on the entire dataset to generate different
subsets. Teacher models {61, 62, . . . , 6<}, which share the same model structure, are then trained
on different data subsets. We fuse the outputs of {61, 62, . . . , 6<} to generate more robust teacher
outputs.

The data-level teacher’s algorithm is described in Algorithm 2.

3.2.3 Training-Level Teachers. Model- and data-level teachers use ensemble-based methods
to fuse multi-source outputs, which can be referred to as post-training strategies. Training-level
methods aim to directly learn a robust teacher module without relying on a post-training ensemble.
The key idea is based on two principles:

(1) Confident, soft labels should be consistent with the latent true user preference.
(2) Confident, soft labels from different models should be consistent with each other.

The first principle is directly derived from the definition of confident labels in Section 1, which is
the expected property of soft labels in many recent works [8, 34]. The second principle is based on
the observation by Wang et al. [48] that different models tend to make similar predictions for clean
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Algorithm 2: Data-Level Teachers
Require: {61, 62, . . . , 6<}: teacher models; [: learning rate; ℓ24 (·): loss for teacher models; \ (·):

parameters; � : training dataset
1: randomly sample ? percent of � for< times as �1, . . . , �<

2: repeat
3: for all sD ∈ �: do ⊲ : = 1, 2, . . . ,<
4: \ (6: ) ← \ (6: ) − [ · ∇ℓ24 (sD, 6: , 8 |sD |+1)
5: end for
6: until converged
7: for all sD ∈ � do
8: eD ←

∑
6: (sD)/< ⊲ ensemble of 6:

9: end for
10: return eD

examples compared to noisy ones. Therefore, if the confident, soft labels reflect the latent true user
preference, different models should also be consistent with that preference.

Here, we introduce the main teacher model 61 and a side teacher model 62. We then describe
how to directly train a robust 61 with the help of 62.

As discussed earlier, the outputs of 61 and 62 should be consistent with each other if they are
expected to generate confident, soft labels.Therefore, given an item sequence sD , we aim to minimize
their KL divergence as follows:

KL(%62 (· | sD)‖%61 (· | sD)) = E9∼%62 [log(%62 ( 9 | sD)) − log(%61 ( 9 | sD))], (3)

where 9 is a random variable representing the ideal user-preferred item, which cannot be directly
observed. What we can observe from the data is 8 |sD |+1, which contains noise and bias. For simplicity,
in the following description, we will use 8 to denote 8 |sD |+1. Moreover, sD will occasionally be omitted,
and % (· | sD) will be abbreviated as % if necessary.

According to Bayes’ Theorem and the discussion, we have

%61 ( 9 | sD) ∼ % ( 9 | sD) =
% (8 | sD)% ( 9 | 8, sD)

% (8 | 9, sD)
. (4)

Substituting Equation (4) into Equation (3), we obtain

KL(%62 ‖%61 ) ≈ E9∼%62

[
log(%62 ( 9 | sD)) − log

% (8 | sD)% ( 9 | 8, sD)
% (8 | 9, sD)

]
= KL(%62 ‖%) − log(% (8 | sD)) + E9∼%62 [log % (8 | 9, sD)] . (5)

Rearranging Equation (5), we have

KL(%62 ‖%) − log(% (8 | sD)) ≈ KL(%62 ‖%61 ) − E9∼%62 [log % (8 | 9, sD)] . (6)

Since KL(%62 ‖%) ≥ 0, the right-hand side of Equation (6) is an approximate upper bound of the
negative logarithm likelihood. We can regard E9∼%62 [log % (8 | 9, sD)] as a regularization term to
adjust the agreement across %61 , %62 , and % .

Through a similar derivation, we also have

KL(%61 ‖%) − log(% (8 | sD)) ≈ KL(%61 ‖%62 ) − E9∼%61 [log % (8 | 9, sD)] . (7)
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Combining the right-hand sides of both Equations (6) and (7), we obtain the following regularization
term:

ℓA46 = U
{
KL(%62 ‖%61 ) − E9∼%62 [log % (8 | 9, sD)]

}
+ (1 − U)

{
KL(%61 ‖%62 ) − E9∼%61 [log % (8 | 9, sD)]

}
. (8)

Since our goal is to train the main teacher 61 with the help of the side teacher 62, the term
E9∼%62 [% (8 | 9, sD)] does not contribute to the training of 61, so we omit it and revise our regulariza-
tion function to

ℓ1 = UKL(%62 ‖%61 ) + (1 − U)KL(%61 ‖%62 ) − E9∼%61 [log % (8 | 9, sD)] . (9)

In practice, for simplicity, we assume that the observation of 8 given the real user-preferred item 9

is conditionally independent of the item sequence sD . This is a reasonable assumption since the
correlation between the observed item 8 and the ideal item 9 mainly depends on noisy signals. As a
result, % (8 | 9, sD) can be approximated through an auxiliary model ℎ as

ℎ(8, 9) ≈ % (8 | 9) ≈ % (8 | 9, sD). (10)

A concise solution to learn ℎ is to use matrix factorization and factorize ℎ(8 | 9) as

[ℎ] | I | · |I | =M | I | ·3 · N3 · |I | , (11)

where 3 � I; [ℎ] is the matrix form of the model ℎ and can be viewed as a global noise matrix.M
and N are its low-rank factorization matrices.

