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ABSTRACT
Recommender systems that learn from implicit feedback often use
large volumes of a single type of implicit user feedback, such as
clicks, to enhance the prediction of sparse target behavior such as
purchases. Using multiple types of implicit user feedback for such
target behavior prediction purposes is still an open question. Exist-
ing studies that attempted to learn from multiple types of user be-
havior often fail to: (i) learn universal and accurate user preferences
from different behavioral data distributions, and (ii) overcome the
noise and bias in observed implicit user feedback.

To address the above problems, we propose multi-behavior
alignment (MBA), a novel recommendation framework that learns
from implicit feedback by using multiple types of behavioral data.
We conjecture that multiple types of behavior from the same user
(e.g., clicks and purchases) should reflect similar preferences of that
user. To this end, we regard the underlying universal user prefer-
ences as a latent variable. The variable is inferred by maximizing
the likelihood of multiple observed behavioral data distributions
and, at the same time, minimizing the Kullback–Leibler divergence
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(KL-divergence) between user models learned from auxiliary be-
havior (such as clicks or views) and the target behavior separately.
MBA infers universal user preferences from multi-behavior data
and performs data denoising to enable effective knowledge transfer.
We conduct experiments on three datasets, including a dataset col-
lected from an operational e-commerce platform. Empirical results
demonstrate the effectiveness of our proposed method in utilizing
multiple types of behavioral data to enhance the prediction of the
target behavior.
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1 INTRODUCTION
Recommender systems aim to infer user preferences from observed
user-item interactions and recommend items that match those pref-
erences. Many operational recommender systems are trained from
implicit user feedback [14, 16]. Recommender systems that learn
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Figure 1: Distributions of items interacted with by two users
in the Beibei and Taobao datasets (described in §4.2). Item
representations are obtained by a matrix factorization model
trained on the purchase behavior data. 𝑢𝑖𝑐 (𝑢𝑖𝑝) represents
the distribution of items clicked (purchased) by user 𝑢𝑖 .

from implicit user feedback are typically trained on a single type of
implicit user behavior, such as clicks. However, in real-world sce-
narios, multiple types of user behavior are logged when a user in-
teracts with a recommender system. For example, users may click,
add to a cart, and purchase items on an e-commerce platform [31].
Simply learning recommenders from a single type of behavioral
data such as clicks can lead to a misunderstanding of a user’s real
user preferences since the click data is noisy and can easily be cor-
rupted due to bias [5], and thus lead to suboptimal target behav-
ior (e.g., purchases) predictions. Meanwhile, only considering pur-
chase data tends to lead to severe cold-start problems [26, 41, 48]
and data sparsity problems [23, 27].
Using multiple types of behavioral data. How can we use mul-
tiple types of auxiliary behavioral data (such as clicks) to enhance
the prediction of sparse target user behavior (such as purchases)
and thereby improve recommendation performance? Some prior
work [2, 12] has used multi-task learning to train recommender
systems on both target behavior and multiple types of auxiliary
behavior. Building on recent advances in graph neural networks,
Jin et al. [18] encode target behavior and multiple types of auxil-
iary behavior into a heterogeneous graph and perform convolution
operations on the constructed graph for recommendation. In addi-
tion, recent research tries to integrate the micro-behavior of user-
item interactions into representation learning in the sequential and
session-based recommendation [25, 44, 46]. These publications fo-
cus on mining user preferences from user-item interactions, which
is different from our task of predicting target behavior from multi-
ple types of user behavior.
Limitations of current approaches. Prior work on using multiple
types of behavioral data to improve the prediction of the target
behavior in a recommendation setting has two main limitations.

The first limitation concerns the gap between data distributions
of different types of behavior. This gap impacts the learning of uni-
versal and effective user preferences. For example, users may have
clicked on but not purchased items, resulting in different positive

and negative instance distributions across auxiliary and target be-
haviors. Existing work typically learns separate user preferences
for different types of behavior and then combines those preferences
to obtain an aggregate user representation. We argue that: (i) user
preferences learned separately based on different types of behavior
may not consistently lead to the true user preferences, and (ii) mul-
tiple types of user behavior should reflect similar user preferences;
in other words, there should be an underlying universal set of user
preferences under different types of behavior of the same user.

The second limitation concerns the presence of noise and bias in
auxiliary behavioral data, which impacts knowledge extraction and
transfer. A basic assumption of recommendations based on implicit
feedback is that observed interactions between users and items
reflect positive user preferences, while unobserved interactions are
considered negative training instances. However, this assumption
seldom holds in reality. A click may be triggered by popularity bias
[5], which does not reflect a positive preference. And an unobserved
interaction may be attributed to a lack of exposure [6]. Hence,
simply incorporating noisy or biased behavioral data may lead to
sub-optimal recommendation performance.
Motivation. Our assumption is that multiple types of behavior
from the same user (e.g., clicks and purchases) should reflect similar
preferences of that user. To illustrate this assumption, consider
Figure 1, which shows distributions of items that two users (𝑢1 and
𝑢2) interacted with (clicks 𝑐 and purchases 𝑝), in the Beibei and
Taobao datasets (described in Section 4.2 below). For both users,
the items they clicked or purchased are relatively close. These
observations motivate our hypothesis that multiple types of user
behavior reflect similar user preferences, which is vital to improve
the recommendation performance further.
Proposed method. To address the problem of learning from mul-
tiple types of auxiliary behavioral data and improve the prediction
of the target behavior (and hence recommendation performance),
we propose a training framework called multi-behavior alignment
(MBA). MBA aligns user preferences learned from different types
of behavior. The key assumption behind MBA is that multiple types
of behavior from the same user reflect similar underlying user pref-
erences.

To address the data distribution limitation mentioned above, we
utilize KL-divergence to measure the discrepancy between user
models learned frommultiple types of auxiliary behavior and target
behavior, and then conduct knowledge transfer by minimizing this
discrepancy to improve the recommendation performance.

For the second limitation mentioned above (concerning noise
and bias in behavioral data), MBA regards the underlying univer-
sal user preferences as a latent variable. The variable is then in-
ferred by maximizing the likelihood of multiple types of observed
behavioral data while minimizing the discrepancy between models
trained on different types of behavioral data. In this manner, MBA
denoises multiple types of behavioral data and enables more effec-
tive knowledge transfer across multiple types of user behavior.

To demonstrate the effectiveness of the proposed method, we
conduct extensive experiments on two open benchmark datasets
and one dataset collected from an operational e-commerce platform.



Experimental results show that the proposed MBA framework out-
performs related state-of-the-art baselines.
Main contributions. Our main contributions are as follows:
• We argue that multiple types of auxiliary and target behavior
should reflect similar user preferences, and we propose to infer
the true user preferences from multiple types of behavioral data.

