
Optimizing Interactive Systems
with Data-driven Objectives

Ziming Li

O
ptim

izing Interactive System
s with D

ata-driven O
bjectives Z

im
ing Li HI, HOW CAN I HELP?

Optimizing Interactive Systems
with Data-driven Objectives

Ziming Li

Optimizing Interactive Systems
with Data-driven Objectives

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam

op gezag van de Rector Magnificus
prof. dr. ir. K.I.J. Maex

ten overstaan van een door het College voor Promoties ingestelde
commissie, in het openbaar te verdedigen in

de Agnietenkapel
op 10 december 2020, te 13:00 uur

door

Ziming Li

geboren te Gansu

Promotiecommissie

Promotor:
prof. dr. M. de Rijke Universiteit van Amsterdam

Co-promotor:
dr. Y. Kiseleva Microsoft

Overige leden:
prof. dr. A.P.J. van den Bosch Meertens Instituut KNAW
prof. dr. R. Fernandez Rovira Universiteit van Amsterdam
dr. H.C. van Hoof Universiteit van Amsterdam
prof. dr. E. Kanoulas Universiteit van Amsterdam
dr. S. Lee Amazon

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

The research was supported by the China Scholarship Council.

Copyright © 2020 Ziming Li, Amsterdam, The Netherlands
Cover by Ziming Li
Printed by Off Page, Amsterdam, The Netherlands

ISBN: 978-94-93197-37-4

Acknowledgements

Doing a PhD brought so much more to me than what I expected four years ago. It is not
merely about publishing papers or improving research skills. More importantly, this
PhD journey pushed me to become more independent, confident and mature. I have
grown to become a person who can think his life from more diverse perspectives and
who can deal with difficulties patiently and calmly. I really appreciate my supervisors,
friends, and family who have supported me to become the person I am today.

I want to thank Maarten de Rijke for being my supervisor and promotor during
this PhD journey. Without your support and patience in the last four years, it would
have been impossible for me to finish this book. In the first year of my PhD, I got lost
in the research directions, and I was so frustrated. Thank you for being very patient
and supportive. We had many discussions to clarify my research interests and what I
can do in this journey. I also want to thank you for recommending the biking routes
around Amsterdam and playing squash with me. They help me find the balance between
doing research and enjoying life. I learned a lot from you in the last four years, I mean,
not only research and squash skills but also how to be an upright person. Thank you,
Maarten.

I want to thank my co-promotor, Julia Kiseleva. You introduced the initial idea of
data-driven optimization and encouraged me to dig deeper in this direction. I enjoyed
working with you on this research. I also appreciate what you have done to help me
jump out of my comfort zone. Thank you for introducing me to different researchers
during conferences, which helped me build a broader network. Besides, you are also
the person who introduced squash to me, and it even became the regular sport in our
office. You are not only my co-promoter but also one of my best friends in this journey.

It is my honor to have a committee consisting of very talented researchers with
different backgrounds. Evangelos, Raquel, Herke, Antal, Sungjin, thank you for taking
the time to read my thesis and providing valuable feedback. I also thank my paranymphs,
Chang and Spyretta, for standing by me during the defense.

It was a great pleasure and honor to work with so many talented and interesting
people at ILPS. I enjoyed spending time with you over coffee breaks, Friday drinks,
and other social events. Thanks a lot: Aleksandr, Alexey, Ali, Ali, Amir, Ana, Anna,
Antonios, Arezoo, Arianna, Artem, Bob, Boris, Chang, Chuan, Christof, Christophe,
Dan, Dat, David, Dilek, Evangelos, Georgios, Gabriel, Hamid, Harrie, Hinda, Hongyu,
Hosein, Ilya, Ivan, Jiahuan, Jie, Jin, Julia, Julien, Kaspar, Katya, Ke, Maarten, Maarten,
Maartje, Mahsa, Mariya, Marlies, Marzieh, Maurits, Mohammad, Mostafa, Mozhdeh,
Nikos, Olivier, Peilei, Petra, Pooya, Praveen, Ridho, Rolf, Sam, Sami, Sebastian,
Shaojie, Spyretta, Svitlana, Tom, Vera, Wanyu, Xiaohui, Xiaojuan, Xinyi, Yangjun,
Yifan, and Zhaochun. Many thanks to Xinyi and Chuan for your help in starting my life
in the Netherlands. Thank you Bob for translating my thesis summary to Dutch. Thank
you Petra for helping me take care of many details about my PhD program. I also want
to thank all my friends from outside of ILPS. My life is getting more colorful because
of you. Thank Jian and Shihan for lots of helpful discussions on both research and life.
Thanks a lot: Fei, Jenny, Ji, Wei, Panos, Weina, Weiwei, Wenyan.

I want to thank my colleagues during the internships at Microsoft and Amazon.

Thank you Sungjin for being my mentor, and I appreciate all the brainstorms we had
together. Many thanks to Baolin, Jinchao, and Dookun for your help and support in
finishing the projects.

I want to acknowledge the China Scholarship Council (CSC) for the financial
support that funded parts of the research discussed in this dissertation.

Last but not least, I would like to thank my parents for their support and encourage-
ment. Regardless of ups and downs, you are my most powerful backing. I also want to
thank my cat, Yiyue, for her accompany, and my life has been so full of laughter with
her joining.

Ziming
October, 2020

Contents

1 Introduction 1
1.1 Research Outline and Questions . 4

1.1.1 Optimizing interactive systems with data-driven objectives . . 4
1.1.2 Optimizing open-domain dialogue systems

with data-driven objectives 5
1.1.3 Optimizing task-oriented dialogue systems

with data-driven objectives 5
1.2 Main Contributions . 7

1.2.1 Theoretical contributions . 7
1.2.2 Algorithmic contributions 7
1.2.3 Empirical contributions . 8

1.3 Thesis Overview . 8
1.4 Origins . 9

2 Optimizing Interactive Systems via Data-driven Objectives 11
2.1 Introduction . 11
2.2 Related Work . 14

2.2.1 Optimizing interactive systems 14
2.2.2 Rewards for interactive systems 14

2.3 Background . 16
2.4 Modeling User-System Interactions 16

2.4.1 Assumptions . 16
2.4.2 Modeling interactions . 17

2.5 Defining Data-driven Objectives . 18
2.5.1 Defining interactive system objectives 18
2.5.2 Recovering user rewards . 19

2.6 Optimizing Interactive Systems . 21
2.7 Experiments and Results . 23

2.7.1 Optimizing interactive systems in a tabular-based world . . . 23
2.7.2 Optimizing interactive systems in a network-based world . . . 27
2.7.3 Limitations . 34

2.8 Conclusions and Future Work . 35

3 Dialogue Generation: From Imitation Learning to Inverse Reinforcement
Learning 37
3.1 Introduction . 37
3.2 Background . 38
3.3 Method . 40

3.3.1 Problem setting . 40
3.3.2 Dialogue generation with adversarial imitation learning (DG-AIL) 41
3.3.3 Dialogue reward learning with adversarial inverse reinforce-

ment learning (DG-AIRL) 42
3.4 Experimental Setup . 43

3.4.1 Dataset . 43

v

CONTENTS

3.4.2 Experimental settings . 44
3.4.3 Evaluation metrics . 45

3.5 Results and Analysis . 46
3.5.1 Results using embedding metrics 46
3.5.2 Results using human annotations 47

3.6 Related Work . 50
3.7 Conclusion . 50

4 Guided Dialogue Policy Learning without Adversarial Learning in the
Loop 53
4.1 Introduction . 53
4.2 Related Work . 54
4.3 Learning Reward Functions . 55

4.3.1 Dialogue state tracker . 55
4.3.2 Exploring dialogue scenarios with an auxiliary generator . . . 56

4.4 Experimental Setup . 58
4.4.1 Dataset and training environment 58
4.4.2 Architecture and training details 59
4.4.3 Reinforcement learning methods 60
4.4.4 Baselines . 60

4.5 Experimental Results . 60
4.5.1 Results with DQN-based agents 60
4.5.2 Results with PPO-based agents 63
4.5.3 Transfer learning with a pre-trained reward function 64

4.6 Conclusion . 65

5 Rethinking Supervised Learning and Reinforcement Learning in
Task-Oriented Dialogue Systems 67
5.1 Introduction . 67
5.2 Related Work . 68
5.3 Multi-Domain Dialogue Agent . 69
5.4 Dialogue Policy Learning (PL) . 70

5.4.1 Policy Learning (PL) as a sequential decision process 70
5.4.2 PL with adversarial learning 71
5.4.3 PL as multi-label classification with dense layers 73

5.5 Experimental Setup . 73
5.5.1 Training setup . 74
5.5.2 Evaluation metrics . 74

5.6 Results and Discussion . 75
5.6.1 Performance of different dialogue agents 75
5.6.2 User experience evaluation 76
5.6.3 Discussion . 77

5.7 Conclusion . 80

6 Conclusions 81

vi

CONTENTS

6.1 Main Findings . 81
6.1.1 Optimizing interactive systems with data-driven objectives . . 81
6.1.2 Optimizing open-domain dialogue systems

with data-driven objectives 82
6.1.3 Optimizing task-oriented dialogue systems

with data-driven objectives 83
6.2 Limitations and Future Directions 86

6.2.1 Data-driven reward functions 86
6.2.2 Interacting with user simulators 87

Bibliography 89

Summary 97

Samenvatting 99

vii

1
Introduction

Interactive systems [144] play an important role in assisting people in a wide range of
tasks. For instance, if users are seeking information, interactive systems can assist them
in the form of web search engines [9, 19, 150, 151], dialogue systems [21, 68, 75, 100,
149], digital assistants [54, 57, 58, 135], recommender systems [116, 119], or virtual
reality [3]. These systems are characterized by repeated interactions with humans
that follow the request-response schema, where the user takes an action, followed
by a response from the interactive system. Understanding user objectives and acting
accordingly is a difficult task, even for humans [102]. What the system wants to achieve
is defined by an objective function. A handcrafted objective function is heavily based on
domain knowledge; it is expensive to maintain, and it does not generalize across different
tasks, e.g., clicks on search results [89], gestures for mobile digital assistants [57,
151], the cross-entropy between generated replies and predefined answers [18, 68].
Consequently, manually crafted objective functions rarely correspond to the actual user
experience. Currently, to design an appropriate objective function for an interactive
system, a strong and comprehensive background about the domain at hand is essential,
but may not be sufficient. In this dissertation, our main goal is to mine objectives
directly from user interactions and use them to optimize the interactive system. As an
initial step towards this goal, we propose a general framework for optimizing interactive
systems and then apply it to the optimization of dialogue systems.