To summarize, given an item sequence sD and the observed next item 8 as the label, we obtain
the training-level robust regularization:

ℓA = UKL(%62 ‖%61 ) + (1 − U)KL(%61 ‖%62 ) −
∑
9∈I

log(ℎ8, 9 )%61 ( 9 | sD). (12)

Since in practice, ℎ outputs logits, which we denote as ℎ̃, instead of probabilities, we need to
normalize it through softmax. However, the softmax operation requires summing over exp ℎ̃8, 9 ,
which is computationally expensive. To avoid normalization and enable more efficient computation,
we relax the term −∑

9∈I log(ℎ8, 9 )%61 ( 9 | sD) as follows:

−
∑
9∈I

log(ℎ8, 9 )%61 ( 9 | sD) (13)

= −
∑
9∈I

log

(
exp ℎ̃8, 9∑
: exp ℎ̃:,9

)
%61 ( 9 | sD) (14)

≤ −
∑
9∈I

[
log

(
exp ℎ̃8, 9

)
− log

(
|I |max

:
exp ℎ̃:,9

)]
%61 ( 9 | sD) (15)

≤
∑
9∈I

[
log

(
1 + exp

(
−ℎ̃8, 9

))
+ log |I | +max

:
ℎ̃:,9

]
%61 ( 9 | sD). (16)

Then, the robustness loss function used in practice becomes:

ℓA = UKL(%62 ‖%61 ) + (1 − U)KL(%61 ‖%62 )

+
∑
9∈I

[
log

(
1 + exp

(
−ℎ̃8, 9

))
+ log |I | +max

:
ℎ̃:,9

]
%61 ( 9 | sD). (17)
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Algorithm 3: Training-Level Teachers
Require: 61, 62: two teacher models; [: learning rate; ℓ24 (·): loss function for the side teacher 62;

ℓC (·): loss function for the main teacher 61; \ (·): parameters; � : training dataset
1: randomly sample ? percent data � ′ from � .
2: repeat
3: for all sD ∈ � ′ do
4: \ (62) ← \ (62) − [ · ∇ℓ24 (sD, 62, 8 |sD |+1) ⊲ pretrain 62
5: end for
6: until converged
7: repeat
8: for all sD ∈ � do
9: \ (61) ← \ (61) − [ · ∇ℓC (sD, 61, 8 |sD |+1) ⊲ train 61

10: end for
11: until converged
12: for all sD ∈ � do
13: eD ← 61 (sD)
14: end for
15: return eD

Finally, we combine the robust loss ℓA with the softmax cross-entropy loss (i.e., ℓ24 ) to form the
final loss function, which constructs the training-level confident teacher module:

ℓC = ℓA + ℓ24 . (18)

We pretrain the side teacher model 62 on a sub-sampled data split to enhance learning stability and
introduce data-level robustness. The algorithmic process for training-level teachers is described in
Algorithm 3. First, we use the robustness loss function to train one of the teacher models. Then,
this model is used to generate confident soft labels directly for the student model. The robustness
loss function ensures that this teacher model is aware of the soft labels generated by other teacher
models, allowing them to be fused through training.

3.3 Learning of Student Recommenders
Given the input sequence sD and dense logits eD (as produced by Algorithms 1, 2, and 3) from the
confident teacher module, we define the soft labels for the student recommender 5 as:

rD =
1
2
(softmax(eD/T ) + onehot(8 |sD |+1)), (19)

where T is a temperature parameter that smooths the soft label distribution. A larger T results in
smoother soft labels. As T → ∞, the soft labels effectively perform naive label smoothing.

Finally, the training loss for the target student recommender 5 is defined as:

ℓB = (1 − V)ℓce (sD, 5 , 8 |sD |+1) + VKL(%5 (· | sD)‖rD). (20)

During inference, the student model 5 generates a list of recommended items by selecting the top-=
items with the highest classification logits.

