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Abstract
In sequential recommendation, system exposure refers to items that
are exposed to the user. Typically, the user only interactions with a
few of the exposed items. Although sequential recommendation has
achieved great success in predicting future user interests, existing
sequential recommendation methods do not fully exploit system
exposure data. Most methods only model items that have been in-
teracted with, while the large volume of exposed but non-interacted
items is overlooked. Even methods that consider system exposure
typically train the recommender using only the logged historical
system exposure, without exploring unseen user interests.

In this paper, we propose counterfactual augmentation over
system exposure for sequential recommendation (CaseRec). To
better model historical system exposure, CaseRec introduces re-
inforcement learning to account for different exposure rewards.
CaseRec uses a decision transformer-based sequential model to
take an exposure sequence as input and assigns different rewards
according to the user feedback. To explore unseen user interests,
CaseRec performs counterfactual augmentation, where exposed
items are replaced with counterfactual items. Then, a transformer-
based user simulator is used to predict the user feedback reward
for the augmented items. Augmentation, together with the user
simulator, gives rise to counterfactual exposure sequences to un-
cover new user interests. Finally, CaseRec uses the logged expo-
sure sequences with the counterfactual exposure sequences to
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train a decision transformer-based sequential model for gener-
ating recommendation. Experiments on three real-world bench-
marks show the effectiveness of CaseRec. Our code is available at
https://github.com/ZiqiZhao1/CaseRec.
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1 Introduction
Sequential recommendation (SR) aims to predict future user inter-
ests by modeling past user-item interaction sequences [23, 25, 59,
63]. Unlike traditional collaborative filtering methods, SR models
the user-item interactions as a dynamic sequence and uses (deep)
sequential models to capture inherent sequential dependencies,
enabling better recommendation [19, 42].
System exposure. In the interaction process between users and
the recommender system, the recommender exposes a personalized
list of items, from which users select interesting items to interact
with. Such a system behavior sequence is referred to as system ex-
posure [31, 55]. Figure 1(a) provides an example of system exposure.
Figure 1(b) illustrates that users typically interact with only a few
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(a) Example of system exposure. (b) Density across three datasets.
Figure 1: (a) Illustration of system exposure. Orange blocks refer to items interacted with by the user, while blue blocks refer to
items exposed by the system but not interacted with by the user. The shadow item 𝑣2 denotes that 𝑣2 could also interest the user
but is not interacted with, e.g., due to time limits. (b) System exposure is much larger than interacted data.

items from the exposed list. System exposure is generated accord-
ing to recommendation policies that represent the user preference
from the point of view of the recommender system. Such exposure
information can contribute to improving future recommendation.
Limitations of existing methods. Although SR has achieved
great success, we argue that existing SR methods fail to fully exploit
system exposure data, which limits their potential and leads to sub-
optimal recommendation performance.

First, most SR methods only model items that have been inter-
acted with, while the large volume of exposed but non-interacted
items is overlooked. SR methods typically assume that exposed but
non-interacted items denote negative user preference [11]. But this
assumption may not always hold. As an example in Figure 1(a), the
shadow item 𝑣2 denotes that item 𝑣2 could also interest the user
but is not interacted with since the user can only select one item
to interact with during a limited time period. Exposed but non-
interacted items may contain potential user interests. The large
volume of exposure sequences helps us to better learn sequential
correlations between items, and, thus, has the potential to further
improve SR. Exposure sequences, including both interacted and
non-interacted items, should be modeled for SR.

Second, even studies that account for system exposure typically
only train the recommender using logged historical exposure and
ignore unseen user interests, leading to increased exposure bias [5].
Since training SR models depends only on the logged exposure, pre-
viously deployed exposure policies may dramatically impact user-
item interactions. Exposure debiasing methods introduce penalties
based on inverse propensity score (IPS) [9, 10, 24, 33, 41, 50, 52, 54]
or distributionally robust optimization (DRO) [55]. However, penal-
ties on inappropriate items could negatively impact model per-
formance. Counterfactual exposure sequences are an alternative
solution to uncover new user interests and alleviate exposure bias.
Proposed methods. We propose counterfactual augmentation
over system exposure for sequential recommendation (CaseRec)
to address the limitations mentioned above.

To better model the whole exposure sequence, we consider dif-
ferent types of user feedback on exposed items. CaseRec introduces
a reinforcement learning (RL)-based model to learn exposure se-
quences. RL has been proven to be effective in achieving reward-
conditioned learning, which aligns well with modeling exposure
sequences, i.e., by assigning different rewards to different types
of user feedback. CaseRec uses a decision transformer (DT)-based
sequential model to learn exposure sequences. The DT casts the

offline RL task as a sequence modeling problem and has the ability
to handle complex long sequences. To adapt the DT for modeling
exposure sequences, CaseRec takes items and the corresponding
user behavior as the input. It introduces a high-dimensional en-
coder that combines item embeddings and corresponding behavior
embeddings to distinguish between different types of user feedback
on the exposure sequence. Finally, CaseRec redesigns the learning
objective to ensure that the model can accurately predict the next
item that the user is likely to interact with.

To augment counterfactual exposure sequences and uncover new
user interests, CaseRec features two augmentation strategies, Ran-
dom and Self-improving, that replace part of the exposed items in a
logged exposure sequence with other items. Then, a transformer-
based user simulator predicts the user feedback for the augmented
items. The Random strategy uses a simple yet effective uniform
sampling strategy to replace items with randomly sampled new
items, aiming at simulating user feedback under the random expo-
sure policy and increasing the diversity of the training sequence.
The Self-improving strategy conducts a small perturbation on a his-
torical exposed item, and uses the current SR model to generate the
following exposure sequence. The generated exposure sequences
are used to train the SR model. This cycle allows the SR model to
explore more of the item space near the historical exposed items.
Counterfactual item replacement, together with the user simulator,
constructs counterfactual exposure sequences to uncover potential
user interests. Finally, CaseRec uses logged exposure sequences and
counterfactual augmented sequences to train a DT-based sequential
model for generating recommendations.