Dialogue systems are typical cases [126, 142] of interactive systems where the
dialogue agents communicate with the user in natural language (e.g., texts, speech).
According to the usage scenarios, we can group dialogue systems into two different
categories: open-domain dialogue systems1 and task-oriented dialogue systems.

Open-domain dialogue systems focus more on entertaining users [68, 105, 108, 123,
154]. Given a dialogue context, the expected return from the system should be sensible
and informative to maximize the user’s engagement, which is defined as the user’s
interest to continue the conversation in each turn [157]. There are two broad directions
for training a chatbot:

1. the first strategy employs defined rules or templates to construct possible re-
sponses [138];

2. the second one builds a chatbot to learn the response generation model with a
1Also called chit-chat, chatbot.

1

1. Introduction

machine translation framework from dialogue collections [120, 121, 123, 128].

However, in dialogue generation, the trained model may suffer from generating non-
informative and generic responses such as “I don’t know” [66, 69, 120, 128]. Li et al.
[66] explain this behavior as “by optimizing for the likelihood of outputs given inputs,
neural models assign a high probability to ‘safe’ responses.” To address this issue, Li et al.
[68] introduce a neural Reinforcement Learning (RL) generation method to generate
coherent and interesting dialogues by optimizing the manually defined reward function
covering ideal dialogue properties. However, the manually defined reward function is
expensive to maintain and does not generalize over different domains [27, 32]. It is
challenging to design a reward function for open-domain dialogue systems due to the
diverse topic domains and it is not even clear what is essential to build a proper reward
function when conversation scenarios are getting more and more complex. Inspired
by the success of adversarial learning in computer vision, Li et al. [69] use adversarial
training for dialogue generation. In [69], during the training of the generator, the reward
of each generated word during decoding is estimated with the Monte Carlo search.
However, the proposed method still suffers from mode collapse commonly seen in
adversarial training [4]. In this thesis, we try to address the described issue of stabilizing
the adversarial training process. First, we extend the adversarial dialogue generation
method by incorporating an entropy regularization term to the generation objective
function. Then we adopt Adversarial Inverse Reinforcement Learning (AIRL) [27,
32, 153] to train a dialogue generation model to make use of the efficient adversarial
formulation and recover a more precise reward function for open-domain dialogue
training. We design a specific reward function structure to measure the reward of each
word in generated sentences while taking account of the dialogue context.

Figure 1.1: The pipeline of task-oriented dialogue systems [71].

Task-oriented dialogue systems (TDSs) aim to assist users with a certain type of
task via an interactive conversational interface. Actively studied applications of TDSs
range from booking movie tickets, ordering a pizza, providing traveling directions to
making a phone call, or sending a message. Figure 1.1 shows the traditional solution
to building such interactive systems and the pipeline can be decomposed into several
sequential steps, including language understanding (LU), dialogue management (DM),
natural language generation (NLG) [110, 166, 167]. One critical component of dialogue
management is to decide the next action that the dialogue system should take at each

2

turn given the dialogue context corresponding to the history interactions. It is essential
to have users in the training loop who provide feedback to make use of RL techniques in
task-oriented dialogue systems. Dialogue policies can be trained and optimized automat-
ically from scratch with user feedback [34, 130] while usable dialogue collections are
not available. While interacting with real users, the dialogue agent adjusts its response
policy to maximize the positive feedback given by users. The user feedback could be
in the form of the user experience score at the end of the dialogue. However, it is not
always practical to have real users in the training loop because it could be extremely
expensive and time-consuming. Besides, frequently asking explicit feedback from users
might increase the risk of degenerating the overall user experience. To overcome this
problem, a popular solution is to replace real users with a user simulator along with a
reward function in the training loop. The user simulator is responsible for mimicking
human behavior while the reward function should return explicit feedback about the
overall user experience at the end of each dialogue [70, 115]. The reward estimator
embedded in the user simulator directly influences the dialogue policy from the training
process to the final system performance. A commonly used reward function works as
follows: when the dialogue ends, a huge positive value will be returned if the dialogue
succeeds, otherwise a huge negative value as a penalty; in terms of the ongoing dialogue
turns before the end step, a small negative reward is supplied for each turn to encourage
shorter interactions. The problem is that dialogue agents utilizing this reward function
suffer from sparse and unstable reward signals. Besides, this reward function only takes
into account the task completion status and this could lead to a dialogue policy with
a high success rate but poor user experience. For example, redundant system actions
may not result in a failed dialogue status but it can degenerate the user experience
during the interaction. Moreover, designing an appropriate and accurate reward function
strongly depends on domain knowledge, and as a result, it is expensive to maintain [138].
Therefore, it is desired to learn rewards automatically directly from user interactions.

A number of adversarial learning methods have been presented recently to learn the
reward function together with the dialogue policy for TDSs. Liu and Lane [83] propose
to train jointly two systems:

1. a policy model that decides on the actions to take at each turn;

2. a discriminator that marks a dialogue as being successful or not.

Feedback from the discriminator is used as a reward to push the policy model to complete
a task indistinguishably from humans. Improving upon this solution, Takanobu et al.
[133] suggest to replace the discriminator with a reward function that acts at the dialogue
action level and returns the reward for the given action relying on the dialogue state,
system action, and next dialogue state as its input. However, to update the dialogue
policy and the reward model on the fly in an alternating manner, we are limited to policy
gradient-based algorithms, such as REINFORCE [152] and PPO [118]. Furthermore,
an alternating training schema for the dialogue agent and the reward model can easily
get stuck in local optima or result in mode collapse [32, 37, 42, 156]. Targeting this
problem, we propose a new approach for training a dialogue policy by decomposing the
adversarial learning method into two sequential steps. First, we learn the reward function
using an auxiliary dialogue state generator where the loss from the discriminator can

3

1. Introduction

be backpropagated to the generator directly. Second, the trained discriminator as the
dialogue reward model will be incorporated into the RL process to guide dialogue policy
learning and will not be updated, while the state generator is discarded. Therefore, we
can utilize any RL algorithm to update the dialogue policy, including both on-policy
and off-policy methods.

As mentioned above, to train a dialogue policy with reinforcement learning, we
should have a user simulator and a reliable reward function. Currently, most user simula-
tors are rule-based and they have the same disadvantages (e.g., hard to maintain, domain
knowledge required, issues with scalability) as rule-based dialogue systems [138]. The
difference is that rule-based approaches to system design meet this problem at the
dialogue agent side while rule-based user simulators need to solve it at the environment
side. Furthermore, a set of labeled human-human dialogues are essential if we want to
apply adversarial learning to learn a reward function. Building realistic user simulators
and collecting high-quality labeled dialogues are making it more and more challenging
to train a high-quality dialogue agent with RL [70, 133]. It is meaningful if we can
rethink RL methods in dialogue policy learning and revisit some traditional learning
methods for task-oriented dialogue systems. In this thesis, we pick up supervised
learning and exploit its potential for dialogue policy training. Supervised learning does
not suffer from the need to design and maintain a complex user simulator. Although
it requires labeled dialogues, collecting labeled data is becoming more feasible and
more importantly, we can reuse dialogues from adversarial dialogue policy learning
methods [83, 133] without having to collect new resources.

1.1 Research Outline and Questions

In this dissertation, our main goal is to learn objectives directly from user interactions
and use them to optimize an interactive system. To this extend, we propose a general
framework for optimizing interactive systems with data-driven objectives (Chapter 2)
and explore the possibility of applying the proposed framework to real applications,
including open-domain dialogue systems (Chapter 3), and task-oriented dialogue sys-
tems (Chapter 4 and 5). Below we introduce the main research questions studied and
answered in each chapter.

1.1.1 Optimizing interactive systems with data-driven objectives

Previous work on interactive systems has relied on the assumption that handcrafted
objective functions can accurately reflect users’ preferences and intentions while inter-
acting with interactive systems. As a result, interactive systems have been optimized for
manually designed objectives that do not always align with the true user preferences
which lead to the inability to generalize across different domains. This brings us to the
first research question:

RQ1 Can interactive systems be optimized using objectives recovered from user inter-
actions directly?

4

1.1. Research Outline and Questions

To answer this question, we propose a novel two-step framework in Chapter 2 to optimize
interactive systems with data-driven objectives. We first infer a user reward model given
collected user interaction traces and then update the system with the inferred reward
functions via a novel algorithm: the Interactive System Optimizer (ISO). We model
user-system interactions using Markov Decision Process (MDP), where the agent is the
user and the stochastic environment is the interactive system. Then we formalize an
optimization problem to infer user needs from observed user-system interactions, in the
form of a data-driven objective. Importantly, our method works without any domain
knowledge and is thus even applicable when prior knowledge is absent. Eventually, we
propose a novel, Interactive System Optimizer, that alternates between optimizing the
interactive system for the current inferred objective and letting the user adapt to the new
system behavior. To validate the success of the proposed method, we apply it to two
different simulated interactive systems and show that ISO robustly improves the system
performance.

1.1.2 Optimizing open-domain dialogue systems
with data-driven objectives

Dialogue systems are typical cases of interactive systems where the dialogue agents
communicate with the user in natural language. RL methods have emerged as a popular
choice for training an efficient and effective dialogue policy. However, these methods
suffer from sparse and unstable reward signals returned by a user simulator only when a
dialogue finishes. Besides, the reward signal is manually designed by human experts,
which requires domain knowledge. Recently, a number of adversarial learning methods
have been proposed to learn the reward function together with the dialogue policy. With
respect to the open-domain dialogue system, the attempt of using adversarial training
[69] for dialogue generation still suffers from mode collapse which is commonly seen
in adversarial training. This brings us to our second research question:

RQ2 Can data-driven reward functions be used to successfully improve open-domain
dialogue systems?

To answer RQ2, we first extend a recently proposed adversarial dialogue generation
method [69] to an adversarial imitation learning solution by incorporating an entropy
regularization term to stabilize the adversarial training process. Then, in the framework
of adversarial inverse reinforcement learning, we propose a new reward model for
dialogue generation that can provide a more accurate and precise reward signal for
generator training. We evaluate the performance of the resulting model with automatic
metrics and human evaluations and demonstrate that our model can generate more
high-quality responses and achieve higher overall performance.

1.1.3 Optimizing task-oriented dialogue systems
with data-driven objectives

The success of adversarial training for dialogue generation also leads to attempts to
optimize task-oriented dialogue systems with a self-learned reward function [83, 133].

