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A B S T R A C T

Text representation can aid machines in text understanding. Previous work on text representation
often focuses on the so-called forward implication, i.e., preceding words are taken as the context
of later words for creating representations, effective it is, yet ignoring the fact that the semantics
of a text segment is a product of the mutual implication of words in the text: later words con-
tribute to the meaning of preceding words. To bridge this gap, we introduce the concept of
interaction and propose a two-perspective interaction representation, in which it encapsulates a
local and a global interaction representation. Here, a local interaction representation is one that
interacts among words with parent-children relationships on the syntactic trees whereas a global
interaction interpretation is one that interacts among all the words in a sentence. We combine
these two interaction representations to develop a Hybrid Interaction Representation (HIR).

Inspired by existing feature-based and fine-tuning-based pretrain-finetuning approaches to
language models, we integrate the merits of feature-based and fine-tuning-based methods to
propose the Pre-train, Interact, Fine-tune (PIF) architecture.

We evaluate our proposed models on five widely-used datasets for text classification tasks. It
turns out that our ensemble method, HIRP, outperforms state-of-the-art baselines with im-
provements ranging from 2.03% to 3.15% in terms of error rate. In addition, we find that, the
improvements of PIF against most state-of-the-art methods is not affected by increasing of the
text length.

1. Introduction

Text representations map text spans into real-valued vectors or matrices (Kenter, Borisov, & de Rijke, 2016). They have come to
play a crucial role in machine understanding of text. Applications on that comprises sentiment classification (Tang, Qin, & Liu, 2015),
question answering (Qin, Qinmin, Jimmy Xiangji, Liang, & Weijie, 2017), summarization (Ren, Chen, Ren, & de Rijke, 2017), and
sentence inference (Parikh, Täckström, Das, & Uszkoreit, 2016).

Previous work on text representation can be categorized into three main types (Xie et al., 2016), i.e., statistics-based, neural-
network-based and pretraining-based embeddings. First, statistics-based embedding models are estimated based on a statistical in-
dicator, e.g., the frequency of co-occurring words (in bag-of-words models (Joachims, 1998)), the frequency of co-occurring word
pairs (in n-gram models (Zhang, Zhao, & Lecun, 2015)), and the weights of words in different documents (the TF-IDF
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model (Robertson, 2004)). Second, neural-network-based embedding models mainly rely on a neural network architecture to learn a
text representation, which is either based on a hidden layer (Joulin, Grave, Bojanowski, & Mikolov, 2017), convolutional neural
networks (CNNs) (Kim, 2014) or recurrent neural networks (RNNs) (Liu, Qiu, & Huang, 2016). Additionally, this type of methods also
consider the syntactic structure to reflect the semantics of text, e.g., recursive neural networks (Socher et al., 2013) and tree-
structured long short-term memory networks (Tree-LSTM) (Tai, Socher, & Manning, 2015). Pretraining-based embedding models
adopt a feature-based (McCann, Bradbury, Xiong, & Socher, 2017; Mikolov, Chen, Corrado, & Dean, 2013; Pennington, Socher, &
Manning, 2014; Peters et al., 2018) or fine-tuning strategy (Dai & Le, 2015; Devlin, Chang, Lee, & Toutanova, 2019; Howard & Ruder,
2018; Yang et al., 2019) to capture the semantics and syntactic information from a large text corpora.

In general, the aforementioned models work well for the task of text classification. (Howard & Ruder, 2018; Joulin et al., 2017;
Kim, 2014; Zhang et al., 2015) However, in existing embedding models, the generated process of the vectorized representation of a
text usually follows a so-called one-way action. That is to say, representations generated from the preceding text are taken as the
context to determine the representations of later texts. Although a bidirectional LSTM considers bidirectional actions, it simply
concatenates two one-way actions to get the embeddings, e.g., (Liu et al., 2016). We argue that the semantics as defined in terms of a
text representation should be a product of interactions of all source elements (e.g., words or sentences) in the text. Typically,
restriction to one-way actions may result in a partial semantic loss (Saif, He, Fernández, & Alani, 2016), causing the poor perfor-
mances in the downstream applications. We hypothesize that although these interaction relations may be learned by neural networks
with enough samples, modeling explicitly such interaction relations can directly make text representation more informative and
effective. Furthermore, recent unsupervised representation learning has proven to be effective and promising in the field of natural
language processing (Devlin et al., 2019; Howard & Ruder, 2018; McCann et al., 2017; Peters et al., 2018; Yang et al., 2019).
However, these approaches are limited to a single strategy (either feature-based or fine-tuning strategy), which results in a so-called
fine-tune error, which may be trapped in the local best.

Thus, as illustrated in Fig. 1, we focus on the task of text classification and propose a novel pipeline with the following ingredients:

1. pre-train language model on a large text corpus to get the related word embeddings and neural networks parameters;
2. interact the word embeddings based on the pre-trained parameters to obtain the interaction representation; and
3. fine-tune the classifier with the interaction representation and pre-trained word embeddings as input.

