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Language reconstruction from non-invasive brain recordings has been a long-standing challenge.
Existing research has addressed this challenge with a classification setup, where a set of language
candidates are pre-constructed and then matched with the representation decoded from brain
recordings. Here, we propose a method that addresses language reconstruction through auto-
regressive generation, which directly uses the representation decoded from functional magnetic
resonance imaging (fMRI) as the input for a large language model (LLM), mitigating the need for pre-
constructed candidates. While an LLM can already generate high-quality content, our approach
produces resultsmore closely alignedwith the visual or auditory language stimuli in response towhich
brain recordings are sampled, especially for content deemed “surprising” for the LLM. Furthermore,
we show that the proposed approach can be used in an auto-regressive manner to reconstruct a
10min-long language stimulus. Our method outperforms or is comparable to previous classification-
based methods under different task settings, with the added benefit of estimating the likelihood of
generating any semantic content. Our findings demonstrate the effectiveness of employing brain
language interfaces in a generative setup and delineate a powerful and efficient means for mapping
functional representations of language perception in the brain.

Reconstruction of natural language frombrain recordings not only provides
potential insights into understanding how the humanbrain forms language,
but also facilitates the development of neural communication interfaces for
restorative and augmentative applications. Previousworkhas demonstrated
that it is possible to decodemeaningful linguistic and semantic information
from brain recordings to guide classification tasks, such as selecting a target
from a set of words1,2, sentences3,4, and topics5. For instance, Moses et al.6

successfully decoded the target words from a vocabulary of 50 words, using
the brain recordings of an anarthria patient with electrodes implanted in the
sensorimotor cortex. Pereira et al.3 utilized non-invasive functional mag-
netic resonance imaging (fMRI) data to decode the target sentence from a
pair of or a set of sentences that were presented as visual stimuli.

Recently, large language models (LLMs), particularly those based on
generative settings7–9, have become a dominant approach in computational
language modeling. Those LLMs treat the process of language construction
as a generationproblem.Given a text prompt, LLMsgenerate themost likely
continuation based on the statistical semantic knowledge they learned from
a vast amount of text. By solving the language generation problem in an
auto-regressivemanner, LLMs can construct continuous texts thatmaintain
both semantic and syntactic coherence9. Leveraging the powerful

capabilities of LLMs, recent language brain-computer interfaces (BCIs)4,10

have attempted to link LLMs with the decoding of brain signals. For
example, Tang et al.4 use an LLM to pre-construct a set of possible language
candidates and then select the best one based on their similarities with the
semantic representations decoded from the fMRI data.

However, the methods listed above consider brain decoding and lan-
guagegenerationas two separate phases. Semantic representations extracted
from brain recordings are used exclusively in a post-hoc selection phase.
While LLMs represent a leap forward in mimicking human language, they
merely generate the most likely continuations based on their training
material7,8. In otherwords, there is no guarantee that the language generated
by LLMs reflects the semantics decoded from brain recordings. Therefore,
integrating brain recordings directly into the language generation process
remains an open and unsolved challenge. At the same time, a growing body
of research highlights similarities between the representations and com-
putational principles of language models and the human brain11–13. This
suggests the potential to leverage brain representations as inputs to large
language models.

Here, we present BrainLLM, an approach in which the semantic
representation decoded from brain recordings is directly involved in the
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generation phase of continuous language.We focus on language generation
fromnon-invasive fMRI recordings of healthyparticipants perceiving visual
or auditory language stimuli. As depicted in Fig. 1, our proposed model
generates a continuation of language from a given text prompt (See Sup-
plementary Tables 1–9, and Supplementary Figs. 1–3 for additional
examples). Unlike existing work4,10, BrainLLM incorporates brain signals
directly in the language generation phase, thereby eliminating the need for
post-hoc selection among pre-constructed language candidates. This
approach significantly improves performance over standard LLM genera-
tion with only the text prompt, and over methods that use a pre-
constructionandpost-hoc selection setup. In addition, thismethodprovides
potential applications for neuroscience and machine learning research. For
example, BrainLLM can facilitate the investigation of linguistic encoding in
the human brain by accessing the generation likelihood of any language
content with various characteristics instead of a limited number of pre-
defined candidates.

To accomplish this, BrainLLM consists of four key steps illustrated in
Fig. 1a: (1) brain data is collected and features are extracted; (2) a brain
adapter learns an embedding from the brain recordings; (3) prompts are
constructed from brain and text modalities; (4) language is generated in an
auto-regressive manner based on a model of the prompt and an LLM. The
brain adapter learns to map the space of brain representations onto a space
with the same dimensionality as the text embeddings in the LLM. This
facilitates the generation based on a prompt representation that integrates
both the brain modality and the text modality. A protocol called “prompt
tuning”14 and a generation-based loss function is adopted to train the brain
adapter. This protocol guarantees that the parameters in the LLMs are fixed
while only the brain adapter is updated during training. To this end, the

model parameters of the decoder can be fully trained with only a limited
amount of neurological data compared to the data size typically used for
training an LLM.

Results
We evaluate BrainLLMusing three fMRI datasets3,15,16 in which participants
perceive visual or auditory language stimuli (see Supplementary Informa-
tionA).We construct a language generation task for each time frame (e.g., a
time repetition (TR) of 2s in Huth’s dataset) during the fMRI recording
process. As depicted in Fig. 1, the preceding text (if any) to a time frame
serves as the text prompt (seeMethod). Meanwhile, the presented language
stimulus within the time frame is considered as the perceived continuation,
typically encompassing 3–10 words. Then, the model’s generation ability is
evaluated by aligning its generation output to the perceived continuation.
We trained andevaluated themodel for eachhumanparticipant, involving5
participants in Pereira’s dataset3, 8 participants in Huth’s dataset16, and 28
participants in the Narratives dataset15. We test BrainLLM’s ability with the
backbone LLM selected as Llama-29 because it is one of the best-performing
public-sourced models. Additionally, we extend our analysis to include the
GPT-2 series7 with varying sizes. A split-by-stimuli protocol is applied (see
Supplementary InformationB.1) to ensure that the language stimuli and the
corresponding brain response used during testing have not been seen in the
training set.