5

1. Introduction

These methods propose to learn dialogue rewards directly from dialogue samples, where
a dialogue agent and a dialogue discriminator are trained in an alternating manner.
However, this training schema is only applicable to policy gradient-based algorithms
and off-policy algorithms are missing (e.g., DQN [91]) in adversarial dialogue policy
learning. Therefore, we explore if off-policy based methods can also benefit from
the high-quality reward function from adversarial training. This brings us to the third
research question:

RQ3 Can off-policy RL methods benefit from data-driven objectives in dialogue policy
learning for TDSs?

To answer RQ3, we propose to decompose adversarial training into two consecutive
steps. First, we train the discriminator with an auxiliary dialogue generator and then
incorporate a derived reward model into a common RL method to guide the dialogue
policy learning. This approach is applicable to both on-policy and off-policy RL
methods. Based on our extensive experimentation, we can conclude that the proposed
method: (1) achieves a remarkable task success rate using both on-policy and off-policy
RL methods; and (2) has the potential to transfer knowledge from existing domains to a
new domain.

RL and Inverse Reinforcement Learning (IRL) have brought great progress to
dialogue policy learning for TDSs according to the current evaluation mechanisms.
However, these methods are also becoming more and more sophisticated [70, 83, 101,
133]. More uncontrollable factors are involved (e.g., mode collapse [83]) and the
requirements to deploy such methods are also becoming more strict (e.g., high-quality
user simulators [70], labeled dialogues for adversarial training [83, 133]). The described
issues suggest us to reconsider the “pure” use of RL methods in TDSs2 and revisit some
traditional dialogue training methods. That observation brings us to the following
research question:

RQ4 Are we really making progress in applying only RL to dialogue policy learning
for TDSs?

We demonstrate how (1) traditional supervised learning together with (2) a simulator-
free adversarial learning method can be used to achieve performance comparable to
state-of-the-art (SOTA) RL based methods. With respect to the supervised learning
methods, we first introduce a simple dialogue action decoder to predict the appropriate
actions. Then, the traditional multi-label classification solution for dialogue policy
learning is extended by adding dense layers to improve the dialogue agent performance.
In terms of the simulator-free adversarial learning method, we employ the Gumbel-
Softmax estimator to train the dialogue agent and the dialogue reward model without
using RL. Based on our extensive experimentation, we conclude that the proposed
methods can achieve more stable and higher performance with fewer efforts, such as
the domain knowledge required to design a user simulator and the intractable parameter
tuning in reinforcement learning. According to the human evaluation results, the simple
dialogue action decoder can bring the highest user experience ratings.

2It is reasonable to assume that adversarial training in open-domain dialogue systems may face the same
problems but in this work, we only focus on TDSs.

6

1.2. Main Contributions

1.2 Main Contributions

In this section, we list the theoretical, algorithmic, and empirical contributions of this
thesis. For each contribution, we list the chapter from which it originates.

1.2.1 Theoretical contributions

1. A novel algorithm, Interactive System Optimizer (ISO), that optimizes an interac-
tive system through data-driven objectives (Chapter 2).

1.2.2 Algorithmic contributions

2. A new way of modeling user-system interactions, where a user is the agent while
a system is the environment (Chapter 2).

3. A novel optimization setup to infer data-driven objectives that accurately reflect
the users’ needs solely from interactions, without using any domain knowledge
to handcraft an optimizing goal (Chapter 2).

4. A novel word-level reward model architecture to evaluate the reward of each
word in a dialogue, which enables us to have a more accurate signal compared to
existing turn-level reward architecture for adversarial dialogue training (Chap-
ter 3).

5. A novel Seq2Seq model, Dialogue Generation with Adversarial Inverse Rein-
forcement Learning (DG-AIRL), for addressing the task of dialogue generation
built on adversarial inverse reinforcement learning (Chapter 3).

6. A reward learning method that is applicable to off-policy RL methods in dialogue
training for TDSs (Chapter 4).

7. A reward learning method that can alleviate the problem of local optima for
adversarial dialogue training for TDSs (Chapter 4).

8. A reward function that can transfer knowledge learned in existing domains to a
new dialogue domain for TDSs (Chapter 4).

9. A dialogue action decoder to learn the dialogue policy with supervised learning
for TDSs (Chapter 5).

10. A multi-label classification solution to learn the dialogue policy for TDSs (Chap-
ter 5).

11. A simulation-free adversarial learning method to improve the performance of
dialogue agents for TDSs (Chapter 5).

7

1. Introduction

1.2.3 Empirical contributions

12. Two different simulated interactive systems to validate the success of the inter-
active system optimizer. We show how the proposed optimizer can improve the
system performance in the designed setups. We also show that by inferring user
reward functions, we can optimize the interactive system without real users in
the loop and real users are only involved while collecting user-system interaction
trajectories (Chapter 2).

13. An improvement of the training stability of adversarial training by employing
causal entropy regularization for open-domain dialogue systems (Chapter 3).

14. Achieving SOTA performance in dialogue Policy Learning (PL) with fewer efforts
and costs compared to existing RL based solutions for TDSs (Chapter 5).

1.3 Thesis Overview

In this thesis, we focus on exploring how to mine objectives directly from user interac-
tions and use them to optimize the system.

In Chapter 1, we provide the reader with an introduction and background knowledge
about the theme, and we list the main research questions of this dissertation.

In Chapter 2, as a foundation for the thesis, we propose a general framework for
optimizing interactive systems without using any domain knowledge to handcraft an
optimization goal. The data-driven objectives are given in the format of recovered
reward functions. We verify the success of the proposed solution with two simulated
experimental setups.

In Chapter 3, we apply the main idea from Chapter 2 about optimizing interactive
systems with data-driven objectives, to open-domain dialogue systems. This is our first
attempt of validating the effectiveness of data-driven objectives with real applications.

In Chapter 4, we extend the usage range of data-driven objectives from on-policy to
off-policy RL methods for Task-oriented dialogue systems (TDSs). Next, we demon-
strate the potential of making use of the recovered reward functions to transfer knowl-
edge among different domains.

In Chapter 5, we study the downside of optimizing interactive systems with only RL
and IRL in terms of TDSs. We show that it is meaningful to rethink the role of RL in
training dialogue policies. Besides, it is valuable to revisit some traditional supervised
learning methods to release their potential for dialogue policy learning.

Chapter 6 concludes this thesis and proposes directions for future work.
All chapters in thesis share the same goal: mining objectives directly from user

interactions and use them to optimize the system. Chapter 2 introduces the general
optimization framework and Chapters 3, 4, and 5 are our attempts at utilizing the
framework for real applications, including open-domain dialogue systems and TDSs.
If time is of the essence, readers can first read Chapter 2 and then pick up one chapter
from Chapter 3, 4, 5 according to their interests.

8

1.4. Origins

1.4 Origins

In this section, we list the publications each chapter is based on and explain the role of
each author.

Chapter 2 is based on the following papers:

– Z. Li, J. Kiseleva, A. Agarwal, and M. de Rijke. Learning data-driven
objectives to optimize interactive systems. In NeurIPS LIRE 2019 Workshop:
Learning with Rich Experience: Integration of Learning Paradigms, 2019.

– Z. Li, J. Kiseleva, A. Agarwal, M. de Rijke, and R. W. White. Optimiz-
ing interactive systems via data-driven objectives. Journal of Artificial
Intelligence Research, 2020. Submitted.

The journal paper is an extension of the workshop paper. ZL, JK and MdR
formulated the main research questions. AA helped with reformulating the
idea and contributed to the design of the experimental setup. ZL performed the
experiments and results analysis. RW joined the work for the journal version and
helped with reorganizing the storyline. All authors contributed to the writing.

Chapter 3 is based on the following paper:

– Z. Li, J. Kiseleva, and M. de Rijke. Dialogue generation: From imitation
learning to inverse reinforcement learning. In AAAI, volume 33, pages
6722–6729, 2019.

ZL designed the model and performed the experiments. JK and MdR contributed
to the formulation of the idea. ZL did most of the writing.

Chapter 4 is based on the following paper:

– Z. Li, S. Lee, B. Peng, J. Kiseleva, M. de Rijke, J. Li, S. Shayandeh, and
J. Gao. Guided dialogue policy learning without adversarial learning in the
loop. In EMNLP findings, 2020.

This research was mainly performed during a research internship at Microsoft
Research. ZL designed the model and finished most of the writing. SL, BP, JL,
SS, and JG contributed to the initial idea during the internship. JK and MdR
helped with reformulating the idea and polishing the paper.

Chapter 5 is based on the following paper:

– Z. Li, J. Kiseleva, and M. de Rijke. Rethinking supervised learning and rein-
forcement learning in task-oriented dialogue systems. In EMNLP findings,
2020.

ZL designed the model and performed the experiments. JK and MdR contributed
to the formulation of the idea. ZL did most of the writing.

Work on the thesis also benefitted from work on the following publications:

9

1. Introduction

– Z. Li, J. Kiseleva, M. de Rijke, and A. Grotov. Towards learning reward functions
from user interactions. In ICTIR, pages 289–292, 2017.

– Z. Li and M. de Rijke. The impact of linkage methods in hierarchical clustering
for active learning to rank. In SIGIR, pages 941–944, 2017.

– Z. Li, J. Kiseleva, and M. de Rijke. Generating coherent and informative responses
with backward-reasoning in open-domain dialogue systems. In NAACL, 2021.
Submitted.

– Z. Li, D. Park, J. Kiseleva, and S. Lee. Estimating user satisfaction level for
multi-turn dialogues. In NAACL, 2021. Submitted.

10

2
Optimizing Interactive Systems via

Data-driven Objectives

This chapter is meant to answer the research question:

Can interactive systems be optimized using objectives recovered from user inter-
actions directly?

We present a novel two-step framework to optimize interactive systems with data-driven
objectives.

2.1 Introduction

Interactive systems [144] play an important role in assisting people in a wide range
of tasks. For instance, if users are seeking information, interactive systems can assist
them in the form of web search engines [9, 19, 150, 151], dialogue systems [21, 68,
75, 100, 149], digital assistants [54, 57, 58, 135], recommender systems [116, 119], or
virtual reality [3]. The described instances of interactive systems can be considered as
examples of machine learning applications where the goal is to assist users in real-world
day-to-day tasks. These systems are characterized by repeated interactions with humans
that follow the request-response schema, where the user takes an action, followed by
a response from the interactive system. Such interactions can continue for several
iterations until the user decides to stop, e.g., when they are either satisfied or frustrated
with their experience. Interaction with the system produces traces/trajectories of user
interactions. Importantly we assume that an interactive system and its users always have
a shared goal: for users to have the best experience in the premise of completing the
user’s task.