To demonstrate the effectiveness of CaseRec, we conduct exten-
sive experiments on benchmark datasets. Experimental results show
that CaseRec outperforms relevant state-of-the-art SR baselines and
shows less exposure bias in the recommendation list.
Main contributions. Our main contributions are:
• We propose CaseRec, which uses an offline RL-based DT model
to learn exposure sequences and account for various types of
user feedback over exposed items.

• We propose two counterfactual augmentation strategies over
system exposure to further uncover potential new user interests.

• We propose a transformer-based user simulator to imitate user
feedback for the augmented counterfactual items.

• Experiments on three datasets show the effectiveness of CaseRec
for generating more accurate recommendations. CaseRec also
shows promising performance in reducing exposure bias.
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2 Preliminaries
2.1 System exposure
The items exposed to users by a recommendation agent are referred
to as system exposure. LetU andV denote the user set and the item
set, respectively, where 𝑢 ∈ U denotes a user and 𝑣 ∈ V denotes
an item. Let B denote the user feedback to an exposed item (e.g.,
clicks, views or purchases). An 𝑛-length system exposure sequence
of user 𝑢 can be denoted as 𝑆𝑢 = (𝑣𝑢1 , 𝑏

𝑢
1 , 𝑣

𝑢
2 , 𝑏

𝑢
2 , . . . , 𝑣

𝑢
𝑛 , 𝑏

𝑢
𝑛 ), where

𝑣𝑢
𝑗
represents the 𝑗-th item exposed to user 𝑢, 𝑏𝑢

𝑗
∈ B represents

the feedback of user𝑢 to item 𝑣𝑢
𝑗
. We assume that B = {0, 1}, where

1 denotes an item that has been interacted with by the user; B can
contain additional user feedback for fine-grained user modeling.

Most SR methods only consider interacted item sequences, i.e.,
items with 𝑏𝑢

𝑗
= 1, while other items with 𝑏𝑢

𝑗
= 0 are overlooked.

However, interacted items only account for a small portion of ex-
posed items, and both interacted and non-interacted items should
be modeled for better SR. We need to consider different types of
user feedback on exposed items, which is accomplished through
introducing RL-based models in this work.

2.2 Offline reinforcement learning
RL has achieved great success in conducting reward-driven decision-
making. Different rewards can be assigned according to various user
feedback, which naturally fits the modeling of exposure sequences.

A Markov decision process (MDP) is defined by the tupleM =

(S,A, P, 𝑟 , 𝛾), where S,A refer to a state space and action space,
respectively. Given a state 𝑠𝑡 ∈ S and action 𝑎𝑡 ∈ A at timestep
𝑡 , 𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) and 𝑟 (𝑠𝑡 , 𝑎𝑡 ) represent the distribution of the next
state 𝑠𝑡+1 and the obtained immediate reward, respectively. 𝛾 ∈
(0, 1) is the discount factor for future rewards. The learning objec-
tive of RL is to find an optimal policy that maximizes the expected
cumulative rewards E[∑𝑡 𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 )].

Conventional RL algorithms collect the training data and learn
the policy through online explorations with the environment (i.e.,
the user), which would affect the user experience when the policy
is under-trained. To solve this problem, we use offline RL methods
in this work. Offline RL learns a policy from an offline trajectory
dataset pre-collected with unknown behavior policies, without
online environment explorations.

The decision transformer (DT) is one of the most successful of-
fline RL algorithms, which casts the offline RL task as a conditional
sequence modeling problem. The DT possesses both the capabil-
ity to handle complex long sequences and the RL characteristic
of reward-conditioned learning. Unlike traditional RL approaches
that estimate value functions or compute policy gradients, The DT
auto-regressively generates desired future actions by modeling the
trajectories of returns-to-go (RTG, i.e., expected future rewards),
states 𝑠 and actions 𝑎. The input trajectory of the DT is formulated
as

𝜏 = (𝑅1, 𝑠1, 𝑎1, . . . , 𝑅𝑇−1, 𝑠𝑇−1, 𝑎𝑇−1, 𝑅𝑇 , 𝑠𝑇 ), (1)

where 𝑅𝑡 =
∑𝑇
𝑡 𝛾

𝑡𝑟𝑡 is the RTG for timestamp 𝑡 , representing the
future cumulative reward from 𝑡 to 𝑇 . The DT employs causally
masked transformers, and the action 𝑎𝑇 is predicted through auto-
regressive supervised learning over input trajectories.

3 Methodology
We present an overview of the proposed CaseRec framework and
describe its components; see Figure 2 for a helicopter view.

3.1 Model overview
We adapt the decision transformer (DT) to model exposure se-
quences. This is motivated by: (i) the DT can handle complex long
sequences to better learn item sequential correlations from exposure
sequences; and (ii) the DT can achieve reward-conditioned learning
by assigning different rewards to different user feedback. Given the
input trajectory 𝜏𝑟𝑒𝑐 = (𝑅1, 𝑠1, 𝑎1, . . . , 𝑅𝑇 , 𝑠𝑇 ), the elements in the
trajectory are defined as follows:
• state 𝑠𝑡 represents the exposure sequence information before
timestep 𝑡 , which contains both the exposed the items and the
user’s feedback towards the items at each timestep, i.e.,

𝑠𝑡 = (𝑣1, 𝑏1, 𝑣2, 𝑏2, . . . , 𝑣𝑡 , 𝑏𝑡 ) . (2)

Besides, 𝑠𝑡 is zero-padded or truncated to a length of 2𝐿, i.e., a total
timestep of 𝐿 before 𝑡 . To map the complex exposure sequence
into a hidden state, we use a gated recurrent unit (GRU)-based
state encoder [8] as detailed in Section 3.2.1.

