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Abstract
Query understanding is an essential part in search systems to im-
prove the recall. Unlike prior works focusing on word expansions,
in this paper, we leverage the comprehension ability of large lan-
guage models (LLMs) to generate detailed queries from a global
semantic perspective. To this end, we introduce an efficient genera-
tion-augmented question rewriter (GaQR) to reformulate a ques-
tion into several queries using chain of thought (CoT) and make
it more efficient through knowledge distillation. We first prompt
a teacher model to generate indicative queries by considering an-
swer generation one step ahead. Then, we filter out low-quality
queries by validating the effectiveness of all generated queries in
retrieving useful passages. Finally, we distill a student rewriter
based on the verified results to improve efficiency. Our experimen-
tal results demonstrate that the rewriter improves the retrieval
performance by 3% to 15% on the Miracl and NFCorpus datasets
and shows good generalisation ability across different retrieval
methods. Moreover, the efficiency of the rewriter after knowledge
distillation is improved by as much as 5 times. Code is available at
https://github.com/youngbeauty250/GaQR.
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1 Introduction
Search systems have developed into complex systems that including
many modules, understanding the query intent constitutes a first
step. Accurate intent comprehension is pivotal for search systems
to be effective while a misinterpretation can affect all subsequent
modules. In contrast to traditional keyword-based queries, real-
world queries often involve complex, natural language descriptions
of questions, for which it is usually difficult to retrieve relevant
documents.

Previous research on query understanding has primarily focused
on semantic or topical word expansions. One of the mainstream
approaches is global expansion [2, 12, 19, 26], which directly expands
and reconstructs the initial query based on external knowledge
bases such as WordNet [17]. Another group of approaches is local
feedback, which involves the correction and expansion of the initial
query based on the top-𝑘 pseudo-documents retrieved from the
initial query [1, 20, 22]. Though these approaches are practical in
many applications, they either rely on pre-defined heuristic rules or
heavily depend on the quality of the retrieved pseudo-documents,
potentially causing semantic shifts in the rewritten queries and
limiting its ability to capture the user’s intent.

Recently, with the fast development of large language mod-
els (LLMs), there have been efforts to use the strong comprehension
ability of LLM for understanding query intent [9, 14, 16, 30]. For
instance, Query2doc [30] prompts LLMs to generate pseudo-docu-
ments and concatenates them with the original query as the rewrit-
ten query. Mao et al. [16] introduces LLM4CS by directly prompting
LLMs to generate multiple query rewrites to help conversational
search. Ma et al. [14] proposes a framework that combines the re-
inforcement learning with LLM rewrites, while Jagerman et al. [9]
compare the effect of different prompts for LLM rewriting. There
are also works trying to interleave between query rewriting and
answer generation in retrieval-augmented generation (RAG) [6, 25],
which take the previously generated answer to refine the query
for next-step retrieval in the retrieval-generation loop. However,
directly using LLMs for query rewriting may lead to undesirable re-
sults since LLMs are prone to hallucinate. More importantly, LLMs
require substantial computational resources, posing a significant
burden for real-time responses in the search system.
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Figure 1: Overview of the generation-augmented question rewriter (GaQR). From left to right, we show its three main parts.

In this work, we propose generation-augmented question rewriter
(GaQR), an efficient question rewriter to reformulate an input ques-
tion into a set of queries by considering the anticipated answer.
Specifically, we employ a teacher rewriter to first generate pseu-
do-answers and then rewrite the original question based on these
pseudo-answers. Then, to enhance the efficiency of LLMs in rewrit-
ing, the rewritten queries and the original question are sent to a
retrieval system, where the rewritten queries with higher recall
are filtered out as verified results. Finally, these verified results
are used as training data to fine-tune a student rewriter. Through
knowledge distillation, the rewriting proficiency of the teacher
is condensed onto the student, ensuring efficiency improvements
without compromising effectiveness.

To evaluate our method, we conduct experiments on the MS
MARCO [5] and Miracl [36] datasets, and SciFact [29], NFCorpus
[3], ArguAna [28], FiQA-2018 [15] and TREC-COVID [27] datasets
from the BEIR [23] benchmark. The teacher rewriter is based on
GPT-3.5-instruct [4], and the base model for the student rewriter
is Llama2-7b-chat [24]. The teacher rewriter exhibits performance
improvements of around 2%–3% on MS MARCO and Miracl. By
fine-tuning, the student rewriter learns rewriting capabilities from
the teacher, achieving 2%–3% improvement on both datasets. In a
completely zero-shot scenario, the student rewriter shows good
generalisation across different retrieval methods, improving retrie-
val performance by about 2%–15% over BM25 on multiple datasets,
such as FiQA-2018 for QA andNFCorpus for bio-medical IR. Further-
more, the inference time gets a 5-fold improvement compared to
mainstream generative-relevance feedback (GRF) methods such as
Query2Doc [30], positioning GaQR as a more economical approach
for LLM query rewriting.