Thus, both a system and its users are expected to behave accordingly, e.g., a searcher
issues a query that he expects will lead him to the desired results and the interactive
system provides the search results that are most helpful to him. However, despite their
shared goal, only the user can observe their own experience, leaving interactive systems
unable to directly optimize their behavior. For example, in most cases, users will not
leave explicit rates about their experience after interacting with digital assistants and
this brings difficulties in optimizing the system.

This chapter was published as [76].

11

2. Optimizing Interactive Systems via Data-driven Objectives

Understanding user objectives and acting accordingly is a difficult task, even for
humans [102]. However, studies in behavioral economics provide supporting evidence
that users intend to maximize expected utility or minimize expected cost and effort [8,
17, 86, 136]. Following this line of research, in this chapter, we assume that the general
population of users has a shared goal that is achieved through interactions, so user
behavior is aligned with their preferences but rational noises are allowed. We call
such behavior approximately rational. Obviously, the exact user utility function is
inherently complex, but we can approximate it via some meaningful objective function,
recovered directly from observed traces of user interactions. A similar principle has been
successfully employed in robotics [36, 48, 107] and for understanding user behavior on
the web [5, 59, 141]. Hence, knowing the approximate user objective function can help
us to improve the flow of interactive systems.

Currently, optimizing interactive systems relies on explicit assumptions about users’
objectives in terms of their needs and frustrations [73]. Commonly, an objective function
is manually designed for a particular task to reflect the quality of an interactive system,
e.g., in terms of user satisfaction [50, 51], user effort [155] or other domain-specific
metrics, such as relevance judgements in information retrieval [22, 24, 47, 113, 114],
or user feedback (e.g., click, order, skip) in recommender systems [14, 159, 160].
The drawbacks of this approach are that a handcrafted objective function is heavily
based on domain knowledge, that it is expensive to maintain, and that it does not
generalize over different tasks, e.g., clicks on search results [89], gestures for mobile
digital assistants [57, 151], the cross-entropy between generated replies and predefined
answers [18, 68]. Consequently, manually crafted objective functions rarely correspond
to the actual user experience. Therefore, even an interactive system that maximizes
an objective function is not expected to provide an optimal experience as long as that
objective function is hand-crafted. Moreover, it is impossible to design such functions
when there is a lack of domain knowledge. Also, we have witnessed how badly designed
objective functions can lead to wrong results. For example, Liu et al. [85] validated that
applying evaluation metrics (e.g., BLEU score [98]) in the machine-translation field to
dialogue systems is problematic because there is significant diversity in the space of
valid responses to a given context.

Given an objective function, optimization can be done following the Reinforcement
Learning (RL) paradigm [132], which has been successfully applied to physically
constrained environments [28, 64, 65, 127]. The majority of previous work in the area
of interactive systems does this by considering the interactive system as the agent and
the underlying stochastic environment induced by the user [44, 63, 68, 82, 99, 131],
where the system policies are optimized by interacting with real users or user simulators.
However, this setup does not allow us to apply the principle outlined earlier, that it
is the user (not the interactive system) who is being rewarded by interacting with the
system while maximizing their utility. Recently, Leike et al. [62] have shown how
agent alignment, cast in an RL framework, can be applied for optimizing general-
purpose interactive systems via reward modeling. Jeon et al. [48] and Reddy et al.
[107] demonstrate how this approach can be applied in the robotics domain. However,
this setup requires a quantity of user feedback that may not always be available in
practice [31, 49], which leaves us with unlabeled user trajectories.

In this chapter, we assume that users continue their interactions with the system if

12

2.1. Introduction

their goals are fulfilled, or at least partially fulfilled, so they are getting rewards after
each action. we propose a general perspective on how to improve interactive systems by
simultaneously (1) inferring an objective function directly from data, namely unlabeled
trajectories of user interactions with the system, and (2) iteratively, and step by step,
optimizing the system for this data-driven objective. Since users have difficulties in
comprehending dramatic changes in an interactive system [90, 96, 134, 145], changes
should be made gradually to let users adapt to a newly optimized interactive system.
The proposed setup is schematically outlined in Figure 2.1. It embodies a principled
approach by concurrently inferring data-driven objectives from user interactions and
optimizing the interactive system accordingly. Thus, our approach does not depend on
any domain knowledge.

action At

User

Interactive
System

User
Reward
Model

state St

reward Rt

K-th iteration(K-1)-th iteration (K+1)-th iteration

User
Trajectories

recover User
Trajectories

recoverobserve

optimize optimize

observe
action At state St

Figure 2.1: Schematic illustration of the proposed setup of iterative gradual optimization
of the flow of an interactive system: the user reward model is recovered from the logs
collected while users are interacting with the interactive system; the Interactive System
Optimizer (ISO) is used to optimize the interactive system at each iteration.

Below, we start by outlining relevant research areas (Section 2.2). Then we make the
following contributions:
• A new way of modeling user-system interactions, which is depicted as the k-th

iteration in Figure 2.1 (Section 2.4).
• A novel optimization setup to infer data-driven objectives that accurately reflect

the users’ needs solely from interactions, without using any domain knowledge
to handcraft an optimizing goal, which is partially reflected by the arrows labeled
“recover” in Figure 2.1 (Section 2.5).

• A novel algorithm, ISO, that optimizes an interactive system through data-driven
objectives, which is depicted with the arrow labeled “optimize” in Figure 2.1 (Sec-
tion 2.6).

• Applications of ISO to two simulated interactive systems to assess the method. We
show how the proposed optimizer can improve the system performance in the designed
setups. We also show that by inferring user reward functions, we can optimize the
interactive system without real users in the loop and real users are only involved while
collecting user-system interaction trajectories (Section 2.7).

13

2. Optimizing Interactive Systems via Data-driven Objectives

2.2 Related Work

Relevant work for this chapter comes in two broad strands: how to optimize inter-
active systems (Section 2.2.1) and what reward signal can be used for optimization
(Section 2.2.2).

2.2.1 Optimizing interactive systems

The flow of interactive systems [144] can be improved by direct and indirect optimiza-
tion. Direct optimization aims to maximize user satisfaction directly; in contrast, indirect
optimization solves a related problem while hoping that its solution also maximizes user
satisfaction [19]. Direct optimization can be performed using supervised learning or
RL [93]. In RL, an agent learns to alter its behavior through trial-and-error interactions
with its environment [132]. The goal of the agent is to learn a policy that maximizes the
expected return. RL algorithms have successfully been applied to areas ranging from
traditional games to robotics [2, 23, 39, 40, 64, 65, 92, 117, 118, 127, 137, 139, 161].

Many applications of RL to optimizing interactive systems come from such fields
as Information Retrieval (IR), recommender systems, and dialogue systems. The
general assumption of users trying to maximize their utility proposed in [48, 107] holds
for interactive systems as well [5]. Hofmann et al. [43, 45] apply RL to optimize
IR systems; they use RL for online learning to rank and use interleaving to infer
user preferences [44]. Luo et al. [88, 89] define a reward function as the number of
satisfied clicks in the search session. Shani et al. [124] describe an early MDP-based
recommender system and report on its live deployment. Levin et al. [63] formulate
the problem of dialogue design as an optimization problem with an objective function
reflecting different dialogue dimensions relevant for a given application and they map
a dialogue system to a stochastic model known as Markov Decision Process (MDP).
Li et al. [68] apply RL to optimize dialogue systems; in particular, they optimize
handcrafted reward signals such as ease of answering, information flow, and semantic
coherence. A number of RL methods, including Q-learning [71, 82, 99, 131] and policy
gradient methods [21, 133, 149], have been applied to optimize dialogue policies by
interacting with real users or user simulators. With the help of RL, the dialogue agent
can explore contexts that may not exist in previously observed data. A key component
in RL is the quality of the reward signal used to update the agent policy. Most existing
RL-based methods require access to a reward signal from user feedbacks or a predefined
reward.

However it remains non-trivial to apply the RL paradigm to scalable real-world
machine learning tasks [62] due to the lack of a general approach of recovering data-
driven objectives, which we discuss next.

2.2.2 Rewards for interactive systems

When applying RL to the problem of optimizing interactive systems, we need to have
rewards for at least some state-action pairs. Previous work typically handcrafts those,
using, e.g., normalized discounted cumulative gain (nDCG) [97] or clicks [60, 159]
before the optimization or the evaluation of the algorithm. Instead of handcrafting

14

2.2. Related Work

rewards, we recover them from observed interactions between the user and the interactive
system using Inverse Reinforcement Learning (IRL). The main motivation behind IRL
is that designing an appropriate reward function for most RL problems is non-trivial;
this includes animal and human behavior [1], where the reward function is generally
assumed to be fixed and can only be ascertained through empirical investigation. Thus
inferring the reward function from historical behavior generated by an agent’s policy can
be an effective approach. Another motivation comes from imitation learning, where the
aim is to teach an agent to behave like an expert agent. Instead of directly learning the
agent’s policy, other work first recovers the expert’s reward function and then uses it to
generate a policy that maximizes the expected accrued reward [95]. Since the inception
of IRL [112], several IRL algorithms have been proposed, including maximum margin
approaches [1, 106], and probabilistic approaches [10, 81, 164]. In recent years, a
number of adversarial IRL methods have been proposed because of its ability to adapt
training samples to improve learning efficiency [26, 27, 32, 41, 104, 122]. Another
aspect in which IRL methods differ is the availability of feedback or scores for user
traces. Christiano et al. [16], Leike et al. [62] suggest a setup where the system can
learn from user feedback, which is not always available in practice. In this chapter, we
tackle the case without explicit feedback.

Regarding applications of IRL, Ziebart et al. [162] use IRL for predicting the desired
target of a partial pointing motion in graphical user interfaces. Monfort et al. [94] use
IRL to predict human motion when interacting with the environment. IRL has also been
applied to dialogues to extract the reward function and model the user [75, 78, 103, 133].
IRL is used to model user behavior to make predictions about it. But we use IRL as
a way to recover the rewards from user behavior instead of handcrafting them and
optimize an interactive system using these recovered rewards. Lowe et al. [87] learn a
function to evaluate dialogue responses. However, the authors stop at evaluation and do
not optimize the interactive system.