We conduct three evaluations to study the performance of BrainLLM:
First, we compare the language reconstruction performance of BrainLLM to
a control model PerBrainLLM, which randomly assigns the brain record-
ings as inputs across different prediction tasks through a permutation, and
breaks connectionsbetween the stimuli andbrain responses (seeTable 1 and

Fig. 1 | Language generation with brain recordings (BrainLLM). a The generation
process has four main stages. S1: Brain recordings in response to the perceived
continuation are collected. S2: A brain adapter extracts features from brain
recordings and transforms them into hidden vectors that match the shape of text
embeddings in a standard LLM. S3: Brain embeddings and text prompt embeddings
are concatenated as a prompt input. S4: The prompt input is fed into the LLM for

language generation. BrainLLM generates content that is an exact match ("the
cutting edge of'') with, or semantically similar/gist match content ("not for every-
one'') to the perceived continuation. b Examples of language generation with
BrainLLM and its controls (PerBrainLLM). Text in blue and bold indicates that the
generated content and the ground truth (perceived continuation) are manually
annotated as semantically similar and an exact match, respectively.
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Supplementary Information B.2). Second, we compare BrainLLM with a
series of concurrent methods available for open-vocabulary language
decoding (see Supplementary Table 10). Finally, to validate the proposed
framework, we also compare BrainLLM against a standard language model
without any brain input (StdLLM) (see Method, Supplementary Figs. 4-5)
and its variants with different architecture selections (see Supplementary
Information B.3). The performance of BrainLLM is evaluated from three
perspectives: (1) win rate: whether BrainLLM has a higher likelihood of
generating the perceived continuation than the control model (Per-
BrainLLM); (2) language similarity metrics (BLEU, ROUGE, and word
error rate (WER)): measurements of the similarity between the perceived
continuation and the generated language; (3) human preference: expose the
outputs of BrainLLM and PerBrainLLM to human annotators for judg-
ments on which one is semantically closer to the perceived continuation.

The averaged win rates of BrainLLM versus PerBrainLLM are 64.9%,
78.9%, 66.5%, on Pereira’s dataset, Huth’s dataset, and the Narratives
dataset, respectively (Fig. 2a). This indicates that BrainLLM has a sig-
nificantly higher likelihood of generating the perceived continuation com-
pared to PerBrainLLM, with the false discovery rate (FDR) < 0.05 (one-
sided, non-parametric test) on three datasets. The highest averaged win rate
(78.9%) is observed on Huth’s dataset, which has the largest size of neu-
rological data samples for each participant (see Fig. 2f). Similar performance
differenceshave alsobeenobservedon language similaritymetrics, as shown
inTable 1. This suggests that increasing the size of neurological training data
improves the model performance. Furthermore, we conducted a human
evaluation experiment (detailed in Method) in which 202 annotators
recruited from Amazon’s Mechanical Turk www.mturk.com were asked to
make a forced-select preference judgment between generation outputs from
BrainLLM and PerBrainLLM, or they could opt for “hard to distinguish” if
no clear preference emerged. Within the randomly selected sample of 3000
language pairs generated by BrainLLM and PerBrainLLM from Huth’s
dataset, the average annotations showed a preference distribution where
48.4% favored BrainLLM, 39.2% favored PerBrainLLM, and 12.4% of the
annotators found the pairs indistinguishable. The statistical analysis
revealed a significant difference in preference between BrainLLM and
PerBrainLLM (p=0.039 using a one-sided non-parametric test). This
human preference betweenBrainLLMandPerBrainLLM is also found to be
associated with higher language similarity metrics (see Supplementary
Information B.4).

Furthermore, we compared BrainLLM with the state-of-the-art
method proposed by Tang et al.4, which first pre-constructs candidate
next tokens with LLM and then adopts a post-hoc selection with brain
recordings. The comparisons are carried out in the aforementioned lan-
guage generation task and a full-text reconstruction task (as also used in4). In
the language generation task, BrainLLM outperforms their approach in all
language similarity metrics, with improvements exceeding 40.2% in BLEU-
1 scores (refer to Supplementary Table 11 and the Supplementary Infor-
mation B.5). We further evaluate BrainLLM on a full-text reconstruction
task which reconstructs the 10-minute-long story of “Where There’s
Smoke” without any text prompt input (see Supplementary

Information B.6). We show that BrainLLM can achieve full-text recon-
struction by autoregressively treating the generated content as a text prompt
for the next step (as shown in Fig. 3). In the full-text reconstruction task,
BrainLLM shows comparable performance with Tang et al.4’s method but
uses a non-classification setup and possesses the ability to access the like-
lihood of any language segment (see Table 2, and Supplementary Table 12).

Language generation performance across continuation with
different surprise levels
LLMs, by predicting the next token with the highest probability, enable the
generationofwell-structured, coherent language given the text prompt.This
architecture also provides a unified framework formodeling surprise in text
continuations by estimating their prediction-error signals (seeMethod). For
example, the likelihood of “meet you” following “Nice to” is higher than
“take chances”, which means that “meet you” has a lower surprise to LLMs
than “take chances”. Typically, a higher level of surprise indicates that the
LLM finds it more “surprising” and challenging to generate the perceived
continuation. We split the test data based on their surprise levels and
evaluate BrainLLM on them separately. As shown in Supplementary
Figs. 6-7, bothBrainLLMandPerBrainLLMpresent aperformancedecrease
as the level of surprise increases in terms of BLEU-1. However, compared to
PerBrainLLM,BrainLLMexhibits amoremoderate decline in performance.
Furthermore, we examine the win rate of BrainLLM versus PerBrainLLM
across perceived continuation with varying levels of surprise, as depicted in
Fig. 2b. We observe that the win rate increases as the surprise levels rise. A
significant positive correlation exists between the surprise level and the win
rate, with Pearson’s r = 0.09, 0.15, and 0.08 in Pereira’s, Huth’s, and the
Narratives datasets, respectively ((FDR) < 0.05 in all datasets). This suggests
that when an LLM deems the perceived continuation as unexpected, the
information decoded from brain recordings can significantly enhance the
generation process. Moreover, word tokens exhibiting higher levels of
surprise and higher concreteness17 are associated with increased win rates,
with Pearson’s r of 0.152 and 0.305, respectively (see Fig. 2c and Supple-
mentary Fig. 8). This suggests the effectiveness of BrainLLM for tokens with
more precise meanings. For instance, concrete nouns such as “chamber”
and “leaving” have higher win rates compared to function words like “the”
and “are”.

Effect of text prompt
Typically, LLMs generate language as a continuation of the given text
prompt. Existing natural language processing (NLP) research18 has shown
that the generation accuracy improves when given a longer length of text
prompt18. The integration of brain recordings into LLM generation raises a
critical question: How does the length of the text prompt affect the per-
formance of BrainLLM? Furthermore, how does BrainLLM perform in
scenarios where there is no text prompt provided?We present the BLEU-1
score of BrainLLMandPerBrainLLMwith different lengths of text prompts
in Supplementary Figs. 9, 10, and the win rate of BrainLLM versus Per-
BrainLLM is shown in Supplementary Fig. 11. A negative correlation exists
between the length of the text prompt and the win rate, with Pearson’s r
values of −0.013, −0.059, and −0.060 in Pereira’s, Huth’s, and the
Narratives datasets, respectively. This observation can be partially explained
by the fact that longer text prompts provide LLMs with more contextual
information, resulting in a lower level of surprise for the perceived
continuation13,19, and consequently reducing the importance of brain input
information (see Supplementary Fig. 12 for the relationship between text
length and surprise level). Additionally, Tikochinski et al.20 suggest that
LLMs can process large contextual windows while the brain may pre-
ferentially focus on the content perceived most recently. This divergence
could also affect the effectiveness of feeding representations decoded from
brain signals into LLMs.