• action 𝑎𝑡 ∈ V represents the item exposed to the user at
timestep 𝑡 , i.e., 𝑎𝑡 = 𝑣𝑡+1.

• reward 𝑟𝑡 ∈ R represents the reward of the action 𝑎𝑡 . We define
the reward depending on the user feedback.

𝑟𝑡 =

{
𝑟𝑢𝑛𝑖 , if 𝑏𝑡+1 = 0
𝑟𝑖𝑛𝑡 , if 𝑏𝑡+1 = 1,

(3)

where 𝑟𝑢𝑛𝑖 and 𝑟𝑖𝑛𝑡 are hyperparameters that represent the cor-
responding rewards, respectively. CaseRec can also support more
flexible reward settings, e.g., assigning rewards according to the
watching time for video recommendation.

• RTG 𝑅𝑡 ∈ R represents the cumulative reward from time 𝑡
through to time 𝑇 .

The DT-based sequential recommender takes 𝜏𝑟𝑒𝑐 as input and
predicts the action conditioned on 𝑅𝑡 as the recommended items.
Moreover, data augmentation is used to augment counterfactual
items for the exposure sequence, and the user simulator is used
to predict user feedback on counterfactual items. The data aug-
mentation and the user simulator yield counterfactual exposure
sequences to uncover potential new user interests. Finally, the se-
quential recommender is trained on the mixed dataset that contains
trajectories of both logged exposure sequences and counterfactual
exposure sequences.

3.2 Sequential recommender
3.2.1 Encoding exposure sequences. For a given exposure sequence,
the state encoder needs to capture the sequential signals and model
the user behavior signals (i.e., feedback) towards the exposed items.
To this end, we introduce two independent embedding layers to
encode the item and the behavior, respectively. Subsequently, item
embeddings and behavior embeddings are added together to com-
bine the item information with the corresponding behavior infor-
mation. The added embeddings are fed into a GRU to capture the
sequential signals and obtain the final state representation.
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Figure 2: Overview of CaseRec. (a) The architecture of our DT-based sequential recommender, which takes system exposure as
input and generates recommendation; see Section 3.2. (b) The architecture of our transformer-based user simulator, which
predicts user feedback for a given item; see Section 3.3.1. (c) The counterfactual augmentation process, which illustrates
two strategies: Random and Self-improving; see Section 3.3.2. The user simulator (b) is used to imitate user feedback for
counterfactual items generated by the data augmentation (c), and the sequential recommender (a) is trained on both logged
exposure sequences and augmented counterfactual sequences.

Given a state sequence 𝑠𝑡 = (𝑣1, 𝑏1, 𝑣2, 𝑏2, . . . , 𝑣𝑡 , 𝑏𝑡 ), we first sep-
arate it into an item sequence 𝑣1:𝑡 = (𝑣1, 𝑣2, . . . , 𝑣𝑡 ) and a behavior
sequence 𝑏1:𝑡 = (𝑏1, 𝑏2, . . . , 𝑏𝑡 ). The item embeddings and behavior
embeddings can be defined as:

v𝑖 = E𝑖𝑡𝑒𝑚 (𝑣𝑖 ) , ∀𝑣𝑖 ∈ 𝑣1:𝑡 (4)

b𝑖 = E𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 (𝑏𝑖 ) , ∀𝑏𝑖 ∈ 𝑏1:𝑡 , (5)
where E𝑖𝑡𝑒𝑚 and E𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 represent the embedding functions,
which could be achieved by simply looking up trainable embedding
tables. v𝑖 ∈ R𝑑 and b𝑖 ∈ R𝑑 represent the item embedding and the
behavior embedding respectively, where 𝑑 denotes the embedding
size. Then the added embedding can be obtained by

x𝑖 = v𝑖 + b𝑖 , ∀𝑖 ∈ [1, 𝑡] . (6)

Consequently, the state embedding s𝑡 for a given sequence 𝑠𝑡 is
obtained from a GRU as

s𝑡 = GRU(x𝑡 , s𝑡−1). (7)

The GRU can also be replaced with other sequential models. For
simplicity, in this paper, we use a GRU as our default encoder.

We also introduce an RTG encoder and an action encoder to
embed RTG and actions. The representations for RTG 𝑅𝑡 and action
𝑎𝑡 are defined as:

e
𝑅̂𝑡

= tanh(E𝑅𝑇𝐺 (𝑅𝑡 )) (8)

a𝑡 = tanh(E𝑖𝑡𝑒𝑚 (𝑎𝑡 )), (9)

where E𝑅𝑇𝐺 and E𝑖𝑡𝑒𝑚 represent the embedding functions of 𝑅𝑡
and 𝑎𝑡 , respectively. In our implementation, the same embedding
table of item is used for both Eq. 9 of the action encoder and Eq. 4 of
the state encoder, allowing the embedding table to be fully trained.
Then, the representation of each tuple at timestep 𝑡 can be formu-
lated as [e

𝑅̂𝑡
, s𝑡 , a𝑡 ] ∈ R3×𝑑 . Additionally, a position embedding of

timestep 𝑡 is learned and added to each embedding, yielding the
representation [e′

𝑅̂𝑡
, s′𝑡 , a

′
𝑡 ]. The final representation of the input

trajectory is defined as

𝝉𝑟𝑒𝑐 = (e′
𝑅̂1
, s′1, a

′
1, . . . , e

′
𝑅̂𝑇 −1

, s′𝑇−1, a
′
𝑇−1, e

′
𝑅̂𝑇
, s′𝑇 ) . (10)

3.2.2 Supervised learning. The primarymodel architecture is based
on a unidirectional transformer layer, incorporating a multi-head
self-attention mechanism [48]. The output representation of a tra-
jectory is defined as

𝝉𝑟𝑒𝑐 = FFN[MHA(𝝉𝑟𝑒𝑐 )] = (ê
𝑅̂1
, ŝ1, â1, . . . , â𝑇−1, ê𝑅̂𝑇 , ŝ𝑇 ) . (11)

MHA is a multi-head self-attentive layer and FFN are feed-forward
neural layerswith aGELU [20] activation function and skip-connection.
To avoid overfitting and enable more stable learning without van-
ishing or exploding gradient issues, we include dropout layers and
layer normalization [3]. The representation ŝ𝑡 is fed into a fully
connected layer to compute the classification logits on candidate
actions for the 𝑡-th timestep as

ã𝑡 = [𝑦𝑡1, 𝑦
𝑡
2, . . . , 𝑦

𝑡
|V | ] = W𝑖 ŝ𝑡 + c , ∀𝑡 ∈ [1,𝑇 ], (12)

where ã𝑡 is predicted scores for candidate actions at timestep 𝑡 .
W𝑖 ∈ R𝑛×𝑑 and c ∈ R𝑛 are trainable parameters.

