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Abstract
Generative retrieval (GR) has emerged as a promising paradigm

in information retrieval (IR). However, most existing GR models

are developed and evaluated using a static document collection,

and their performance in dynamic corpora where document col-

lections evolve continuously is rarely studied. In this paper, we

first reproduce and systematically evaluate various representative

GR approaches over dynamic corpora. Through extensive experi-

ments, we reveal that existing GR models with text-based docids

show superior generalization to unseen documents. We observe

that the more fine-grained the docid design in the GR model, the

better its performance over dynamic corpora, surpassing BM25

and even being comparable to dense retrieval methods. While GR

models with numeric-based docids show high efficiency, their per-

formance drops significantly over dynamic corpora. Furthermore,

our experiments find that the underperformance of numeric-based

docids is partly due to their excessive tendency toward the initial

document set, which likely results from overfitting on the training

set. We then conduct an in-depth analysis of the best-performing

GR methods. We identify three critical advantages of text-based

docids in dynamic corpora: (i) Semantic alignment with language

models’ pretrained knowledge, (ii) Fine-grained docid design, and

(iii) High lexical diversity. Building on these insights, we finally pro-

pose a novel multi-docid design that leverages both the efficiency

of numeric-based docids and the effectiveness of text-based docids,

achieving improved performance in dynamic corpus without re-

quiring additional retraining. Our work offers empirical evidence

for advancing GR methods over dynamic corpora and paves the

∗
Corresponding author.

This work is licensed under a Creative Commons Attribution 4.0 International License.

SIGIR ’25, Padua, Italy
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1592-1/2025/07

https://doi.org/10.1145/3726302.3730314

way for developing more generalized yet efficient GR models in

real-world search engines.
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1 Introduction
Traditional information retrieval (IR) systems are based on pipelined

“index-retrieval-then-rank” strategies where each module is opti-

mized separately [6, 19, 22]. In recent years, a new retrieval para-

digm, generative retrieval (GR) has emerged and garnered increas-

ing attention due to its end-to-end training and remarkable perfor-

mance [14, 24, 34, 37]. In this paradigm, all information of corpus

is encoded into the parameters of a generative language model

and such a model then directly generates document identifiers (do-

cids) for a given query. Specifically, generative retrieval primarily

consists of two steps: (i) training as indexing: through training objec-
tives that map queries or documents to their associated docids, the

model memorizes the document into its parameters during training

and learns the mapping relationship between queries and docids. (ii)

generation as retrieval: upon receiving a query, the model directly

generates the corresponding docids autoregressively. Existing work

has shown that the design of docid plays a critical role in the perfor-

mance of GR models [28, 35, 38]. According to the type of docid, GR

methods can be divided into two categories: numeric-based methods

that convert documents into numeric sequences via quantization
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strategies (hierarchical k-means [30], product quantization [36],

residual quantization [33]), and text-based methods that leverage

titles, URLs, or n-grams as docids [2, 5].

However, most GR approaches are built and evaluated in static

scenarios, where the document collection remains fixed [9, 17, 29,

32]. Although these models perform strongly in such settings, their

effectiveness in real-world environments, where documents contin-

uously evolve over time, has not been thoroughly evaluated [3, 11].

Unlike static corpora, dynamic corpora impose higher demands

on a model’s generalization and robustness as new documents

are not encountered during training. While previous studies have

found that several GR models perform poorly over the dynamic

corpora [3, 12], only limited efforts have been made to comprehen-

sively investigate the generalization ability of different GR models

under fair experimental settings.

An intuitive solution is to retrain the GR model from scratch

when the underlying corpus is updated. However, the prohibitive

computational costs of model training make this approach unfeasi-

ble [4]. Consequently, prior studies have explored continual (i.e., in-

cremental) learning techniques to enhance the generalization ability

of GRmodels with less computational overhead [7, 23]. For example,

Mehta et al. [23] proposes DSI++, which employs sharpness-aware

minimization to optimize for flat loss basins, thereby enabling the

model to effectively learn from newly added documents. Guo et al.

[7] develop task-specific adapters [8, 21] and pre-training objectives

to adapt the dynamic corpora. As shown in Table 3, we find that

SEAL [2], which employs text-based docids, can achieve comparable

performance over dynamic corpora without re-training.

Therefore, our reproducibility study mainly focuses on the mod-

els’ ability to generalize to unseen documents without additional

training, and on analyzing the factors that influence the perfor-

mance in dynamic corpora. Specifically, we first construct two dy-

namic corpora datasets based on the NQ [13] and MS-MARCO [1]

datasets, by partitioning the entire document collection and user

queries into several sets, thereby simulating practical dynamic re-

trieval scenarios. We then replicate various GR approaches and

compare them with traditional retrieval models, including sparse

retrieval and dense retrieval methods. Our findings show that ex-

isting GR models exhibit inconsistent performance over dynamic

scenarios. In comparison, GR models that use text-based docids

outperform those that employ numeric-based docids in terms of

effectiveness, and underperform them in terms of efficiency.

Building on the insights listed above, we analyze the advantages

of text-based docids and limitations of numeric-based docids over

dynamic corpora:

• Models using numeric-based docids tend to generate docids that

are encountered during initial training.

• Text-based docids maintain semantic alignment with language

models’ pretraining distribution, enabling better generalization

with unseen documents.

• Text-based docids offer a finer-grained representation of docu-

ments, which enhances themodel’s ability to generalize to unseen

documents.

• Text-based docids have higher lexical diversity, which helps miti-

gate overfitting to the initial training set.

Based on these observations, we design a novel multi-docid GR

model that uses numeric-based docids but avoids the tendency

to generate previously seen docids. It achieves finer granularity

and larger docid size, and demonstrates superior performance and

efficiency in dynamic corpora scenario.

