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ABSTRACT
Search applications such as image search, app search and product
search are crucial parts of web search, which we denote as vertical
search services. This tutorial will introduce the research and appli-
cations of user behavior modeling for vertical search. The bulk of
the tutorial is devoted to covering research into behavior patterns,
user behavior models and applications of user behavior data to re-
fine evaluation metrics and ranking models for web-based vertical
search.
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1 MOTIVATION
Vertical search, e.g., image, app and product search, has helped
search engine users to efficiently obtain information in various
forms [8, 18, 30]. User behavior data has been successfully adopted
to improve general Web searches in result ranking, query sugges-
tion, query auto completion, etc. We therefore believe that under-
standing user interaction behavior in vertical search scenarios will
also provide valuable insight into the optimization of their per-
formances. Vertical search engines differ from general web search
engines in the following aspects:
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(1) Different search intent: In vertical search, the results user
searches for are vertical items in heterogeneous forms, e.g.,
images, rather than web pages. It has been shown that Bro-
der’s taxonomy [3], where the search intent of general web
search users is categorized into three classes (informational,
transactional and navigational), is not applicable for verti-
cal search [9]. Since intent is assumed to be the immediate
antecedent of behavior, for any information access service,
it is important to understand the underlying intent behind
user behavior.

(2) Different kinds of relevance definitions: Compared with docu-
ment results of general web search, vertical results are more
heterogeneous. Relevance is a multi-dimensional notion in
vertical search in the sense that users will take different as-
pects into consideration while making relevance judgments.
For example, besides topical relevance, other product-related
attributes including price and popularity also have a strong
effect on user behavior in product search [4].

(3) Different type of result placement: Vertical search engines
usually place results in a grid-based panel rather than in a
one-dimensional ranked list as in web search engines. In
that regard, users can not only browse results in a vertical
direction but also in a horizontal direction. Differences in
result placement lead to different examination behavior of
search users, which brings about different distributions of
users’ attention [24].

(4) Different interaction mechanisms: Interaction mechanisms in
vertical search are unique. For instance, instead of a query-
dependent summary of the landing page, an image snap-
shot is shown together with some metadata about the image,
which is typically only available when a cursor hovers on the
result in image search. A similar mechanism is often used in
product search, where products with different attributes, e.g.,
colors, can be previewed while cursor hovering on thumb-
nails in the result box. Different interaction mechanisms can
also lead to different user behavior patterns.

The aforementioned differences bring challenges to modeling
user behavior in vertical search scenarios. It is challenging, or even
problematic, to apply user behavior models and corresponding
rankingmodels and evaluationmetrics that have been proven useful
for general Web search to vertical search without adaption.
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To address these challenges, there is a growing body of work
on modeling user behavior in vertical search scenarios. Besides
log-based user behavior, more fine-grained user feedback and be-
havior data of vertical search has been collected and mined on
the basis of user surveys, field studies and user studies [2, 19, 24].
Equipped with this data, taxonomies of search intents of vertical
search users have been proposed [17, 19, 23, 30]. For example, Xie
et al. [23] propose an image search intent taxonomy consisting of
three classes: “Explore/Learn”, “Entertain”, “Locate/Acquire” and
Su et al. [19] categorize search intents of product search users into
Target Finding (TF), Decision Making (DM) and Exploration (EP).
Moreover, result placement and interaction mechanisms of vertical
search have been studied [20, 27].

Based on these observations, previous work investigates how
user behavior varies with different search intents and how result
placement and interaction mechanisms affect user behavior [19,
20, 23, 25, 30]. Among them, Wu et al. [20] jointly model the dif-
ferent stages of the shopping journey, i.e., comparing and clicking
a product on a search result page and deciding whether to pur-
chase a product on the product description page, in product search.
Zhuo et al. [30] show that for queries with “Fuzzy Search” intent of
app search, some user habits known from web search are brought
to app search on mobile scenarios. Understanding user behavior
provides an opportunity for using user behavior data to improve
ranking models and evaluation metrics in vertical search. For rank-
ing models, user behavior data enables personalized preference
and context information to be considered into the model construc-
tion [4, 6, 16, 25, 26]. For instance, Xie et al. [25] utilize user behavior,
i.e., click and cursor hovering, in a search session to capture users’
short-term visual preference in image search. For evaluation met-
rics, different types of result placement and unique user behavior
have been considered [20, 27, 31]. Besides topical relevance, aspects
such as image quality (image search), revenue (product search) and
download (app search) need to be optimized. Also, existing list-
based evaluation metrics may not be applicable in grid-based result
panels of vertical search.

We believe it is the right time to organize and present this ma-
terial to a broad audience of interested information retrieval re-
searchers, whether junior or senior, whether academic or industrial.

2 OBJECTIVES
User behavior modeling for vertical search has been investigated
by different communities, in information retrieval, machine learn-
ing and cognitive science. A key aim of this tutorial is to bring
these together and offer a unified perspective. We will do so by
guiding participants through the user behavior modeling workflow
described by Xie [22]; see Figure 1.

More specifically, our objectives for this tutorial are organized
around six challenges that we will use as organizing principles:

Challenge 1 How do search intents, result placement and inter-
action mechanisms of vertical search differ from those of
general web search?
• Motivate the study of user behavior in vertical search.