3.4 Summary and Remarks
We have proposed three strategies for learning a confident teacher module that generates soft labels.
Each method leverages the collaboration of multiple teachers, but from different perspectives and
at different stages of training. The model-level and data-level strategies involve collaboration after
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the teachers’ training, where each teacher model is trained independently. Averaging the outputs is
an effective way to reduce errors and produce more robust soft labels. In contrast, the training-level
strategy involves collaboration between the main teacher model and a side teacher model during
the training process. The main teacher model is directly trained to generate confident soft labels
without the need for post-training fusion. In the training-level strategy, we use a pre-trained 62
instead of training both models together, as the pre-trained model significantly accelerates the
collaboration process. Additionally, we employ a sub-sampled data split during the pre-training of
the side teacher model 62. This approach helps the main teacher model 61 benefit from data-level
randomness, leading to more robust outputs.

4 Experiments
In this section, we describe our experimental setup for evaluating the effectiveness of our proposed
training method. We focus on the following RQs:

(RQ1) What is the overall recommendation performance of the proposed CSRec learning frame-
work?

(RQ2) Does CSRec improve the robustness of sequential recommendations from implicit user
feedback?

(RQ3) How does the design of the teacher module impact the performance of the student model?

4.1 Experimental Settings
4.1.1 Datasets. We conduct experiments on four datasets: (i) Last.FM,1 (ii) Yelp,2 (iii) Amazon

Electronics, and (iv) Amazon Movies and TV.3 Table 2 shows the dataset statistics.
We exclude users and items with fewer than five interactions from all datasets. Since we focus on

sequential recommendation tasks, we split each user’s interactions into sequences of fixed lengths.
For sessions that are too short, we add padding tokens. For longer sessions, we divide them into
several sub-sessions.

4.1.2 Evaluation Protocols. To evaluate recommendation performance, we use the leave-one-
out evaluation procedure. The last item in each sequence is treated as the test sample, while the
second-to-last item is used for validation. The remaining interactions serve as the training data. We
use the full item set as the candidate set for ranking.

For evaluation, we use two ranking-based metrics: (i) Recall and (ii) normalized discounted
cumulative gain (NDCG). Recall@= measures whether the ground-truth item appears in the top-=
positions of the recommendation list. NDCG is a weighted metric that gives higher importance to
items at the top positions.

To assess the robustness of the recommenders (i.e., their ability to generate higher user ratings
from noisy implicit feedback), we introduce filtered versions of these metrics for the two Amazon
datasets, which contain rating information.

The original Recall is defined as

Recall@= =
1
|U|

∑
D∈U

1(rankD ≤ =),

1https://grouplens.org/datasets/hetrec-2011/
2https://www.yelp.com/dataset
3http://jmcauley.ucsd.edu/data/amazon/
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Table 2. Statistics of Datasets

Dataset #Users #Items #Interactions Length

Last.FM 3,173 3,646 57,826 20
Yelp 43,947 20,033 361,290 10
Electronics 102,187 29,351 763,813 10
Movies and TV 82,156 21,035 697,924 10

where rankD denotes the rank of the ground-truth item and 1(·) is the indicator function. For the
filtered version, denoted as Recall+, we have

Recall+@= =
1∑

D∈U 1(AD ≥ X)
∑
D∈U

1(AD ≥ X ∧ rankD ≤ =),

where AD is the rating of the ground-truth item and X is a threshold value set to 4 (ratings range
from 0 to 5). This filtered metric measures whether the recommended items can lead to positive
user preferences.

Similarly, we have a filtered version of the NDCG metric, denoted as NDCG+. Note that ratings
are only used during the evaluation phase to verify robustness. For training, we use binary implicit
user feedback (i.e., items that a user interacted with are labeled as positive, while other interactions
are considered missing).

4.1.3 Baselines. To assess the effectiveness of training recommenders with CSRec, we use the
following models as student models:

—GRU4Rec [41] uses a GRU to model sequential user behavior, and we use an improved version
by Tan et al. [41].

—NextItNet [61] is a simple yet effective CNN-based model capable of learning both short- and
long-range dependencies.

—SASRec [23] is based on the transformer decoder [44], which employs multi-head self-attention
to capture user preferences.

—BERT4Rec [39] uses deep bidirectional self-attention to model user behavior sequences and
adopts the Cloze objective for sequential recommendation by predicting randomly masked
items in the sequence using both left and right context.

—NARM [25] utilizes an attention mechanism to capture user intention and computes the
recommendation score using bi-linear matching based on latent representations.

—SRGNN [51] models session sequences as graph-structured data and uses a GNN [36] to
capture complex transitions between items.

—CL4SRec [55] employs a contrastive learning framework to derive self-supervision signals
from original user behavior sequences.