In summary, our main contributions are as follows: (i) We in-

troduce a comprehensive evaluation of existing GR approaches

over dynamic corpora, focusing on their ability to generalize to

unseen documents without additional training. (ii) We reveal the

limitations of numeric-based docids in dynamic retrieval scenarios

that they have a tendency toward the initial document set. (iii) We

observed that the text-based docid performs better on dynamic

corpora and analyzed key factors for its performance, including

semantic alignment, fine-grained docids design, and high lexical

diversity. (iv) Building on our findings, we propose a novel GR

framework that integrates the high efficiency and low memory of

numeric-based docids with the strong generalization capabilities of

text-based docids.

2 Background and Preliminaries
2.1 Generative retrieval
The document retrieval task retrieves a relevant document 𝑑 from

a document collection D given a user query 𝑞. Traditional retrieval

approaches typically rely on inverted indexing or similarity-based

ranking; whereas GR retrieves documents by autoregressively gen-

erating the docid 𝑧 corresponding to the most relevant document.

A GRmodel typically consists of two key components: an indexer
and a retriever. The Indexer acts as a document encoder that maps

each document 𝑑 ∈ D to a unique identifier sequence (docid) z =
{𝑧1, 𝑧2, . . . , 𝑧𝑀 }. Here each element 𝑧𝑡 ∈ [𝐾] is drawn a predefined

vocabulary 𝑉 , which may include numerical tokens, lexical items,

or other semantic identifiers. There are mainly two types of docid

design: numeric-based and text-based:

• numeric-based: Each document corresponds to a numeric se-

quence, typically generated by converting document embeddings

into numeric sequences using clustering or quantization meth-

ods.

• text-based: Uses metadata from documents as docid, generally

including elements such as title, query, URL, n-gram, etc.

As for the retriever, upon taking a user query 𝑞 ∈ Q, the Retriever
generates the most relevant docid by maximizing the conditional

probability over the sequence of tokens representing the docid:

𝑃 (𝑧1, 𝑧2, . . . , 𝑧𝑀 | 𝑞;𝜃 ) =
𝑀∏
𝑡=1

𝑃
(
𝑧𝑡 | 𝑧1, . . . , 𝑧𝑡−1, 𝑞;𝜃

)
, (1)

where 𝜃 denotes the model parameters, 𝑀 is the predefined do-

cid length, and {𝑧1, . . . , 𝑧𝑡−1} represents the previously generated

tokens. During inference, the system performs beam search to find:

ẑ = argmax

z∈TD
𝑃 (𝑧1:𝑀 |𝑞;𝜃 ), (2)

where a prefix tree (TD ) enforces constrained decoding by storing

all valid docid prefixes from the corpora D. At each decoding step

𝑡 , token selection is restricted to the children nodes of the current

prefix 𝑧1:𝑡−1 in TD , ensuring generated sequences correspond to

existing documents.
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2.2 Task formulation
The dynamic corpora involves continuously adapting to an expand-

ing document collection while maintaining retrieval capabilities.

Initially, we are given:

• an initial document set D0 = {𝑑1, 𝑑2, . . . , 𝑑𝑛}, and
• corresponding query-document pairs P0 = {⟨𝑞𝑖 , 𝑑 𝑗 ⟩ | 𝑞𝑖 ∈
Q, 𝑑 𝑗 ∈ D0},

where each document 𝑑 𝑗 ∈ D0 is a text sequence and Q = {𝑞1, 𝑞2,
. . . , 𝑞𝑚} denotes the initial query set. A GR model is first trained

using standard sequence-to-sequence objectives on P0. The core

challenge arises with incremental updates: when new documents

Dnew = {𝑑𝑛+1, . . . , 𝑑𝑛+𝑘 } are introduced. For each new document

𝑑𝑛+𝑖 ∈ Dnew, the indexer generates a corresponding docid:

z𝑛+𝑖 = {𝑧 (𝑛+𝑖 )
1

, . . . , 𝑧
(𝑛+𝑖 )
𝑀

}, 𝑧
(𝑛+𝑖 )
𝑡 ∈ {1, . . . , 𝐾}, (3)

preserving the original token vocabulary and sequence length𝑀 .

These new identifiers are incorporated into the existing prefix tree

TD .

The retriever must then handle the expanded search space D′ =
D0 ∪ Dnew. Two adaptation strategies emerge: (i) Model adap-
tation: Continuously train or retrain the model on P0 ∪ Pnew to

learn updated document representations. (ii) Index adaptation:
Maintain frozen model parameters while updating only the index-

ing structures. As mentioned in the Introduction Section, retraining

or continuing training the GR model would cost much more compu-

tational overhead. Therefore, our work only focuses on the second

paradigm, where the Retriever must leverage learned knowledge

to handle novel documents through constrained decoding over the

updated prefix tree T ′
D . This setting tests the model’s ability to

generalize to unseen document representations without parameter

updates.

2.3 Evaluation metrics
Our evaluation primarily focuses on two aspects of model perfor-

mance over dynamic corpora: (i) retrieve initial documents, which
assesses the model’s ability to maintain performance on queries

targeting original documents D0; and (ii) retrieve newly added doc-
uments, which evaluates the model’s capacity to retrieve novel

documents Dnew. We use Hit@10 as the primary metric in both

settings and further introduce formal metrics to summarize the

model’s performance as new documents are incrementally indexed.

Retrieve initial documents. To assess the model’s forgetting be-

havior when indexing new documents, we define the forgetting

metric 𝐹𝑛 , which quantifies the degradation in retrieval perfor-

mance on queries targeting the original corpus D0 after indexing

corpus D1 to D𝑛 :

Definition 1 (Forgetting Metric 𝐹𝑛).