Recent work [48, 62, 158] demonstrates impressive results and outlines a new
research direction while modeling user-system interactions using the agent alignment
problem [132]. In contrast to our work, reward modeling heavily relies on an explicit
user feedback loop, which is rarely available in web-based interactive systems [55,
56]. The key difference between our work and previous studies is that we first use
recovered rewards from observed user interactions to reflect user needs and define
interactive system objectives. Subsequently, the interactive system can be optimized
according to the defined data-driven objectives to improve the user experience. We
regard the interactions between a user and an interactive system as an agent interacting
with a changeable environment, where the transition distribution of the environment
can be updated. Treating an interactive system as a changeable and programmable
environment is novel and reasonable because we have complete control over the behavior
of interactive systems since we are the system designers. Lowe et al. [87] learn a function
to evaluate dialogue responses but do not optimize the interactive system. Leike et al.
[62] formulate the optimization problem in a complex multi-agent setup because their
environment is physical and non-programmable; besides, the reward modeling by Leike
et al. [62] heavily relies on the user feedback loop, which is mostly not available in the
interactive systems.

15

2. Optimizing Interactive Systems via Data-driven Objectives

2.3 Background

Reinforcement Learning (RL) and Inverse Reinforcement Learning (IRL) are the funda-
mental techniques used in the framework we propose in this chapter.

In RL an agent learns to alter its behavior through trial-and-error interactions with
its environment [132]. The goal of the agent is to learn a policy that maximizes the
expected return. RL algorithms have successfully been applied to areas ranging from
traditional games to robotics [2, 23, 39, 40, 64, 65, 92, 117, 118, 127, 137, 139, 161].

The task of IRL is to extract a reward function given observed, optimal (or subop-
timal) behavior of an agent over time [95]. The main motivation behind IRL is that
designing an appropriate reward function for most RL problems is non-trivial; this in-
cludes animal and human behavior [1], where the reward function is generally assumed
to be fixed and can only be ascertained through empirical investigation. Thus inferring
the reward function from historical behavior generated by an agent’s policy can be an
effective approach. Another motivation comes from imitation learning, where the aim
is to teach an agent to behave like an expert agent. Instead of directly learning the
agent’s policy, other work first recovers the expert’s reward function and then uses it to
generate a policy that maximizes the expected accrued reward [95]. Since the inception
of IRL [112], several IRL algorithms have been proposed, including maximum margin
approaches [1, 106], and probabilistic approaches [10, 164]. In the last few years, a
number of adversarial IRL methods [26, 27, 32, 41, 104, 122] have been proposed
because of their ability to adapt training samples to improve learning efficiency.

2.4 Modeling User-System Interactions

In this section, we first introduce our assumptions about collaborations between a user
and an interactive system (Section 2.4.1), and then we explain how we model these
interactions (Section 2.4.2).

2.4.1 Assumptions

Our goal is to design an interactive system that can successfully assist users in com-
pleting some real-world tasks. We have formulated a set of assumptions to formalize
user-system interactions, which are schematically depicted in Figure 2.1. They can be
separated into two groups: assumptions about the system design (S) and assumptions
regarding the user goals and behavior (U):

Assumption 1 S: the system’s goal is to accommodate a better user experience, namely
to maximize the utility a user gets from the system by minimizing their
efforts;

Assumption 2 S: the system setup allows us to iteratively and gradually improve the
system in a sequential manner to accommodate a better user experience,
given that at the start the system provides “non-zero” utility for users
but can be significantly improved;

16

2.4. Modeling User-System Interactions

Assumption 3 S: a system designer can transform an interactive system, but it has
some required steps a user needs to take to complete their task due to
system design constraints;

Assumption 4 U: users have incentives to continue their interactions with an interactive
system if they are getting some value from it;

Assumption 5 U: users of an interactive system have approximately homogeneous
behavior, namely users have a shared notion of utility that can be
approximated by some objective function;1

Assumption 6 U: users try to maximize their utility while interacting with a system;

Assumption 7 U: users are not required to provide explicit feedback about their ex-
perience. However, user actions can be considered as implicit signals
reflecting their satisfaction/frustration with an interactive system.

2.4.2 Modeling interactions

While employing a RL formalism as Assumption 5 and Assumption 6 can be reformu-
lated as follows: the user is seen the optimal agent who interacts with the environment,
an interactive system, with the goal of maximizing their expected rewards. As a running
example we can consider a user who is interacting with a search engine. The process of
user-system interaction is modeled using a finite MDP (S,A, T, r, γ), in the following
way:2

• S is a set of states that represent responses from the interactive system to the user.
S is finite as there is a limited predefined number of responses that the interactive
system can return.

• A is a finite set of actions that the user can perform on the system to move between
states. In the case of a search engine, a user can run a query, click on the returned
results, reformulate a query, etc.

• T is a transition distribution and T (s, a, s′) is the probability of transitioning from
state s to state s′ under action a at time t:

T (s′ | s, a) = P(St+1 = s′ | St = s,At = a). (2.1)

For search engines, being at the start page (which is s) a user is taking an action a
(e.g., running a query), and the engine redirects him to a result page (which is s′).

• r(s, a, s′) is the expected immediate reward after transitioning from s to s′ by taking
action a. We compute the expected rewards for (state, action, next state) triples as:

r(s, a, s′) = E[Rt | St = s,At = a, St+1 = s′], (2.2)

1The terms “users” and “a user” are used interchangeably.
2We follow the notation proposed in [132].

17

2. Optimizing Interactive Systems via Data-driven Objectives

where Rt is the reward at time t. In the case of a search engine, a user is getting a
reward for finding the desired information. However, the rewards are not observed
in practise (Assumption 7). For simplicity in exposition, we write rewards as r(s)
instead of r(s, a, s′) in our setting; the extension is trivial [95].

• γ ∈ [0, 1] is a discount factor.

We write P to denote the set of interactive systems, i.e., triples of the form (S,A, T).
Following Assumption 3, system designers have control over the sets S, A, and the
transition distribution, T , and T can be changed to optimize an interactive system.

The user behavior strategy for accomplishing their tasks is represented by a policy,
which is a mapping, π ∈ Π, from states, s ∈ S, and actions, a ∈ A, to π(a|s), which
is the probability of performing action At = a by the user when in state St = s. The
observed history of interactions between the user and the interactive system, H ,3 is
represented as a set of trajectories, {ζi}ni=1, drawn from a distribution Z, which is
brought about by T , π, and D0, where D0 is the initial distribution of states. Following
Assumption 5, which proposes homogeneity in user behavior, simplifies the problem,
i.e., as if a single user-generated H . A trajectory is a sequence of state-action pairs,
where a user does not provide explicit feedback (Assumption 7):

ζi = S0, A0, S1, A1, . . . , St, At, (2.3)

To conclude, we suppose that the user is an optimal agent who is trying to maximize
its reward under the system dynamics, it faces and that the system wants to improve
the user experience over time by creating progressively easier MDPs to solve for the
user. However, an interactive system cannot transition from all initial to goal states
in one step due to design constraints. For example, if a user is searching for holiday
destinations, the system cannot redirect him to the final stage of booking a hotel because
he needs to go through a necessary step, e.g., providing payment details.

To summarize, we have described the basic principles of modeling interactions
between users and an interactive system. Next, we detail how to define data-driven
objectives that are used to optimize an interactive system.

2.5 Defining Data-driven Objectives

In this section, we first present our approach to convert user needs to data-driven
objectives of an interactive system (Section 2.5.1), and then we explain how these
objectives can be estimated (Section 2.5.2).

2.5.1 Defining interactive system objectives
We define the quality of an interactive system as the expected state value under an
optimal user policy. The value of a state S0 under a policy π is given as [132]:

V π(S0) = Eπ

[∞∑
t=0

γtRt+1

]
, (2.4)

3Below, we sometimes refer to the history H as logs of user interactions, or user trajectories/traces, or
simply logs.

18

2.5. Defining Data-driven Objectives

where the expectation Eπ[·] is taken with respect to sequences of states S0, S1, . . . , St, . . .
drawn from the policy π and transition distribution T . We use V πT to denote the value
of policy π under the current transition distribution T , and hide the initial states S0 for
simplification.

In the proposed setting, the user’s goal is to find the best policy π∗ such that V πT
is maximized. V∗(T) defines the maximum possible value of V πT under transition
distribution T as follows:

V∗(T) = max
π∈Π

V πT , (2.5)

where Π is the set of possible user policies. We formulate the problem of finding the
optimal interactive system’s transition distribution, denoted T ∗, in the following terms:

T ∗ = arg max
T∈T

V∗(T). (2.6)

Therefore, Eq. 2.6 represents the objective function, mentioned in Assumption 6, which
is derived from user trajectories (Eq. 2.3) directly. After finding T ∗ by solving the
proposed optimization problem, the system designer can transform the current system
to a new one, which should deliver a better user experience as it reflects user needs
better. This process is illustrated in Figure 2.1 by the arrow marked optimize between
two consecutive iterations.

With the transition distribution T , the interactive system will respond with the next
state s′ given the current state s and the user action a. In real life, it is not guaranteed
that the tuple (s, a, s′) exists. For example, in task-oriented dialogue systems, the
system first needs to collect essential information for booking a hotel (e.g., hotel name,
room type) step by step. In some cases, the system also needs to recommend potential
hotels and asks the user to make a choice. After successfully collecting all information,
the system can guide the user to a payment page. Obviously, it is not possible to
deliver a payment state to the user when the information contained in the current state
is not complete. Therefore, inherent constraints exist in interactive systems and this
makes finding the optimal interactive system’s transition distribution a meaningful and
interesting task. Otherwise, the system can always deliver the most valuable state to the
user in one step at any state.

To estimate the data-driven objectives interactive system presented in Eq. 2.6, we
first need to recover Rt, which we will discuss next.

2.5.2 Recovering user rewards
Assumption 4 suggests that continued user interactions with the system indicate a certain
level of user satisfaction, which can be reflected by experienced rewards. In contrast
with ζi ∈ H presented in Eq. 2.3, the complete history of interactions, Ĥ , consists of
trajectories ζ̂i ∼ Ẑ, which include the user reward Rt:

ζ̂i = S0, A0, R1, S1, A1, R2 . . . , Rt, St, At, (2.7)

The problem is that the true user reward function is hidden from an interactive system
and inherently difficult due to the complexity of the real world surrounding users. Our
goal is to use the collected incomplete user trajectories, H , shown in Eq. 2.3, to find

19

2. Optimizing Interactive Systems via Data-driven Objectives

a way to approximate true user rewards. To address this challenge we apply Inverse
Reinforcement Learning (IRL) methods,4 which are proposed to recover the rewards of
different states, r(s), for ζi ∈ H . Our assumption about the form of user reward function
is: given state feature functions φ : St → Rk that describe St as a k-dimensional feature
vector, the true reward function r(s) is a linear combination of the state features φ(s),
which can be given as r(s) = θTφ(s). To uncover the reward weights θ, we employ the
following approaches.