Furthermore, we investigate language generation from brain record-
ings without any text prompt (see Supplementary Table 13). We observe
that BrainLLM significantly outperforms PerBrainLLM on all language
similarity metrics. The win rate of BrainLLM versus PerBrainLLM (0.8885

Table 1 | Language generation performance averaged across
participants in different datasets

Dataset Model BLEU-
1(↑)

ROUGE-
1(↑)

ROUGE-
L(↑)

WER(↓)

Huth’s PerBrainLLM 0.1668* 0.1536* 0.1474* 0.9109*

BrainLLM 0.1899 0.1780 0.1709 0.8916

Pereira’s PerBrainLLM 0.3269* 0.2815* 0.2751* 0.7783*

BrainLLM 0.3432 0.2987 0.2878 0.7576

Narratives PerBrainLLM 0.1269* 0.1211* 0.1105* 0.9311*

BrainLLM 0.1375 0.1301 0.1209 0.9239

*indicates that the difference between BrainLLM and PerBrainLLM is significant at (FDR) < 0.05
(one-sided non-parametric test).
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in Pereira’s dataset, 0.8816 in Huth’s dataset, and 0.6728 in the Narratives
dataset) is even higher than that of generation with text prompts. This
enhanced performance of BrainLLMversus PerBrainLLM can be explained
by the high surprise levels for perceived continuations when no text prompt
is given.However, the language similaritymetrics for the generationwithout
text prompts are lower than those with text prompts. This indicates that
generating language solely based on brain input and without any text
prompt is still challenging.

Impact of LLM with different parameter sizes
We conducted our main experiments based on Llama-29, which is one of
the state-of-the-art LLMs with a large number of parameters, i.e., 7

billion (7B). To study the impact of LLM with different parameter sizes,
we tested a series of generative LLMs constructed with different para-
meter sizes, including GPT-2 (117M parameters), GPT-2-medium
(345M parameters), GPT-2-large (774M parameters), GPT-2-xl (1.5B
parameters), and the Llama-2 (7B parameters). Across PerBrainLLM and
BrainLLM, language similarity metrics significantly increase as the
number of parameters in the LLM increases (see Supplementary
Table 14). This observation aligns with established knowledge: LLMs
equipped with more parameters demonstrably excel at language
generation18,21. Interestingly, while the performance of PerBrainLLM
improves with the increase in the number of parameters, the win rate of
BrainLLM over PerBrainLLM also increases (see Fig. 2e). This indicates

Fig. 2 | Win rates of BrainLLM vs. PerBrainLLM measured by comparing the
generation likelihood of the participant’s perceived continuation. Error bars
denote mean +/− SEM. The center line, top, and bottom of the box plot represent
the group median, 75th percentile, and 25th percentile, respectively. Whiskers are
extended to the most extreme data point that is no more than 1.5 × interquartile
range from the edge of the box. aThewin rates were significantly higher than 0.5with
(FDR) < 0.05 (one-sided non-parametric test) across all datasets and participants.
Each dot represents the win rate of a single participant in Pereira’s dataset (5 par-
ticipants), Huth’s dataset (8 participants), and the Narratives dataset (28 partici-
pants). b The win rate increases as the surprise levels increase. The surprise level
quantifies the model’s likelihood of generating the continuation stimuli, whereas a
higher surprise indicates a greater difficulty in generating the perceived continuation
for the LLM. c Scatter plot of win rate versus surprise scores for 200 randomly
selected tokens. A positive correlation is observed between win rate and surprise,

indicating that tokens with higher surprise scores tend to have higher win rates.
d The win rate when using brain signals from different cortical regions in a single
participant (participant 1 in Huth’s dataset). Brain data (colored regions) used as
input for BrainLLMwere partitioned into the Broca’s area, the precuneus (PrCu), the
prefrontal cortex (PFC), the auditory cortex (AC), and the angular gyrus (AG). eThe
parameter sizes of LLMs exhibit a strong positive correlation with win rates, yielding
Pearson’s r of 0.886 for Pereira’s dataset, 0.953 for Huth’s dataset, and 0.923 for the
Narratives dataset. fThewin rate demonstrates a positive correlation with the size of
training data. For Huth’s dataset and the Narratives dataset, which both utilize
auditory-based stimuli, the win rate is notably consistent when the datasets are of
equivalent size. The total number of data samples within Pereira’s dataset, Huth’s
dataset, and the Narratives dataset amount to 376, 1,039, and an average of 5546
across participants, respectively.
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that LLMs with an increasing number of parameters exhibit amplified
benefits from brain input.

Effect of the size of neural activity data for training
We testedBrainLLMon a variable size of neural activity data and computed
its win rate versus PerBrainLLM. As shown in Fig. 2f, the language gen-
eration performance steadily increases as the model is trained with more
data on Huth’s dataset and the Narratives dataset. Existing studies11,22 have
found that enlarging the size of neural activity datasets can improve the
mapping between language representation in the brain and that in the LLM.
Our results further suggest that expanding the size of neural activity training
data also improves languagegenerationperformancewhen jointlymodeling
the brain representation with LLM.

Language generation across cortical regions
We explore how language can be generated with brain recordings collected
from different cortical regions as input. Fig. 2d presents the win rate of

BrainLLMversus PerBrainLLMwith Broca’s area23, the precuneus (PrCu)24,
the prefrontal cortex (PFC)25, the auditory cortex (AC)26, and the angular
gyrus (AG)27,28 for a participant (subject 1) fromHuth’s dataset.We observe
that BrainLLM significantly outperforms PerBrainLLM in all language
processing regions, with its highest score of 0.8012 observed in Broca’s area.
This performance even surpasses the results achieved using responses from
all cortical regions. A partial explanation is the higher information-to-noise
rate in these language-related regions and the information loss from
dimensionality reduction while using all cortical regions. Nonetheless, to
preclude bias in selecting regions of interest (ROIs), results using responses
from all cortical regions are reported in themain findings. Existing research
has shown that during language processing, a substantial portion of the
cortex is engaged29,30. This suggests that different cortical regions related to
language might encode overlapping or similar language representations31,
potentially facilitating language generation using just a single cortical area.
These findings have also been observed in prior research on brain language
decoding using a pre-construction and post-hoc classification approach4,32.