• We propose a learning framework MBA to jointly perform data
denoising and knowledge transfer across multiple types of be-
havioral data to enhance target behavior prediction and hence
improve the recommendation performance.

• We conduct experiments on three datasets to demonstrate the
effectiveness of the MBA method. One of these datasets is col-
lected from an operational e-commerce platform, and includes
clicks and purchase behavior data. Experimental results show
state-of-the-art recommendation performance of the proposed
MBA method.

2 RELATEDWORK
We review prior work on multi-behavior recommendation and on
denoising methods for recommendation from implicit feedback.

2.1 Multi-behavior recommendation
Unlike conventional implicit feedback recommendation models [15,
21], which train a recommender on a single type of user behavior
(e.g., clicks), multi-behavior recommendation models use multiple
types of auxiliary behavior data to enhance the recommendation
performance on target behavior [1, 7, 12, 18, 33, 37, 39]. Recent stud-
ies use multi-task learning to perform joint optimization on learn-
ing auxiliary behavior and target behavior. For example, Gao et al.
[12] propose a multi-task learning framework to learn user pref-
erences from multi-behavior data based on a pre-defined relation-
ship between different behavior. Since different behavioral inter-
actions between users and items can form a heterogeneous graph,
recent studies also focus on using graph neural network (GNN) to
mine the correlations among different types of behavior. For ex-
ample, Wang et al. [33] uses the auxiliary behavior data to build
global item-to-item relations and further improve the recommenda-
tion performance of target behavior. Jin et al. [18] propose a graph
convolutional network (GCN) based model on capturing the di-
verse influence of different types of behavior and the various se-
mantics of different types of behavior. Xia et al. [39] incorporate
multi-behavior signals through graph-based meta-learning. Chen
et al. [1] regard the multi-behavior recommendation task as a multi-
relationship prediction task and train the recommender with an
efficient non-sampling method. Additionally, some studies apply
contrastive learning or a variational autoencoder (VAE) to improve
the multi-behavior recommender. Xuan et al. [42] propose a knowl-
edge graph enhanced contrastive learning framework to capture
multi-behavioral dependencies better and solve the data sparsity
problem of the target behavior, and Ma et al. [24] propose a VAE-
based model to conduct multi-behavior recommendation.

Another related research field is based on micro-behaviors [25,
44, 46], which utilize the micro-operation sequence in the process
of user-item interactions to capture user preferences and predict
the next item. For example, Yuan et al. [44] focus on “sequential pat-
terns” and “dyadic relational patterns” in micro-behaviors, and then

use an extended self-attention network to mine the relationship be-
tween micro-behavior and user preferences. This work focuses on
mining user preferences from the micro-operation sequence.

However, existing studies still neglect the different data distribu-
tions across multiple types of user behavior, and thus fail to learn
accurate and universal user preferences. Besides, prior work does
not consider the noisy signals of user implicit feedback data, result-
ing in ineffective knowledge extraction and transfers.

2.2 Recommendation denoising
Existing recommender systems are usually trained with implicit
feedback since it is much easier to collect than explicit ratings [28].
Recently, some research [17, 32, 36] has pointed out that implicit
feedback can easily be corrupted by different factors, such as vari-
ous kinds of bias [5] or users’ mistaken clicks. Therefore, there have
been efforts aimed at alleviating the noisy problem of implicit rec-
ommendation. These efforts include sample selection methods [8–
11, 36, 43], re-weighting methods [3, 30, 32, 32, 35], methods using
additional information [19, 22, 45], and methods designing specific
denoising architectures [4, 13, 38, 40].

Sample selection methods aim to design more effective samplers
for model training. For example, Gantner et al. [11] consider pop-
ular but un-interacted items as items that are highly likely to be
negative ones, while Ding et al. [8] consider clicked but not pur-
chased items as likely to be negative samples. Re-weighting meth-
ods typically identify noisy samples as instances with higher loss
values and then assign lower weights to them. For example, Wang
et al. [32] discard the large-loss samples with a dynamic threshold
in each iteration. Wang et al. [35] utilize the differences between
model predictions as the denoising signals. Additional information
such as dwell time [19], gaze pattern [45] and auxiliary item fea-
tures [22] can also be used to denoise implicit feedback. Methods
designing specific denoising architectures improve the robustness
of recommender systems by designing special modules. Wu et al.
[38] use self-supervised learning on user-item interaction graphs
to improve the robustness of graph-based recommendation models.
Gao et al. [13] utilize the self-labeled memorized data as denoising
signals to improve the robustness of recommendation models.

Unlike the work listed above, which does not consider multiple
types of user behavior, in this work, we focus on extracting under-
lying user preferences from (potentially) corrupted multi-behavior
data and then conducting knowledge transfer to improve the rec-
ommendation performance.

3 METHOD
In this section, we detail our proposed MBA framework for multi-
behavior recommendation. We first introduce notations and the
problem formulation in Section 3.1. After that, we describe how to
perform multi-behavior alignment on noisy implicit feedback in
Section 3.2. Finally, training details are given in Section 3.3.

3.1 Notation and problem formulation
We write 𝑢 ∈ U and 𝑖 ∈ I for a user and an item, where U and I
indicate the user set and the item set, respectively. Without loss of
generality, we regard click behavior as the auxiliary behavior and
purchase behavior as the target behavior. We write R𝑓 ∈ R |U |× |I |



for the observed purchase behavior data. Specifically, each item
𝑟
𝑓

𝑢,𝑖
∈ R𝑓 is set to 1 if there is a purchase behavior between user

𝑢 and item 𝑖; otherwise 𝑟 𝑓
𝑢,𝑖

is set as 0. Similarly, we denote R𝑔 ∈
R |U |× |I | as the observed click behavior data, where each 𝑟𝑔

𝑢,𝑖
∈ R𝑔

is set as 1 if there is a click behavior between user 𝑢 and item 𝑖;
otherwise 𝑟𝑔

𝑢,𝑖
= 0. We use 𝑃 (R𝑓 ) and 𝑃 (R𝑔) to denote the user

preference distribution learned from R𝑓 and R𝑔 , respectively.
We assume that there is an underlying latent true user prefer-

ence matrix R𝑡 with 𝑟𝑡𝑢,𝑖 ∈ R𝑡 as the true preference of user 𝑢 over
item 𝑖 . The probabilistic distribution of R𝑡 is denoted as 𝑃 (R𝑡 ). Both
the data observation of R𝑓 and R𝑔 is motivated by the latent univer-
sal true user preference distribution 𝑃 (R𝑡 ) plus different kinds of
noises or biases. Formally, we assume that 𝑃 (R𝑡 ) follows a Bernoulli
distribution and can be approximated by a target recommender
model 𝑡𝜃 with 𝜃 as the parameters:

𝑟𝑡𝑢,𝑖 ∼ Bernoulli(𝑡𝜃 (𝑢, 𝑖)) . (1)