—DreamRec [59] approaches sequential recommendation as a learning-to-generate paradigm
achieved through a guided diffusion model.

Each student recommendation model is trained using the following methods:

—Base refers to the standard training framework that optimizes the cross-entropy between the
output and the sparse one-hot label.

—SoftRec denotes the item-based method proposed by Cheng et al. [8], which uses a popularity-
based teacher model to generate soft labels.

ACM Transactions on Information Systems, Vol. 43, No. 1, Article 21. Publication date: December 2024.



21:14 S. Wu et al.

—CSRec-M is our proposed framework that utilizes the model-level teacher module to produce
confident, soft labels.

—CSRec-D is our proposed framework that employs data-level teachers to provide confident,
soft labels.

—CSRec-T is our proposed framework that uses training-level teachers to generate confident,
soft labels.

4.1.4 Implementation Details. We use implementations from Recbole [64]4 and Yang et al. [59]5
for the eight baseline models listed above.

The embedding size for all models, including 3 in the training-level method, is fixed at 64 for a
fair comparison. Both U and V in Equations (12) and (20) are chosen from {0.25, 0.5, 0.75}, and the
temperature T in Equation (20) is chosen from {1, 3, 6, 9}. For CSRec-M and CSRec-D, the number
of teachers (<) is set to 2. For CSRec-D, the sub-sampling ratio ? is set to 0.8.

For GRU4Rec, the number of layers is set to 2 for all datasets, with a dropout rate of 0.5. For
NextItNet, the kernel size is set to 3, the number of blocks is 5 for all datasets, and the dilations
are set to 1 after tuning. For SASRec, the number of layers is 2, the number of heads is 2, and the
dropout rate is 0.3. For NARM, the hidden size is 128, and the number of layers is 1. For BERT4Rec,
the hidden size is 64, the number of layers is 2, and the dropout rate is 0.3. For SRGNN, the hidden
size is 64, and the number of layers is 2. For CL4SRec, the hidden size is 64, the number of layers is
2, and the dropout rate is 0.5. For DreamRec, we extensively tuned the original model code on our
chosen datasets but did not achieve reasonable results. Consequently, we replaced the MSE loss in
the diffusion module with cross-entropy loss. The hidden size is set to 64, the dropout rate to 0.1,
the initializer range to 0.02, the timestep to 500, and the beta schedule is exponential, starting at
0.0001 and ending at 0.02.

We use Adam [24] as the training optimizer, setting the learning rate to 0.001. For CSRec, we use
the same model architecture for the teacher models 6 as for the student models 5 to ensure a fair
comparison.6

5 Results and Analysis
5.1 Overall Performance Comparison (RQ1)
Table 3 compares the recommendation performance of all models under different training regimes.
Trainingwith the three proposed CSRecmethods (i.e., CSRec-M, CSRec-D, and CSRec-T) consistently
leads to improved recommendation performance across four datasets and four student models.
Notably, the model-level and training-level methods achieve significant improvements over the
SoftRec method in most cases.

When breaking down the results by dataset, we observe that training with CSRec-D sometimes
yields higher recommendation performance compared to the other two proposed methods on the
Last.FM dataset. In contrast, on the other three datasets, training with either CSRec-M or CSRec-T
results in the highest recommendation performance in most cases. This difference could be due to
the denser interactions in Last.FM compared to the other datasets. As the data-level teachers omit
some samples, more variations and randomness are introduced, allowing CSRec-D to capture a more
robust signal from the data. Training with CSRec-T consistently results in good recommendation
performance on the Yelp and Electronics datasets, which are both relatively sparse. Thus, CSRec-D
appears suitable for dense datasets, while CSRec-T is more effective for sparse datasets. Additionally,
CSRec-M is applicable in more general cases.
4https://github.com/RUCAIBox/RecBole
5https://github.com/YangZhengyi98/DreamRec
6The code and data used are available at https://github.com/Furyton/CSRec/
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Table 3. Comparison of the Top-= Recommendation Performance of Different Models (= = 10) on
Four Datasets

GRU4Rec NextItNet NARM SASRec

Dataset Method RC (%) NG (%) RC (%) NG (%) RC (%) NG (%) RC (%) NG (%)

Last.FM

Base 16.68 10.08 15.45 11.56 20.26 13.20 20.35 11.43
SoftRec 17.42 10.62 15.47 11.82 20.48 12.82 20.74 11.95
CSRec-M 18.16a 10.67 16.46a 12.47a 20.81a 13.05 20.87 11.97
CSRec-D 18.60a 10.99a 16.20a 12.05 20.73a 12.96 21.13a 12.25a
CSRec-T 18.18a 10.76a 15.68 12.00 20.69 12.87 21.04 12.00