Discussion
Our study demonstrates that language can be directly generated with brain
recordings as input, rather than through selection from pre-constructed
language candidates. To accomplish this, we devise an approach that jointly
models brain representation and language representationas input forLLMs.
Unlike a standard LLM that generates only the most likely language con-
tinuation according to its training data, the generation output of BrainLLM
is more aligned with the semantic text content perceived by human parti-
cipants. Using a prompt tuning protocol14,33, BrainLLM has approximately
only 6million trainable parameters, which ismuch smaller than Llama-2’s 7
billion parameters. This parameter size matches existing models like ridge
regression commonly used for brain decoding (e.g., Tang et al.4; Pereira
et al.3), yet achieves direct language generation without restricting the
generation process on a selection of a pre-defined pool of candidates.

How can we integrate human brain representations into com-
putational language generation models?
Previous work has shown that the representations in language models and
thehumanbrain canbemapped to eachother11,34–38.Keyfindings from these
studies include exploring how training language models can enhance this
mapping39, and whether brain representations can be used to improve the
representation learning in language models11,13. Our approach differs from

Fig. 3 | Full-text reconstruction with BrainLLM. a Illustration of the full-text
reconstruction task accomplished with BrainLLM. Each generation step could
autoregressively provide the text prompt for the next step. b Examples of full-text
reconstruction with BrainLLM and a pre-construction and post-hoc selection

method proposed by Tang et al.4. Text in blue indicates content semantically related
to the subject’s movement behavior and intention to move. Text in brown indicates
content semantically related to the interaction between the subject and other indi-
viduals or objects.

Table 2 | Full-text reconstruction performance for a 10min-
long story of “Where There’s Smoke” in Huth’s dataset

Input Method BLEU-1 WER METEOR

Null Classification4 0.1908* 0.9637* 0.1323*

BrainLLM 0.1417 0.9569 0.1181

Subject 1 Classification4 0.2331* 0.9407* 0.1621*

BrainLLM 0.2539 0.9158 0.2078

Subject 2 Classification4 0.2426* 0.9354* 0.1677*

BrainLLM 0.2518 0.9259 0.2031

Subject 3 Classification4 0.2470 0.9243* 0.1703*

BrainLLM 0.2497 0.9190 0.2180

*indicates the performance difference between the pre-construction and post-hoc selection
methodproposedbyTanget al.4 (denotedas “Classification”) andBrainLLM is significant atp< 0.05
(paired t-test). A floor for each metric was computed by scoring the mean similarity between the
actual stimulus words and a sequence generated from a language model without using any brain
data ("Null”). Here Tang et al.4 uses a private language model trained on a corpus composed of
Reddit stories, which exhibit a similar style with the subject-perceived story content. On the other
hand, we use a publicly available languagemodel GPT2-xl, which is trained in a general corpus and
therefore shows worse performance when compared to “Classification” when no brain input is
given. However, with brain responses collected from human subjects, the proposed BrainLLM
shows comparable performance in terms of language similarity metrics with “Classification”.
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the above as the representation alignment between the brain recordings and
the language representation in LLMsdoesnot necessarilymean that one can
be used to generate the otherwithin a computational framework. BrainLLM
demonstrates the feasibility of using representations decoded from the brain
to enrich the contextual information as input for LLMs, which is typically
based only on text modalities. This approach enables LLMs to generate
coherent language continuations that match the semantics perceived by
human participants33.

The success of BrainLLM can be attributed to two key factors. Firstly,
the information encoded in the human brain often encompasses contextual
and situational semantics3,13. The evidence on the mapping between brain
representation and language model representation suggests that contextual
and situational semantics can potentially be learned by BrainLLM, enabling
effective end-to-end next-token generation training. Secondly, the increase
of languagemodel parameters has given rise to advanced capability in “few-
shot learning” or “in-context learning”40. BrainLLM uses this capability to
backpropagate gradients to train the contextualized representations learned
with an fMRI dataset smaller than those typically required for most NLP
tasks. Our experiments also show that language models with increasing
model parameter sizes achieve greater performance improvements in
BrainLLM than in PerBrainLLM.

Comparison with previous work
Most existing studies treat the language reconstruction task in a classifica-
tion setup, which involves pre-defining a set of semantic candidates (e.g.,
words1, concepts3, sentences41) and employing a mapping function to
determine which candidate best matches the recorded brain activity. This
setup implies that these methods are incapable of constructing candidates
beyond pre-definited sets. An exception is a recent study4 that successfully
constructs continuous semantic candidates by first pre-generating several
candidate tokens with LLMs, and then selecting from the candidates with
brain recordings.

BrainLLM is markedly different from the above studies in that it
directly uses the representation decoded from the brain as input to the
generative language model. Such a generative paradigm endows it with the
following unique properties: First, the generative paradigm implies that
language reconstruction can be achieved by identifying the correct token
without relying on potentially incorrect pre-selected or pre-generated
candidates. The generation process can be considered as selecting the
highest probability token froma vocabulary of 32,000 tokens,which exceeds
the usual range of 2–50 candidates in previous studies with a classification
setup. At the same time, BrainLLMachieves a top-1 accuracy of up to 65.8%
on the best-performing Pereira’s dataset, with accuracy exceeding 40%
across all three datasets (see Supplementary Fig. 13). Second, BrainLLMcan
quantify the generation likelihood of any semantic content rather than a
limited number of semantic candidates. This feature can help neuro-
linguistic analysis by comparing the generation likelihoods associated with
contents with different linguistic characteristics. Last, existing literature
suggests a connection between brain signals and the computation of gen-
erative LLMs13,34. The scaling capabilities of BrainLLM in terms of the data
size and the parameter size also suggest better adaptability of brain mod-
alities in combination with generative AI models.

In recent years, many studies in the field of generative AI have inspired
and advanced the research in brain decoding. Generative AI models offer a
new pathway for decoding information from the brain, bypassing tradi-
tional classification setups. For example, in addition to the language
reconstruction explored in this paper, visual reconstruction frombrain data
has also progressed from classification-based models42 to diffusion-based
generative models43–45. The adoption of generative AI extends beyond
information decoding from the brain; it has been shown to elucidate the
functional organization of the human visual cortex46. On the other hand,
some research has explored why brain recordings have the potential to be
jointly modeled with these computational generative models. For example,
Goldstein et al.13, Lupyan et al.47, Clark48 have shown that the human brain
exhibits a tendency to predict the next word, a phenomenon supported by

various studies. Therefore, we believe that the generative reconstruction
approach is a promising direction for investigating the perception of
information in the brain and could extend beyond the specific model
architectures tested here (See Supplementary Information B.7, and Sup-
plementary Table 15 for a more comprehensive overview).