𝐹𝑛 =
1

𝑛

𝑛∑︁
𝑜=1

max

(
𝑃0,0 − 𝑃𝑜,0, 0

)
(4)

where 𝑃𝑜,0 represents the retrieval performance (e.g., Hit@10) of
queries in D0 after indexing corpus D𝑜 .

Retrieve newly added documents.Tomeasure themodel’s ability

to generalize and retrieve newly indexed documents, we define the

generalization performance metric𝐺𝐴𝑛 , which captures how well

the model retrieves queries associated with incrementally added

documents:

Definition 2 (Generalization Performance 𝐺𝐴𝑛).

𝐺𝐴𝑛 =
1

𝑛

𝑛∑︁
𝑜=1

𝑃𝑜,𝑜 (5)

where 𝑃𝑜,𝑜 represents the retrieval performance on queries targeting
D𝑜 after indexing corpus D𝑜 .

3 Experimental Setup
3.1 Datasets
We conduct our experiments on two widely used datasets: Natural

Questions (NQ) [13] and MS-MARCO [1]. We appropriately par-

tition the document sets within the datasets to simulate dynamic

corpora scenarios.

To simulate the task of dynamic corpora, we partition the docu-

ments sets in MS-MARCO and NQ through a two-phase process:

(i) Initial corpus construction: Collect all documents and ran-

domly select 50% as the initial corpus D0. Extract query-document

pairs associated with D0 and split them into a training set P0 and

an initial test set Q0. All models are fully trained on P0, simulating

initialization on the base corpus. (ii) Incremental document addi-
tions: Partition the remaining 50% of documents into five equally

sized subsets, each comprising 10% of the original corpus (D1 to

D5). For each D𝑖 (1 ≤ 𝑖 ≤ 5), extract its associated query-docu-

ment pairs to form incremental test sets Q1 to Q5. No additional

training is performed for these document sets—models only index

new documents upon each addition.

3.2 Retrieval approaches
To compare the performance of GR approaches with previous re-

trieval methods on dynamic corpora, we selected three types of

retrieval approaches: sparse retrieval approaches, dense retrieval

approaches, and generative retrieval approaches.

Sparse retrieval. (i) BM25 [26], a traditional retrieval approach

that ranks documents according to the frequency of the term and

the normalization of the length of the document. We re-index the

entire corpora when the corpora is updated.

Dense retrieval. (i) DPR [10], a neural retrieval method that uses

dual encoders to map queries and documents into a shared dense

vector space for similarity computation. We use the document en-

coder trained on D0 to re-encode the newly added documents for

retrieval. (ii) DPR-HN [20, 25], an enhanced DPR variant that incor-

porates hard negative sampling techniques. It integrates in-batch

negatives, top-K retrieved negatives from dense retrievers, and

BM25 hard negatives.

Generative retrieval. (i) DSI-SE [30], which uses the hierarchical

k-means clustering results of document embeddings as docids and

trains the model to memorize the documents in parameters. (ii) Ul-

tron-PQ [36] uses the product quantization results of document

embeddings as docids and designs a three-stage training task to

enable the model to memorize the documents. (iii) Ultron-URL [36],

a variant of Ultron, uses the document URLs as docids. (iv) NCI [31]

uses a prefix-aware weight-adaptive decoder and various query
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Table 1: Model performance on queries corresponding to the initial document set D0, where the document set size continuously
expands as new documents are added. The best results are indicated in boldface.

Method DocID Type

NQ (Hit@10) MS-MARCO (Hit@10)

D0 D1 D2 D3 D4 D5 𝐹𝑛 ↓ D0 D1 D2 D3 D4 D5 𝐹𝑛 ↓
Sparse retrieval
BM25 Term Weight 0.647 0.625 0.611 0.598 0.573 0.573 0.051 0.653 0.640 0.632 0.629 0.619 0.614 0.026

Dense retrieval
DPR Dense Vector 0.725 0.704 0.696 0.686 0.670 0.660 0.042 0.683 0.681 0.668 0.656 0.651 0.648 0.022

DPR-HN Dense Vector 0.826 0.801 0.797 0.776 0.773 0.768 0.043 0.723 0.712 0.692 0.685 0.672 0.664 0.038

Generative retrieval
DSI-SE Category Nums 0.718 0.710 0.706 0.702 0.699 0.696 0.015 0.605 0.601 0.597 0.594 0.592 0.589 0.010
Ultron-PQ Category Nums 0.795 0.785 0.780 0.780 0.762 0.755 0.023 0.663 0.655 0.647 0.643 0.637 0.632 0.020

NCI Category Nums 0.871 0.856 0.844 0.839 0.811 0.802 0.041 0.702 0.693 0.673 0.667 0.654 0.633 0.038

GenRET Category Nums 0.858 0.853 0.836 0.829 0.812 0.796 0.033 0.717 0.697 0.688 0.674 0.659 0.652 0.043

Ultron-URL URL Path 0.816 0.810 0.794 0.781 0.780 0.768 0.029 0.626 0.620 0.618 0.614 0.611 0.608 0.012

SEAL N-gram 0.809 0.806 0.788 0.774 0.774 0.763 0.028 0.661 0.641 0.625 0.616 0.602 0.598 0.045

MINDER Multi-text 0.838 0.828 0.813 0.811 0.801 0.773 0.033 0.667 0.649 0.633 0.625 0.612 0.600 0.043

LTRGR Multi-text 0.862 0.857 0.846 0.827 0.813 0.807 0.032 0.688 0.675 0.660 0.649 0.636 0.621 0.040

generation strategies to train the model. (v) GenRET [27] uses con-

strained cluster centroids as docids and trains the representations of

docids through document tokenization and document reconstruc-

tion tasks. (vi) SEAL [2] uses arbitrary n-grams from documents as

docids and generates a series of n-grams under the constraints of

the FM-index to retrieve the corresponding documents. (vii) MIN-

DER [15] adopts multiple text types to represent docids, such as

titles, URLs, and n-grams. Different types of scores are generated at

the same time and documents are retrieved based on these scores.