The learning objective of the original DT is to predict the action
𝑎𝑡 at timestep 𝑡 , while the learning objective of SR is to predict
the next item that the user is likely to interact with based on the
previously exposed items and user feedback. In exposure sequences,
there are both interacted and non-interacted items, so directly using
the auto-regressive objective of the DT would lead to a gap between
training objectives. To this end, we reformulate the learning ob-
jective of CaseRec to predict only high-rewarded actions, i.e., the
item that the user is likely to interact with, based on the exposed
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items prior to timestep 𝑡 . Therefore, the ground-truth action for ã𝑡
is defined as the next item that the user would interact with:

𝑎𝑡 = 𝑣𝑘 , where 𝑘 = min{𝑘 | 𝑘 > 𝑡 ∧ 𝑏𝑘 = 1}. (13)

Then the cross-entropy loss between predicted actions and ground-
truth actions is used to train the model:

L𝑟𝑒𝑐 =
1
𝑇

𝑇∑︁
𝑡=1

|V |∑︁
𝑖=1

𝑌 𝑡𝑖 log(𝑝𝑡𝑖 ), where 𝑝
𝑡
𝑖 =

𝑒𝑦
𝑡
𝑖∑

𝑗∈V 𝑒
𝑦𝑡
𝑗

. (14)

Here, 𝑌 𝑡
𝑖
is a binary indicator and equals 1 if the 𝑖-th item is the

ground-truth 𝑎𝑡 , otherwise 𝑌 𝑡𝑖 = 0. In the training stage, the RTG
can be obtained by calculating the sum of future rewards. In the
inference stage, we can obtain the RTG through auto-regressive
generation. For example, in practical online deployments, we can
set the expected RTG at the beginning and then decrease the RTG
at each timestep according to the real user feedback. For offline
inference and evaluation, we typically set the discount factor as
𝛾 = 1, and the RTG at timestep 𝑡 is set as 𝑅𝑡 =

∑𝑇−1
𝑘=𝑡

𝑟𝑘 +𝑟𝑖𝑛𝑡 , which
means that the sequential recommender is expected to generate an
action that can be interacted with by the user.

3.3 Counterfactual augmentation
To further explore unseen user interests, we propose two coun-
terfactual augmentation strategies: Random and Self-improving, to
generate additional exposure sequences. The main difference be-
tween the two strategies lies in the method of replacing items in
the original exposure sequence. Specifically, Random replaces the
original items with uniformly sampled items to alleviate the effect
of previously deployed recommendation policies. Self-improving
first replaces the original item by perturbing the item embedding,
and then generates the following exposure sequence through the
current sequential recommender in an auto-regressive manner to
uncover new user interests. We ask what’s the user feedback if a
counterfactual item is exposed to the user? To this end, we intro-
duce a user simulator to predict the user feedback for the given
counterfactual items and conduct counterfactual augmentation by
replacing items in the logged exposure sequences and predicting
corresponding user feedback.

3.3.1 User simulator. Motivated by recent offline model-based rein-
forcement learning, which improves policy learning by using envi-
ronmentmodels to further explore the state-action space [26, 57, 58],
a user simulator is proposed to predict the user feedback reward
for counterfactual items. Considering that the exposure sequence
is complex and informative, the transformer architecture, with out-
standing long sequence modeling capability and generalization
capability, is used to predict user feedback reward.

Specifically, given an input sequence (𝑠1, 𝑎1, 𝑠2, 𝑎2, . . . , 𝑠𝑇 , 𝑎𝑇 ),
the goal of the user simulator is to predict the user feedback reward
𝑟𝑡 of action 𝑎𝑡 . The user simulator and the sequential recommender
employ similar components, including the state encoder, the action
encoder, and transformer blocks. The output representation at po-
sition 𝑎𝑡 from the transformer block is fed into a fully connected
layer with the binary cross-entropy loss function to optimize the
simulator parameters. At the inference stage, the generated reward
at the last timestep 𝑇 is used to predict the user feedback reward
𝑟𝑇 of action 𝑎𝑇 .

Algorithm 1: Training procedure of CaseRec.
Input: sequential recommenderM, user simulator G,

augmentation ratio 𝛿 , generation length ℎ, number
of max epochs 𝑘 , original dataset D, item setV

1 TrainM with original dataset D
2 for 𝑖=1 to 𝑘 do
3 Initialized augmentation set D𝑎𝑢𝑔 = ∅
4 while |D𝑎𝑢𝑔 |/|D| < 𝛿 do
5 Sample 𝑠𝑜𝑟𝑖 = {𝑣𝑖 , 𝑏𝑖 }𝑘−1