Since the true user preferences 𝑟𝑡
𝑢,𝑖

are intractable, we need to

introduce the learning signals from the observed 𝑟 𝑓
𝑢,𝑖

and 𝑟𝑔
𝑢,𝑖

to
infer 𝑟𝑡

𝑢,𝑖
. As a result, we introduce the following models to depict

the correlations between the observed user implicit feedback (i.e.,
𝑟
𝑓

𝑢,𝑖
and 𝑟𝑔

𝑢,𝑖
) and the latent true user preferences 𝑟𝑡

𝑢,𝑖
:

𝑟
𝑓

𝑢,𝑖
| 𝑟𝑡𝑢,𝑖 = 0 ∼ Bernoulli(ℎ𝑓

𝜙
(𝑢, 𝑖))

𝑟
𝑓

𝑢,𝑖
| 𝑟𝑡𝑢,𝑖 = 1 ∼ Bernoulli(ℎ𝑓𝜑 (𝑢, 𝑖))

𝑟
𝑔

𝑢,𝑖
| 𝑟𝑡𝑢,𝑖 = 0 ∼ Bernoulli(ℎ𝑔

𝜙 ′ (𝑢, 𝑖))

𝑟
𝑔

𝑢,𝑖
| 𝑟𝑡𝑢,𝑖 = 1 ∼ Bernoulli(ℎ𝑔

𝜑 ′ (𝑢, 𝑖)),

(2)

where ℎ𝑓
𝜙
(𝑢, 𝑖) and ℎ𝑓𝜑 (𝑢, 𝑖) are parameterized by 𝜙 and 𝜑 in the

observed purchase behavior data, respectively, while ℎ𝑔
𝜙 ′ (𝑢, 𝑖) and

ℎ
𝑔

𝜑 ′ (𝑢, 𝑖) are parameterized by 𝜙 ′ and 𝜑 ′ in the observed click be-
havior data respectively.

The target of our task is formulated as follows: given the ob-
servedmulti-behavior user implicit feedback, i.e., R𝑓 and R𝑔 , we aim
to train the latent true user preference model 𝑡𝜃 , and then use 𝑡𝜃 to
improve the prediction performance on target behavior. More pre-
cisely, during model inference, we introduce both 𝑃 (Rf ) and 𝑃 (Rt)
to perform the target behavior recommendation and use a hyperpa-
rameter 𝛽 to balance the 𝑃 (Rt) and 𝑃 (Rf ), which is formulated as:

score = 𝛽𝑃 (R𝑡 ) + (1 − 𝛽)𝑃 (R𝑓 ) . (3)

We select items with the highest score as the target behavior rec-
ommendation results.

3.2 Multi-behavior alignment on noisy data
The key motivation for MBA is that multiple types of user behavior
should reflect similar user preferences. Hence, Eq. 4 is expected to
be achieved with the convergence of the training models:

𝑃 (R𝑓 ) ≈ 𝑃 (R𝑔) ≈ 𝑃 (R𝑡 ) . (4)

Therefore, 𝑃 (R𝑓 ) and 𝑃 (R𝑡 ) should have a relatively small KL-
divergence, which is formulated as follows:

𝐾𝐿[𝑃 (R𝑓 )∥𝑃 (R𝑡 )] = 𝐸𝑃 (R𝑓 ) [log 𝑃 (R𝑓 ) − log 𝑃 (R𝑡 )] . (5)

Similarly, we also have the KL-divergence between 𝑃 (R𝑔) and
𝑃 (R𝑡 ):

𝐾𝐿[𝑃 (R𝑔)∥𝑃 (R𝑡 )] = 𝐸𝑃 (R𝑔 ) [log 𝑃 (R𝑔) − log 𝑃 (R𝑡 )] . (6)

However, naively minimizing the above KL-divergence is not feasi-
ble since it overlooks the data distribution gaps and correlations
between multiple types of behavior. To address this issue, we use
Bayes’ theorem to rewrite 𝑃 (R𝑡 ) as follows:

𝑃 (R𝑡 ) =
𝑃 (R𝑓 )𝑃 (R𝑡 | R𝑓 )
𝑃 (R𝑓 | R𝑡 )

=
𝑃 (R𝑔)𝑃 (R𝑡 | R𝑔)
𝑃 (R𝑔 | R𝑡 )

. (7)

By substituting the right part of Eq. 7 into Eq. 5 and rearranging
erms, we obtain the following equation:

𝐸𝑃 (R𝑓 ) [log 𝑃 (R𝑔 | R𝑡 )] − 𝐾𝐿[𝑃 (R𝑓 )∥𝑃 (R𝑡 )]
= log 𝑃 (R𝑔) − 𝐾𝐿[𝑃 (R𝑓 )∥𝑃 (R𝑡 | R𝑔)] .

(8)

Since 𝐾𝐿[𝑃 (R𝑓 )∥𝑃 (R𝑡 | R𝑔)] ≥ 0, the left side of Eq. 8 is an ap-
proximate lower bound of the logarithm log 𝑃 (R𝑔). The bound is
satisfied if, and only if, 𝑃 (R𝑓 ) perfectly recovers 𝑃 (R𝑡 | R𝑔), which
means 𝑃 (R𝑓 ) trained on the observed target behavior can perfectly
approximates the true user preference distribution captured from
the auxiliary behavior data. The above condition is in line with the
main motivation of the MBA, i.e., different behavior data should
reflect similar user preferences.

We see that the left side of Eq. 8 is based on the expectation
over 𝑃 (R𝑓 ), which means that we are trying to train 𝑃 (R𝑓 ) with
the given corrupted auxiliary behavior data R𝑔 (i.e., the term
𝐸𝑃 (R𝑓 ) [log 𝑃 (R𝑔 | R𝑡 )]) and then to transmit the information from
𝑃 (R𝑓 ) to 𝑃 (R𝑡 ) via the term 𝐾𝐿[𝑃 (R𝑓 )∥𝑃 (R𝑡 )]. Such a learning
process is ineffective for learning the true user preference distri-
bution 𝑃 (R𝑡 ) and the target recommender model 𝑡𝜃 . To overcome
the above issue, according to Eq. 4, when the training process has
converged, the preference distributions 𝑃 (R𝑓 ) and 𝑃 (R𝑡 ) would
be close to each other. As a result, we can change the expectation
over 𝑃 (R𝑓 ) to the expectation over 𝑃 (R𝑡 ) to learn 𝑃 (R𝑡 ) more ef-
fectively. So we modify the left side of Eq. 8 as

𝐸𝑃 (R𝑡 ) [log 𝑃 (R𝑔 | R𝑡 )] − 𝐾𝐿[𝑃 (R𝑓 )∥𝑃 (R𝑡 )]
≈ log 𝑃 (R𝑔) − 𝐾𝐿[𝑃 (R𝑓 )∥𝑃 (R𝑡 | R𝑔)] .