(viii) LTRGR [16] also adopts the multiple text docid design, and in-

troduces an additional learn-to-rank task and rank loss to optimize

the retrieval model.

To enable GR approaches to handle dynamic corpora, we adopt

the following design strategies for docid assignment: (i) For nu-
meric-based docids: These approaches rely on structured numeri-

cal representations (e.g., k-means centroids, product quantization

codebooks). We preserve the original document encoder’s state

(k-means cluster centroids or vector quantization codebooks) to

encode new documents, maintaining identifier consistency with

initial documents. (ii) For text-based docids: These approaches
leverage document-induced textual patterns (e.g., Title, URLs). We

leverage new documents’ inherent metadata and text structure to

automatically assemble valid identifiers.

3.3 Implementation details
We implement BM25 using the bm25s library.1 For dense retrieval
models (DPR and DPR-HN), we employ the pyserini toolkit [18],

using its built-in functionalities for indexing and retrieval. For GR

approaches (DSI, ULtron variants, NCI, GenRET, SEAL, MINDER,

and LTRGR), we adopt their official implementations and strictly

follow the default hyperparameter configurations provided in the

original works to ensure reproducibility.

All models operate with a maximum input sequence length of

512 tokens. Experiments are conducted on 8 NVIDIA A100 GPUs,

1
https://github.com/xhluca/bm25s

with distributed training enabled for GR methods to accommodate

their large parameter sizes. For DPR/DPR-HN, we initialize the

document encoder with the checkpoint pre-trained on the initial

documents and freeze its parameters during incremental phases.

3.4 Statistical validation
We verified the reliability of retrieval performance. All experimen-

tal results reported in Tables 1 and Table 2 achieved statistical

significance at 𝑝 < 0.05.

4 Performance over Dynamic Corpora
In this section, we analyze the experimental results in dynamic

corpora scenario, focusing on how different retrieval approaches

perform as the document set expands incrementally.

Retrieving initial documents.We investigate how the incremen-

tal indexing of new documents affects the retrieval performance

of queries corresponding to the initial document set D0, as the

document collection grows. Both BM25 and DPR exhibit stable

performance in maintaining retrieval effectiveness for initial docu-

ments D0.

Generative retrieval methods demonstrate better resistance to

forgetting. For example, DSI-SE achieves 𝐹𝑛 values (0.015 onNQ and

0.010 on MS-MARCO), outperforming dense retrieval approaches.

Because there is no additional training step, the mapping from

documents to docids remains intact, enabling these models to main-

tain consistent performance for the initially indexed documents.

However, a potential drawback lies in their limited flexibility when

new documents are introduced, as these methods often struggle

to index unseen docids effectively unless specific adaptations (e.g.,

additional training) are employed.

Retrieving newly added documents. When retrieving newly

added documents from a dynamically expanding document col-

lection, both BM25 and DPR demonstrate stable generalization

performance (𝐺𝐴𝑛) when retrieving newly added documents, as

measured by their ability to adapt to an expanding corpus. BM25

https://github.com/xhluca/bm25s
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Table 2: Model performance on queries corresponding to the newly added document set D1 to D5, where the document set size
continuously expands as new documents are added. The best results are indicated in boldface.

Method DocID Type

NQ (Hit@10) MS-MARCO (Hit@10)

D0 D1 D2 D3 D4 D5 𝐺𝐴𝑛 ↑ D0 D1 D2 D3 D4 D5 𝐺𝐴𝑛 ↑
Sparse retrieval
BM25 Term Weight 0.647 0.620 0.588 0.598 0.552 0.571 0.586 0.653 0.634 0.631 0.620 0.603 0.601 0.618

Dense retrieval
DPR Dense Vector 0.725 0.580 0.587 0.570 0.531 0.544 0.562 0.683 0.625 0.623 0.599 0.607 0.604 0.612

DPR-HN Dense Vector 0.826 0.645 0.644 0.626 0.621 0.624 0.632 0.723 0.662 0.653 0.642 0.623 0.619 0.640

Generative retrieval
DSI-SE Category Nums 0.718 0.231 0.203 0.221 0.185 0.205 0.209 0.605 0.204 0.197 0.186 0.172 0.159 0.184

Ultron-PQ Category Nums 0.795 0.548 0.549 0.542 0.539 0.532 0.542 0.663 0.428 0.415 0.399 0.384 0.376 0.400

NCI Category Nums 0.871 0.464 0.437 0.433 0.358 0.323 0.403 0.702 0.402 0.380 0.355 0.341 0.320 0.360

GenRET Category Nums 0.858 0.361 0.419 0.401 0.357 0.354 0.378 0.717 0.439 0.425 0.396 0.350 0.331 0.388

Ultron-URL URL Path 0.816 0.553 0.545 0.543 0.541 0.532 0.543 0.626 0.397 0.376 0.364 0.354 0.342 0.367

SEAL N-gram 0.809 0.744 0.736 0.727 0.727 0.725 0.732 0.661 0.611 0.607 0.584 0.571 0.559 0.586

MINDER Multi-text 0.838 0.803 0.751 0.746 0.742 0.736 0.756 0.667 0.614 0.608 0.587 0.569 0.546 0.585

LTRGR Multi-text 0.862 0.831 0.803 0.811 0.779 0.773 0.799 0.688 0.621 0.612 0.601 0.589 0.577 0.600

achieves 𝐺𝐴𝑛 scores of 0.586 on NQ and 0.618 on MS-MARCO,

while DPR attains 0.562 and 0.612 respectively.