2 Methodology
In this section, we introduce the GaQR method for question rewrit-
ing. Our method consists of three major components, including
generation-augmented rewriter, relevance verification retriever, and
knowledge distillation-based rewriter, as illustrated in Figure 1. The
generation-augmented rewriter thinks one-step further about the
answer, and rewrites queries based on pseudo-answers. Then, the
relevance verification retriever filters out low-quality queries accord-
ing to their effectiveness in retrieving relevant documents. Finally,
the knowledge distillation-based rewriter is built by fine-tuning a
smaller LLM based on the verified results. We describe these com-
ponents in detail in the follows.

2.1 Generation-Augmented Rewriter
The core of the generation-augmented rewriter is a special CoT
[31], to employ a powerful LLM to generate high-quality search
queries by thinking one-step further about the answer. The key
idea is inspired by the traditional statistical language model [18],
which assumes that the user would envision the ideal result before
constructing the search query. Specifically, we prompts LLM to
generate search queries with a two-step prompt. The first-step
prompt requires the LLM to take the original question as input.
Then, the second-step prompt combines the original question and
the above answer as input, requires the LLM to generate effective
queries in retrieving supporting evidences relevant to the answer.
If fact, when we search a query, we first formulate the basic form
of the answer in our minds. For example, when we ask “Which
has a higher global production, apples or bananas?”, we expect the
answer to include the global production of apples, bananas, and a
comparison of these two.

2.2 Relevance Verification Retriever
The relevance verification retriever aims to filter low-quality queries
generated by the teacher model. The main reason to design this
module is that we directly prompt the teacher rewriter to gen-
erate queries without fine-tuning, which may cause undesirable
results due to the hallucination issue. In order to refine teacher’s
rewriting capabilities, we employ an external retriever to check its
performance. Specifically, we use the retriever to perform docu-
ment retrieval for the original question and rewritten queries, and
then compare their recall performances on the returned document
lists. Rewritten queries with higher recall are retained as a valid
rewriting, verifying that they are more useful for the retriever.

2.3 Knowledge Distillation-based Rewriter
After obtaining a high-quality query rewriting dataset 𝐷 , we fine-
tune a student rewriter with much less number of parameters than
the teacher. Specifically, we use 𝐷 to train a LLM in a standard auto-
regressive manner, with the objective showing as the Equation (1).

L = max
𝑀

E(𝑥,𝑦)∼𝐷
[
log𝑝𝑀 (q′ | q)

]
, (1)

where L represents the likelihood we are trying to maximize. 𝑀
denotes the model parameters. The expectation E(𝑥,𝑦) ∼ 𝐷 aver-
ages over our dataset 𝐷 . 𝑝𝑀 (q′ | q) is the probability of the model
𝑀 generating the rewrites q′ given the original query q.



GaQR: An Efficient Generation-augmentedQuestion Rewriter CIKM ’24, October 21–25, 2024, Boise, ID, USA

Table 1: Main results in terms of R@1k of GaQR on 5 out-of-domain datasets.

SciFact [29] NFCorpus [3] ArguAna [28] FiQA-2018 [15] TREC-COVID [27]

Method Origin +GaQR Origin +GaQR Origin +GaQR Origin +GaQR Origin +GaQR

Lexical retrieval
BM25 98.00 99.00+1.00 33.80 51.08+17.38 98.93 99.00+0.07 73.04 75.11+2.07 38.91 44.08+5.17
QL [35] 98.00 99.33+1.00 36.00 51.76+15.76 99.15 98.86−0.29 75.94 78.22+2.28 41.28 46.72+5.44

Sparse retrieval
SPART [37] 96.27 97.17+0.90 50.16 53.75+3.59 97.72 98.43+0.71 70.21 72.68+2.47 32.63 35.37+2.74
DocT5query [7] 98.00 99.00+1.00 34.50 51.05+16.55 98.93 99.08+0.15 74.49 78.81+4.32 36.35 39.98+3.63

Dense retrieval
TAS-B [8] 98.33 99.33+1.00 58.53 58.63+0.10 99.43 99.50+0.07 82.86 82.52−0.34 32.19 31.59−0.60
ANCE [32] 95.67 96.33+0.66 57.68 59.27+1.59 99.00 98.86−0.14 80.71 81.19+0.48 34.23 34.88+0.65
DPR [11] 91.43 92.83+1.40 52.36 55.64+3.28 94.45 95.45+1.00 57.92 60.45+2.53 15.78 17.16+1.38

Table 2: Main results in terms of R@1k of GaQR and other
methods on 5 out-of-domain datasets.