(9)

Similarly, if we substitute the middle part of Eq. 7 into Eq. 6 and
perform similar derivations, we can obtain:

𝐸𝑃 (R𝑡 ) [log 𝑃 (R𝑓 | R𝑡 )] − 𝐾𝐿[𝑃 (R𝑔)∥𝑃 (R𝑡 )]
≈ log 𝑃 (R𝑓 ) − 𝐾𝐿[𝑃 (R𝑔)∥𝑃 (R𝑡 | R𝑓 )] .

(10)

The left side of Eq. 10 is an approximate lower bound of log 𝑃 (R𝑓 ).
The bound is satisfied only if 𝑃 (R𝑔) perfectly recovers 𝑃 (R𝑡 | R𝑓 ),
which means 𝑃 (R𝑔) trained on the observed auxiliary behaviors
can perfectly approximate the true user preference distribution
captured from the target behavior data. Such condition further
verifies the soundness of MBA, i.e., multiple types of user behavior
are motivated by similar underlying user preferences.

Combining the left side of both Eq. 9 and Eq. 10 we obtain the
loss function as:

𝐿 = − 𝐸𝑃 (R𝑡 ) [log 𝑃 (R𝑔 | R𝑡 )] + 𝐾𝐿[𝑃 (R𝑓 )∥𝑃 (R𝑡 )]
− 𝐸𝑃 (R𝑡 ) [log 𝑃 (R𝑓 | R𝑡 )] + 𝐾𝐿[𝑃 (R𝑔)∥𝑃 (R𝑡 )] .

(11)

We can see that the loss function aims to maximize the likelihood of
data observation (i.e., 𝑃 (R𝑔 | R𝑡 ) and 𝑃 (R𝑓 | R𝑡 )) and minimize the



KL-divergence between distributions learned from different user
behavior data. The learning process of MBA serves as a filter to
simultaneously denoise multiple types of user behavior and conduct
beneficial knowledge transfers to infer the true user preferences to
enhance the prediction of the target behavior.

3.3 Training details
As described in Section 3.1, we learn the user preference distribu-
tions 𝑃 (R𝑓 ) and 𝑃 (R𝑔) from R𝑓 and R𝑔 , respectively. In order to
enhance the learning stability, we pre-train 𝑃 (R𝑓 ) and 𝑃 (R𝑔) in R𝑓
and R𝑔 , respectively. We use the same model structures of our tar-
get recommender 𝑡𝜃 as the pre-training model.

As the training converges, the KL-divergence will gradually ap-
proach 0. In order to enhance the role of the KL-divergence in con-
veying information, we set a hyperparameter 𝛼 to enhance the ef-
fectiveness of the KL-divergence. Then we obtain the following
training loss function:

𝐿𝑀𝐵𝐴 = −𝐸𝑃 (R𝑡 ) [log 𝑃 (R𝑔 | R𝑡 )] + 𝛼𝐾𝐿[𝑃 (R𝑓 )∥𝑃 (R𝑡 )]
− 𝐸𝑃 (R𝑡 ) [log 𝑃 (R𝑓 | R𝑡 )] + 𝛼𝐾𝐿[𝑃 (R𝑔)∥𝑃 (R𝑡 )] .

(12)

3.3.1 Expectation derivation. As described in Section 3.1, both R𝑓
and R𝑔 contain various kinds of noise and bias. In order to infer the
latent true user preferences from the corrupted multi-behavior data,
we use ℎ𝑓

𝜙
(𝑢, 𝑖) and ℎ𝑓𝜑 (𝑢, 𝑖) to capture the correlations between the

true user preferences and the observed purchase data. Similarly,
ℎ
𝑔

𝜙 ′ (𝑢, 𝑖) and ℎ
𝑔

𝜑 ′ (𝑢, 𝑖) are used to capture the correlations between
the true user preferences and the observed click data, as shown in
Eq. 2. Specifically, we expand 𝐸𝑃 (R𝑡 ) [log 𝑃 (R𝑔 | R𝑡 )] as:

𝐸𝑃 (R𝑡 ) [log 𝑃 (R𝑔 | R𝑡 )] =
∑︁
(𝑢,𝑖 )

𝐸𝑟𝑡
𝑢,𝑖

∼𝑃 (R𝑡 ) [log 𝑃 (𝑟
𝑔

𝑢,𝑖
| 𝑟𝑡𝑢,𝑖 )]

=
∑︁

(𝑢,𝑖 ) |𝑟𝑔
𝑢,𝑖

=1

[
logℎ𝑔

𝜑 ′ (𝑢, 𝑖)𝑡𝜃 (𝑢, 𝑖) +

logℎ𝑔
𝜙 ′ (𝑢, 𝑖) (1 − 𝑡𝜃 (𝑢, 𝑖))

]
+∑︁

(𝑢,𝑖 ) |𝑟𝑔
𝑢,𝑖

=0

[
log(1−ℎ𝑔

𝜑 ′ (𝑢, 𝑖))𝑡𝜃 (𝑢, 𝑖) +

log(1−ℎ𝑔
𝜙 ′ (𝑢, 𝑖)) (1−𝑡𝜃 (𝑢, 𝑖))

]
.

(13)

Similarly, the term 𝐸𝑃 (R𝑡 ) [log 𝑃 (R𝑓 | R𝑡 )] can be expanded as:

𝐸𝑃 (R𝑡 ) [log 𝑃 (R𝑓 | R𝑡 )] =
∑︁
(𝑢,𝑖 )

𝐸𝑟𝑡
𝑢,𝑖

∼𝑃 (R𝑡 ) [log 𝑃 (𝑟
𝑓

𝑢,𝑖
| 𝑟𝑡𝑢,𝑖 )]

=
∑︁

(𝑢,𝑖 ) |𝑟 𝑓
𝑢,𝑖

=1

[
logℎ𝑓𝜑 (𝑢, 𝑖)𝑡𝜃 (𝑢, 𝑖) +

logℎ𝑓
𝜙
(𝑢, 𝑖) (1 − 𝑡𝜃 (𝑢, 𝑖))

]
+∑︁

(𝑢,𝑖 ) |𝑟 𝑓
𝑢,𝑖

=0

[
log(1−ℎ𝑓𝜑 (𝑢, 𝑖))𝑡𝜃 (𝑢, 𝑖) +

log(1−ℎ𝑓
𝜙
(𝑢, 𝑖)) (1 − 𝑡𝜃 (𝑢, 𝑖))

]
.

(14)

By aligning and denoising the observed target behavior and auxil-
iary behavior data simultaneously, the target recommender 𝑡𝜃 is
trained to learn the universal true user preference distribution.