More specifically, in the interaction representation layer, we propose a two-perspective interaction representation using a Local
Interaction Representation (LIR) and a Global Interaction Representation (GIR). First, the LIR applies an attention mechanism
(Bahdanau, Cho, & Bengio, 2015) inside the syntactic structure of a sentence, e.g., the dependency-based parse trees or constituency-
based parse trees, to reflect the local interaction of adjacent words. Second, the GIR employs an attention mechanism with an enu-
meration-based strategy to represent the interactions of all words in a sentence. After that, we make an initiative combine LIR and GIR
to into a Hybrid Interaction Representation (HIR) model to represent both local and global interactions of words in a sentence. For the
pretrain-finetuning process, we combine the feature-based and the fine-tuning strategies and propose a hybrid language model pretrain-
finetuning (HLMPf) approach. HLMPf first follows the fine-tuning strategy to employ the pre-trained embeddings and neural network
parameters as the initialization of the interaction representation layer. Then, according to the feature-based strategy, HLMPf applies the
pre-trained embeddings as additional features and concatenates the interaction representation in the classifier fine-tuning layer.

For evaluation, we conduct a comprehensive experiment on five publicly available benchmark datasets for the task of text
classification. The experimental results show that our proposals with interaction representations and the hybrid pretrain-finetuning
strategy outperform the state-of-the-art baselines for text classification, with improvements ranging from 2.03% to 3.15% in terms of
error rate.

Fig. 1. Overview pipeline of pre-train interact fine-tune.
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The main contributions of our work can be summarized as follows:

1. We propose a novel pipeline for the task of text classification, i.e., Pre-train, Interact, Fine-tune (PIF).
2. To the best of our knowledge, ours is the first attempt to model word interactions for text representation. We introduce a two-

perspective interaction representation for text classification, i.e., a Local Interaction Representation (LIR) and a Global Interaction
Representation (GIR), which are then combined to generate a Hybrid Interaction Representation (HIR) model.

3. We combine the meritsof two popular language model pretrain-fine-tuning strategies (feature-based and fine-tuning) and propose
the hybrid language model pretrain-finetuning (HLMPf).

4. We analyze the effectiveness of our proposals and find that they achieve better results compared with other state of art text
classification methods in terms of error rate.

2. Related work

In this section, we briefly summarize the general statistical approaches for text representation in Section 2.1 followed by the
neural-networks-based methods in Section 2.2. We then describe the recent work on language model pre-training for downstream
applications in Section 2.3.

2.1. Statistics-based representation

As a word is the most basic unit of semantics, the traditional one-hot representation model converts a word in a vocabulary into a
sparse vector with a single high value (i.e., 1) in its position and the others with a low value (i.e., 0). The representation is employed
in the Bag-of-Words (BoW) model (Joachims, 1998) to reflect the word frequency. However, the BoW model only symbolizes the
word hence incapable of the semantic relationship between words. Consequently, the bag-of-means model (Zhang et al., 2015) was
proposed to cluster the word embeddings learned by the word2vec model (Mikolov et al., 2013). Furthermore, the bag-of-n-
grams (Zhang et al., 2015) was developed to take the n-grams (up to 5-grams) as the vocabulary in the BoW model. In addition, with
some extra statistical information, e.g., TF-IDF, a better document representation can be produced (Robertson, 2004). Other text
features, e.g., the noun phrases (Lewis, 1992) and the tree kernels (Post & Bergsma, 2013), were incorporated into the model
construction.

Clearly, a progressive step has been made in statistical based representation (Bernauer, Han, & Sohn, 2018). However, such
traditional statistical approaches, on one hand, inevitably face the problems of data sparsity and dimensionality, leading to no
applications on large-scale corpora. On the other hand, such approaches are simply built on shallow statistics, and a deeper semantic
information of the text has not been well developed.

Instead, this paper attempts to provide solutions based on the fact that neural networks possesses the ability to learn a low-
dimensional and distributed representation to overcome such problems.

2.2. Neural-based representation

Since Bengio, Ducharme, and Vincent (2000) first adopted the neural network architecture to train a language model, con-
siderable attention has been devoted to proposing neural network-related models for text representation. For instance, the FastText
model (Joulin et al., 2017) employs one hidden layer to integrate the subword information and obtains satisfactory results. However,
this model simply averages all word embeddings and discards the word order. In view of that, Liu et al. (2016) employed the
recurrent structure, i.e., RNNs, to consider the word order and to jointly learn text representation across multiple related tasks.
Compared to RNNs, CNNs are easier to train and capture the local word-pair information (Kim, 2014; Zhang et al., 2015).

Furthermore, a combination of neural network models are integrated to develop the advantage of each single neural network. For
example, Lai, Xu, Liu, and Jun (2015) proposed the recurrent convolutional neural networks (RCNN), which adopted the recurrent
structure to grasp the context information and employed a max-pooling layer to identify the key components in text. Besides, other
document features have been injected into the document modeling. For instance, Zheng, Cai, Chen, Feng, and Chen (2019) took the
hierarchical structure of text into account. He, Lee, Ng, and Dahlmeier (2018) and Saraiva, Cavalcanti, de Moura, Gonçalves, and
da Silva Torres (2016) transformed the document-level knowledge to improve the performance of aspect-level sentiment classifi-
cation.