𝑖=1 and 𝑣𝑘 from D
6 if Self-improving then
7 Get 𝑣∗

𝑘
by perturbing the embeddings of 𝑣𝑘

8 else if Random then
9 Get 𝑣∗

𝑘
by uniformly sampling fromV

10 Obtain 𝑏∗
𝑘
from G based on 𝑠𝑜𝑟𝑖 ∪ 𝑣∗𝑘

11 𝑠𝑜𝑟𝑖 = 𝑠𝑜𝑟𝑖 ∪ {𝑣∗
𝑘
, 𝑏∗
𝑘
}

12 for 𝑡=𝑘 + 1 to 𝑘 + ℎ − 1 do
13 if Self-improving then
14 Obtain 𝑣∗𝑡 fromM based on 𝑠𝑜𝑟𝑖
15 else if Random then
16 Get 𝑣∗𝑡 by uniformly sampling fromV
17 Obtain 𝑏∗𝑡 from G based on 𝑠𝑜𝑟𝑖 ∪ 𝑣∗𝑡
18 𝑠𝑜𝑟𝑖 = 𝑠𝑜𝑟𝑖 ∪ {𝑣∗𝑡 , 𝑏∗𝑡 }
19 end
20 D𝑎𝑢𝑔 .append(𝑠𝑜𝑟𝑖 )
21 end
22 TrainM with augment dataset D𝑎𝑢𝑔

23 end

3.3.2 Data augmentation. In this section, we present the two data
augmentation strategies.

The Random strategy. Recent work has shown that recommen-
dation models may be influenced by prior recommendation policies,
resulting in sub-optimal recommendation performance [5, 55]. To
prevent the augmented sequences from being influenced by pre-
viously deployed recommendation policies, we perform random
exposure simulation to generate counterfactual exposure sequences.
Specifically, given a logged exposure sequence from the original
training data 𝑠𝑜𝑟𝑖 = (𝑣1, 𝑏1, 𝑣2, 𝑏2, . . . , 𝑣𝑇 , 𝑏𝑇 ), we replace the item
𝑣𝑘 with a uniformly sampled new item 𝑣∗

𝑘
, where 𝑘 ∈ [1,𝑇 ]. Then

the sequence (𝑠1, 𝑎1, 𝑠2, 𝑎2, . . . , 𝑠𝑘−1, 𝑣
∗
𝑘
) can be constructed from

(𝑣1, 𝑏1, 𝑣2, 𝑏2, . . . , 𝑣∗𝑘 ) and fed into the user simulator to predict the
user feedback 𝑟∗

𝑘−1, i.e., 𝑏
∗
𝑘
towards the new item 𝑣∗

𝑘
. This process

is repeated for ℎ times to generate a counterfactual exposure se-
quence as 𝑠𝑔𝑒𝑛 = (𝑣1, 𝑏1, . . . , 𝑣∗𝑘 , 𝑏

∗
𝑘
, . . . , 𝑣∗

𝑘+ℎ−1, 𝑏
∗
𝑘+ℎ−1). After data

augmentation, the sequential recommender is trained on trajecto-
ries generated from both logged exposure sequences and counter-
factual exposure sequences through Eq. 14.

The Self-improving strategy. Inspired by the RL agent’s im-
provement of its policy through continuous interaction with the
environment, the Self-improving strategy uses the current sequen-
tial recommender to generate out-of-distribution data in an auto-
regressive manner, subsequently using the data to enhance the se-
quential recommender further. Specifically, given a logged sequence
𝑠𝑜𝑟𝑖 = (𝑣1, 𝑏1, 𝑣2, 𝑏2, . . . , 𝑣𝑘 ) from the original training dataset, we
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first add a small amount of Gaussian noise to the item embedding
of 𝑣𝑘 to obtain new item embedding, and then replace item 𝑣𝑘 with
the 𝑣∗

𝑘
whose embedding exhibits the highest cosine similarity to

the newly perturbed embedding. The corresponding sequence is
then fed into the user simulator to predict the user feedback 𝑏∗

𝑘
towards the new item. Subsequently, based on the exposure se-
quence, we use the sequential recommender, pre-trained on the
original dataset, to generate the next item and the user simulator
to predict the corresponding user feedback. Similar to the Random
strategy, this process is repeated to generate a new sequence with
a length of ℎ. After augmenting a specific number of data, these
data will be used to update the parameters of the sequential rec-
ommender. The entire loop will continue until the number of max
epochs is reached or early stopping is triggered. Algorithm 1 de-
tails the training procedure of CaseRec with its two augmentation
strategies.

4 Experiments
We aim to answer the following research questions:

(RQ1) How does the recommendation performance of CaseRec
compare to other sequential recommendation baselines?

(RQ2) How does the debiasing performance of CaseRec compare
with other debiasing methods?

(RQ3) How does counterfactual augmentation influence the per-
formance of CaseRec?

(RQ4) How does the design of CaseRec affect the recommendation
performance?

4.1 Experimental settings
4.1.1 Datasets. Experiments are conducted on three datasets: Zhi-
huRec [17], Tenrec [60], and KuaiRand [15]. All three datasets con-
tain user interaction data (e.g., clicks) and system exposure data
(e.g., impressions). We treat the clicked items as interacted items
and non-clicked items as exposed but non-interacted items.

• ZhihuRec1 contains question information, answer information
and user profiles. We consider the answers as the items recom-
mended to the user.

• Tenrec2 is collected from two feeds, namely articles and videos,
on Tenrec’s recommendation platforms. Our study focuses on
the video recommendation scenario.

• KuaiRand-Pure3 is a sequential recommendation dataset col-
lected from video recommendation scenario. It contains both
the standard user feedback records collected by prior recommen-
dation policies (KuaiRand-15policies) and unbiased records
collected by randomly exposing items (KuaiRand-Random).

4.1.2 Evaluation protocols. We use Recall@𝐾 and NDCG@𝐾 as
metrics to evaluate the ranking performance. Results are reported
with varying values of 𝐾 ∈ {5, 10, 20} for both metrics. We also
adopt cross-validation to evaluate the performance of the models;
the ratio of training, validation, and test set is 8:1:1. To ensure a
fair comparison, we use user interaction sequences as the input of

1https://github.com/THUIR/ZhihuRec-Dataset
2https://github.com/yuangh-x/2022-NIPS-Tenrec
3https://kuairand.com/

inference, which is consistent with the baselines. Each experiment
is repeated 5 times; we report the average performance.