Maximum Entropy Inverse Reinforcement Learning (MaxEnt-IRL) The core
idea of MaxEnt-IRL [164] is that trajectories with equivalent rewards have equal
probability to be selected and trajectories with higher rewards are exponentially more
preferred, which can be formulated as:

P(ζi | θ) =
1

Z(θ)
exp(θTφ(ζi)) =

1

Z(θ)
exp

|ζi|−1∑
t=0

θTφ(St)

 (2.8)

where Z(θ) is the partition function. MaxEnt-IRL maximizes the likelihood of the
observed data under the maximum entropy (exponential family) distribution.

Adversarial Inverse Reinforcement Learning (AIRL) Based on MaxEnt-IRL [27],
combine sample-based MaxEnt-IRL with forward reinforcement learning to estimate
the partition function Z, where:

L(θ) = −Eζi∼p rθ(ζi) + log

(
Eζj∼q

[
exp(rθ(ζj))

q(ζj)

])
. (2.9)

Here, rθ(ζi) is the reward of trajectory ζi, p represents the distribution of demonstrated
samples, while q is the background distribution for estimating the partition function∫

exp(rθ(ζ))dζ. Due to high variance from operating over entire trajectories, Fu et al.
[32] extend the algorithm to single state-action pairs and the proposed method, AIRL,
which is a practical and scalable IRL algorithm based on an adversarial reward learning
formulation. We use AIRL to recover the reward function for complex interactive
systems since AIRL can estimate non-linear reward functions.

Distance Minimization Inverse Reinforcement Learning (DM-IRL) For complete-
ness, we also employ DM-IRL [12, 25], which deals with scored trajectories, to have a
case of perfectly recovered reward weight θ for comparison. DM-IRL directly attempts
to regress the user’s actual reward function that explains the given score. DM-IRL uses
discounted accrued features to represent the trajectory:

ψ(ζi) =

|ζi|−1∑
t=0

γtφ(St), (2.10)

4IRL methods are described in greater detail in Section 2.2.2.

20

2.6. Optimizing Interactive Systems

where γ is the discount factor. The score of a trajectory ζi is

scoreζi = θTψ(ζi). (2.11)

Since the exact score for each trajectory is supplied, the recovered rewards with DM-IRL
are exactly the ground truth of reward functions, which can be regarded as oracle
rewards.

This process is depicted in Figure 2.1 by the arrow marked recover. Once we have
recovered the reward function r(s), we can proceed to the optimization objectives
presented in Eq. 2.6.

2.6 Optimizing Interactive Systems

We start by explaining how to maximize the quality of an interactive system for a user
behaving according to a fixed stationary policy π:

T ∗π = arg max
T∈T

V πT . (2.12)

To solve this problem, we first build an MDP as proposed above, where the user is the
agent and the system is the environment. Following Assumption 2, the system can be
optimized to improve the user experience, which we characterized by the quality of
the interactive system. This problem is equivalent to finding the optimal policy in a
reformulated MDP+(S+, A+, T+, r+, γ+), where the agent is an interactive system
and the stochastic environment is a user. It should be noted that the roles of agent
and environment in the reformulated MDP+ are exactly the opposite of the roles in
the original MDP. We also convert the state space and action space correspondingly.
We rely on the first MDP for inferring the user reward functions, while we rely on
the second one, MDP+, for updating interactive systems. In MDP+, the state S+

t is
represented by a concatenation of the state St the user is in and the action At the user
takes at time step t from the original MDP; the action A+

t is the original state St+1.
The interactive system observes the current state S+

t and picks an action A+
t under

the interactive system policy π+(A+
t |S+

t). Then the user returns the next state S+
t+1

according to the transition distribution T+(S+
t+1|S

+
t , A

+
t) which is inferred from the

policy model π(At+1|St+1). Therefore, finding the optimal transition T ∗π from Eq. 2.12
is equivalent to finding the optimal policy π+

∗ in the reformulated MDP+ as follows:

π+
∗ = arg max

π+∈Π+

V π
+

T+ , (2.13)

which can be done using an appropriate RL method such as Q-learning or Policy
Gradient. D+

0 is the initial distribution of states in MDP+. After we have demonstrated
how to optimize the interactive system for a given stationary policy, we return to the
original problem of optimizing the interactive system for an optimal policy π∗.

To summarize, we propose a formal procedure for optimizing interactive systems,
called ISO, presented in Algorithm 1, with the following steps:

Line 1 We assume that we have an estimate of the reward function r(s) using one of
the IRL methods described in Section 2.5.2. So we have as input: the original

21

2. Optimizing Interactive Systems via Data-driven Objectives

Algorithm 1 Interactive System Optimizer (ISO)

1: Input: Original system (S,A, T), r, γ, D0.
2: Construct original MDP(S,A, T, r, γ)
3: π∗(a|s) = RL(S,A, T, r, γ) // finding the current user policy
4: Construct system MDP+(S+, A+, T+, r+, γ+): // reformulate the original MDP

by switching the roles of agent and environment
• S+

t = St ⊕At // build the new state space by concatenation
• A+

t = St+1 // build the new action space
• T+(S+

t+1|S
+
t , A

+
t) = π∗(At+1|St+1) // build the transitions in MDP+

• r(S+
t)+ = r(St) // convert the reward function

• γ+ = γ // both MDPs share the same discount factor
5: D+

0 ∼ (S0 ∼ D0, A0 ∼ π∗(a|S0)) // sample initial states inMDP+

6: π+(A+
t |S+

t) = T (St+1|St, At) // find the optimal transition distribution in the
original MDP is formulated as fining the optimal policy in a reformulated MDP+

7: π+
∗ (a+|s+) = RL(S+, A+, T+, r+, γ+) // optimize the system policy in MDP+

8: T ∗(St+1|St, At) = π+
∗ (A+

t |S+
t) // replace the transition distribution in original

MDP with the newly updated system policy
9: Output: Optimized system (S,A, T ∗)

system (S,A, T), the reward function r, the discount factor γ, and the initial
distribution of states D0.

Line 2 ISO formulates the original system as MDP(S,A, T, r, γ).

Line 3 ISO uses an appropriate RL algorithm to find the current user policy π∗(a|s)
given the reward function r.

Line 4 ISO transforms the original MDP(S,A, T, r, γ) into the new MDP+ (S+, A+,
T+, r+, γ+), where the roles of the agent and environment are switched. In our
setting, S+

t has the same reward value as St. The discount factor γ+ remains
the same.

Line 5 ISO transforms D0 to D+
0 to match the distribution of first state-action pairs.

Line 6 The equivalence π+(A+
t |S+

t) = T (St+1|At, St) means that finding the optimal
π+
∗ according to Eq. 2.13 is equivalent to finding the optimal T ∗π according

to Eq. 2.12. Therefore, the transition distribution can be regarded as a policy
network or a policy table from the MDP’s perspective depending on the policy
learning method.

Line 7 We can use an appropriate RL algorithm to find π+
∗ (A+

t |S+
t).

Line 8 ISO extracts T ∗(St+1|St, At) from the optimal system policy π+
∗ (A+

t |S+
t).

The extraction process is trivial: T ∗(St+1|St, At) = π+(A+
t |S+

t). Then, ISO
terminates by returning the optimized interactive system.

Line 9 ISO outputs the optimized interactive system (S,A, T ∗).

22

2.7. Experiments and Results

Once ISO has returned the optimized system (S,A, T ∗), we expose it to users so they
can interact with it as illustrated in Figure 2.1. We assume that users adjust their
policy to T ∗. After enough iterations, the user policy will converge to the optimal one.
Iterations between optimizing the interactive system for the current policy and updating
the user policy for the current interactive system continue until both converge.

In summary, we have presented the Interactive System Optimizer (ISO). It optimizes
an interactive system using data-driven objectives. It works by transforming the original
MDP, solving it, and using its solution to yield the optimal transition distribution in the
original MDP.

2.7 Experiments and Results

In this section, we apply our proposed method, ISO, to two simulated interactive setups.
In the first setup, the interactive system operates in a tabular-based world5 with finite
states and actions (Section 2.7.1). The second one has a more realistic setup, where the
agent, the environment, and the reward function are all represented by separate neural
networks (Section 2.7.2). Each proposed experimental setup is described using three
components: (1) the design of the interactive system, (2) modeling user behavior, and
(3) a suitable evaluation process. For both experimental setups, our results demonstrate
that ISO can significantly improve the system performance in the designed setups. We
conclude this section by discussing a list of limitations (Section 2.7.3).

2.7.1 Optimizing interactive systems in a tabular-based world

Experimental setup

Designing an interactive system We simulate an arbitrary interactive system where
we need a finite set of states S, a finite set of actions A, and a transition distribution T .
Features of a state φ(s) are fixed. For our experimental setup, we simulate an interactive
system where |S| = 64 and |A| = 4. We work with a complex environment where
a user can transition between any two states if these two states are connected. The
connections between the two states are predefined and fixed, but the transition distri-
bution is changeable. In words, for the same system in different runs, the connectivity
graph of this system is fixed and will not be changed once it is sampled at the very
beginning. This setup corresponds to the inherent constraints between state transitions
in real interactive systems (Section 2.5.1). We use a hyper-parameter, the connection
factor cf , to define the number of possible next states after the user has taken one
specific action at the current state. For an initial interactive system, D0 is randomly
sampled as well as T . At each iteration, ISO delivers T ∗, which substitutes the initial T
obtained at the previous iteration. The optimized interactive system is used for the next
iteration until the process converges.

5A tabular-based world is a two-dimensional, cell-based environment where the agent starts from one cell
and moves toward the terminal cell while collecting as much reward as possible. The connections between
different cells are predefined.

23

2. Optimizing Interactive Systems via Data-driven Objectives

Modeling user behavior To model user behavior we require a true reward function
rreal(s), and an optimal user policy π∗user. We utilize a linear reward function rreal(s)
by randomly assigning 25% of the states reward 1, while all others receive 0. As we use
one-hot features for each state, rreal(s) is guaranteed to be linear.

We use a soft value iteration method [163] to obtain the optimal user policy π∗user.
The quality of the recovered reward functions is influenced by how trajectories

are created, which in turn can affect the performance of ISO as it relies on rreal(s) to
optimize the transition distribution T behind the interactive system with reinforcement
learning.

We experiment with the following types of user trajectories:

• Optimal: Users know how to behave optimally in an interactive system to satisfy their
needs. To simulate the user interactions H , we use π∗user trained with the real reward
function rreal(s).