Generative retrieval models exhibit huge divergence in gen-

eralization performance (𝐺𝐴𝑛): Numeric-based docid (e.g., DSI-

SE, Ultron-PQ) demonstrate critical limitations in adapting to un-

seen documents. DSI-SE’s𝐺𝐴𝑛 values (0.209 on NQ, 0.184 on MS-

MARCO) align with its severe Hits@10 degradation when retriev-

ing new documents (e.g., dropping from 0.718 to 0.205 on NQ’s

D5). This failure stems from rigid numeric docid mappings learned

during training, which lack inherent semantic connections to new

content. Similarly, Ultron-PQ’s numeric identifiers yield unstable

𝐺𝐴𝑛 (0.542 on NQ, 0.400 on MS-MARCO), as its quantization-based

docid system struggles to encode novel document semantics with-

out retraining.

Text-based docid methods, such as SEAL and LTRGR, demon-

strate much more promising results. For example, LTRGR attain

𝐺𝐴𝑛 = 0.799 on NQ, with only a 0.089 Hits@10 drop from D0

to D5, outperforming even optimized dense retrieval (DPR-HN:

𝐺𝐴𝑛 = 0.632). SEAL’s n-gram docids similarly excel (𝐺𝐴𝑛 = 0.732

on NQ). This suggests that text-based docids, such as n-grams or ti-

tles, offer more flexibility and generalization. Text-based docids can

inherently adapt to newly added documents, which often contain

similar linguistic features. Consequently, models using text-based

docids are better equipped to maintain high retrieval performance

as the corpus evolves. These models can leverage the semantic

richness of text-based representations, allowing them to effectively

handle the continuous expansion of the document set without sig-

nificant performance loss.

Incremental training vs direct generalization. We implemented

incremental training inspired by the DSI++ framework for both

DSI and SEAL. Our approach involves two key components: (i)

incremental indexing training, where models are fine-tuned on

newly added documents to learn their docid mappings, and (ii)

random replay training, which reintroduces a subset of historical

documents during fine-tuning to mitigate forgetting. As shown in

Table 3, incremental training significantly enhances the models’

Table 3: Comparison of retrieval performance (Hit@10) on
the NQ dataset for initial and newly added documents.

Model NQ (Hit@10)

D0 D1 D2 D3 D4 D5

Initial documents
DSI 0.718 0.710 0.706 0.702 0.699 0.696

DSI++ 0.718 0.697 0.687 0.682 0.676 0.673

SEAL 0.809 0.806 0.788 0.774 0.774 0.763

SEAL++ 0.809 0.791 0.788 0.781 0.776 0.766

Newly added documents
DSI 0.718 0.231 0.203 0.221 0.185 0.205

DSI++ 0.718 0.677 0.671 0.667 0.657 0.644

SEAL 0.809 0.744 0.736 0.727 0.727 0.725

SEAL++ 0.809 0.768 0.756 0.744 0.743 0.733

ability to retrieve newly added documents for DSI. For instance,

DSI++ improves Hits@10 for new documents on NQ from 0.205 to

0.644 on D5, demonstrating better generalization to unseen doc-

uments. However, this comes at a cost: DSI++ exhibits noticeable

forgetting on initial documents. For SEAL, incremental training

yields only a slight improvement in both settings. This is because

SEAL’s text-based docids inherently accommodate semantic varia-

tions in new documents, reducing the need for extensive retraining.

Further analysis in Table 3 suggests that while incremental train-

ing provides modest benefits for text-based docid models, their

robustness to dynamic corpora primarily stems from their ability

to generalize via natural language patterns, rather than relying on

explicit retraining.

In conclusion, the performance of generative retrieval models

in dynamic corpora reveals certain limitations, particularly when

it comes to adapting to newly added documents. For retrieving

initial documents, generative models perform acceptably, with only

slight degradation as the corpus grows. Models like DSI-SE and NCI

show only slight performance drops, similar to traditional methods

like BM25 and DPR. However, the challenge arises when retrieving
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newly added documents. Generative models that rely on numeric-

based docids (e.g., DSI-SE and Ultron-PQ) struggle significantly,

as they cannot adapt to new documents without retraining. In

contrast, models using text-based docids, like SEAL and LTRGR,

perform better, as text-based docids can generalize and adapt to new

documents more effectively. While text-based docids show promise,

not all text-based generative retrieval models perform equally well.

For instance, models like SEAL demonstrate better performance

compared to others like Ultron-URL. Further exploration is needed

to determine which specific text features are most suitable for

dynamic corpora scenario.

5 Analysis of Docid Design
To understand the pros and cons of different docid designs for GR

in dynamic corpus scenarios, we conduct a series of experiments. In

Section 5.1, we introduce the Initial Document Bias Index (IDBI) to

analyze the bias of different GR methods towards older documents

when new documents are added. We observe that numeric-based

docids exhibit significantly higher bias compared to text-based

docids, which, to some extent, explains the poor performance of

these methods in dynamic corpus settings. Then, in Section 5.2,

we conduct a comprehensive ablation study on text-based docid

methods to investigate how docid type, granularity, and vocabulary

size affect models’ generalization to new documents. Our analysis

shows that more semantic, finer-grained, and larger vocabulary

choices often lead to superior results.

5.1 Bias to initial documents
To explain the poor performance of numeric-based docids on new

documents, we hypothesize as follows:

Hypothesis 1 (Semantic Familiarity). The effectiveness of gen-
erative retrieval (GR) on new documents is correlated with howwell the
docid representations align with the language model’s pretraining dis-
tribution. Formally, let 𝑃LM (𝑥) denote the token distribution learned
by the language model over the vocabulary V , and let 𝑃docid (𝑥) rep-
resent the probability distribution induced by the docid representation
space. We define the semantic familiarity of a docid system as:

S = E𝑥∼𝑃docid [log 𝑃LM (𝑥)] . (6)

A higher value of S indicates better alignment between the docid
distribution and the language model’s pretraining distribution.