4.1.3 Baselines. We compare CaseRec with various state-of-the-art
sequential recommendation models, including RNN-based models,
transformer-based models, debiasing models, and RL-based models:
• GRU4Rec [21] is an RNN-based sequential recommendation
model, which uses a GRU to model user–item interactions.

• SASRec [25] uses a left-to-right unidirectional transformer to
capture user preference.

• BERT4Rec [46] uses a bidirectional transformer to learn sequen-
tial information.

• CORE [22] uses a transformer-based structure to unify represen-
tation spaces for both the encoding and decoding processes.

• FEARec [12] utilizes contrastive learning to capture hidden in-
formation within the frequency domain.

• IPS [43] eliminates popularity bias by re-weighing each interac-
tion according to propensity score.

• RelMF [56] uses an effective unbiased estimator to correct the
matching score between items and users.

• DRO [55] uses system exposure to alleviate the exposure bias by
distributionally robust optimization (DRO).

• DT [6] is a vanilla DT model without considering the system
exposure sequence.

• SQN [53] is an RL-based model incorporating Q-learning into a
standard supervised generative sequential model.

4.1.4 Implementation details. Following [55], we preserve the last
50 clicked items as the user-interaction sequence and the last 200
exposed items as the system exposure sequence. The sequences are
padded to the max length with an additional token. For CaseRec,
we set the maximum interaction steps of a trajectory to 𝑇 = 20, the
maximum interaction steps of the state to 𝐿 = 10, the augmentation
length to ℎ = 10, the number of transformer layers to 2, and the
number of heads to 8 for the sequential recommender and user
simulator. For a fair comparison, the item embedding size is set to
64 for all models. We train all models with the Adam optimizer [27].
For other baselines, the hyper-parameters are set to their optimal
values as recommended by their original papers.

4.2 Overall performance (RQ1)
Table 1 compares the performance of CaseRec-R (CasRec with the
Random strategy) and CaseRec-S (CasRec with the Self-improving
strategy) against the baselines on three datasets. Both CaseRec-R
and CaseRec-S outperform all baselines across all datasets, demon-
strating the effectiveness of our approach in modeling system
exposure. Compared to existing methods only using the sparse
user-interaction sequence, CasRec takes full advantage of the large
volume of exposure sequences to capture potential user interests.
DRO [55] also uses system exposure to model the system behav-
ior and achieve improved performance, particularly in complex
datasets with a large item space like Tenrec. However, CaseRec
shows a significant performance improvement over DRO, which
shows that the counterfactual data generated by the data augmenter
helps the sequential recommender to uncover user interests.

We also see that CaseRec-S outperforms CaseRec-R, which may
be attributed to the fact that CaseRec-S explores the item space near

https://github.com/THUIR/ZhihuRec-Dataset
https://github.com/yuangh-x/2022-NIPS-Tenrec
https://kuairand.com/
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Table 1: Overall performance comparison of different methods on the three datasets. NG and Re is short for NDCG and Recall,
respectively. ‘-R’ and ‘-S’ represent the Random strategy and Self-improving strategy, respectively. Boldface denotes the highest
score. * denotes the significance 𝑝-value < 0.01 compared with the best baseline which is marked with underline.

Method

Dataset Metric GRU4Rec SASRec BERT4Rec CORE FEARec IPS RelMF DRO DT SQN CaseRec-R CaseRec-S

ZhihuRec

Re@5 0.0113 0.0063 0.0138 0.0088 0.0137 0.0090 0.0101 0.0101 0.0126 0.0095 0.0528∗ 0.0704∗

Re@10 0.0214 0.0201 0.0176 0.0163 0.0244 0.0189 0.0138 0.0151 0.0201 0.0232 0.0741∗ 0.0942∗

Re@20 0.0251 0.0402 0.0289 0.0402 0.0445 0.0255 0.0239 0.0264 0.0437 0.0432 0.1131∗ 0.1470∗

NG@5 0.0090 0.0032 0.0085 0.0050 0.0083 0.0056 0.0075 0.0076 0.0077 0.0054 0.0352∗ 0.0464∗

NG@10 0.0123 0.0076 0.0097 0.0074 0.0117 0.0086 0.0087 0.0092 0.0101 0.0087 0.0421∗ 0.0540∗

NG@20 0.0132 0.0125 0.0126 0.0134 0.0167 0.0102 0.0112 0.0120 0.0159 0.0143 0.0519∗ 0.0672∗

Tenrec

Re@5 0.0574 0.0571 0.0445 0.0463 0.0432 0.0460 0.0508 0.0627 0.0600 0.0581 0.0895∗ 0.1100∗

Re@10 0.0987 0.0946 0.0848 0.0867 0.0771 0.0706 0.0687 0.1100 0.1044 0.1054 0.1419∗ 0.1624∗

Re@20 0.1608 0.1526 0.1463 0.1491 0.1112 0.0971 0.0980 0.1709 0.1701 0.1687 0.2172∗ 0.2459∗

NG@5 0.0362 0.0362 0.0299 0.0276 0.0258 0.0309 0.0325 0.0391 0.0353 0.0378 0.0566∗ 0.0719∗

NG@10 0.0494 0.0484 0.0428 0.0405 0.0385 0.0388 0.0382 0.0542 0.0495 0.0512 0.0735∗ 0.0888∗

NG@20 0.0650 0.0630 0.0583 0.0562 0.0471 0.0455 0.0456 0.0695 0.0661 0.0676 0.0925∗ 0.1099∗

KuaiRand
-15 policies

Re@5 0.0675 0.0600 0.0518 0.0576 0.0358 0.0571 0.0327 0.0584 0.0644 0.0681 0.1333∗ 0.1644∗

Re@10 0.1101 0.1039 0.0874 0.0948 0.0575 0.0973 0.0580 0.1093 0.1042 0.1079 0.2000∗ 0.2311∗