Implications and future extensions
Our study illustrates the feasibility of direct language generation from brain
recordings and highlights their differences and superiority over previous
methods. Due to the advantages of the generative paradigm, BrainLLM can
serve as a superior alternative to traditional classification-based approaches,
especially in BCI applications where the user instructions cannot be con-
fined to a pre-defined candidate set. For example, BrainLLM can help an
individual with aphasia to communicate in an open-world environment,
without learning a predefined set of user instructions (see ethics discussion
in Supplementary Information B.8). Despite the superior performance of
BrainLLM, open-vocabulary decoding remains highly challenging at a level
that could immediately lead to practical applications.We observe that in the
full-text reconstruction task, the output of BrainLLM is still far from perfect
matchingwith the ground truth content (see SupplementaryTable 16). One
promising future direction is to integrate BrainLLM with external modules
to infer text prompts and enhance the language generation process, such as
incorporatingother types of brain-computer interfaces (BCIs). For example,
BCIs based on motor representations49–51 or attempted language
production52 have demonstrated a usable performance, but they require
extensive user training and active engagement in the input system,
demanding significant user effort50,52. In contrast, BrainLLM effectively
decodes semantic content from visual and auditory stimuli during partici-
pants’ perception. Hence, integrating two types of BCIs could lead to more
effective applications: motor-based BCIs generate initial text prompts and
enable motor-free language continuation generation, with high-surprise
generation steps checked by motor-based BCIs.

Furthermore, BrainLLM essentially quantifies the generation like-
lihood of participants’ perceived continuation when given a text prompt.
Therefore, it can be used to investigate the semantic information encoded in
the human brain without a limited set of pre-defined language stimuli. As
the first step, this paper investigates the performance gain brought by brain
signals across different surprise levels, context lengths, and different brain
regions.Thismethodcan also extend the existingparadigmson studying the
representation and perception of language in the brain. For example, in
neurolinguistic studies53, researchers usually manipulate and pre-define
language stimuli with various linguistic characteristics to study their effects
on brain responses. BrainLLM allows us to gather brain data in natural
reading settings and analyze it by comparing the generation likelihoods of
semantic content with varying linguistic features. Possible insights may
includewhether different populations have varying expectations for various
language contents and which brain regions are more closely related to
specific linguistic aspects. Additionally, existing studies have shown that
semantic information in the human brain is context-aware32, e.g., the brain
response to “flat” is different in “flat object” and “flat emotion”. Since our
method is also a context-based (text prompt) generation, it can be used to
explore the impact of contextual information and its effect on brain
responses. An example is exploring the connections between various brain
regions and the contextualized semantic aspects by comparing their
reconstruction performance.

Last, several studies show that computational language modeling can
gain insights from human responses or feedback to language54,55, especially
brain responses34.Our experiments show that personalizedbrain recordings
may refine the language generation process, especially when the likelihood
of the ground-truth output is low for anLLM.This suggests thepossibility of
training better language models, or at least model with more personalized
generation ability that take into account individual variation in brain
responses. For instance, BrainLLM’s estimated generation likelihood can
facilitate the training of LLMs to produce content that aligns more closely
with human expectations. Training an LLM to align with human
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expectations has shown its effectiveness withbehavioral signals as input and
a reinforcement learning technique56. However, while behavioral signals
offer only one-dimensional preference feedback, BrainLLM has the
potential to provide multi-dimensional feedback across the entire vocabu-
lary distribution, which can be more informative for model training.

Methods
We formalize the task of language generation from brain recordings and
then detail and justify the different components of BrainLLM, followed by
describing the datasets, training, and evaluation.

Task formalization
Given a text prompt W composed of a sequence of tokens
{w1, w2, w3, …, wn}, the task objective is to predict its continuation
M = {m1,m2,…,mk} with the participants’ brain recordings while they are
perceiving the stimuli constructed with the continuation contentM. In this
paper, we refer toM as the “perceived continuation”. The brain recording
B ¼ fb1; . . . ; btg 2 Rt × c is a sequence of features extracted from BOLD
signals, with c being the number of neurological features, and t being the
number of time frames inwhich brain recordings are collected.We segment
t time frames after the stimuli presentation of the perceived continuation.
This segmentation takes into account the delayed effect of BOLD signals1 (t
is set to 4, consistent with existing work4,34). The language generation task
aims to learn an autoregressive function F that can generate the perceived
continuation M one token at a time, utilizing the text prompt W and the
brain recording B as inputs. This process can be formalized as
m̂i ¼ Fðfw1; . . . ;wn; m̂1; . . . ; m̂i�1g;B;ΘÞ, where m̂i is the i-th token
generated by the model, and Θ is the model parameters.

The language generation ability of BrainLLM is then evaluated in
two settings. The first is to evaluate its performance in predicting the
perceived continuation with the ground truth text prompt and the brain
input (i.e., language continuation generation or language generation).
The second is using BrainLLM in an autoregressive manner in which
each generation step could autoregressively provide the text prompt for
the next step (full-text reconstruction). Despite the superior performance
of BrainLLM, open-vocabulary decoding with only brain recordings
remains highly challenging at a level that could immediately lead to
practical applications. Therefore, we constructed the above two settings
to study the usability of BrainLLM with both machine-based evaluations
(win rates and language similarity metrics) and human evaluations (see
Measurements).

Model
Large language model (LLM). In our study, we used the LLMs released
on Huggingface (https://huggingface.co/models), namely Llama-2
(https://huggingface.co/meta-llama/Llama-2-7b) and the GPT-2 series
(https://huggingface.co/gpt2). The GPT-2 series and Llama-2 were
selected for our experiment due to their open-source accessibility and
extensive utilization in the realm of LLMs. As of December 2023, they are
among the top 10 most downloaded text generation models on Hugging
Face. https://huggingface.co/models?pipeline_tag=text-generation&sort=
downloadsThese LLMs function in a similar way. Typically, they first
convert the input tokens into a series of latent vectors with an embedding
layer. Then, these vectors are fed into a multi-layer neural network that
uses multi-head self-attention to aggregate the representations of each
vector in a sequence57. Based on this architecture, for any input sequence
of tokens S = {s1, s2, …, sn} with length n, the LLM can estimate a prior
probability distribution P(sn+1∣S) for the next token sn+1 over the given
sequence S. This probability estimation function P serves as a mechanism
for autoregressive language generation. Conventionally, the input tokens
S are text-based. However, in our approach the brain recordings are
incorporated into the construction of sequence S, enabling language
generation that is aware of the brain input. Additional details regarding
the statistics, and abilities of different LLMs are provided in Supple-
mentary Information B.9 and Supplementary Table 17.