Text-based docids inherently preserve distributional alignment

with the underlying language model. By leveraging substrings (e.g.,

n-grams) extracted from document text, these identifiers ensure

lexical overlap between new documents and themodel’s pretraining

data, thereby maintaining high semantic familiarity.

In contrast, numeric-based docids, despite capturing latent se-

mantic structures through clustering or vector quantization, form

a distinct symbolic system that lacks grounding in the model’s

pretraining data. This misalignment impairs the model’s ability

to associate a new document with its identifier, particularly in

scenarios where the document itself has never been encountered

before. As a result, generative retrieval systems exhibit retrieval

bias, favoring initial documents over newly introduced ones.

To quantify the retrieval bias toward initial documents, we in-

troduce the Initial Document Bias Index (IDBI).
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Figure 1: IDBI results for different retrieval methods on NQ
dataset. Lower is better.

Definition 3 (Initial Document Bias Index (IDBI)). The IDBI
measures the discrepancy between the observed proportion of initial
documents retrieved in the Top-𝐾 results and their expected proportion
under an unbiased distribution. It is defined as:

IDBI =
𝑅init − 𝐸init
𝐾 − 𝐸init

, (7)

where: 𝑅init is the number of retrieved initial documents in the Top-
𝐾 results. 𝐸init = 𝐾 × |D0 |

|D0∪Dnew | is the expected count of initial
documents under a uniform distribution.

Remark. The IDBI assumes that initial documents D0 and new

documents Dnew are drawn from the same latent query-document

relevance distribution. The index is normalized within the range

[0, 1], where: IDBI = 0 indicates no bias (i.e., retrieved documents

are proportional to their corpus distribution). IDBI = 1 indicates

complete bias toward initial documents.

As shown in Figure 1, numeric-based docids (e.g., GenRET, Ultron-

PQ) exhibit significant retrieval bias toward initial documents across

both task settings. This aligns with our hypothesis that numeric-

based representations introduce a semantic gap, making it harder

for the model to associate new documents with their identifiers.

While text-based docids (e.g., URL, title, query) demonstrate better

semantic alignment, they still exhibit retrieval bias, particularly for

titles and URLs. This is likely due to their abstract nature, which fails

to capture fine-grained document content. In contrast, BM25 and
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Table 4: Comparison of retrieval performance (Hit@10) on
the NQ dataset for initial and newly added documents across
various text-type docid representations.

Text Type NQ (Hit@10)

D0 D1 D2 D3 D4 D5

Initial documents
n-gram 0.753 0.712 0.688 0.666 0.642 0.626

url 0.759 0.757 0.757 0.754 0.754 0.752
title 0.633 0.630 0.615 0.588 0.579 0.558

query 0.664 0.651 0.647 0.645 0.644 0.637

Newly added documents
n-gram 0.753 0.695 0.677 0.632 0.627 0.607
url 0.759 0.325 0.296 0.263 0.208 0.168

title 0.633 0.362 0.341 0.336 0.322 0.308

query 0.664 0.341 0.335 0.312 0.318 0.306

DPR, which perform direct text similarity matching without relying

on predefined docids, show minimal retrieval bias. Their ability

to retrieve new documents equitably stems from their reliance on

content-based representations rather than fixed identifier mappings.

N-gram docids achieve comparable performance by structurally

aligning with the generative model’s learning paradigm. Unlike

titles or URLs, which require abstract semantic interpretation, n-

grams preserve raw token sequences, which the model inherently

optimizes for during generation. This alignment ensures that even

previously unseen documents benefit from the model’s pre-existing

familiarity with local linguistic patterns.

5.2 Ablation study of text-based docid
To examine the key factors of text-based docid design, we conduct

an ablation study across three aspects: (i) Docid type, where we

compare different docid types, such as title, URL, n-grams, etc. (ii)

Docid granularity, where we compare docids defined at different

levels of granularity, including document, paragraph, sentence, and

n-gram levels. (iii) Docid lexical diversity, where we compare the

number of possible tokens used in different docid designs.

Docid type. First, we examine various forms of text-based docids,

including URLs, titles, pseudo queries, and n-grams, to evaluate

their effectiveness over dynamic corpora.

Table 4 shows the results on NQ dataset for retrieval on initial

documents and new documents. We observe that the n-gram repre-

sentation of docids outperforms other text-based representations

with newly added documents, and also shows competitive results

for initial documents in dynamic corpora. Furthermore, this ad-

vantage stems from the inherent alignment between the n-gram

representation and the pre-training objectives of language models,

as both explicitly model local semantic structures through sequen-

tial token prediction, enabling n-gram docids to better adapt to the

model’s retrieval behavior in dynamic corpora.

Docid granularity.We can define text-based docids at different

levels of granularity. For example, when using the title, we essen-

tially define the docid at the document level, where a single docid

represents the entire document. In contrast, for an n-gram-based

docid, any substring at any position within the document can serve

as a docid to characterize the document, making it a special case
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Figure 2: Hit@10 performance of n-gram docid and three
fixed-position docid approaches on the NQ dataset.

Table 5: Dimensional comparison n-gram vs. other types.

Docid type Title URL N-gram Numeric

Size 5,736 17,195 53,544 32–10,000

of a multi-docid design. A finer-grained docid design may enable

more nuanced matching between queries and documents and pro-

vides greater flexibility in docid generation strategies. But it also

introduces a higher memorization overhead for the retrieval model.

To evaluate the impact of different docid granularities on model

generalization, we define various text-based docids as follows:

(i) Document-level: The title is used as an abstract representation

of the document. (ii) Paragraph-level: Complete paragraphs serve

as docids, and the document ranking is determined by the high-

est-ranked retrieved paragraph. (iii) Sentence-level: Similar to the

paragraph-level approach, but each sentence is treated as a retrieval

unit. (iv) N-Gram-level: The most fine-grained docid design, where

any continuous text span within a document is used as a docid. We

adopt the training and inference techniques proposed in SEAL.