3.3.2 Alternative model training. In the learning stage, we find that
directly training 𝑡𝜃 with Eq. 12–Eq. 14 does not yield satisfactory
results, which is caused by the simultaneous update of five mod-
els (i.e., ℎ𝑔

𝜙 ′ , ℎ
𝑔

𝜑 ′ , ℎ
𝑓

𝜙
, ℎ𝑓𝜑 and 𝑡𝜃 ) in such an optimization process.

These five models may interfere with each other and prevent 𝑡𝜃
from learning well. To address this problem, we set two alternative
training steps to train the involved models iteratively.

In the first training step, we assume that a user tends to not
click or purchase items that the user dislikes. That is to say, given
𝑟𝑡
𝑢,𝑖

= 0 we have 𝑟 𝑓
𝑢,𝑖

≈ 0 and 𝑟𝑔
𝑢,𝑖

≈ 0, so we have ℎ𝑓
𝜙

≈ 0 and

ℎ
𝑔

𝜙 ′ ≈ 0 according to Eq. 2. Thus in this step, only the models ℎ𝑓𝜑 ,

ℎ
𝑔

𝜑 ′ and 𝑡𝜃 are trained. Then Eq. 13 can be reformulated as:

𝐸𝑃 (R𝑡 ) [log 𝑃 (R𝑔 | R𝑡 )] = 𝐿𝐶𝑁 + 𝐿𝐶𝑃 , (15)

where

𝐿𝐶𝑁 =
∑︁

(𝑢,𝑖 ) |𝑟𝑔
𝑢,𝑖

=0

log(1 − ℎ𝑔
𝜑 ′ (𝑢, 𝑖)) · 𝑡𝜃 (𝑢, 𝑖),

𝐿𝐶𝑃 =
∑︁

(𝑢,𝑖 ) |𝑟𝑔
𝑢,𝑖

=1

logℎ𝑔
𝜑 ′ (𝑢, 𝑖) · 𝑡𝜃 (𝑢, 𝑖) −𝐶1 · (1 − 𝑡𝜃 (𝑢, 𝑖)) .

Meanwhile, Eq. 14 can be reformulated as:

𝐸𝑃 (R𝑡 ) [log 𝑃 (R𝑓 | R𝑡 )] = 𝐿𝑃𝑁 + 𝐿𝑃𝑃 , (16)

where

𝐿𝑃𝑁 =
∑︁

(𝑢,𝑖 ) |𝑟 𝑓
𝑢,𝑖

=0

log(1 − ℎ𝑓𝜑 (𝑢, 𝑖)) · 𝑡𝜃 (𝑢, 𝑖),

𝐿𝑃𝑃 =
∑︁

(𝑢,𝑖 ) |𝑟 𝑓
𝑢,𝑖

=1

logℎ𝑓𝜑 (𝑢, 𝑖) · 𝑡𝜃 (𝑢, 𝑖) −𝐶1 · (1 − 𝑡𝜃 (𝑢, 𝑖)) .

Here, we denote 𝐶1 as a large positive hyperparameter to replace
− logℎ𝑔

𝜙 ′ (𝑢, 𝑖) and − logℎ𝑓
𝜙
(𝑢, 𝑖).

In the second training step, we assume that a user tends to click
and purchase the items that the user likes. That is to say, given
𝑟𝑡
𝑢,𝑖

= 1 we have 𝑟 𝑓
𝑢,𝑖

≈ 1 and 𝑟𝑔
𝑢,𝑖

≈ 1, so we have ℎ𝑓𝜑 ≈ 1 and

ℎ
𝑔

𝜑 ′ ≈ 1 according to Eq. 2. Thus in this step, only the models ℎ𝑓
𝜙
,

ℎ
𝑔

𝜙 ′ and 𝑡𝜃 will be updated. Then Eq. 13 can be reformulated as:

𝐸𝑃 (R𝑡 ) [log 𝑃 (R𝑔 | R𝑡 )] = 𝐿′𝐶𝑃 + 𝐿′𝐶𝑁 , (17)

where

𝐿′𝐶𝑃 =
∑︁

(𝑢,𝑖 ) |𝑟𝑔
𝑢,𝑖

=1

logℎ𝑔
𝜙 ′ (𝑢, 𝑖) (1 − 𝑡𝜃 (𝑢, 𝑖)),

𝐿′𝐶𝑁 =
∑︁

(𝑢,𝑖 ) |𝑟𝑔
𝑢,𝑖

=0

𝐶2𝑡𝜃 (𝑢, 𝑖) + log(1 − ℎ𝑔
𝜙 ′ (𝑢, 𝑖)) (1 − 𝑡𝜃 (𝑢, 𝑖)) .

Eq. 14 can be reformulated as:

𝐸𝑃 (R𝑡 ) [log 𝑃 (R𝑓 | R𝑡 )] = 𝐿′𝑃𝑃 + 𝐿′𝑃𝑁 (18)

where

𝐿′𝑃𝑃 =
∑︁

(𝑢,𝑖 ) |𝑟 𝑓
𝑢,𝑖

=1

logℎ𝑓
𝜙
(𝑢, 𝑖) (1 − 𝑡𝜃 (𝑢, 𝑖)),



𝐿′𝑃𝑁 =
∑︁

(𝑢,𝑖 ) |𝑟 𝑓
𝑢,𝑖

=0

𝐶2𝑡𝜃 (𝑢, 𝑖) + log(1 − ℎ𝑓
𝜙
(𝑢, 𝑖)) (1 − 𝑡𝜃 (𝑢, 𝑖)) .

𝐶2 is a large positive hyperparameter to replace − log(1−ℎ𝑔
𝜑 ′ (𝑢, 𝑖))

and − log(1 − ℎ𝑓𝜑 (𝑢, 𝑖)).

3.3.3 Training procedure. In order to facilitate the description of
sampling and training process, we divide 𝐸𝑃 (R𝑡 ) [log 𝑃 (R𝑔 | R𝑡 )]
and 𝐸𝑃 (R𝑡 ) [log 𝑃 (R𝑓 | R𝑡 )] into four parts (see Eq. 15 to Eq. 18),
namely click positive loss (𝐿𝐶𝑃 and 𝐿′

𝐶𝑃
), click negative loss (𝐿𝐶𝑁

and 𝐿′
𝐶𝑁

), purchase positive loss (𝐿𝑃𝑃 and 𝐿′
𝑃𝑃

), and purchase
negative loss (𝐿𝑃𝑁 and 𝐿′

𝑃𝑁
). Each sample in the training set can be

categorized into one of three situations: (i) clicked and purchased,
(ii) clicked but not purchased, and (iii) not clicked and not purchased.
The three situations involve different terms in 𝐸𝑃 (R𝑡 ) [log 𝑃 (R𝑔 |
R𝑡 )] and 𝐸𝑃 (R𝑡 ) [log 𝑃 (R𝑓 | R𝑡 )]. In situation (i), each sample in-
volves the 𝐿𝐶𝑃 and 𝐿𝑃𝑃 (or 𝐿′

𝐶𝑃
and 𝐿′

𝑃𝑃
in the alternative training

step). In situation (ii), each sample involves the 𝐿𝐶𝑃 and 𝐿𝑃𝑁 (or
𝐿′
𝐶𝑃

and 𝐿′
𝑃𝑁

in the alternative training step). In situation (iii), each
sample involves the 𝐿𝐶𝑁 and 𝐿𝑃𝑁 (or 𝐿′

𝐶𝑁
and 𝐿′

𝑃𝑁
in the alterna-

tive training step). We then train MBA according to the observed
multiple types of user behavior data in situations (i) and (ii), and
use the samples in situation (iii) as our negative samples. Details of
the training process for MBA are provided in Algorithm 1.