Input preparation. First, the text prompt is directly fed to the LLM’s
embedding layer fw to transform the tokens into latent vectors
VW ¼ fvW1 ; . . . ; vWn g 2 Rn× d , where n is the number of tokens, and d is
the embedding size. Second, a brain adapter fb is devised to embed the
brain recording into the same latent space with the dimension d. Speci-
fically, for each bi∈B, the decoder embeds it into the spaceRd , which can
be formulated as vBi ¼ f bðbiÞ. Last, the brain embedding VB and the text
embedding VW are concatenated together, allowing the LLM to perceive
modalities from the brain and the text in a unified representation. To
differentiate between the two modalities effectively, we introduce two
special tokens, i.e., 〈brain〉 and 〈/brain〉, to indicate the beginning and
end of the brain embedding. The special tokens are randomly initialized
as one-dimensional vectors v〈brain〉 and v〈/brain〉, respectively. These vectors
have the same number of dimensions d as the token embeddings in LLM.
As a result, the input sequence I can be formulated
as I ¼ fvhbraini; vB1 ; . . . ; vBt ; vh=braini; vW1 ; . . . ; vWn g.

Brain adapter. The brain adapter is a deep neural network fb, with the
brain recording B ¼ fb1; . . . ; btg 2 Rt × c as input and the brain
embedding VB ¼ fvB1 ; . . . ; vBt g 2 Rt × d as output, where d is the LLM’s
embedding size. The architecture of the brain adapter is chosen from a
range of candidates (see Supplementary Information B.3, Supplementary
Fig. 14, and Supplementary Table 18). Unlike LLMs that connect with
other modalities58–61, the brain adapter in BrainLLM models brain
representations non-linearly, taking into account the delay effects of
BOLD signals and adopted position embedding for sequence modeling.
Specifically, fb comprises (1) a position embedding P ¼ fp1; . . . ; ptg 2
Rt × c that captures and represents the chronological order during the
collection of BOLD signals, and (2) a multi-layer perceptron network fm
designed to transform the brain representation into the latent space that
is shared with the text modalities. The position embedding is initialized
using a uniform distribution and set to be trainable. Element-wise
addition is applied where each position embedding pi ∈ P is added to its
corresponding BOLD features bi ∈ B. The multi-layer perceptron net-
work fm is constructedwith an input layer and twohidden layers that have
the same dimension c as the input fMRI features, as well as the output
layer with the dimension of d. A ReLU62 is used as the activation function.
Formally, the BOLD features corresponding to the i-th time frame,
denoted as bi, is input into the brain adapter fb, which can be expressed as
vBi ¼ f bðbiÞ ¼ f mðpi þ biÞ. The output vector embedding vBi , with its
dimension tailored to the LLM’s embedding size, can be further adopted
to construct the input with the text modalities.

Training objective. Inspired by the prompt tuning technique63, the
training of our proposed model involves a warm-up step, followed by a
main training step. Thewarm-up step aims to align the distribution of the
brain embedding with that of the text token’s embeddings, ensuring that
the brain embedding is primed for integration with the text prompt
embedding. This step aims to develop an adapter that extracts infor-
mation from brain signals relevant to the current semantic context,
thereby enhancing the robustness of modeling noisy fMRI signals. To
streamline the process and enable training without leaking information
about the perceived continuation, each vBi 2 VB is simply mapped to the
mean value of the corresponding text prompt embeddings, i.e.,
1
n

Pn
j¼1v

W
j . The mean square error (MSE) loss is used during the training

process of the warm-up step:

LMSE ¼ 1
t

Xt
i¼1

vBi �
1
n

Xn
j¼1

vWj

 !2

ð1Þ

Then, we construct the input sequenceIcombined with both brain and text
modalities. The LLM utilizes a transformer architecture for autoregressive
generation based on the input sequence I. The main training target is
selected as maximizing the generation likelihood of the perceived
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continuation:

max
Θ

X
i¼1;2;...;k

logðPðmijI; fm1; . . . ;mi�1g;ΘÞÞ ð2Þ

where Θ ¼ fΘLLM ;Θf b ;Θspg is the model parameters, ΘLLM, Θf b , and Θsp

are the parameters of the LLM, the brain adapter, and the special tokens
〈brain〉 and 〈/brain〉, respectively. During the main step, we retain the
inherent knowledge of the LLM while learning useful information from a
limited number of data samples with the “prompt tuning” technique14. This
technique involves keeping the parameters of the LLM unchanged, and
instead, fine-tuning only the input representation, i.e., Θf b , and Θsp in our
task. By doing so, the brain adapter learns to decode information from the
human brain recordings to guide the LLM in generating outputs that closely
resemble the perceived continuation. This technique has been experimen-
tally validated to bemore effective than fine-tuning all LLMparameters (see
Supplementary Information B.3 and Supplementary Table 19).

Datasets & preprocessing
We test BrainLLM on three public fMRI datasets, Pereira’s dataset3, Huth’s
dataset16, and the Narratives dataset15. All datasets, along with their asso-
ciated studies, received approval from ethics committees and are accessible
for basic research. Informed consent was secured from every human
research participant. Pereira’s dataset collects participants’ BOLD signals
while viewing visual stimuli composed of Wikipedia-style sentences. Con-
sistent with previous work64, the brain data of participants who both par-
ticipated in experiments 2 and 3 were selected in this paper. This involves 5
participants, each responding to 627 sentences. The released beta coefficient
brain images (see the original paper3) corresponding to each sentence are
used in our study. Huth’s dataset and the Narratives dataset contain BOLD
responses recorded while participants listened to auditory language stimuli
of narrative stories. The officially released preprocessed motion-corrected
version of these datasets is adopted in our study (https://openneuro.org/
datasets/ds003020/ and https://openneuro.org/datasets/ds002345/). Huth’s
dataset includes data from 8 participants, each listening to 27 stories.
Consequently, each participant contributed 6 hours of neural data,
amounting to a total of 9244 TRs. The Narratives dataset initially included
365 participants, from which we selected 28 individuals who engaged in at
least three story stimuli. Among them, eight participants took part in
4 stories, while 20 participants took part in 3 stories, with an average of 1733
TRs collected from each participant. Additional details regarding the sta-
tistics, approvals, pre-processing, and language stimuli for these datasets are
provided in the Supplementary Information A and Supplementary
Table 20.