Although these approaches have been proven to be effective in the downstream applications, they completely depend on the
structure of network to implicitly represent a document, ignoring the interaction that exists among the source elements in a docu-
ment, e.g., words or sentences. To tackle these problem, our proposals are capable of modeling the interaction as the starting point to
better reflect the semantic relationship between words in a sentence, which we argue is of great significance in helping to improve the
performance of downstream tasks, e.g, sentimental classification.

2.3. Language model pre-training-based representation

The language pre-training model has been shown effective in the natural language processing tasks, e.g., question
answering (McCann et al., 2017), textual entailment (Peters et al., 2018), semantic role labeling (Devlin et al., 2019) sentimental
analysis (Dai & Le, 2015), etc. These pre-training models can be mainly classified into two classes, i.e., feature-based models and fine-
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tuning models.
The feature-based models generate the pre-trained embeddings from other tasks, where the output can be regarded as the ad-

ditional features for the current task architecture. For instance, word2vec (Mikolov et al., 2013) and GloVe (Pennington et al., 2014)
focus on transforming words into the distributed representations and capturing the syntactics as well as the semantics by pre-training
the neural language models on a large text corpora. In addition, McCann et al. (2017) concentrated on the machine translation task to
get the contextualize word vectors (CoVe). Since these word-level models suffer from the word-ploysemy issues, Peters et al. (2018)
developed the sequence-level model, i.e., ELMo, to capture the complex word features across different linguistic contexts and then use
ELMo to generate the context-sensitive word embeddings.

Different from the feature-based strategy (Mehta & Majumder, 2018), the fine-tuning models first produce the contextual word
presentations which have been pre-trained from unlabeled text and fine-tune for a supervised downstream task. For instance, Dai and
Le (2015) trained a sequence auto-encoder model on unlabeled text as an initialization of another supervised network. However, this
method suffers from overfitting and requires some in-domain knowledge to improve the performance. Consequently, Universal
Language Model Fine-tuning (ULMFit) (Howard & Ruder, 2018) was developed, which leveraged the general-domain pre-training
and the novel fine-tuning techniques to tackle the overfitting issue. In addition, Devlin et al. (2019) proposed two unsupervised tasks,
i.e., masked language model and next sentence prediction, to further improve the fine-tuning process. Besides, XLNet (Yang et al.,
2019) was proposed to employ the permutation language model to capture the bidirectional context and avoid the pretrain-finetune
discrepancy.

While the language pre-training model based representations have been proposed and proven promising in the NLP tasks, these
methods are limited to either feature-based or fine-tune-based strategy. Ultimately, we can nonetheless make steps further by in-
corporating their respective characteristics to improve the performance of downstream applications.

3. Proposed models

In this section, we first formally describe the processto compute the interaction representation in Section 3.1, which can be
divided into three parts, i.e., LIR (see Section 3.1.1),GIR (see Section 3.1.2) and HIR (see Section 3.1.3). Then, we introduce the
HLMPf approach in detail (see Section 3.2), which is the combination of the feature-based and fine-tuning strategies.

For clarity, we also summarize some notations mentioned in this section on the Table 1.

3.1. Interaction representation

We describe the Local Interaction Representation (LIR) of adjacent words and introduce the Global Interaction Representation
(GIR) of all words in a sentence. After that, a Hybrid Interaction Representation (HIR) model is proposed.

3.1.1. Local interaction representation
We introduce an attentive tree LSTM that computes a local representation of words. The idea of an action of a word on another

word is that the former assigns a semantic weight to the latter.
The experiments we conduct related to LIR are centered on constituency-based trees, but we explain the core concepts for both

dependency-based and constituency-based trees. Given a dependency-based parse tree, let C(p) denote the set of child words of a
parent word xp. To define the attentive tree LSTM, we introduce hidden states and memory cells hk and ck (k ∈ {1, 2,..., |C(p)|}) for
every child word, respectively. As shown in Fig. 2, unlike the Tree-LSTM model in Tai et al. (2015) that only performs the one-way
action (child words ↦ parent word), LIR also considers an action in the opposite direction, i.e., parent word ↦ child words.

Let us explain this in detail. In an action parent word ↦ child words, we regard the parent word xp as a controller that assigns
semantic weights based on the attention mechanism to its child words in a sentence. Thus, we first convert the parent word xp into a
hidden representation hp as follows:

= +h W P btanh( ),p
h

x
h( ) ( )

p (1)

where Pxp is the pre-trained word embedding for parent word xp; W(h) and b(h) are the weight matrix and the bias term, respectively.
Then, we employ a general content-based function (Luong, Pham, & Manning, 2015) to connect the parent word and the child words

Table 1
Variable descriptions.