Yelp

Base 5.81 3.51 8.07 5.74 8.58 5.64 8.52 5.32
SoftRec 6.10 3.58 8.30 5.92 8.10 5.02 9.05 5.58
CSRec-M 6.40a 3.82a 8.58a 6.17a 8.90a 5.77a 9.48a 5.90a
CSRec-D 6.23 3.64 8.50 6.10 8.72a 5.48a 9.48 5.89a
CSRec-T 6.52a 3.89a 8.58a 6.17a 8.70a 5.53a 9.42 5.88

Electronics

Base 5.17 2.85 4.90 3.21 5.21 3.05 6.33 4.00
SoftRec 5.43 3.04 5.20 3.42 5.49 3.19 6.36 4.08
CSRec-M 5.54a 3.13a 5.66a 3.78a 5.78a 3.43a 6.73 3.94
CSRec-D 5.51a 3.10 5.30a 3.50a 5.84a 3.48a 6.72 3.92
CSRec-T 5.59a 3.16a 5.35a 3.58a 5.90a 3.52a 7.00a 4.10

Movies

Base 8.41 4.77 7.37 4.44 9.38 5.51 11.09 6.61

and TV

SoftRec 9.54 5.36 8.22 4.97 9.40 5.45 10.90 6.54
CSRec-M 9.63 5.52a 8.74a 5.30a 9.99a 5.88a 11.19 6.70
CSRec-D 9.45 5.42a 8.36 5.02 9.75a 5.71a 11.19 6.71
CSRec-T 9.70a 5.52a 8.46a 5.11a 9.87a 5.77a 11.19 6.70

(Continued)

Examining the results by student model, we find that RNN-based and CNN-based models, such
as GRU4Rec and NextItNet, experience the most notable improvements with CSRec training. In
contrast, SASRec and BERT4Rec models, which utilize self-attention mechanisms, show relatively
smaller improvements. Recent research [16, 57] indicates that pre-trained transformers handle
noisy examples more effectively than CNN or RNN-based models. Similar findings are reported
in computer vision [1]. However, CSRec still leads to significant performance improvements for
SASRec in most cases. DreamRec employs a small transformer model to encode the sequence as
the condition for the guided diffusion module. We observe a substantial improvement with this
architecture, suggesting that our generated confident soft labels can enhance the denoising process.
CL4SRec, which already uses many data augmentation techniques, benefits only slightly from our
confident soft labels.

In summary, the CSRec framework improves the performance of various recommenders compared
to standard training regimes and SoftRec. The choice of teacher modules can be tailored to different
dataset characteristics to achieve optimal performance.

5.2 Robustness Performance (RQ2)
5.2.1 Evaluation on Real Positive User Preference. We use filtered evaluation metrics on two

Amazon datasets to determine whether CSRec training results in recommenders that align with
real positive user preferences (i.e., higher ratings). The results, shown in Table 4, indicate that our
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Table 3. Continued

BERT4Rec SRGNN DreamRec CL4SRec

Dataset Method RC (%) NG (%) RC (%) NG (%) RC (%) NG (%) RC (%) NG (%)

Last.FM

Base 17.27 9.62 14.31 9.11 15.44 8.68 18.34 10.19
SoftRec 17.39 8.77 14.35 9.30 16.07 8.97 17.89 9.68
CSRec-M 18.12a 10.03a 15.19a 9.91a 19.00a 11.29a 19.00a 10.72a
CSRec-D 17.84 9.54 15.29a 9.78a 18.69a 10.86a 18.94 10.58
CSRec-T 18.47a 10.35a 15.51a 9.44 19.10a 11.18a 18.63 10.35

Yelp

Base 7.15 4.34 6.91 4.72 6.99 4.22 8.59 5.48
SoftRec 7.16 4.05 6.93 4.62 6.45 3.94 8.23 4.56
CSRec-M 7.55 4.61 7.51 5.11a 8.37a 4.97 9.00 5.54
CSRec-D 7.42 4.48 7.55a 4.97 8.30a 4.85 9.07 5.59
CSRec-T 7.40 4.51 7.31 4.77 8.18a 4.71 8.97 5.46

Electronics

Base 4.95 2.73 5.15 3.64 3.29 2.01 6.32 3.47
SoftRec 5.06 2.63 5.44 3.57 4.06 2.50 6.58 3.54
CSRec-M 5.61a 3.05 5.66 3.93 4.43 2.63 6.44 3.66
CSRec-D 5.58a 3.05 5.35 3.68 4.86a 2.83a 6.48 3.67
CSRec-T 5.64a 3.10 5.59 3.74 4.88a 2.80a 6.47 3.63