Re@20 0.1706 0.1652 0.1474 0.1710 0.0962 0.1586 0.0936 0.1718 0.1634 0.1574 0.2948∗ 0.3217∗

NG@5 0.0428 0.0359 0.0309 0.0333 0.0231 0.0335 0.0206 0.0350 0.0406 0.0419 0.0876∗ 0.1135∗

NG@10 0.0566 0.0499 0.0423 0.0453 0.0301 0.0465 0.0288 0.0513 0.0507 0.0545 0.1088∗ 0.1350∗

NG@20 0.0718 0.0651 0.0574 0.0645 0.0397 0.0619 0.0377 0.0770 0.0706 0.0720 0.1326∗ 0.1579∗

Figure 3: Evaluation on recommendation diversity.

the historical policy while CaseRec-R imitates random exploration.
Finally, the improvement of CaseRec is most significant on the
KuaiRand-15 policies dataset, which has a higher density than other
datasets. We assume that the user simulator can more accurately
capture user interests from the dense information, which leads to
higher-quality generated sequence augmentation.

4.3 Debiasing performance (RQ2)
Evaluation on unbiased exposure. Exposure bias, also known
as “previous model bias” [32], occurs when the recommendation
model is influenced by prior recommendation policies and only
exposes a subset of available items to users. Table 2 presents the
debiasing performance in the unbiased KuaiRand-Random dataset,
which is collected by exposing items to users randomly rather
than by prior recommendation policies. To evaluate the unbiased
recommendation performance learned from the biased data, we use
the biased KuaiRand-15policies dataset as the training set and the

unbiased KuaiRand-Random dataset as the validation and test set
for each method.

FromTable 2, we see that only CaseRec achieves satisfying perfor-
mance in this challenging experimental setting, which indicates that
counterfactual augmentation captures new user interests beyond
the original dataset collected using the previous recommendation
policies. Existing debiasing methods (IPS, RelMF and DRO) evaluate
items and introduce penalties on those considered overexposed,
achieving improved performance compared to the vanilla models.
Evaluating whether an item is overexposed is a challenging task
and imposing penalties on inappropriate items negatively impacts
the model performance. CaseRec-R outperforms CaseRec-S in this
setting, which indicates that the exposure sequence generated by
random exposure simulation helps to reduce the impact of prior
policies.

Evaluation on recommendation diversity. Exposure biasmay
cause relevant but unpopular items to be overlooked and not recom-
mended, leading to a reduction in recommendation diversity [5, 16].
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Table 2: Exposure debiasing performance on the KuaiRand-
Random dataset. NG and Re is short for NDCG and Recall,
respectively. ‘-R’ and ‘-S’ represent the Random strategy and
Self-improving strategy, respectively. Boldface denotes the
highest score. * denotes the significance 𝑝-value < 0.01 com-
pared with the best baseline which ismarked with underline.

Metric

Method Re@5 Rec10 Re@20 NG@5 NG@10 NG@20

GRU4Rec 0.0012 0.0020 0.0050 0.0007 0.0010 0.0018
SASRec 0.0011 0.0026 0.0052 0.0006 0.0011 0.0017
SQN 0.0012 0.0028 0.0050 0.0007 0.0013 0.0016
IPS 0.0012 0.0022 0.0040 0.0007 0.0010 0.0015
RelMF 0.0010 0.0023 0.0055 0.0005 0.0010 0.0018
DRO 0.0014 0.0022 0.0046 0.0008 0.0010 0.0016
CaseRec-R 0.0085∗ 0.0139∗ 0.0229∗ 0.0059∗ 0.0077∗ 0.0099∗

CaseRec-S 0.0066∗ 0.0133∗ 0.0224∗ 0.0042∗ 0.0063∗ 0.0086∗

Figure 4: Impact of the augmentation ratio 𝛿 . Grey dashed
lines denote the best baseline.
We conduct experiments to determine whether CaseRec can gen-
erate diversified recommendation. We use the coverage metric to
measure the recommendation diversity:

Coverage@𝐾 =
|⋃𝑢∈Test 𝑙𝑖𝑠𝑡@𝐾 (𝑢) |

|V| , (15)

where 𝑙𝑖𝑠𝑡@𝐾 (𝑢) represents the the top-𝐾 recommendation list for
user 𝑢. Figure 3 presents the exposure debiasing performance com-
pared with baselines in three datasets. From Figure 3, we observe
that CaseRec-R achieves the best performance across all datasets,
which indicates that the baselines only depend on logged historical
sequences, which only contain a small subset of all available items.
In contrast, our approach explores user interests over a broader
range of items, leading to more diverse lists.

To conclude, CaseRec not only achieves better recommenda-
tion performance under unbiased evaluation but also generates
more diverse recommendations. This suggests that CaseRec is an
alternative solution to alleviate exposure bias.

Figure 5: Ablation study.

4.4 Impact of augmentation ratio (RQ3)
We conduct experiments to demonstrate the impact of the augmen-
tation ratio 𝛿 , which can be defined as 𝛿 = |D𝑎𝑢𝑔 |/|D𝑜𝑟𝑖 |, where
𝐷𝑎𝑢𝑔 represents the augmented dataset and 𝐷𝑜𝑟𝑖 represents the
original dataset. We vary 𝛿 from 0.2 to 10 and evaluate the perfor-
mance for each augmentation ratio. The results are presented in
Figure 4. We observe that the performance of both CaseRec-R and
CaseRec-S in both datasets first increases and then decreases. This
indicates that when the augmentation ratio increases at the begin-
ning, the performance of CaseRec improves because the augmented
exposure sequence enables the sequential recommender to further
explore the user interests. However, when the augmentation ratio
is too large, the performance will drop because too much noise
is introduced in the dataset. In addition, compared to CaseRec-R,
CaseRec-S is able to continuously improve the current recommen-
dation strategy based on the user simulator, thus demonstrating
higher learning efficiency. Regardless of the augmentation ratio,
both CaseRec-S and CaseRec-R outperform the strongest baseline,
highlighting the robustness of our proposed method.