• SubOptimal: Not all users know the system well, which means that the demonstrated
behavior is a mixture of optimal and random. We propose two different methods to
simulate suboptimal behavior. The degree of optimality of user behavior is controlled
by either of two following factors: (1) the proportion of random behavior (this is called
‘wandering’ behavior in [146]); or (2) the user action noise, which is collectively
called the noise factor (NF) ∈ [0.0, 1.0].

Mix of Behaviors (MB): The log of user interactions H is a mix of trajectories
generated by the optimal policy and the adversarial policy.6

Noise in Behavior (NB): In this case, the trajectories in H are generated from the
optimal policy but we add noise to the user actions to get suboptimal behavior.7

The generated history of user interactions H represents the case of trajectories without
a score which will be fed to MaxEnt-IRL. In terms of DM-IRL, interaction history
should be given along with scores for each trajectory – Ĥ . To generate the required
dataset Ĥ , we calculate the score using the true reward function rreal(s). Ĥ is the input
to DM-IRL.

At each iteration, we sample the following datasets reflecting different types of his-
tory of user interactions: Ĥ , HOptimal, HSubOptimal−0.2−MB , HSubOptimal−0.6−MB ,
HSubOptimal−0.2−NB , HSubOptimal−0.6−NB , each of size 15, 000 and |ζi| ∈ [30, 40].

Evaluation process To evaluate the performance of ISO, we report the expected state
value under optimal policy Eq. 2.5 for an initial interactive system (S, A, Tinit) and an
optimized one (S, A, Topt), which we derive after around 100 iterations (one iteration
means we sequentially recover the reward function and run Algorithm 1 once). A higher

6To model suboptimal user behavior we use two user policies: (1) an optimal user policy π∗
user ; and

(2) an adversarial policy (1 − π∗
user), which means we choose the action that has the lowest likelihood

according to π∗
user . We include an adversarial policy instead of a random one because it is the hardest case

as users behave opposite of what we expect. E.g., NF = 0.2 means that 20% of the trajectories are generated
with the adversarial policy.

7E.g., NF = 0.2 means the probability is 20% that the user will not choose the action with the highest
probability in the optimal policy.

24

2.7. Experiments and Results

expected state value means users are more satisfied while interacting with the interactive
system. We initialize 40 different initial interactive systems by randomly sampling
reward functions and transition distribution, and report the overall performance over
these 40 systems. The true reward functions and the connectivity graphs of these
sampled systems are fixed in the whole optimization process. We use the recovered
reward function with DM-IRL as the oracle reward for in this setup.

Results and discussion

Improving interactive systems with ISO Figure 2.2, 2.3, 2.4 show how the quality
of the interactive system increases with each iteration of ISO in terms of different
connection factors. The final relative improvements after optimization can be found in
Table 2.1. We use IRL-labeled to represent the system optimized with the recovered
reward function by method DM-IRL. As expected, when the user gives feedback about
the quality of the trajectories (IRL-labeled), the task is simpler and ISO manages to get
high improvements with the oracle rewards. However, the picture changes when we
hide the scores from the trajectories. Without scores, ISO relies on the optimality of
user behavior to recover the reward function. As the optimality decreases, so does the
behavior of ISO, and the performance decays. With oracle rewards from DM-IRL, ISO
converges quite fast – as we can see in Figure 2.3 and Figure 2.4, after 20 iterations the
expected state value begins to plateau. Most improvements happen in the first several
iterations. Thus, ISO works with accurately labeled trajectories, but usually obtaining
high-quality scores is intractable and expensive in a real interactive system because the
real rewards are invisible. We report it as the oracle performance in our experiment.

With respect to trajectories without scores, ISO is able to improve the initial expected
state value. In Figure 2.2, the influence of the noise factor and types of trajectories (MB
or NB) is clear. However, in Figure 2.4, where there are fewer connections between
two states, only the convergence speeds of different curves are different but they all
converge to the same state value eventually. ISO manages to optimize the interactive
system even though the user trajectories are quite noisy.

More interestingly, the convergence speed and final converged values are different
depending on the connection factors. As we can see, it is more difficult to get high
performance when there are more connections between different states in the predefined
systems. More connections mean that more possible trajectories could be taken and it is
intractable for MaxEnt-IRL to learn a reward function from this kind of situation. In
contrast, in Figure 2.4, each state-action pair can only have two possible next states and
the final average state value is much higher than the system in Figure 2.2.

Impact of ISO components The performance of ISO depends on its two components:
(1) RL methods used to optimize the user policy πuser for the original MDP and system
policy π+

sys for the reformulated MDP+; and (2) IRL methods – to estimate the true
reward function rreal(s). The dependence on RL methods is obvious – the result will
only be as good as the quality of the final optimization, so an appropriate method should
be used. The performance of ISO can be influenced by the quality of the recovered
reward functions, r(s). For the case of labeled trajectories, the values of r(s) recovered
by DM-IRL are identical to the ground truth rreal(s) since a regression model is used

25

2. Optimizing Interactive Systems via Data-driven Objectives

Table 2.1: The performance of ISO, measured as a relative improvement (Impr.)
in expected state value over the Initial interactive system of the Optimized version
(after 120 and 90 iterations) for different types of user behaviors: (a) IRL-labelled,
(b) Optimal, (c) SubOptimal-0.2-MB, (d) SubOptimal-0.6-MB, (e) SubOptimal-0.2-NB,
(f) SubOptimal-0.6-NB. Only IRL-labelled has access to trajectory labels. * indicates
statistically significant changes (p < 0.01) using a paired t-test over the initial expected
state value and the optimized expected state value.

CF
BT (a) IRL-labelled (b) Optimal (NF=0.0)

Initial Optimized Impr. Initial Optimized Impr.

32 1.50 4.21 281%∗ 1.50 2.45 164%∗

8 1.98 4.21 213%∗ 1.98 4.04 205%∗

2 2.92 4.08 140%∗ 2.92 3.86 132%∗

CF
BT (c) SubOptimal-0.2-MB (NF=0.2) (d) SubOptimal-0.6-MB (NF=0.6)

Initial Optimized Impr. Initial Optimized Impr.

32 1.50 2.52 169%∗ 1.50 1.92 128%∗

8 1.98 3.94 200%∗ 1.98 3.41 173%∗

2 2.92 3.83 131%∗ 2.92 3.71 127%∗

CF
BT (e) SubOptimal-0.2-NB (NF=0.2) (f) SubOptimal-0.6-NB (NF=0.6)

Initial Optimized Impr. Initial Optimized Impr.

32 1.50 2.40 160%∗ 1.50 1.96 131%∗

8 1.98 4.06 206%∗ 1.98 3.83 194%∗

2 2.92 3.90 134%∗ 2.92 3.72 128%∗

26

2.7. Experiments and Results

0 20 40 60 80 100 120
Iteration

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Ex
pe

ct
ed

 S
ta

te
 V

al
ue

Initial expected state value
Optimal
SubOptimal-0.2-NB
SubOptimal-0.6-NB
SubOptimal-0.2-MB
SubOptimal-0.6-MB
IRL-labelled

Figure 2.2: Performance of ISO over 40 randomly sampled systems when connec-
tion factor=32. The error bounds denote the standard error of the mean (±SEM). The
x-axis is the number of iterations of ISO and the y-axis is the expected state value.

and we have the exact score for each user trajectory. For the case of trajectories
without scores, the quality of the recovered reward function is worse than DM-IRL.
MaxEnt-IRL can only give a general overview of rreal(s) if the user trajectories are
optimal. If there are not enough constraints on the connections between states, with
each iteration of running ISO, the shape of the sampled trajectories becomes more
similar, which means that most trajectories pass by the same states and the diversity
of trajectories decreases. We found that this makes it even more difficult to recover
rreal(s) and the MaxEnt-IRL quality deteriorates with the number of iterations, which
results in lower performance in Figure 2.2. Hence, improving the performance of IRL
methods is likely to significantly boost the performance of ISO and more advanced IRL
methods could be adopted according to the real task.

2.7.2 Optimizing interactive systems in a network-based world

Experimental setup

Designing an interactive system with neural networks In this setup, we first present
a simulated framework used for optimizing the interactive system (S,A, T) with ISO.
Based on the two-step optimization setup in Section 2.6 we designed two separate
optimizing modules respectively. Figure 2.5 shows the architecture of the optimizing
module for the original MDP(S,A, T, r, γ), while Figure 2.6 describes the optimizing
module for the reformulated MDP+(S+, A+, T+, r+, γ+) respectively. As described
in Section 2.6, we use MDP(S,A, T, r, γ) for reward learning and the reformulated
MDP+(S+, A+, T+, r+, γ+) for system optimization.

In the proposed setup, we have a continuous state space S and discrete action space
A for the original MDP(S,A, T, r, γ), where the dimension of S is Sdim = 50 and
action number is |A| = 10. The user policy πuser, the system policy πsys and the

27

2. Optimizing Interactive Systems via Data-driven Objectives

0 10 20 30 40 50 60 70 80 90
Iteration

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Ex
pe

ct
ed

 S
ta

te
 V

al
ue

Initial expected state value
Optimal
SubOptimal-0.2-NB
SubOptimal-0.6-NB
SubOptimal-0.2-MB
SubOptimal-0.6-MB
IRL-labelled

Figure 2.3: Performance of ISO over 40 randomly sampled systems when connec-
tion factor=8. The error bounds denote the standard error of the mean (±SEM). The
x-axis is the number of iterations of ISO and the y-axis is the expected state value.

reward function r(s) are represented with multi-layer perceptrons separately. Following
Algorithm 1, the transition distribution T (St+1|St, At) is exactly the system policy
πsys which is fixed in this step. We assume the state distribution follows a multivariate
Gaussian distribution with a diagonal covariance matrix and the system policy π+

sys will
produce the corresponding mean and variance. Since the state space S is continuous,
the output of πsys will be a sampled continuous state st+1 at next step t + 1 given
st and at. Here we use Proximal Policy Optimization (PPO) [118], a policy gradient
based method, to optimize the user policy πuser. With respect to the reformulated
MDP+(S+, A+, T+, r+, γ+), the state st and action at from the original MDP will be
concatenated to form the new state s+

t following Algorithm 1. The action a+ is from
continuous action space and the transition distribution T+(S+

t+1|S
+
t , A

+
t) is exactly the

user policy πuser in the original MDP. Different from πsys in the original MDP, π+
sys

will be updated with PPO and it will be used to replace πsys in the original MDP after
optimization finished. r+(s) is the learned reward function in the first optimizing step.