Methods BM25 +RM3 +Q2E +Q2D +CoT +GaQR

SciFact [29] 98.00 98.00 98.67 99.67 100.00 99.00
NFCorpus [3] 33.80 52.28 58.00 58.17 56.63 51.08
ArguAna [28] 98.93 98.43 99.00 98.93 98.51 99.00
FiQA-2018 [15] 73.04 75.24 71.10 71.37 70.53 75.11
TREC-COVID [27] 38.91 41.07 40.62 43.24 42.12 44.08

Average rank 4.6 4.2 3.6 2.6 3.6 2.4

3 Experimental Setup
3.1 Datasets & Model
We take three widely used benchmarks to test the effectiveness of
our method, namely MS MARCO [5], Miracl [36] and BEIR [23]. To
assess the generalisation capability of our model, we select a subset
of BEIR from different domains, including SciFact [29], FiQA-2018
[15], ArguAna [28], NFCorpus [3] and TREC-COVID [27], as our
test datasets. We take Recall@1000 (R@1K) as the main evaluation
metric since we focus on the first-stage retrieval in search systems.

For the teacher rewriter described in Section 2.1, we adopt GPT-
3.5-instruct. Without any fine-tuning or training, we prompt it to
give a pseudo-answer 𝑎 and rewrite the original question 𝑞 as de-
scribed in section 2.1. For the student rewriter defined in Section 2.3,
we choose Llama2-7b-chat1 as our backbone. For fine-tuning, we
set the learning rate to 2e-5, epochs to 5, and temperature to 0.2.

We take the Anserini [13, 33, 34] implementation of BM25 [21]
in 2.2 as our base retriever using the default parameters (𝑘 = 0.9 and
𝑏 = 0.4). In addition, we include QL [35], SPART [37], DocT5query
[7], TAS-B [8], ANCE [32] and DPR [11], as baselines to investigate
the performance of our method, the parameters of which can be
found in BEIR[23]. Also, to compare our method with other query
expansion methods, we use BM25 with RM3 [10] and LLM-based
methods mentioned in [9] including Q2E, Q2D and CoT as LLM
baselines.

1https://llama.meta.com/llama2/

3.2 Main Results
To evaluate the generalisation ability of GaQR, we select a small
number of queries (i.e., 6000 queries in total) from MS MARCO and
Miracl datasets to fine-tune the GaQR. For each retrieval method,
we test the performance of GaQR on five out-of-domain datasets
mentioned in Section 3.1. The overall results are summarized in
Table 1, as we can see: (i) The performance of different datasets
varies significantly, where the SciFact dataset and the ArguAna
dataset show limited improvements, while the other three datasets
show large improvements. The main reason may be that the query
length in these three tends to be shorter than SciFact and ArguAna.
In this way, it is much more difficult to retrieve relevant documents
with original queries, and GaQR shows great performance through
query rewriting. (ii) For different baselines, lexical retrieval meth-
ods show strong generalisation ability on each dataset. Typically,
both sparse retrieval methods and dense retrieval methods rely on
the training dataset to boost their performances. There are also ex-
ceptions where TAS-B and ANCE show very good performances on
NFCorpus and FiQA-2018 dataset. (iii) GaQR exhibits strong gener-
alisation ability across different retrieval methods on a wide range
of datasets, e.g., the improvements on NFCorpus over BM25 and QL
are 17.38% and 15.76%, respectively. Besides, the improvements on
lexical retrieval methods is relatively higher than on sparse retrieval
and dense retrieval methods, which may be that we use BM25 as
the relevance verification retriever in GaQR.

In addition, we compare our method with other expansion meth-
ods. For a fair comparison, we take the Llama2-7b-chat as the back-
bone for all LLM-based methods. The results are summarized in
Table 2. As we can see, GaQR outperforms all the baselines on Ar-
guAna, FiQA-2018 and TREC-COVID and shows good performance
on SciFact, achieving the best average ranking. However, GaQR
performs worse than other baselines on NFCorpus. The main rea-
son may be that NFCorpus is a keyword-based dataset and GaQR
tends to generate simple but precise rewritten queries. Thus GaQR
may not be able to extend enough semantically related keywords
as other baselines do. Although the Q2D method is close to our
method in terms of average rankings, its computational latency is
much higher, as we will show in Section 3.4. Overall, the improve-
ments on different retrieval methods and comparisons with other
query expansion methods demonstrate the effectiveness of GaQR.

https://llama.meta.com/llama2/
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Table 3: Ablation study in terms of R@100 and R@1k of
GaQR on MS MARCO [5] and Miracl [36] .