4.5 Ablation study (RQ4)
We perform an ablation study to investigate the impact of each
module individually. Our ablation study was conducted using the
Tenrec dataset based on the Self-improving strategy, with the results
presented in Figure 5. The variant models are:

• No-Aug: The recommendation model is trained using only the
original dataset, without the counterfactual augmentation.

• No-Enc: The recommendation model uses the average of the
item embeddings in a state sequence to replace the state encoder.

• No-Des: The recommendation model without adaption of learn-
ing objectives.

From Figure 5, we have several observations. First, CaseRec sig-
nificantly outperforms ‘No-Aug’, demonstrating the effectiveness
of counterfactual augmentation. Although ‘No-Enc’ shows an im-
provement compared to ‘No-Aug’, it lags behind CaseRec, which
demonstrates the effectiveness of the state encoder in simulta-
neously capturing sequential signals and user behaviors. Finally,
CaseRec outperforms ‘No-Des’, indicating that the redesigned learn-
ing objective effectively narrows the gap between original DT and
SR, further improving performance.

5 Related work
5.1 Sequential recommendation
The purpose of sequential recommendation (SR) is to capture an
item’s chronological correlations. Early SR models are mainly based
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on Markov chains [18, 39]. In recent years, many deep learning-
based SR models have been proposed. E.g., GRU4Rec [21] uses
recurrent neural networks to learn sequential information. The
self-attention mechanism has shown great potential and various
models have been proposed, e.g., SASRec [25], BERT4Rec [46] and
𝑆3Rec [63]. CORE [22] uses an effective transformer-based structure
to unify the representation space for the encoding and decoding
processes. Recently, many contrastive learning-based sequential
recommendation methods have been proposed to further improve
the performance. E.g., FEARec [12] separates low-frequency in-
formation and high-frequency information and uses contrastive
learning to capture hidden information.

The aforementioned SR models are based on traditional user
interaction sequences and are unable to incorporate system expo-
sure. This prevents them from fully exploiting the user interests
contained in system exposure data, leading to sub-optimal recom-
mendation performance.

5.2 Offline reinforcement learning
Offline RL learns policies from a pre-collected, static dataset of
offline trajectories. Traditional offline RL methods can be classi-
fied into model-free and model-based methods. Model-free offline
methods incorporate conservatism into the value function esti-
mation [13, 14, 28–30, 45]. E.g., CQL [30] adds a regularization
term into the Q-function update. Model-based offline RL meth-
ods [26, 35, 36, 38, 40, 44, 47, 57, 58, 61] learn a model of environ-
ment and generate additional data to improve the policy. Unlike
the aforementioned methods, the decision transformer [6] casts the
offline RL task as a conditional sequence modeling problem and
achieves remarkable performance.

Offline RL has achieved successful performance in sequential
recommendation scenarios [1, 7, 51, 53, 62]. For example, SQN [53]
incorporates an additional output layer trained with Q-learning into
a standard supervised generative sequential model and achieves
improved performance. Recently, some DT-based SR models have
been proposed [34, 63]. However, unlike our work, these models
are user retention-oriented by treating long-term user engagement
as an additional learning objective of the DT. In contrast, our work
aims to generate more accurate recommendations by using the
characteristics of the DT to model complex system exposure se-
quences.

5.3 System exposure
System exposure data, also referred to as previous recommendations
[2] or impressions [37], represents the system’s behavior as opposed
to user interaction data, which reflects user preferences. Despite
its relevance, system exposure data has received relatively little
attention in the research community. Existing system exposure
studies primarily focus on the negative sampling of exposed items
or addressing exposure bias.

Negative sampling is a technique inwhich a subset of unobserved
or non-preferred data points is randomly selected and treated as
negative examples to improve model training efficiency. Ding et al.
[11] use the exposed but not interacted items as negative examples.
Wang et al. [49] propose a reinforcement negative sampler that
generates exposure-like negative instances rather than directly

selecting from the exposure data. Instead of simply considering the
exposed but non-interacted items as negative examples, we argue
that exposed but non-interacted items could also contain potential
user interests.

Exposure bias happens when only subsets of the item catalog
are exposed by the system, so it is unclear whether an unobserved
interaction between a user and an item is attributable to the user’s
lack of interest or the item was not exposed to the user. Therefore,
regarding non-interacted items as negative samples may lead to a
misunderstanding of user’s true preference and sub-optimal perfor-
mance. Existing exposure debiasing methods typically introduce
penalties based on IPS or DRO. E.g., Yang et al. [56] propose an IPS-
based unbiased evaluator to down-weight the commonly observed
interactions while up-weighting the rare ones. Yang et al. [55] use
DRO to infer the debiased user preference and introduces penalties
to items with high exposure probability. Our method introduces
counterfactual exposure sequences and can be considered as an
alternative solution to further explore user interests, leading to
reduced exposure bias.

6 Conclusion
In this paper, we have presented a novel framework, i.e., CaseRec,
to enhance performance on the sequential recommendation task.
CaseRec leverages a decision transformer-based sequential model
to take the whole exposure sequence as input to generate recom-
mendation. In addition, CaseRec performs two counterfactual aug-
mentation strategies, Random and Self-improving, to uncover po-
tential user interests. Then, a transformer-based user simulator is
proposed to predict the user’s corresponding feedback on the aug-
mented items. Extensive experiments on three datasets demonstrate
the effectiveness of the proposed CaseRec. Finally, CaseRec uses
the logged exposure sequences with the counterfactual exposure
sequences to train a decision transformer-based sequential model
for generating recommendation.

As to limitations, we have only considered two types of user
behaviors. In future work, we plan to incorporate a broader range
of user behavior. Moreover, there is a rapidly growing body of work
on user simulators [4]. In future work, we aim to experiment with
a broader set of user simulators.
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