Figure 2 demonstrates that the n-gram docid approach achieves

the highest Hit@10 performance, significantly outperforming the

document-level (title), paragraph-level, and sentence-level baselines.

This result highlights the effectiveness of the fine-grained n-gram-

based multi-docid design, which enables more flexible and precise

query-document matching.

Docid lexical diversity.Another important factor of text-based do-

cids is lexical diversity. Despite language models using a fixed-size

vocabulary, different docids usually exhibit varying levels of lexical

diversity. For example, for title-based docids, the model is forced to

memorize document-docid mappings rather than generalize. When

using titles as docids, the model associates specific phrases (e.g.,

“Climate Change Impacts”) with fixed document identifiers. During

inference, this rigid mapping fails when new documents introduce

title variants (e.g., “Global Warming Effects”). In contrast, the high-

dimensional space of n-gram docids encourages the model to learn

distributional patterns rather than discrete mappings. By exposing

the model to diverse substrings during training, it becomes more

robust to lexical variations in new documents.

To measure the lexical diversity of different docids, we compute

the effective vocabulary size, i.e., the number of unique words uti-

lized by the docids of all documents in the corpus. As quantified

in Table 5, n-gram docids use effective vocabulary sizes that are

10–100× larger than Title or URL docids and 100–1000× larger than



SIGIR ’25, July 13–18, 2025, Padua, Italy Zhen Zhang et al.

D0 D1 D2 D3 D4 D5

Document Collections

0.40

0.50

0.60

0.70

0.80
H

it@
10

Dimension
64
256
1024
4096
8192

Figure 3: Hit@10 performance of different decoding dimen-
sion of Ultron-PQ on NQ dataset

numeric-based docids. This expanded dimensional space ensures

that even high-frequency n-grams in initial documents occupy only

a small fraction of the total capacity, forcing the model to learn

generalized substring generation patterns rather than memorizing

fixed mappings.

6 Enhancing Numeric Docids
While text-based docids (e.g., n-grams) exhibit superior general-

ization in dynamic corpora, they have several limitations: (i) high

computational overhead due to complex constrained decoding (e.g.,

FM-index traversal for n-gram matching), (ii) memory inefficiency

from storing massive text fragments, and (iii) incompatibility with

non-textual data (e.g., tables, images). Conversely, numeric-based

docids offer inherent advantages in storage efficiency (fixed-length

numbers) and decoding speed (simple token generation), but their

fixed semantic encoding limits dynamic adaptability. This leads

to the natural question of how to combine the advantages of both

methods to design a docid scheme that is both efficient and effective.

Previous analyses highlight several key factors for improving

GR performance in dynamic corpus scenarios: (i) The docid should

consider the semantic familiarity to the GR model and avoid using

overly unfamiliar docids. (ii) The docid can be designed with finer

granularity. (iii) The docid can be designed with higher lexical

diversity.

Based on these insights, we explore techniques to improve numeric-
based docid approaches. Our methods focus on three key aspects:

(i) We investigate how vocabulary size influences the performance

of numeric-based docids and conclude that a larger vocabulary

size leads to improved performance. (ii) We explore a finer-grained

docid design by assigning a docid to each chunk of a document

rather than a single docid to the entire document. (iii) We address

the semantic familiarity problem by assigning known docids to new

documents and introducing a novel inference strategy to enhance

the model’s ability to generalize to unseen documents.

Combining these three aspects, we propose the Multi-Docid
Generative Retrieval (MDGR) framework, a novel numeric-based

docid design that retains the efficiency advantages of previous

approaches while addressing their limitations in dynamic corpora

scenarios.

6.1 Docid design of MDGR
Optimizing vocabulary size. Building on the insights from anal-

ysis of lexical diversity of text-based docid, we hypothesize that

expanding the decoding dimension for number-type docids in GR

models could similarly influence their adaptability to dynamic cor-

pora. To test this hypothesis, we adapt the Ultron-PQ framework

by modifying its PQ parameters - the number of clusters in each

subspace. In PQ-based docid generation, document embeddings are

partitioned into𝑚 subvectors, each quantized into 𝑘 clusters via

k-means. By varying 𝑘 while fixing𝑚, we systematically control

the decoding dimension: our experiments explore 𝑘 ∈ {64, 256,
1024, 4096, 8192} with𝑚 = 4.

As shown in Figure 3, the experimental results highlight two

key patterns in docid dimension scaling. First, expanding the docid

size from 𝑘 = 64 to 𝑘 = 1024 shows minimal impact on initial

document retrieval but substantially improves performance on new

documents. Second, excessive dimensions (𝑘 = 4096, 8192) cause

sharp declines across all test sets. This could due to oversized size

create sparse, under-trained docidmappings, which cause themodel

fails to establish reliable semantic-code relationships, particularly

for new documents. Based on these findings, we use docid size of

𝑘 = 1024 for our following study.

Designing fine-grained docids. We explore a multi-docid ap-

proach to designing numeric-based docids with finer granular-

ity. Specifically, we partition a document 𝑑 into semantic chunks

{𝑐1, 𝑐2, . . . , 𝑐𝑁 } using a sliding window approach, where each 𝑐𝑖
represents a text fragment of the document. Each chunk is inde-

pendently mapped to a numeric-based docid 𝑧𝑖 through product

quantization (PQ). This results in multiple number sequences per

document, analogous to the multi-docid design of n-grams.

Constrained docid expansion. To address the semantic gap in

numeric-based docids, we propose a constrained docids expansion

strategy on dynamic corpora. We store all docids from the initial

document collection, and constrain the indexer to use only these

existing docids when indexing new document chunks.