Variable Description

x x x{ , , , }n1 2 the word sequence in sentence s
Pxi the pre-trained embeddings for word xi
Ixi the interaction representation for word xi
Cxi the context-aware embeddings for word xi
Wxi the trainable word embeddings for word xi
C(p) the set of child words of a parent word xp
ψ The trainable parameters ψ for all neural-network layers,

including all kinds of trainable matrices and bias
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as follows:

= h W h ,k p k (2)

where αk is the connective representation of hp and the hidden state hk, andWα is the connective matrix to be learned. After that, we
apply a softmax function on a sequence of connective representations …{ , , , }C p1 2 | ( )| to get the weight λk as follows:

=
=

exp( )
exp( )

.k
k

i
C p

i1
| ( )|

(3)

Finally, we represent the hidden interaction state h̃p that relates to all child states of the parent word xp, i.e.,

=h h˜ .p
i C j

i i
( ) (4)

In the action child words ↦ parent word in Fig. 2, we utilize the hidden interaction state h̃p and the parent word xp as input to the
LSTM cell and obtain

= + +i U x W h b( ˜ ),p
i

p
i

p
i( ) ( ) ( ) (5)

= + +o U x W h b( ˜ ),p
o

p
o

p
o( ) ( ) ( ) (6)

= + +u U x W h btanh( ˜ ),p
u

p
u

p
u( ) ( ) ( ) (7)

= + +f U x W h b( ),kp
f

p
f

k
f( ) ( ) ( ) (8)

where ip, op and fkp are the input gate, the output gate and the forget gate, respectively; up is the candidate hidden state of xp. For ip, op,
up and fkp, we have a corresponding weight matrix of xp (i.e., U(i), U(o), U(u) and U(f)), a weight matrix of h̃p (or hk) (i.e.,W(i),W(o),W(u)

andW(f)), and a bias term (i.e., b(i), b(o), b(u) and b(f)). Finally, we can get the memory cell cp and the hidden state hp of the parent word
xp as follows:

= +
=

c i u f c ,p p p
k

C p

kp k
1

| ( )|

(9)

=h o ctanh( ),p p p (10)

where ⊙ is element-wise multiplication and ck is the memory cell of a child word.
Similarly, given a constituency-based tree, let xl and xr denote the left child word and the right child word of a parent word xp.

Since the parent word xp is a non-terminal node (i.e., xp is a zero vector), we use xl and xr as the controller instead of P ,xp respectively.
Therefore, following Eqs. (2)–(4), we obtain the hidden interaction states h̃l and h̃r related to xl and xr, respectively. We concatenate
h̃l and h̃r to represent the hidden interaction states of the parent word, i.e., =h h h˜ [ ˜ ; ˜ ]p l r . Again, following Eqs. (5)–(10), we can get
the memory cell cp and the hidden state hp for parent word xp.

Fig. 2. Structure of the local interaction representation model. (For simplicity, we write Up for U P( ,i
xp

( ) U P ,o
xp

( ) U P ,u
xp

( ) U(f)xp).).
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At this stage we have represented the local interaction, and each word has been updated by the interaction representation.

3.1.2. Global interaction representation
Different from LIR, which captures the syntactic relation between words, GIR adopts a enumeration-based strategy to employ an

attention mechanism on all words in a sentence.
In detail, after implementing Tree-LSTM on all n words in a sentence, we are able to obtain the hidden representations

…h h h{ , , , }n1 2 corresponding to the words …x x x{ , , , }n1 2 . In order to represent the interaction between a word xg and the other words in
a sentence, we regard the word xg as a controller that can assign semantic weights to other words in …x x x{ , , , }n1 2 excluding xg itself.
Similarly, we employ a general content-based function to connect the word xg with other words as follows:

= h W h ,gk g k (11)

where αgk is the connective representation of hg and hk …g k n( , (1, 2, , )). After that, we can get all connective representations
…{ , , , }g g gn1 2 between the word xg and other words. Then, we can apply a softmax function on the connective representation

sequence to calculate the weight as follows:

=
=

exp( )
exp( )

,gk
gk

i
n

gi1 (12)

where λgk is the weight of word xk in …x x x{ , , , }n1 2 that interacts with word xg. Finally, we obtain the interaction representation rg as
follows:

=
=

r h .g
i

n

gi i
1 (13)

By doing so, we enumerate all words in a sentence and can return a sequence of interaction representations as …r r r{ , , , }n1 2 . We then
adopt a max-pooling (Ranzato, Boureau, & Lecun, 2007) on this sequence to produce the sentence embeddings s by

= …s r r rmax{ , , , }.n1 2 (14)

This completes our definition of the global interaction representation. We can train the sentence representation s to update the pre-
trained embeddings.

3.1.3. Hybrid interaction representation
In order to capture both local and global interactions between words, we combine LIR and GIR to form a hybrid interaction

representation model (HIR) for text representation. HIR first follows the procedure of LIR to produce the hidden state representations
…h h h{ , , , }n1 2 for the corresponding word …x x x{ , , , }n1 2 . Then, HIR employs the process of GIR on these hidden state representations to

get the final sentence embeddings s.
Eventually, in the process of class prediction, we apply a softmax classifier on the sentence embeddings s to get a predicted label ŝ ,

where ŝ and is the class label set, i.e.,

=s p s^ arg max ( ), (15)

where

= +p s W s b( ) softmax( ).s s( ) ( ) (16)

Here, W(s) and b(s) are the reshape matrix and the bias term, respectively. For formulating the loss function in HIR, we combine the
corresponding loss in LIR and GIR as

= +
=

L
n

p w h p s slog ( ˜ ) (1 )log (˜ ),
i

n

i i
1 (17)

where the former loss ( = p w hlog ( ˜ )n i
n

i i
1

1 ) comes from LIR and the latter loss ( p s slog (˜ )) from GIR, γ is the trade-off parameter
between LIR and GIR. In LIR, hi is the hidden state and w̃i is the true class label of word xi. While in GIR, s̃ is the true class label of
sentence embeddings s. In addition, both w̃i and s̃ can be trained using the dataset.