To efficientlymanage and analyze the fMRIdata, we consistently apply
dimension reduction to c = 1000 dimensions across all datasets for the
whole-brain BOLD features. The dimension reduction is obtained by
applying principal component analysis65 to the preprocessed BOLD fea-
tures.When conducting analysis on a single brain region, the original signal
was directly used without dimension reduction. Consequently, we con-
structed the data samples for the language generation task with the BOLD
features in each time frame, corresponding stimuli presented to the parti-
cipant (perceived continuation), and the text prompt (if any) that preceded
the stimuli. Pereira’s dataset consists of participants’ brain recordings of
individual sentences, each presented without overlap. We split each sen-
tence into three pieces with approximately equal number of tokens. Two
unique data samples are constructed by treating the first third as the text
prompt and the second third as the perceived continuation, as well as
combining the first two-thirds as the text prompt and using the last third as
the perceived continuation. For Huth’s dataset and the Narratives dataset,
the language stimuli were presented to the participants continuously.
Therefore, we split the dataset by treating each time repetition (TR) (2s in
Huth’s dataset and 1.5 s in the Narratives dataset) as a time frame. The
perceived content during each time frame is selected as a perceived con-
tinuation. Then we used a sliding window ranging from 1 to 3 TRs to select

the language stimuli preceding the appearance of the perceived content as
the text prompt. This step created 3 data samples for each time frame. The
constructionof data samples aims to create asmany samples aspossiblewith
limited neurological data and ensure that themodel is adept at handling text
prompts of varying lengths. After that, the data samples are split into
training, validation, and testing setswith a size roughly proportional to 3:1:1,
respectively. The splitting ensured that there was no overlap of perceived
continuation and brain recordings among the training, testing, and vali-
dation sets. Additional details and examples for the dataset construction are
provided in Supplementary Information B.1.

Training and inference protocols
We trained BrainLLM with the Adam optimizer66 using a learning rate of
1 × 10−4 and a batch size of 8. The batch size is set to 8 as the significant
graphics memory demands of the LLM preclude the use of a bigger batch
size. The training of the warm-up step was stopped after ten epochs. The
training of the main step was stopped when no improvement was observed
on the validation set for ten epochs, while the test set was never used during
the training process. The entire training process was conducted on 16 A100
graphics processing units with 40 GB of memory and took approximately
14 hours to complete.

For inference on the test set, we adopted a beam search method. We
maintain a beam containing the five most likely sequences and generate a
continuation for each beam at each generation step. Then we truncate the
number of tokens under the given TR for evaluation. This truncation
remains consistent acrossBrainLLM, its control, and the re-implementation
of baselines. In the full-text reconstruction task, we use a word rate model
following existing research4 to predict the number of tokens perceived at
each TR, and generate an equivalent number of tokens at each step. Dis-
cussions on the hyper-parameter selection are provided in Supplementary
Information B.10 and Supplementary Table 21.

Full-text reconstruction
We investigated the application of BrainLLM in the reconstruction of full-
text content. Initially, assume the brain recordings corresponding to thefirst
time frame are {b0,1, . . . , b0,t}, where t = 4 is the segmentation time window
when taking into account the delayed effect of BOLD signals. We adopt a
word rate model WR following existing work4, which predicts the length l0
of word tokens perceived by an individual within a given time frame using
brain recordings as input:

l0 ¼ WR ðfb0;1; :::; b0;tgÞ ð3Þ

Subsequently, based on the prompt input decoded from the brain record-
ings, i.e., fvhbraini; vB0;1; . . . ; vB0;t ; vh=brainig and the predicted word rate l0, we
generate l0 tokens with the LLM at the first time step:

M0 ¼ LLM ðfvhbraini; vB0;1; . . . ; vB0;t ; vh=brainigÞ; i 2 f1; 2; . . . ;m0g ð4Þ

where M0 ¼ fm0;1; :::;m0;l0
g is the l0 tokens generated with the prompt

input. Following this, at the kth time frame, continuations are produced
based on the brain recordings at the kth frame {bk,1,…, bk,t} and the tokens
generated in the previous time steps fwk

1; . . . ;w
k
s g, where s is the window

size to truncate the previously generated tokens. At the kth time step, the
input for the LLM comprises the embeddings of these tokens and the brain
input:

Mk ¼ LLM ðfvhbraini; vBk;1; . . . ; vBk;t ; vh=braini; vw
k

1 ; . . . ; vw
k

s gÞ; i 2 f1; 2; . . . ;mkg
ð5Þ

whereMk ¼ fmk;1; :::;mk;lk
g is the tokens generated in the kth time step, lk is

the predicted word rate in the kth time frame, fvwk

1 ; . . . ; vw
k

s g are the word
embeddings of the previously generated tokens.

The newly introduced hyperparameters for the full-text reconstruction
involve the size of the time window and the beam size when conducting
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beam search for content generation21.We tested the size of the timewindow
from {5, 10, 20} and the beam size from {3, 5, 10}. Ultimately, the selected
optimal hyperparameters are a time window of 10 and a beam size of 3.

Machine evaluation
We investigate BrainLLM and its baselines and controls based on two
machine evaluation measurements, i.e., (1) surprise and win rate, and (2)
language similarity metrics.

The surprise and win rate are measured based on the likelihood of
BrainLLM generating the perceived continuation. Given a sequence of
tokens, LLM induces a distribution of probabilities for all possible following
continuations. The likelihood of a possible continuation is themultiplicative
product of the probabilities of generating each token in the continuation.
Typically, the negative logarithmic cross-entropy likelihood of the perceived
continuation in this distribution is adopted as the surprise measurement67:

surprise ¼ �
X

i¼1;2;...;k

logðPðmijI; fm1; . . . ;mi�1ÞgÞ ð6Þ

where {m1, …, mk} is the continuation of input sequence I. The higher
surprise indicates the language model deems the continuation as more
unexpected. Based on this definition, a more effective language generation
model should deem the perceived continuation less surprising. Conse-
quently, to assess the relativeperformanceof theproposedBrainLLMand its
control models, PerBrainLLM and StdLLM, we compare their surprise
scores for each perceived continuation within the constructed data sample.
This evaluation metric is known as win rate and has been utilized for
performance comparison in brain decoding and encoding research1,3. In
addition, we also utilize PerBrainLLM’s surprise measurement to examine
the impact of surprise on language generation performance, as this mea-
surement represents the language model’s surprise for the perceived con-
tinuation when brain recordings corresponding to the perceived
continuation are not obtained.