6.2 Inference strategy of MDGR
To retrieve the relevant documents, we propose a simple document

ranking strategy for our approach. Given a query, we first per-

form constrained beam search to generate several candidate docids

{𝑧1, 𝑧2, . . . , 𝑧𝑘 }. We then retrieve all documents containing at least

one of these docids. For each candidate document 𝑑 𝑗 , we compute

a score based on the weighted sum of the beam search positions of

the contained docids. The score for document 𝑑 𝑗 is given by:

Score(𝑑 𝑗 ) = Coverage Count(𝑑 𝑗 ) + 𝛽 ×
∑︁
𝑧𝑖 ∈𝑑 𝑗

1

rank(𝑧𝑖 )
, (8)

where Coverage Count(𝑑 𝑗 ) is the number of distinct docids in 𝑑 𝑗 ;

rank(𝑧𝑖 ) is the position of docid 𝑧𝑖 in the beam search (with 1

being the highest rank); and 𝛽 is a hyperparameter that controls

the importance of the ranking term relative to the coverage count.

6.3 Implementation and evaluation results
Our model is implemented using the T5-base architecture. We ini-

tialize the model with pre-trained weights from Hugging Face’s
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Table 6: Comparison of retrieval performance (Hit@10) on
the NQ dataset for newly added documents.

Method

NQ (Hit@10)

D0 D1 D2 D3 D4 D5

BM25 0.647 0.620 0.588 0.598 0.552 0.571

DPR-HN 0.826 0.645 0.644 0.626 0.621 0.624

NCI 0.871 0.464 0.437 0.433 0.358 0.323

SEAL 0.809 0.744 0.736 0.727 0.727 0.725
MDGR 0.824 0.717 0.704 0.695 0.647 0.633

Ablation study
w/o constrain 0.824 0.447 0.424 0.408 0.377 0.356

w/o multi-docid 0.831 0.523 0.511 0.497 0.488 0.473

MDGR (size = 64) 0.843 0.472 0.436 0.417 0.409 0.381

MDGR (size = 8192) 0.674 0.574 0.565 0.533 0.531 0.512

T5-base checkpoint. Following previous work, the training objec-

tive includes three parts: (i) Training with synthetic queries.
Minimize the loss between generated pseudo-queries and their cor-

responding docids. (ii) Encoding document contexts.Minimize

the loss between each document chunk 𝑐𝑖 and its original docid.

(iii) Incorporating real queries. Minimize the loss between user

queries and target docids.

For training, we employ the AdamW optimizer with a base learn-

ing rate of 1 × 10
−5

and a linear warmup over the first 10% of

training steps. We set the batch size to 64 and train for 10 epochs,

which requires approximately 4 hours on 8 NVIDIA A100 GPUs.

To ensure efficient document processing, we split documents into

chunks using a sliding window approach: each chunk contains 256

tokens with a stride of 128 tokens. To get the numeric-based do-

cids, we first generate semantic embeddings for text chunks using

a frozen BERT-base model, then apply product quantization to con-

vert these continuous vectors into docids. The docids have a size of

1024 and a length of 4.

As shown in Table 6, the MDGR framework exhibits competitive

effectiveness in comparison to existing retrieval models. While the

performance of MDGR is not the absolute best across all document

sets, it achieves solid results over dynamic corpora.

We also show some ablation variant to evaluate three critical

design of our method: First, removing the constrained docid expan-

sion strategy leads to significant deterioration, demonstrating that

generating new docids for updated documents would disrupt the

semantic consistency of numbering-based docids. Second, when

disabling multi-docid indexing (single-docid per document), the

performance drops significantly, confirming our hypothesis that

fine-grained docid design can better preserves granular seman-

tic associations. Furthermore, we investigate the impact of docid

size. Small docid sizes (64) lead to substantially degrade on newly

added documents. Conversely, excessively large sizes (8192) create

an over-discretized learning space where the model struggles to

establish stable query-docid mappings.

Table 7 shows that MDGR achieves both effectiveness and sys-

tem efficiency. This efficiency stems from combining number-type

docids’ compact storage with number sequences, enabling dynamic

adaptability without sacrificing speed –MDGR retrieves documents

Table 7: Experiments about memory costs and efficiency.

Method Memory Tok-K Latency

DPR 980MB 100 152ms

NCI 865MB

10 216ms

100 269ms

SEAL 2200MB

10 619ms

100 778ms

MDGR 886MB

10 241ms

100 320ms

3.6× faster than SEAL while outperforming other numeric-based

docid methods (NCI) in dynamic corpora scenario.

7 Conclusion
In this paper, we have conducted a systematic investigation into the

capabilities and limitations of GR models in dynamic corpora sce-

narios, where document collections expand continuously over time.

Through comprehensive evaluations on realistic dynamic bench-

marks derived fromNQ andMS-MARCO datasets, we have revealed

that certain GR methods, primarily those relying on numeric-based

docids, face challenges in generalizing to unseen documents with-

out additional training, while models utilizing text-based docids

demonstrate stronger generalization capabilities in dynamic cor-

pora. Our analysis has demonstrated that text-based docids in-

herently address key limitations of numeric-based docids by mit-

igating generation bias towards previously seen docids, enabling

finer-grained document representation, and enhancing robustness

against overfitting.

Building on these insights, we have proposed a novel GR frame-

work MDGR that combines the structured benefits of numeric-

based docids with a revised design to avoid training-induced biases,

achieving competitive performance in dynamic corpora scenario.

Our findings not only highlight the critical role of docid semantics

and representation in GR frameworks but also provide actionable

guidelines for adapting generative retrieval to real-world dynamic

environments. Future work may explore hybrid docid strategies or

pretraining-enhanced generalization mechanisms to further bridge

the gap between static and dynamic retrieval performance.
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