Movies

Base 8.44 4.69 7.66 4.71 7.00 4.29 10.32 6.27

and TV

SoftRec 8.12 4.15 7.30 4.37 7.26 4.33 9.80 5.52
CSRec-M 8.95a 4.99 8.42a 5.28a 8.52a 5.26a 10.50 6.33
CSRec-D 8.61 4.75 8.03a 4.93 8.67a 5.36a 10.48 6.32
CSRec-T 8.82 4.91 8.48a 5.23a 8.65a 5.36a 10.22 6.16

RC is short for Recall@10. NG is short for NDCG@10. Boldface denotes the highest score.
aindicates significant improvements over the corresponding baseline (p < 0.05).

proposed training methods outperform the base training and SoftRec on these datasets. Most CSRec
results demonstrate significant improvements, suggesting that our methods effectively capture
real user preferences even in the presence of noisy training instances (i.e., items a user interacted
with but rated low). Furthermore, the high performance achieved with CSRec-M and CSRec-T
underscores the generalization capability of our methods.

5.2.2 Effect on Reducing Popularity Bias. The long tail phenomenon is prominent in recom-
mendation datasets. As illustrated by the popularity distribution in Figure 3, very few items have
interactions that far exceed those of most other items. We assess the popularity bias of the student
module in Figure 4. Our methods improve recommendation performance for tail items with only
a minor reduction in performance for the most popular items. On the Yelp dataset, we observe
significant improvements for both popular and niche users. This indicates that our training methods
alleviate popularity bias and better focus on niche items, which benefits the long-term profitability
of service providers.

For a deeper analysis, it is important to note that popularity bias is not always detrimental.
According to Zhao et al. [65], popular items can reflect general user interests. A single teacher
model trained separately (e.g., SoftRec [8]) may exhibit both harmful biases and beneficial general
interests, thereby enhancing popularity bias. In contrast, CSRec mitigates harmful bias through
collaboration among multiple teacher modules while retaining beneficial general interests. This is
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Table 4. Comparison of the Top-= Recommendation Performance of Different Models (= = 10) on Two
Rating Datasets Using the Filtered Metrics Described in Section 4.1.2

GRU4Rec NextItNet NARM SASRec

Dataset Method RC+ (%) NG+ (%) RC+ (%) NG+ (%) RC+ (%) NG+ (%) RC+ (%) NG+ (%)

Electronics

Base 5.57 3.07 5.11 3.34 5.57 3.26 7.39 4.27
SoftRec 5.81 3.26 5.48 3.60 5.90 3.43 7.43 4.35
CSRec-M 5.93a 3.35a 5.94a 3.96a 6.19a 3.67a 7.23 4.23
CSRec-D 5.90a 3.31a 5.55 3.66a 6.25a 3.72a 7.20 4.20
CSRec-T 5.97a 3.38a 5.63a 3.75a 6.32a 3.76a 7.45 4.38

Movies and
TV

Base 8.60 4.92 7.55 4.58 9.71 5.79 11.60 7.07
SoftRec 9.81 5.59 8.38 5.12 9.72 5.70 11.29 6.87
CSRec-M 9.92a 5.74a 8.99a 5.50a 10.36a 6.19a 11.64a 7.07
CSRec-D 9.73a 5.65a 8.55 5.19 10.07a 6.01a 11.64a 7.08
CSRec-T 9.95a 5.74a 8.64a 5.26a 10.17a 6.05a 11.60 7.04

BERT4Rec SRGNN DreamRec CL4SRec

Dataset Method RC+ (%) NG+ (%) RC+ (%) NG+ (%) RC+ (%) NG+ (%) RC+ (%) NG+ (%)

Electronics

Base 5.34 2.95 5.36 3.78 3.37 2.07 6.79 3.94
SoftRec 5.50 2.88 5.76 3.75 4.25 2.62 6.70 3.43
CSRec-M 6.10a 3.32a 5.90a 4.08 4.63 2.75 6.85 3.89
CSRec-D 6.04 3.31 5.61 3.84 5.12a 2.98a 6.90 3.90
CSRec-T 5.89 3.20 5.46 3.73 4.35 2.90 6.83 3.89

Movies and
TV

Base 8.82 4.96 7.83 4.88 7.25 4.51 10.75 6.63
SoftRec 8.48 4.37 7.48 4.50 6.49 4.23 9.19 5.78
CSRec-M 9.38a 5.32a 8.69a 5.49a 8.81 5.54a 10.96 6.71
CSRec-D 9.00 5.03 8.20a 5.08 8.96 5.62a 10.90 6.68
CSRec-T 9.24a 5.21 8.66a 5.36a 8.91 5.6a1 10.62 6.49

RC+ is short for Recall+@10. NG+ is short for NDCG+@10. Boldface denotes the highest score.
adenotes significant improvements over the corresponding baseline (p < 0.05).