Algorithm 1: Training Process of MBA
Input: The observed multi-behavior data D,

hyperparameter settings;
Output: All model parameters 𝜑 , 𝜑 ′, 𝜙 ,𝜙 ′,𝜃 ;

1 while not coverage do
2 Sample (𝑢, 𝑖) from D ;
3 flag = 0 ;
4 𝐿𝐾𝐿 = 𝛼𝐾𝐿[𝑃 (R𝑓 )∥𝑃 (R𝑡 )] + 𝛼𝐾𝐿[𝑃 (R𝑔)∥𝑃 (R𝑡 )] ;
5 if flag=0 then
6 if 𝑟 𝑓

𝑢,𝑖
= 1 and 𝑟𝑔

𝑢,𝑖
= 1 then

7 Compute 𝐿𝑀𝐵𝐴 = 𝐿𝐾𝐿 − (𝐿𝐶𝑃 + 𝐿𝑃𝑃 ) ;
8 else if 𝑟 𝑓

𝑢,𝑖
= 0 and 𝑟𝑔

𝑢,𝑖
= 1 then

9 Compute 𝐿𝑀𝐵𝐴 = 𝐿𝐾𝐿 − (𝐿𝐶𝑃 + 𝐿𝑃𝑁 ) ;
10 else if 𝑟 𝑓

𝑢,𝑖
= 0 and 𝑟𝑔

𝑢,𝑖
= 0 then

11 Compute 𝐿𝑀𝐵𝐴 = 𝐿𝐾𝐿 − (𝐿𝐶𝑁 + 𝐿𝑃𝑁 ) ;
12 end
13 Update 𝜑 , 𝜑 ′, and 𝜃 through 𝐿𝑀𝐵𝐴 ;
14 flag = 1 ;
15 else
16 Compute 𝐿𝑀𝐵𝐴 similar to line 6–line 12 using

𝐿𝐾𝐿, 𝐿
′
𝑃𝑃
, 𝐿′
𝐶𝑃
, 𝐿′
𝑃𝑁
, 𝐿′
𝐶𝑁

;
17 Update 𝜙 , 𝜙 ′, and 𝜃 through 𝐿𝑀𝐵𝐴 ;
18 flag = 0 ;
19 end
20 end

Table 1: Statistics of the datasets.

Dataset Users Items Purchases Clicks

Beibei 21,716 7,977 243,661 1,930,069
Taobao 48,658 39,395 208,905 1,238,659
MBD 102,556 20,237 230,958 659,914

4 EXPERIMENTAL SETTINGS
4.1 Experimental questions
Our experiments are conducted to answer the following research
questions: (RQ1) How do the proposed methods perform com-
pared with state-of-the-art recommendation baselines on different
datasets? (RQ2) How do the proposed methods perform compared
with other denoising frameworks? (RQ3) Can MBA help to learn
universal user preferences from users’ multiple types of behavior?
(RQ4) How do the components and the hyperparameter settings
affect the recommendation performance of MBA?

4.2 Datasets
To evaluate the effectiveness of our method, we conduct a series
of experiments on three real-world benchmark datasets, including
Beibei1 [12], Taobao2 [47], and MBD (multi-behavior dataset), a
dataset we collected from an operational e-commerce platform. The
details are as follows: (i) The Beibei dataset is an open dataset col-
lected from Beibei, the largest infant product e-commerce platform
in China, which includes three types of behavior, click, add-to-cart
and purchase. This work uses two kinds of behavioral data, clicks
and purchases. (ii) The Taobao dataset is an open dataset collected
from Taobao, the largest e-commerce platform in China, which in-
cludes three types of behavior, click, add to cart and purchase. In
this work, we use clicks and purchases of this dataset. (iii) The MBD
dataset is collected from an operational e-commerce platform, and
includes two types of behavior, click and purchase. For each dataset,
we ensure that users have interactions on both types of behavior,
and we set click data as auxiliary behavior data and purchase data
as target behavior data. Table 1 shows the statistics of our datasets.

4.3 Evaluation protocols
We divide the datasets into training and test sets with a ratio of
4:1. We adopt two widely used metrics Recall@𝑘 and NDCG@𝑘 .
Recall@𝑘 represents the coverage of true positive items that appear
in the final top-𝑘 ranked list. NDCG@𝑘 measures the ranking qual-
ity of the final recommended items. In our experiments, we use the
setting of 𝑘 = 10, 20. For our method and the baselines, the reported
results are the average values over all users. For every result, we
conduct the experiments three times and report the average values.

4.4 Baselines
To demonstrate the effectiveness of our method, we compare MBA
with several state-of-the-art methods. The methods used for com-
parison include single-behavior models, multi-behavior models,
and recommendation denoising methods.

The single-behavior models that we consider are:
(i) MF-BPR [28], which uses bayesian personalized ranking (BPR)

1https://www.beibei.com/
2https://tianchi.aliyun.com/dataset/dataDetail?dataId=649

https://www.beibei.com/
https://tianchi.aliyun.com/dataset/dataDetail?dataId=649


loss to optimize matrix factorization. (ii) NGCF [34], which en-
codes collaborative signals into the embedding process through
multiple graph convolutional layers and models higher-order con-
nectivity in user-item graphs. (iii) LightGCN [15], which simpli-
fies graph convolution by removing the matrix transformation and
non-linear activation. We use the BPR loss to optimize LightGCN.

The multi-behavior models that we consider are:
(i) MB-GCN [18], which constructs a multi-behavior heteroge-
neous graph and uses GCN to perform behavior-aware embed-
ding propagation. (ii) MB- GMN [39], which incorporates mul-
ti-behavior pattern modeling with the meta-learning paradigm.
(iii) CML [37], which uses a new multi-behavior contrastive learn-
ing paradigm to capture the transferable user-item relationships
from multi-behavior data.