Challenge 2 How to collect and study user behavior data in verti-
cal search scenarios such as image, app and product search
scenarios?
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Figure 1: A flowchart of research topics introduced in our tu-
torial. An arrow (A→ B)means that Amight have an impact
on B. (Figure taken from [22])

• Introduce how to collect and mine user behavior data
through lab-based user study, field study and search log
given a search scenario.

Challenge 3 How do different search intents, result placement and
interactionmechanisms affect user behavior in vertical search
scenarios?
• Show how user behavior (e.g., perception patterns and
examination behavior) varies with these aspects. Provide
both analytical results and insights gained from observa-
tions.

• Describe user behavior assumptions behind popular user
models while these assumptions are proposed based on
previous user behavior observations.

Challenge 4 How can we use behavior data to construct better rank-
ing models to improve the performance of vertical search
engines?
• Explain how user behavior can be used to improve the
relevance ranking of vertical search engines and guide
the construction of evaluation metrics which can better
reflect users’ satisfaction.

• Reviewwork on relevance ranking that utilizes users’ feed-
back to rank more relevant results to higher ranks.

Challenge 5 How can we use behavior data to design evaluation
metrics to better reflect user satisfaction in the context of
vertical search?
• Provide an understanding of the diversity and richness
of user feedback in vertical search, which can be implicit
(e.g, click signal, cursor hovering and mouse movement)
or explicit (e.g, interactive re-ranking methods).

• Introduce an evaluation framework for vertical search;
since search results in vertical search are more heteroge-
neous than in web search, we will first introduce how to
perform relevance judgments for vertical results.

• Illustrate evaluation metrics and the underlying user be-
havior models.

Challenge 6 What are future directions of research in user behavior
modeling for vertical search?
• Discuss interesting future directions for user behavior
modeling for vertical search.

By discussing these research challenges, we aim to provide a clear
picture of the state of the art in user behavior modeling for vertical



search where multimedia content is provided. Although we mainly
focus on behavior-based models, how to combine user behavior and
content information, e.g., query and result descriptions, will also be
discussed. We believe it is beneficial to bridge the gap between user
behavior and search content. This tutorial will inspire researches
both in behavior modeling and content modeling.

3 FORMAT AND DETAILED SCHEDULE
The tutorial will be organized in a half-day (3 hours plus break).
Collection and analysis of user behavior data as well as model
construction and experimental outcomes will be introduced.
[30 minutes] Background and objectives.

• Introduction to the context, i.e. vertical search scenarios,
where user behavior modeling is investigated.

• Basic concepts and methodologies in search user behavior
analysis

[30 minutes] User behavior data collection.
• How to collect and mine user behavior data in vertical
search settings (e.g., field study [21], eye-tracking user
study [24], user survey [2] and log data [11])?

• How to analyze collected behavior data and gain valuable
insight from it [12, 29]?

[30 minutes] Analytical results of user behavior data.
• Search goals of vertical search users including both the
“what” dimension and the “why” dimension [7, 17, 19, 23,
30].

• How search intents and interaction mechanisms affect
user behavior in vertical search [20, 24]?

[40 minutes] User-centric ranking models.
• Introduce previous work on modeling user behavior to
construct ranking models for vertical search, including
models and corresponding user behavior assumptions [1,
5, 13, 15, 25, 26].

[40 minutes] User-centric evaluation metrics.
• Introduce previous work on evaluation metrics for vertical
search, including offline metrics and online metrics [20,
27, 29].

[10 minutes] Conclusion and future directions.
• Wrap up and introduce promising future directions for
this topic.

4 SUPPORTING MATERIALS
We will provide the materials:

(1) Slides.
(2) Protocol (processes and settings) to conduct field study, user

study to collect and mine user behavior data.
(3) Code and data samples to follow experimental segments of

the tutorial.
(4) Extensive annotated bibliography.

Those materials will be made available at https://github.com/THU
xiexiaohui/SIGIR-2020-Tutorial.

5 RELATED MATERIALS
No tutorial is an island. This tutorial aims at offering a compre-
hensive picture of user behavior modeling for vertical search, a

topic that is increasingly attracting attention but that has not been
treated systematically in any of the the tutorials listed. Other recent
tutorials offer further in-depth treatments of some of the topics
that we cover in this tutorial.

For example, Lalmas and Hong [10] present a tutorial on metrics
of user engagement atWSDM 2018. They introduce how to leverage
collected knowledge about the daily online behavior of millions of
users to understand what engage them short-term and long-term.
A similar tutorial has also been presented at WWW 2019. Moreover,
Omidvar-Tehrani and Amer-Yahia [14] review research on User
Group Analytics (UGA) and discuss different approaches and open
challenges for group discovery, exploration, and visualization in a
CIKM 2018 tutorial. At SIGIR 2019, Zarrinkalam et al. [28] intro-
duce methods for extracting, mining and predicting users’ interests
from social networks. Information source, mining techniques and
evaluation methodologies are covered in this tutorial.

We encourage our participants to follow up and deepen their
understanding of modeling user behavior for vertical search by also
studying these materials.
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