Fig. 3. Item popularity distribution in the dataset (a) Yelp and (b) Electronics. The x -axis is the item id sorted
by the number of interactions.
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Fig. 4. Performance of SoftRec and the three proposed training methods, i.e., CSRec-M, CSRec-D, and CSRec-
T, on different groups of users. Similar settings to Figure 1 are adopted. We choose GRU4Rec [41] as the base
model on the (a) Yelp and (b) Electronics datasets.

Fig. 5. Performance of the base model and the three proposed training methods, i.e., CSRec-M, CSRec-D, and
CSRec-T, on Last.FM dataset with different sequence lengths. We choose GRU4Rec [41] as the base model.

because beneficial general user interests should be consistent across models and thus preserved
during model collaboration.

5.2.3 Effect of Sequence Length. We also investigate how the sequence length of user–item
interactions affects performance, as shown in Figure 5. Users with longer interaction histories do
not necessarily receive better recommendations [22]. However, training with our proposed methods
shows increased resilience to variations in interaction history length. This observation suggests
that CSRec consistently improves recommendation performance regardless of sequence length.

In conclusion, our proposed training methods not only enhance performance in standard evalua-
tion scenarios but also improve outcomes in evaluations of positive user preferences. The CSRec
teacher module effectively guides the student recommender to produce recommendations that align
with real positive user preferences despite corrupted training data, thereby enhancing robustness.
Additionally, CSRec shows promise in mitigating popularity bias and performing robustly across
varying sequence lengths and sparsity levels.

5.3 Performance of Teacher Modules (RQ3)
As the construction of teacher modules is a major contribution, we evaluate their performance to
assess the quality of the soft labels they generate. We examine the evaluation results on overall
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Table 5. The Performance of the Base Model and the Three Teachers from the Proposed Methods, i.e.,
CSRec-M, CSRec-D, and CSRec-T

GRU4Rec NARM

Dataset Method RC (%) RC+ (%) NG (%) NG+ (%) RC (%) RC+ (%) NG (%) NG+ (%)

Electronics

Base 5.46 5.93 2.99 3.24 5.18 5.54 3.03 3.25
CSRec-M 5.73 6.15 3.24 3.47 5.72 6.14 3.38 3.61
CSRec-D 5.41 5.85 3.00 3.23 5.87 6.26 3.64 3.87
CSRec-T 5.62 6.03 3.17 3.40 5.53 5.93 3.25 3.49

Movies and TV

Base 8.48 8.61 4.79 4.91 9.59 9.90 5.68 5.96
CSRec-M 9.52 9.72 5.53 5.70 10.06 10.42 5.97 6.29
CSRec-D 8.70 8.93 4.94 5.13 9.11 9.33 5.28 5.48
CSRec-T 8.49 8.69 4.72 4.89 9.02 9.26 5.17 5.36

Here, we investigate the results of GRU4Rec and NARM. NG is short for NDCG@10. RC is short for Recall@10. NF+ is
the filtered version metrics described in Section 4.1.2. Boldface indicates the highest score among different teachers and
base models.

data and clean data, using the original metrics and the filtered metrics defined in Section 4.1.2.
We also consider adverse metrics Recall− and NDCG− , which focus on disliked interactions, to
determine if the model performs better by fitting noisy examples. The detailed results are presented
in Table 5. Some teacher modules, such as the model-level teacher, achieve superior performance,
indicating high-quality soft labels. While some teachers, such as the training-level teachers, show
less promising results, they still guide the student models to better performance. This suggests that
teachers do not need to excel in predicting ground truth items to provide helpful soft labels.

In short, the proposed teacher modules can generate high-quality confident soft labels when
training on a clean sample, and give much more conservative guidance on noisy samples, which
helps the students focus on the clean ones and achieve better performance.

5.4 Ablation Study
We investigate the impact of the teacher module, tradeoff coefficient, sub-sampling ratio, and robust
training loss on performance.

Teacher Module. We analyze how the design of the teacher module affects student performance.
Since CSRec-M and CSRec-D use multiple teachers, we first explore the effect of the number of
teachers (i.e., <). The results, using NARM as the student model on two Amazon datasets, are
shown in Figure 6. Results for other student models follow similar trends. Performance improves as
the number of teachers increases from 1 to 2, suggesting that multiple teachers benefit the student.
However, further increasing the number of teachers yields little improvement, indicating that more
teachers do not necessarily provide better soft labels and recommendation results.