We have now introduced the main process of our HIR model. Clearly, as shown in Algorithm 1, we first employed Bi-LSTM process
the pre-trained word sequence to build their semantics relations from step 1 to 2. Then, with the help of syntactic parse tool, we are
able to obtain the parent-child set T. Following the bottom-up traversal algorithm, we show how to model the local interaction
representation between parent word and child words from step 4 to 11. While from step 12 to 19, we show how to compute the global
interaction representation between all words. At last, we optimize the loss function to jointly training the process of LIR and GIR. And
update the pre-trained embeddings with the interaction representations.

3.2. Hybrid language model pretrain-finetuning

Unsupervised representation learning, as a fundamental tool, has been shown effective in many language processing tasks (Devlin
et al., 2019; Howard & Ruder, 2018; McCann et al., 2017; Peters et al., 2018; Yang et al., 2019). Here, we propose the hybrid language
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model pretrain-finetuning (HLMPf) method, which integrates the respective advantages in the PIF pipeline shown in Fig. 1. The details
of HLMPf are shown in Algorithm 2.

We first follow the BERT (Devlin et al., 2019) model to train the language model pre-training layer. From step 2 to 3, we employ
the fine-tuning strategy to fine-tune the interaction representation layer and the language model pre-training layer. After that, we
follow the ELMo approach (Peters et al., 2018) to obtain the context-aware word embeddings. From step 5 to 6, following the feature-
based strategy, we show how to further fine-tune all neural layers.

Specially, since fine-tuning all layers at once will result in catastrophic forgetting, we adopt the gradual unfreezing strategy
(Howard & Ruder, 2018) to fine-tune all neural layers.

4. Experiments

We start off our experiments by providing an overview of the text representation model to be discussed in this paper and listing
some the research questions that guide our experiments. Then we describe the task and datasets that we evaluate our proposals on.
We conclude this section by specifyingthe settings of the parameters in our experiments.

4.1. Model summary and research questions

Table 2 list the models to be discussed. Among these models, Bi-LSTM, Char-level CNN, LIR, GIR and HIR models are neural based
representation and don’t experience the pretrain-finetuning process.

Baselines Four state-of-the-art baselines: two neural based representation model (i.e., Bi-LSTM (Liu et al., 2016), C-
CNN (Zhang et al., 2015)), two language model pre-training based representation model (i.e., CoVe (McCann et al., 2017),
ULMFiT (Howard & Ruder, 2018)).
Our proposals Nine flavors of approaches that we introduce in this paper: three interaction representation models (i.e., LIR, GIR
and HIR), three interaction representation models in the BERT architecture (i.e., LIRB, GIRB, HIRB) and the Pre-train, Interact,
Fine-tune (PIF) architecture (i.e., LIRP, GIRP, HIRP).

To provide a qualitative analysis of our proposed interaction representation models and the PIF architecture, we consider a text
classification task and seek to answer the following questions:

RQ1 Does the interaction representation incorporated in the text representation model help to improve the performance
for text classification?
RQ2 Compared with the existing pretrain-finetuning approaches, does our proposed PIF architecture help to improve the
model performance for text classification?
RQ3 How does the trade-off parameter between LIR and GIR (as encoded in γ) impact the performance of HIR related
model in terms of classification error rate?
RQ4 Are the performance of our proposals sensitive to the length Lof text to be classified?

Table 2
An overview of models discussed in the paper.

Model Description Source Pretrain-finetuning

Bi-LSTM A Bi-LSTM based representation model. (Liu et al., 2016) ×
C-CNN A CNN based representation model in the character level. (Zhang et al., 2015) ×
CoVe A text representation model transferred from the machine translation model. (McCann et al., 2017) √
ULMFiT A text representation model based on general-domain language model pre-train, target task

language model and classifier fine-tune.
(Howard & Ruder, 2018) √

LIR A text representation model based on the local interaction representation. This paper ×
GIR A text representation model based on the global interaction representation. This paper ×
HIR A text representation model based on the hybrid interaction representation. This paper ×
LIRB A text representation model based on the local interaction representation model in the BERT fine-

tuning architecture.
This paper √

GIRB A text representation model based on the global interaction representation model in the BERT fine-
tuning architecture.

This paper √

HIRB A text representation model based on the hybrid interaction representation model in the BERT
fine-tuning architecture.

This paper √

LIRP A text representation model based on the local interaction representation model in the Pre-train
Interact Fine-tune architecture.

This paper √

GIRP A text representation model based on the global interaction representation model in the Pre-train
Interact Fine-tune architecture.

This paper √

HIRP A text representation model based on the hybrid interaction representation model in the Pre-train
Interact Fine-tune architecture.

This paper √
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4.2. Datasets

We evaluate the effectiveness of our proposals with five public available datasets used in different application domains, e.g.,
sentiment analysis, questions classification and topic classification, which are widely used by the state-of-the-art models for text
classification, e.g., CoVe (McCann et al., 2017) and ULMFiT (Howard & Ruder, 2018). Table 3 details the statistics of the datasets. We
use error rate as the evaluation metric to compare the performance of discussed models.