To verify that the proposed method improves performance by de-
noising implicit feedback, we also introduce the following denoising
frameworks: (i) WBPR [11], which is a re-sampling-based method
which considers popular, but un-interacted items are highly likely
to be negative. (ii) T-CE [32], which is a re-weighting based method
which discards the large-loss samples with a dynamic threshold
in each iteration. (iii) DeCA [35], which is a newly proposed de-
noising method that utilizes the agreement predictions on clean ex-
amples across different models and minimizes the KL-divergence
between the real user preference parameterized by two recommen-
dation models. (iv) SGDL [13], which is a new denoising paradigm
that utilizes self-labeled memorized data as denoising signals to im-
prove the robustness of recommendation models.

4.5 Implementation details
We implement our method with PyTorch.3 Without special mention,
we set MF as our base model 𝑡𝜃 since MF is still one of the best
models for capturing user preferences for recommendations [29].
The model is optimized by Adam [20] optimizer with a learning rate
of 0.001, where the batch size is set as 2048. The embedding size is
set to 32. The hyperparameters 𝛼 ,𝐶1 and𝐶2 are search from { 1, 10,
100, 1000 }. 𝛽 is search from { 0.7, 0.8, 1 }. To avoid over-fitting, 𝐿2
normalization is searched in { 10−6, 10−5, . . . , 1 }. Each training step
is formed by one interacted example, and one randomly sampled
negative example for efficient computation. We use Recall@20 on
the test set for early stopping if the value does not increase after 20
epochs.

For the hyperparameters of all recommendation baselines, we
use the values suggested by the original papers with carefully fine-
tuning on the three datasets. For all graph-based methods, the
number of graph-based message propagation layers is fixed at 3.

5 EXPERIMENTAL RESULTS
5.1 Performance comparison (RQ1)
To answer RQ1, we conduct experiments on the Beibei, Taobao
and MBD datasets. The performance comparisons are reported in
Table 2. From the table, we have the following observations.

First, the proposed MBA method achieves the best performance
and consistently outperforms all baselines across all datasets. For
instance, the average improvement of MBA over the strongest

3Our code is available at https://github.com/LiuXiangYuan/MBA.

baseline is approximately 6.3% on the Beibei dataset, 6.6% on the
Taobao dataset and 1.5% on the MBD dataset. These improvements
demonstrate the effectiveness of MBA.We contribute the significant
performance improvement to the following two reasons: (i) we
align the user preferences based on two types of two behavior,
transferring useful information from the auxiliary behavior data
to enhance the performance of the target behavior predictions;
(ii) noisy interactions are reduced through preference alignment,
which helps to improve the learning of the latent universal true
user preferences.

Second, except CML the multi-behavior models outperform the
single-behavior models by a large margin. This reflects the fact that
adding auxiliary behavior information can improve the recommen-
dation performance of the target behavior. We conjecture that CML
cannot achieve satisfactory performance because it incorporates
the knowledge contained in auxiliary behavior through contrastive
meta-learning, which introduces more noisy signals. Furthermore,
we compareMBAwith the best single-behaviormodel (NGCF on the
Beibei andMBD datasets, LightGCN on the Taobao dataset), and see
that MBA achieves an average improvement of 12.4% on the Beibei
dataset, 26.8% on the Taobao dataset and 15.3% on the MBD dataset.

To conclude, the proposed MBA approach consistently and sig-
nificantly outperforms related single-behavior and multi-behavior
recommendation baselines on the purchase prediction task.

5.2 Denoising (RQ2)
Table 3 reports on a performance comparison with existing denois-
ing frameworks on the Beibei, Taobao and MBD datasets. The re-
sults demonstrate that MBA can provide more robust recommenda-
tions and improve overall performance than competing approaches.
Most of the denoising baselines do not obtain satisfactory results,
even after carefully tuning their hyperparameters. Only WBPR can
outperform normal training in some cases. However, MBA con-
sistently outperforms normal training and other denoising frame-
works. We think the reasons for this are as follows: (i) In MBA, we
use the alignment between multi-behavior data as the denoising
signal and then transmit information from the multi-behavior dis-
tribution to the latent universal true user preference distribution.
This learning process facilitates knowledge transfer across multi-
ple types of user behavior and filters out noisy signals. (ii) In the
original papers of the compared denoising baselines, testing is con-
ducted based on explicit user-item ratings. However, our method
does not use any explicit information like ratings, only implicit in-
teraction data is considered.

To further explore the generalization capability of MBA, we also
adopt LightGCN as our base model (i.e., using LightGCN as 𝑡𝜃 ). The
results are also shown in Table 3. We see that MBA is still more
effective than the baseline methods. We find that LightGCN-based
MBA does not perform as well as MF-based MBA on the Beibei and
Taobao datasets. We think the possible reasons are as follows: (i)
LightGCN is more complex than MF, making MBA more difficult
to train; (ii) LightGCN may be more sensitive to noisy signals due
to the aggregation of neighbourhoods, resulting in a decline in the
MBA performance compared to using MF as the base model.

To conclude, the proposed MBA can generate more accurate
recommendation compared with existing denoising frameworks.

https://github.com/LiuXiangYuan/MBA


Table 2: Overall performance comparison of purchase predictions on Beibei, Taobao and MBD with single-behavior methods
and multi-behavior methods. R denotes Recall, and N denotes NDCG. Underscore indicates the best result among the baseline
methods. Boldface means best results. A significant improvement over the best baseline is marked with * (𝑝 < 0.05).

Datasets Beibei Taobao MBD

Method R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20

MF 0.0901 0.1438 0.0668 0.0855 0.0303 0.0420 0.0190 0.0224 0.3816 0.4597 0.2490 0.2697
NGCF 0.0987 0.1561 0.0742 0.0939 0.0350 0.0518 0.0219 0.0267 0.4030 0.4892 0.2623 0.2852
LightGCN 0.0988 0.1541 0.0733 0.0925 0.0460 0.0640 0.0290 0.0342 0.3460 0.4365 0.2205 0.2443

MBGCN 0.1054 0.1642 0.0784 0.0986 0.0418 0.0621 0.0250 0.0308 0.4625 0.5615 0.2949 0.3213
MBGMN 0.1046 0.1632 0.0779 0.0981 0.0542 0.0808 0.0330 0.0406 0.3660 0.4810 0.2323 0.2624
CML 0.0861 0.1382 0.0618 0.0796 0.0318 0.0524 0.0176 0.0234 0.3839 0.4928 0.2200 0.2487

MBA 0.1127 0.1742* 0.0834 0.1046* 0.0579* 0.0812 0.0369* 0.0435* 0.4644 0.5677* 0.3012* 0.3285*

Table 3: Overall performance comparison of purchase predictions on Beibei, Taobao and MBDwith other denoising frameworks.
Normal denotes the normal training. R denotes Recall, and N denotes NDCG. Underscore indicates the best result among the
baseline methods. Boldface indicates best results. A significant improvement over the best baseline is marked with * (𝑝 < 0.05).