Tradeoff Coefficient.We examine how the tradeoff coefficient U in Equation (12), V in Equation (20),
and the smoothing parameter T affect performance. Results for the GRU4Rec model are displayed
in Figure 7, and for the SASRec model in Figure 8. For GRU4Rec, higher tradeoff parameter V
significantly improves performance, highlighting the importance of soft label guidance during
training. In contrast, for SASRec, lower V surpasses higher values at a small temperature but
performs worse at higher temperatures. For both CSRec-M and CSRec-D, performance converges
but slightly decreases as temperature increases. As noted in Section 3.3, when T → ∞, the soft
label approximates label smoothing and provides less useful information. For the training-level

ACM Transactions on Information Systems, Vol. 43, No. 1, Article 21. Publication date: December 2024.



21:20 S. Wu et al.

Fig. 6. Effect of the number of teacher models using NARM as the student model.

method, increasing U improves accuracy with V = 0.75 at some temperatures, while V = 0.5 shows
a slight decrease.
Sub-Sampling Ratio. For CSRec-D, we also explore the effect of the sub-sampling ratio. Results

using NARM as the student model are shown in Figure 9. A large sampling ratio (i.e., p > 0.8) does
not always improve performance. Larger sub-datasets may have more overlapping samples, making
the teacher modules more similar and sharing the same data-level bias and noise. Conversely, a
very small sampling ratio introduces excessive randomness and degrades performance. A ratio of
p = 0.8 is a robust and reliable choice.

Robust Training Loss. Finally, for CSRec-T, we investigate the effect of the robust training loss ℓA
(Equation (12)). Since ℓA resembles the regular distillation loss except for the term−∑

9∈I log(ℎ8, 9 )%61
( 9 | sD), we assess the effectiveness of this expectation term and report the results in Figure 10,
using NARM as the student model. We find that the expectation term significantly enhances the
student’s performance, demonstrating the effectiveness of our proposed methods.

In conclusion, there is a clear tradeoff in choosing hyper-parameters. Our hyper-parameter
study highlights key factors that improve recommendation performance and demonstrates the
effectiveness of the soft labels and proposed methods.
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Fig. 7. The figures for model-level and data-level teachers, i.e., (a) and (b), show the effect of the temperature
T and the tradeoff coefficient V in Equation (20). The figures for the training-level teacher, i.e., (c), show the
effect of T , V , and the tradeoff coefficient U in Equation (12), which is set to 0.50 and 0.75. The base model
architecture is GRU4Rec and we conduct the experiment on dataset Movies and TV.

6 Conclusions
We have proposed a new learning framework, CSRec, to train a robust sequential recommender
from noisy, implicit feedback. The key idea is to introduce confident, soft labels to provide robust
guidance in the learning process. We have presented three teacher modules, i.e., model-level, data-
level, and training-level, for generating high-quality and confident, soft labels from noisy user–item
interactions. We have conducted extensive experiments to assess the effectiveness of the proposed
learning framework.

Experimental results on four datasets and diverse student models demonstrate that training with
the proposed learning framework CSRec helps to improve the recommendation performance. It
can be applied to various deep-learning-based sequential recommendation models.

The broader implications of our work are that we have demonstrated the potential of soft labels
for training sequential recommender systems, which we believe should be further investigated
and developed as a generic framework for producing better soft label guidance for a broader set of
recommendation tasks.

Limitations of our work concern the inefficiency of the whole training framework pipeline due
to the required multiple well-trained teacher models. The lack of exploration of different ensemble
methods for further analysis and comparison is also one of the limitations.
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Fig. 8. The figures for model-level and data-level teachers, i.e., (a) and (b), show the effect of the temperature
T and the tradeoff coefficient V in Equation (20). The figures for the training-level teacher, i.e., (c), show the
effect of T , V , and the tradeoff coefficient U in Equation (12), which is set to 0.50 and 0.75. The base model
architecture is SASRec and we conduct the experiment on dataset Movies and TV.

Fig. 9. Effect of the sub-sampling ratio ? in CSRec-D, using NARM as the student model.

As to future work, we see many promising directions. First, more intuitive and general teacher
modules could be designed beyond the ones we considered in this article, perhaps targeting specific
types of noise or bias present in logged interaction data. Second, we aim to develop a more in-depth
analysis to see how soft labels intrinsically affect the student model learning.
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Fig. 10. Effect of the term −∑
9∈I log(ℎ8, 9 )%61 ( 9 | sD ) in the robust loss ℓA of CSRec-T. Here, “with” and

“without” denote whether the term is used or not. The student model used is NARM.
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