Sentiment analysis Sentiment analysis mainly concentrates on the movie review and shopping review datasets. For example,
IMDb dataset proposed by Maas et al. (2011) is a movie review dataset with binary sentimental labels. While Yelp dataset
compiled by Zhang et al. (2015) is a shopping review dataset that has two versions, i.e., binary and five-class version. We
concentrate on the five-class version (Johnson & Zhang, 2017).
Question classification For question classification, Voorhees and Tice (1999) collected open-domain fact-based questions and
divided them into broad semantic categories, which has six-class and fifty-class versions. We mainly focus on the small six-class
version and hold out 452 examples for validation and leave 5000 for training, which is similar to McCann et al. (2017).
Topic classification For topic classification, we evaluate our proposals on the task of news article and ontology classification. We
use the AG news corpus collected by Zhang et al. (2015), which has four classes of news with only the titles and description fields.
In addition, the DBpedia dataset, collected by Zhang et al. (2015), is used, which contains the title and abstract of each Wikipedia
article with 14 non-overlapping ontology classes. In general, the dataset division is the same as in Zhang et al. (2015).

4.3. Model configuration and training

For data preprocessing, we split the text into sentences and hence tokenized each sentence using Stanford’s CoreNLP
(Manning et al., 2014). In addition, we discard the words with single characters and other punctuation and convert the upper-case
letters to the lower-cases letters. In order to fit in the BERT pre-training, we add a special token for each sentence, e.g., [CLS] and
[SEP]. The other data preprocessing follow the same way as Johnson and Zhang (2017)

For model configuration, we use the same set of hyper-parameters across all datasets to evaluate the robustness of our proposals.
In the process of pre-training, we directly employ the trained BERTbase1 as our language model pre-training layer for simplicity. As for
the feature-based process, we follow the ELMo model2 and employ AWD-LSTM (Merity, Keskar, & Socher, 2018) on the trained BERT
layer to get the context-aware word embeddings. For classifier fine-tuning layer, we adopt a softmax classifier and set the size of
hidden layer to 100. In addition, we set the dimension of word embeddings and hidden representation in the interaction re-
presentation layer to 400 and 200, respectively. We also apply a dropout of 0.4 to layers and 0.05 to the embedding layers.

For the whole training process, we use a batch size of 64, a base learning rate of 0.004 and 0.01 for fine-tuning the interaction
representation layer and the classifier fine-tuning layer, respectively. We employ a batch normalization mechanism (Ioffe &
Szegedy, 2015) to accelerate the training of the neural networks. Gradient clipping is applied by scaling gradients when the norm
may exceed a threshold of 5 (Pascanu, Mikolov, & Bengio, 2013). For the fine-tuning process, we adopt the gradual unfreezing
strategy (Howard & Ruder, 2018) to fine-tune all neural layers.

5. Results and discussion

In Section 5.1, we examine the performance of our proposals incorporated with the interaction representation and the HLMPf on
five public datasets, which aim at answering RQ1 and RQ2. Then, in Section 5.2, we analyze the impact of the trade-off parameter γ
in HIR related model to answer RQ3. Finally, to answer RQ4, section Section 5.3 focuses on investigating the impact on the text
classification by varying the text length.

5.1. Performance comparison

5.1.1. Performances about the interaction representation
To answer RQ1, we first compare the performance of the basic interaction representation based models (i.e., LIR, GIR and HIR)

with the baselines and present the results in Table 4
As to the baselines, we present two types of representation models, i.e., the neural-network based model (Bi-LSTM and C-CNN)

and the pretrain-finetuning based model (CoVe and ULMFiT). For the neural-network based model, C-CNN achieves better results as
compared to Bi-LSTM. While in the pretrain-finetuning based model, ULMFiT is obviously the better one. Interestingly, comparing
these two types of models, we can find that the representation models with pretrain-finetuning process present obvious advantages in
terms of reducing error rate. Specially, with regard to C-CNN, ULMFiT reduces the error rate dramatically by 37.5%, 26.6%, 44.4%,
89.8% and 48.4% on the corresponding datasets (IMDb, Yelp, TREC, AG and DBpedia in order, which is the same in the following
text). This may be due to the fact that the pre-training on a large text corpora is capable of capture the deep syntactic and semantic
information, which cannot be realized by only training on the neural networks.

1 https://github.com/google-research/bert.
2 https://github.com/allenai/bilm-tf.
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Similarly, our proposals with restricted interaction representation, i.e., LIR, GIR and HIR, limits its ability to compete with the
state-of-the-art pretrain-finetuning based model, i.e., ULMFiT. But for the neural-network based baselines, our proposals demonstrate
better performance in terms of error rate. In particular, HIR is the best performing model among our proposals, which shows an
improvement against the best neural-network based baseline, i.e., C-CNN, resulting in 8.6%, 9.9%, 16.0%, 26.3% and 20% reduction
in terms of error rate on the respective datasets. LIR and GIR, following HIR, can outperform C-CNN on all datasets. The afore-
mentioned findingsin contrast with the traditional neural-network based models, modeling the interaction process explicitly better
captures the semantics relation between source elements in the text and generate more meaningful text representation. HIR, in
particular,by representing the local and global interaction between words, it is more effective to improve the performance of the
downstream applications.