Dataset Beibei Taobao MBD

Base model Method R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20

MF

Normal 0.0901 0.1438 0.0668 0.0855 0.0303 0.0420 0.0190 0.0224 0.3816 0.4597 0.2490 0.2697
WBPR 0.0770 0.1189 0.0586 0.0731 0.0307 0.0440 0.0195 0.0233 0.3554 0.4216 0.2375 0.2551
T-CE 0.0795 0.1262 0.0562 0.0724 0.0261 0.0350 0.0148 0.0174 0.1868 0.2320 0.1195 0.1314
DeCA 0.0898 0.1378 0.0664 0.0831 0.0282 0.0405 0.0183 0.0218 0.3055 0.3654 0.1983 0.2143
SGDL 0.0768 0.1240 0.0561 0.0725 0.0090 0.0137 0.0056 0.0069 0.1833 0.2300 0.1183 0.1307

MBA 0.1127* 0.1742* 0.0834* 0.1046* 0.0579* 0.0812* 0.0369* 0.0435* 0.4644* 0.5677* 0.3012* 0.3285*

LightGCN

Normal 0.0988 0.1541 0.0733 0.0925 0.0460 0.0640 0.0290 0.0342 0.4145 0.4974 0.2719 0.2939
WBPR 0.0879 0.1310 0.0682 0.0832 0.0486 0.0694 0.0307 0.0367 0.3989 0.4772 0.2647 0.2855
T-CE 0.0779 0.1254 0.0526 0.0691 0.0292 0.0416 0.0188 0.0224 0.2761 0.3465 0.1756 0.1941
DeCA 0.0770 0.1230 0.0528 0.0687 0.0412 0.0587 0.0255 0.0305 0.2382 0.3031 0.1544 0.1714
SGDL 0.0944 0.1462 0.0695 0.0874 0.0452 0.0641 0.0281 0.0335 0.3894 0.4707 0.2470 0.2686

MBA 0.1078* 0.1698* 0.0786* 0.1002* 0.0538* 0.0780* 0.0327* 0.0396* 0.4750* 0.5926* 0.3026* 0.3337*

5.3 User preferences visualization (RQ3)
To answer RQ3, we visualize the distribution of users’ interacted
items. We select two users in the Beibei, Taobao and MBD datasets
and draw their behavior distributions using the parameters ob-
tained from an MF model trained on the purchase behavior data
and the parameters obtained from MBA, respectively. Figure 2 vi-
sualizes the results. From the figure, we observe that for one user,
the clicked items and purchased items distributions of MBA stay
much closer than that of MF. The observation indicates that MBA
can successfully align multiple types of user behavior and infer uni-
versal and accurate user preferences.

Besides, we see that different users in MBA have more obvious
separations than users in MF, which implies that MBA provides
more personalized user-specific recommendation than MF.

5.4 Model investigation (RQ4)
5.4.1 Ablation study. Regarding RQ4, we conduct an ablation study
(see Table 4) on the following two settings: (i)MBA-KL: we remove

KL-divergence when training MBA; and (ii) MBA-PT: we co-train
the 𝑃 (R𝑓 ) and 𝑃 (R𝑔) in MBA instead of pre-training.

The results show that both parts (KL-divergence and pre-trained
models) are essential to MBA because removing either will lead to
a performance decrease. Without KL-divergence, we see the per-
formance drops substantially in terms of all metrics. Hence, the
KL-divergence helps align the user preferences learned from differ-
ent behaviors, thus improving the recommendation performance.
Without pre-trained models, the results drop dramatically, espe-
cially in the Taobao dataset, which indicates that it is hard to co-
train 𝑃 (R𝑓 ) and 𝑃 (R𝑔) with MBA. Using a pre-trained model can
reduce MBA’s complexity and provide prior knowledge so that it
can more effectively extract the user’s real preferences from the
different types of behavior distributions.

5.4.2 Hyperparameter study. Next, we conduct experiments to
examine the effect of different parameter settings on MBA. Figure 3
shows the effect of 𝛼 , which is used to control the weight of the
KL-divergence in conveying information. On the Beibei dataset,



Table 4: The performance of MBA after removing KL-divergence and pre-trained models. R denotes Recall, and N denotes
NDCG. Boldface indicates best results. A significant improvement over the best baseline is marked with * (𝑝 < 0.05)

Datasets Beibei Taobao MBD

Method R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20

MBA-KL 0.0897 0.1412 0.0651 0.0831 0.0261 0.0380 0.0151 0.0185 0.3250 0.4185 0.1779 0.2027
MBA-PT 0.0687 0.1136 0.0487 0.0642 0.0087 0.0152 0.0054 0.0072 0.3226 0.4138 0.1775 0.2017
MBA 0.1127* 0.1742* 0.0834* 0.1046* 0.0579* 0.0812* 0.0369* 0.0435* 0.4644* 0.5677* 0.3012* 0.3285*
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Figure 2: Distributions of items interacted with by two users
in the Beibei, Taobao andMBD datasets. Item representations
in the graphs on the left are obtained by a matrix factoriza-
tionmodel trained on the purchase behavior data, while item
representations in the right column graphs are obtained by
MBA. 𝑢𝑖𝑐 (𝑢𝑖𝑝) represents the distribution of items clicked
(purchased) by user 𝑢𝑖 .

the performance of MBA is affected when the 𝛼 is greater than
or equal to 100. Thus, when dominated by KL-divergence, MBA’s
performance will be close to that of the pre-trained models. On
the Taobao and MBD datasets, when 𝛼 is greater than or equal to
100, MBA will gradually converge, with a relatively balanced state
between the KL-divergence and the expectation term. Under this
setting, MBA achieves the best performance.

6 CONCLUSION
In this work, we have focused on the task of multi-behavior recom-
mendation.We conjectured that multiple types of behavior from the
same user reflect similar underlying user preferences. To tackle the
challenges of the gap between data distributions of different types
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Figure 3: Impact of the hyperparameter 𝛼 .

of behavior and the challenge of behavioral data being noisy and
biased, we proposed a learning framework, namely multi-behavior
alignment (MBA), which can infer universal user preferences from
multiple types of observed behavioral data, while performing data
denoising to achieve beneficial knowledge transfer. Extensive ex-
periments conducted on three real-world datasets showed the ef-
fectiveness of the proposed method.

Our method proves the value of mining the universal user pref-
erences from multi-behavior data for the implicit feedback-based
recommendation. However, a limitation of MBA is that it can only
align between two types of behavioral data. As to our future work,
we aim to perform alignment on more types of user behavior. In ad-
dition, we plan to develop ways of conducting more effective and
efficient model training.
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