The language similaritymetrics used in our study are BLEU (Bilingual
evaluationunderstudy)68, ROUGE(Recall-OrientedUnderstudy forGisting
Evaluation)69, WER (Word Error Rate)70, and METEOR (Metric for Eva-
luation of Translation with Explicit Ordering)69. To avoid potential bias
introduced by relying on language representations from LLMs, we refrain
from employing metrics such as BertScore71, which utilize LLM-derived
representations. BLEU is a metric for measuring the similarity between two
text sequences, and is based on the n-gram precision between the generated
sequence and reference sequence. The BLEU score is computed as by:

BLEU ¼ BP

ðBPþ ð1� BPÞ � ð1� e� lnðrnÞ= lnðmÞÞÞ ð7Þ

where rn is then-gramprecision,which is thenumberofn-grams thatmatch
between the generated sequence and the reference sequence, m is the
number of possible n-grams in the reference sequence, BP is the brevity
penalty, which is a measure of howmuch shorter the generated sequence is
than the reference sequence, which can be measured by:

BP ¼ 1 if r < c

e1�r=c if r ≥ c

�
ð8Þ

Weused the unigramvariantBLEU-1 inour paper.WER is calculated as the
number of words that are incorrectly recognized divided by the total
number of words in the reference sequence, which is measured by:

WER ¼ ðsubstitutionsþ deletionsþ insertionsÞ=m ð9Þ

where m is the number of possible n-grams in the reference sequence,
substitutions, deletions, and insertions are the number of substitutions,
deletions, and insertions while transforming the generated sequence to the
reference sequence. ROUGE (Recall-Oriented Understudy for Gisting

Evaluation) is anothermetric for measuring the similarity between two text
sequences. It is based on the recall of the n-grams in the generated sequence:

ROUGE-N ¼ rn
m

ð10Þ

where rn is the n-gram recall, which is the number of n-grams that match
between the generated sequence and the reference sequence divided by the
total number of n-grams in the reference sequence, m is the number of
possible n-grams in the reference sequence.Weuse the unigramvariant and
the longest common subsequence variant of ROUGE. The longest common
subsequence variant of ROUGE is computed as by:

ROUGE-L ¼ RLCS
m

ð11Þ

where RLCS is the length of the longest common subsequence between the
generated sequence and the reference sequence. METEOR is a metric not
only considers the exact match of n-grams but also accounts for the proper
ordering of them.METEOR first calculates a parametrized harmonic mean
Fmean of unigram precision and unigram recall. Then, the sequence of
matchedunigrams is divided into the fewest possible number of “chunks” to
calculate a fragmentation fractionas apenalty. Finally, theMETEORscore is
computed as:

METEOR ¼ ð1� penaltyÞ � Fmean ð12Þ

Since the chunks are few in the language generation task, which renders
METEOR meaningless, we only use METEOR in the full-text reconstruc-
tion task. In general, higher scores in BLEU, ROUGE, and METEOR,
coupled with a lower score in WER, indicate higher language similarity.
Discussions and extended analysison the measurements are provided in
Supplementary Information B.4, Supplementary Table 12, and Supple-
mentary Tables 22, 23.

Human evaluation
202 participants were recruited from Amazon’s Mechanical Turk
https://www.mturk.com/ for the human evaluation. All participants
have stipulations of U.S. residents (based on ownership of a U.S.
bank account). These participants were required to have maintained
at least a 90% approval rate on their previous HITs and to have had a
minimum of 1000 HITs approved historically. Informed consent was
obtained from all participants included in the study. This study
adheres to the ethical procedures which is approved by the ethics
committee of the School of Psychology at Tsinghua University with
the identifier 2021 Ethics Approval No. 18. All ethical regulations
relevant to human research participants were followed.

The human evaluation task is selected as a preference judgment
between generation output from BrainLLM and PerBrainLLM. Per-
BrainLLM is selected as the control of BrainLLM in the human evaluation
study, as their comparison directly demonstrates the impact of utilizing
brain recordings corresponding to the perceived continuation. We ran-
domly sampled 3000 pairs of generation output from BrainLLM and Per-
BrainLLM in Huth’s dataset for the task. To mitigate the order effect, each
pair of language contents generated from BrainLLM and PerBrainLLM are
randomly assigned as “Text1” and “Text2”. As shown in Supplementary
Fig. 15, participants are required to judge which one in a pair ("Text1” and
“Text2”) is semantically closer to the perceived continuation (namely “Base
Text”). This preference judgment ismade by selecting from “Text1 is better”
and “Text2 is better”, or the participant can select “hard to distinguish” if
they find it difficult to judge or deem “Text1” and “Text2” as equally good.
On average, the participants were paid $1.0 for each 15minutes they spent.
This rate of pay ($4.0 per hour) is above themedian hourly wage forMTurk
HITs. All results are included in our analyses. A one-tailed t-test is imple-
mented to statistically assess the disparity in the preference counts for
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BrainLLM and PerBrainLLM. In this analysis, instances categorized as
“hard to distinguish” are assigned amidpoint value, equidistant between the
two options. This approach recognizes the option of “hard to distinguish” as
representing a balanced or neutral preference.

LLM control selection
Instead of using permuted inputs as a control (PerBrainLLM), utilizing the
outputs of a standard LLM (StdLLM) as a baseline for comparative analysis
is a more prevalent practice4,72. However, we doubt that this prevalent
selection of StdLLMmight not be a fair baseline.We test the performance of
PerBrainLLM and StdLLM, finding that PerBrainLLM significantly out-
performs StdLLM (see Supplementary Fig. 16, Supplementary Table 24).
Notably, a similar phenomenon is observed in the previously proposed
method with a pre-construction setup4 in our experiment (see Supple-
mentary Table 25). The enhanced performance of PerBrainLLM over
StdLLM lies in its ability to generate content that aligns with the common
data distribution of language usage in the dataset. Although PerBrainLLM
uses brain recordings that are not aligned with stimuli perceived by an
individual for a particular continuation, these contents share similar lan-
guage usage patterns (e.g., all stimuli in Pereira’s dataset are Wikipedia-
style). We analyze this problem theoretically from a probability perspective
and provide more experimental details in Supplementary Information B.2.

Statistics and Reproducibility
All statistical analyseswere performedusing thePython (version3.8.12) and
the packages SciPy (version 1.9.1) and Statsmodels (version 0.13.2). All bar
graphs represent themeanvalue and the standard error as errors bars, points
represent averaged values from an indivual particpants (e.g., Fig. 2a) or
decoded token targets (e.g., Fig. 2c). All statistical analyses for win rates and
human evaluations are one-sided tests, while analyses for language simi-
larity metrics are paired tests. When the data follows a normal distribution,
we use the t-test; otherwise, the non-parametricWilcoxon test is used. FDR
was calculated across the three datasets, with a threshold of 0.05 considered
significant. We also include a structural equation modeling for analyzing
relationship bwteeen the length of the text prompt and the win rate in
Supplementary Information B.4 and an analysis of the relationship between
different measurements in Supplementary Fig. 17. Reproducibility was
maintained by open-sourced code and data.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The data for analyses and generating figures are available at: https://doi.org/
10.6084/m9.figshare.2835215373. The data from Pereira et al.3 is available
under the CC BY 4.0 license at the OSF platform (https://osf.io/crwz7)74.
Huth’s dataset16 is provided (in part) by the University of Texas at Austin
with a “CC0” license at the OpenNeuro platform ((https://openneuro.org/
datasets/ds003020/)75. The Narratives dataset15 is available under the same
universal license at the OpenNeuro platform (https://openneuro.org/
datasets/ds002345/)76. All audio or visual files were provided by the
authors of each dataset.
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