5.1.2. Performances about the pretrain-finetuning
In Section 5.1.1, the effectiveness of the pretrain-finetuning based and the interaction-related models have been proven. However,

the basic interaction representation based models cannot beat the state-of-the-art pretrain-finetuning based model, i.e., ULMFiT.
Hence, we incorporate them with the popular pretrai-finetuning architecture (i.e., BERT) and our PIF architecture to get the cor-
responding models (i.e., LIRB, GIRB, HIRB and LIRP, GIRP, HIRP), respectively. To answer RQ2, we compare the performance of these
proposed models with ULMFiT and present their experimental results in Table 5.

Clearly, as seen in Table 5, it turns out that our basic interaction-related models incorporated with the pretrain-finetuning process
generally outperform the state-of-the-art model, i.e., ULMFiT, except for some cases, e.g., the LIRB on DBpedia, GIRB on AG and
DBpedia, GIRP on DBpedia. This findings confirms the outlook of our basic interaction representation models is promising under the
pretrain-finetuning architecture. With regard to the BERT architecture, our interaction-related models present the similar error rate
distribution to the basic interaction representation models in Table 4. HIRB is the best performer using the BERT architecture,
followed by LIRB and GIRB. Specially, for each dataset, HIRB shows an obvious improvement of 7.9%, 5.6%, 6.4%, 2.6% and 2.5%
against ULMFiT, respectively. While LIRB, except on the DBpedia, also gains a minor improvement of 0.4%, 5.2%, 1.7%, 1.6% against

Table 3
Dataset statistics.

Dataset IMDb Yelp TREC AG DBpedia

Type Sentiment Sentiment Question Topic Topic
# training documents 25K 560K 5K 120K 560K
# text documents 2K 50K 0.5K 7.6K 70K
# classes 2K 5K 6.5K 4K 14K

Table 4
Error rate (%) about the interaction representation on different datasets. (The results of the best baseline and the best performer in each column are
underlined and boldfaced, respectively. Results marked with * are re-printed from Zhang et al. (2015), McCann et al. (2017), Howard and
Ruder (2018) and Zhou et al. (2016). The rest are obtained by our own implementation. Statistical significance of pairwise differences (the best
proposed model vs. the best neural-network-based baseline) are determined by a t-test (▲/▼ for α = 0.01).

Datasets IMDb Yelp TREC AG DBpedia

Bi-LSTM 8.72 41.83* 7.66 13.94* 1.45*
C-CNN 7.36 37.95* 6.48 9.51* 1.55*
CoVe 8.2* – 4.2* – –
ULMFiT 4.6* 29.98* 3.6* 5.01* 0.80*
LIR 6.86 35.58 5.76 7.83 1.31
GIR 6.92 35.46 5.87 8.20 1.37
HIR 6.73▲ 34.18▲ 5.44▲ 7.53▲ 1.24▲

Table 5
Error rate (%) about the pretrain-finetuning process on different datasets. (The results of the best baseline and the best performer in each column are
underlined and boldfaced, respectively. Results marked with * are re-printed from Howard and Ruder (2018). The rest are obtained by our own
implementation. Statistical significance of pairwise differences (the best proposed model vs. the best neural-network-based baseline) are determined
by a t-test (▲/▼ for α = 0.01).

Datasets IMDb Yelp TREC AG DBpedia

ULMFiT 4.6* 29.98* 3.6* 5.01* 0.80*
LIRB 4.58 28.42 3.54 4.93 0.81
GIRB 4.69 28.84 3.55 5.03 0.84
HIRB 4.24 28.31 3.37 4.88 0.78
LIRP 4.25 27.33 3.40 4.92 0.80
GIRP 4.31 27.66 3.48 4.94 0.81
HIRP 4.04▲ 27.07▲ 3.33▲ 4.85▲ 0.77▲
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ULMFiT, respectively. GIRB, a bit worser than LIRB, beats the ULMFiT on 3 out of 5 datasets.
The similar findings can also be found in the PIF architecture. In particular, HIRP achieves the best performance not only in the

PIF architecture but among all discussed models. Compared with the baseline ULMFiT, HIRP gains substantial improvements of
12.1%, 9.7%, 7.5%, 3.2%, 3.8% in terms of error rate on respective datasets. In addition, LIRP wins the comparisons against ULMFiT,
resulting in 7.6%, 8.8%, 5.6%, 1.8% improvements on the respective datasets and an equal performance on DBpedia. While GIRP
defeats the ULMFiT model on 4 out 5 datasets.

Furthermore, comparing the same type of interaction models with different architectures (e.g., type LIR: LIR, LIRB, LIRP), we can
find that there exists a unchanged ranking order of performance on each dataset, i.e., LIRP > LIRB > LIR, GIRP > GIRB > GIR,
HIRP > HIRB > HIR. This ranking order demonstrates that our proposed PIF architecture that combines the feature-based and fine-
tuning based strategies is the most effective architecture, followed by the fine-tuning based strategy, BERT. While the neural-network
based models are worse than the former kinds of models.