MS MARCO [5] Miracl [36]

Method R@100 R@1k R@100 R@1k

BM25 65.78 85.26 70.71 87.94

GaQR 65.57 87.12 76.02 90.97
without 𝑄 59.89 82.38 71.45 87.85
without filter 65.51 86.38 75.22 91.08
without distill 66.37 87.46 75.94 91.44

Table 4: Latency analysis of our method. The LLM call is on
a single A-800 GPU. We average the time(ms) for each query.

Q2D CoT Q2E GaQR

SciFact [29] 10243ms 11000ms 3620ms 2310ms
(4.43x) (4.76x) (1.57x) (1x)

NFCorpus [3] 10658ms 13502ms 4165ms 1419ms
(7.51x) (9.52x) (2.94x) (1x)

FiQA-2018 [15] 11463ms 13237ms 6232ms 1731ms
(6.62x) (7.65x) (3.60x) (1x)

Miracl [36] 5092ms 6380ms 3504ms 1407ms
(3.62x) (4.53x) (2.49x) (1x)

3.3 Ablation Study
To better understand the effectiveness of each component of GaQR,
we conduct an ablation study on MS MARCO [5] and Miracl [36] by
removing different parts from GaQR. From Table 3, we find see that:
1) When only using rewritten queries without original query 𝑄

for retrieval, the performance declines sharply on the two datasets,
even worse than the BM25 baseline. In fact, the rewritten queries
will enrich the semantics of the original query, but only using
them may cause semantic shifts for retrieval. 2) Without relevance
verification retriever, GaQR achieves lower performance than origin,
demonstrating that it is important to filter the training data. 3)
Interestingly, when we test the teacher rewriter without distilling,
it outperforms its student rewriter GaQR in most conditions, but
performs worse than GaQR in terms of R@100 on Miracl, which
shows the effectiveness of fine-tuning in boosting small LLMs. At
a higher level of efficiency, GaQR obtains results which approach
or even surpass the teacher rewriter.

3.4 Latency Analysis
To evaluate the efficiency of GaQR, we conduct a latency analysis
on four datasets. Table 4 shows the results of GaQR and different
rewriting methods. First, we can see that all the methods are consis-
tently more efficient in processing Miracl questions than on other
datasets, which may be that LLM is more effective in understand-
ing natural questions than keyword-based questions. Second, Q2E
achieves the lowest latency among all baselines since it does not
require the generation of answers or CoT. Finally, GaQR has about
4–9 times improvement compared to the CoT method, and 1–3
times improvement compared to the Q2E method. It suggests that
GaQR refines LLM’s ability to focus on rewriting well, which in
turn speeds up the efficiency of its rewriting.

Table 5: Case analysis from the Miracl [36] dataset.

Query Why is voting day on a Tuesday?

Rewritten
queries

1. What is the historical significance behind
making election day a Tuesday?(Explanation)
2. How does having voting day on a Tuesday af-
fect voter turnout?(Process)
3. Why is it important for election day to fall on
a specific day of the week?(Reason)

3.5 Case Study
To better understand how GaQR rewrites questions, in Table 5 we
show a sampled question from the Miracl dataset along with three
rewritten queries from our GaQR rewriter. As we can see, the origi-
nal question is simple and wide, expressed in natural language. For
search systems, documents retrieved may be more about the key
term of “voting day” or “Tuesday,” and less about the relationship
between them. In contrast, the rewritten queries express more com-
plex semantics than the original question, including three question
types “What,” “How,” and “Why” which represent three possible
intentions of the user. The documents retrieved by these rewritten
queries can provide more comprehensive information for users.

4 Conclusion
We have proposed an efficient question rewriter named GaQR to
improve the retrieval performance for search systems. Our results
show that LLMs with additional answer generation could produce
high-quality question rewrites. Moreover, GaQR obtains good gen-
eralisation performance across different retrieval datasets through
knowledge distillation. Furthermore, our method gets a balance
between efficiency and effectiveness, which makes it more practical
to apply LLMs to search systems. Still, there are limitations to our
work. First, we take search results as an indirect evaluation for
rewriting, since there lacks question rewriting datasets. Second,
rewritten queries generated by GaQRmay be limited by the training
corpus. Finally, we take all types of question in a unified rewriting
process, whereas questions with same type may share common
rewriting patterns, e.g., “When” questions and “Why” questions. It
would be interesting to create a taxonomy of questions and rewrite
them accordingly. We will investigate these topics in future work.
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