5.2. Parameters analysis

Next we turn to RQ3 and conduct a parameter sensitivity analysis of our HIR related models, i.e., HIR, HIRB and HIRP. Clearly, as
shown in Tables 4 and 5, for different datasets, the same model has varied error rates on different orders of magnitude, e.g., HIR on
IMDb and Yelp (6.73 vs 34.18). To better present the γ effect of the same model on different datasets, we introduce an evaluation
metric, Relative Error Rate (RER), which is defined as, given a dataset, the relative improvement ratio of the lowest error rate with
regard to the others with different γs. In addition, we examine the performances of these three models in terms of RER by gradually
changing the parameters γ from 0 to 1 with an interval 0.1. We plot the RER results of HIR, HIRB and HIRP in Fig. 3a, b and c,
respectively.

As shown in Fig. 3a, HIR achieves the lowest error rate when = 0.5 on all datasets (except = 0.6 for Yelp dataset), which is 0 in
the figure. In addition, the RER of HIR on each dataset decreases consistently when γ varies from 0 to 0.5 (0.6 for Yelp); after that, the
RER metric goes up when γ changes from 0.5 (0.6 for Yelp) to 1. The similar phenomena can be found in Fig. 3b and c. HIRB and HIRP
both achieve the lowest error rate when = 0.5. In addition, the RER of these two models on each dataset first keeps a stable decrease
to the lowest point 0 and then increases stably until = 1.

Interestingly, comparing the curve gradient on both sides of = 0.5, we can find that the gradient of the left side is steeper than
that of the right side, which indicates that GIR is capable of causing an increase of error rate more easily than LIR. Furthermore,
comparison between the identical model on different datasets, demonstrates that the change ranges of RER on IMDb, DBpedia and
TREC, is greater than that on Yelp and AG. The phenomena may be due to the differences of statistical characteristics among these
datasets, which require further experiments to find potential reasons.

Curiously, we also want to find whether the relation HIRP > HIRB > HIR can always keep unchanged when the trade-off
parameter γ increases from 0 to 1. Due to the text space, we only select the dataset Yelp as the analytical object, which has the highest
error rate among these datasets. We plot the experimental results in Fig. 4. Clearly, as Fig. 4 shows, we can find that the performance
of HIRP is the lowest in terms of error rate, followed by HIRB, and the highest is HIR, when γ increases from 0 to 1. This result is
consistent with the previous finding HIRP > HIRB > HIR, i.e., the effectiveness of our PIF architecture. On the other hand, it
indicates that the effectiveness of our PIF architecture is not sensitive to the trade-off parameter γ.

5.3. Impact of the text length

To answer RQ4, we manually group the text according to the text length L, e.g., 0–100, 100–200, , 900–1000, > 1000. We
campare the performance of interaction representation related models, e.g., LIR, GIR, HIR, HIRB and HIRP, under different settings of
text length. We plot this experimental results in Fig. 5

Clearly, as shown in Fig. 5, we can find the relation LIR > GIR > HIR > HIRB > HIRP unchanged when text length increases.
This phenomenon is consistent with the findings in Section 5.1.1, which indicates the effectiveness of interaction representation and
PIF architecture is not affected by the text length.

Interestingly, as the text length increases, the performances of all discussed models decrease first to reach the lowest error rate at
the point of group 100–200, and then keep a constant increase. This finding may be explained by the fact that the longer the text, the
richer the information it provides, which results in targeting the class label of text more easily, i.e., the decrease of error rate in the
earlier stage. But as the text length grows, the structure and semantics of text become more complex and variable, the proposed
models find it harder to get the exact representation.

6. Conclusion and future work

In this paper, we focus on the task of text classification and propose a novel pipeline, the PIF architecture, which incorporates the
respective advantages from feature based and fine-tuning based strategies in the language model pretrain-finetuning process. We also
introduce the concept of interaction representation and propose a two-perspective interaction representation for sentence embed-
dings, i.e., a local interaction representation (LIR) and a global interaction representation (GIR). We combine these two re-
presentations to produce a hybrid interaction representation model, i.e., HIR.

We evaluate the efficiency of these proposed models on five widely-used datasets for text classification. Our experimental results
shows that: (1) Compared with the traditional neural-network based models, our basic interaction-related models can help boost the
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Fig. 3. Effect on performance of the HIR related models in terms of RER by changing the trade-off parameter γ, tested on all datasets.
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performance for text classification in terms of error rate. (2) Our proposed PIF architecture is more effective to help improve the text
classification than the existing feature-based as well as the fine-tuning based strategies. In particular, HIRP model demonstrates the
best performance on each dataset. (3) The effectiveness of interaction representation and the PIF architecture is not affected by the
text length.

In future works, we will delve deeper into the realm of 3 aspects : (1) Our proposals are Bi-LSTM based approaches that suffer
from the issue of gradient disappearing when dealing with the large text, so we plan to extend our proposal by incorporating some
length-robustness models, e.g., the transformer based models. (2) We will evaluate our models for other tasks so as to verify the
robustness of the interaction representation models. (3) The existing fine-tuning approaches are too general, so we seek opportunities
for further enhancement in the field of task-sensitive fine-tuning methods.
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