With respect to the optimizing module for MDP(S,A, T, r, γ) shown in Figure 2.5,
the user policy is wrapped up with a PPO agent and the reward function is loaded to
the reward agent. To estimate the user reward function, we utilize Adversarial Inverse
Reinforcement Learning (AIRL) in the reward learning step. The user policy agent
and the reward agent make up the AIRL agent. As an adversarial learning method, the
AIRL agent needs user traces generated by real users to update the reward function.
In this setup, we use the user agent π∗user real trained with the true reward function
rreal(s) to produce necessary user-system interaction traces, which will be stored in the
Expert Behavior area. The environment Environment-1 for AIRL training and behavior
generation mainly consists of the system policy πsys to deliver the next state st+1 given
state st and action at according to T (St+1|St, At). The system policy πsys will keep
fixed in MDP(S,A, T, r, γ). It should be noted that there are two different user reward
functions in Figure 2.5. The reward function rairl(s) in AIRL agent is updated during

28

2.7. Experiments and Results

0 10 20 30 40 50 60 70 80 90
Iteration

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Ex
pe

ct
ed

 S
ta

te
 V

al
ue

Initial expected state value
Optimal
SubOptimal-0.2-NB
SubOptimal-0.6-NB
SubOptimal-0.2-MB
SubOptimal-0.6-MB
IRL-labelled

Figure 2.4: Performance of ISO over 40 randomly sampled systems when connec-
tion factor=2. The error bounds denote the standard error of the mean (±SEM). The
x-axis is the number of iterations of ISO and the y-axis is the expected state value.

AIRL training while the reward function rreal(s) in the expert agent is the true reward
function. The AIRL agent and system policy has no access to the true reward function
rreal(s) and we use rairl(s) to approximate rreal(s), which is also the motivation of
AIRL.

The optimizing module for the reformulated MDP+(S+, A+, T+, r+, γ+) shown
in Figure 2.6 is responsible of updating the system policy πsyswith the recovered reward
function rairl(s). Just like other reinforcement learning setups, it has three main com-
ponents: an environment, a PPO agent, and the reward function. The system policy πsys
is wrapped up with a PPO agent and the reward agent is the function rairl(s) learned in
MDP(S,A, T, r, γ). Given state s+

t and action a+
t , the step function of the environment

Environment-2 will return the next state s+
t+1 according to T+(S+

t+1|S
+
t , A

+
t) in Line 4

of Algorithm 1, where the user policy πuser is involved.

AIRL Agent

PPO Agent

User policy

Reward Agent

Reward NN

Environment-1

System Policy

Expert User Agent

PPO Agent

Oracle User policy True Reward

Expert
Behavior

Figure 2.5: The architecture of the optimizing module in the original
MDP(S,A, T, r, γ), which is responsible for generating user behavior and recover-
ing user reward functions.

29

2. Optimizing Interactive Systems via Data-driven Objectives

PPO Agent

System policy

Reward Agent

Reward NN
Environment-2

User Policy

Figure 2.6: The architecture of the optimizing module in the reformulated
MDP+(S+, A+, T+, r+, γ+), responsible for optimizing the system agent.

Modeling user behavior Given the current system policy πsys and the real user
reward function rreal(s), we optimize the user policy πuser by running PPO method.
The optimized user policy will be saved as the oracle user policy π∗user real. Then by
making the user policy π∗user real interact with the system policy πsys, we can collect a
bunch of interaction trajectories (20K in our experiments) and all these behavior data
will be loaded to the expert behavior bucket. The maximum length of the collected
trajectories is 40. The stored user interaction traces will be used to learn the user reward
function rairl(s) (we use AIRL method in this setup).

Evaluation process To evaluate the performance of ISO in the proposed framework,
we report the Average Return of m sampled trajectories (m = 1000 in our setup) under
optimal policy π∗user real under the real reward rreal(s) for an initial interactive system
and an optimized one, which we derive after 3 iterations (one iteration means we
sequentially recover the reward function and run Algorithm 1 once). A higher average
return means users are more satisfied while interacting with the interactive system. We
initialize 5 different initial interactive systems by randomly sampling the system policy
πsys, and report the overall performance over these 5 systems. Besides, we want to
avoid the situations that the optimized system has totally different behaviors compared
to the initial system because the dramatic change may hurt users’ experience. To make
sure the systems before and after optimized follow similar behaviors, we introduce a
regularization term, the KL-Divergence λ ∗DKL(Topt | Tinit), to control the distance
between these two system policies. This term can also be regarded as the inherent
constraints between state transitions, just like the “connection factor” in Section 2.7.1.
The hyperparameter λ is applied to control the effect of the term. Due to the training
complexity of network-based simulations, we run 5 times for each parameter setup
rather than 40 times in the tabular world.

The ground truth of user reward functions With respect to the true reward function
rreal, we have two different setups: a handcrafted reward function and a randomly
initialized reward function. For the handcrafted one, we use rreal(s) = 1

sdim
φ(s) ∗φ(s)

as the reward for the given state s. In terms of the sampled reward function, we
initialize the parameters of the reward network with uniform distributions, and this
makes recovering the reward function more difficult because there are no patterns in the
sampled reward function. In the real world, users always have their preferences and the

30

2.7. Experiments and Results

reward function in users’ minds is not likely to be random. The true reward function
rreal(s) is fixed in the whole optimizing process.

Results and discussion

In this section, we first discuss the results of the experiments with a manually designed
real reward function. Then, we move to the discussion of the experimental results with
randomly initialized reward function.

0 1 2 3
Iteration

0
2
4
6
8

10
12
14
16

Av
er

ag
e

Re
tu

rn

= 0.001
= 0.01
= 0.1

Figure 2.7: The state performance during optimization with oracle reward function and
oracle user policy. The real reward function is manually designed. The error bounds
denote the standard error of the mean (±SEM).

0 1 2 3
Iteration

0
2
4
6
8

10
12
14
16

Av
er

ag
e

Re
tu

rn

= 0.001
= 0.01
= 0.1

Figure 2.8: The state performance during optimization with recovered reward and oracle
user policy. The real reward function is manually designed. The error bounds denote
the standard error of the mean (±SEM).

Manually designed real reward function To verify if the proposed two-MDP frame-
work works or not, we first skip the reward learning step and use the oracle reward

31

2. Optimizing Interactive Systems via Data-driven Objectives

0 1 2 3
Iteration

0
2
4
6
8

10
12
14
16

Av
er

ag
e

Re
tu

rn

= 0.001
= 0.01
= 0.1

Figure 2.9: The state performance during optimization with recovered reward function
and recovered user policy. The real reward function is manually designed. The error
bounds denote the standard error of the mean (±SEM).

function rreal(s) as the “learned” reward function with collected user behaviors. With
respect to the user policy πuser used to interact with the system agent in the second
optimizing module, we use the oracle user policy π∗user real trained with true reward
function rreal(s). Other modules stay the same and we obtain the performance in Figure
2.7. An interactive system at iteration 0 is the initial system and not optimized yet. As
we can see, with a looser restriction (i.e., a smaller λ value) on the distance between
the optimized system and the initial system, we can achieve higher performance with
respect to the average trajectory returns. After we bring back the reward learning step
and use the learned reward function rairl(s) to optimize the system policy, we have
the results shown in Figure 2.8. The system can still achieve higher performance by
running Algorithm 1. If we compare the results between systems λ = 0.001 in Figure
2.7 and Figure 2.8, we can find that the system trained with oracle reward rreal(s) can
hit higher returns after two iterations. The finding still holds with respect to the systems
λ = 0.01 in both setups. However, this is not the case when we set λ = 0.1. We suspect
this is because the large regularization term DKL(Topt | Tinit) has brought too many
uncontrollable factors into the optimization step, which may disturb the training.

As mentioned in Section 2.7.2, the user policy πuser is essential while optimizing
the system πsys. In Algorithm 1, the user policy πuser plays the role of the transition
distribution T+ in the environment Environment-2. In addition to the two reward func-
tion setups above, we need to conduct an experiment with the user policy πuser trained
with recovered reward function rairl(s) for system optimization in the reformulated
MDP+. Since we use AIRL to learn the reward function in this framework, we have
the estimated user policy π∗user airl which is rebuilt during the adversarial training pro-
cess. We replace π∗user real in the environment Environment-2 with this rebuilt policy
π∗user airl. In terms of the reward function r+ in MDP+(S+, A+, T+, r+, γ+), we use
the reward function rairl(s). By running Algorithm 1, we have the results in Figure
2.9. It is clear that the rebuilt policy π∗user airl can still help with improving the system
performance. This is meaningful because by using adversarial training we can rebuild

32

2.7. Experiments and Results

the user policy and user reward function simultaneously. The accuracy of the estimated
user policy will definitely benefit from a high-quality estimation of the user reward
function. The only moment that real users are involved happens when we are collecting
user-system interaction trajectories. This perfectly matches the scenarios in real life,
where we first collect interaction histories from users and then infer the user preferences
(rairl) and user behavior patterns (πuser airl) according to the collected data. In the
next step, the system policy πsys will be optimized based on user preferences and user
behavior patterns. In the end, the newly updated system (S,A, T ∗) will be presented to
users to improve their user experience. If necessary, new interaction trajectories will be
collected and another optimization turn can start again.

0 1 2 3
Iteration

8

9

10

11

12

13

14

15

Av
er

ag
e

Re
tu

rn

= 0.001
= 0.01
= 0.1

Figure 2.10: The state performance during optimization with oracle reward function and
oracle user policy. The real reward function is randomly initialized. The error bounds
denote the standard error of the mean (±SEM).

0 1 2 3
Iteration

8

9

10

11

12

Av
er

ag
e

Re
tu

rn

= 0.001
= 0.01
= 0.1

Figure 2.11: The state performance during optimization with recovered reward and
oracle user policy. The real reward function is randomly initialized. The error bounds
denote the standard error of the mean (±SEM).

33

2. Optimizing Interactive Systems via Data-driven Objectives

0 1 2 3
Iteration

8

9

10

11

12
Av

er
ag

e
Re

tu
rn

= 0.001
= 0.01
= 0.1

Figure 2.12: The state performance during optimization with recovered reward function
and recovered user policy. The real reward function is randomly initialized. The error
bounds denote the standard error of the mean (±SEM).

Randomly initialized reward function In this section, we show how the interactive
optimizer performs when the reward function rreal(s) is randomly initialized. In
Figure 2.10, with the real reward function rreal(s), the system can still achieve relatively
large improvements in terms of average return. The fact that all curves have higher
starting points is because the randomly initialized system policy has the advantage to
hit higher reward for a random reward function and this will not hold when the reward
function has a special pattern as in Section 2.7.2. We also find that looser restrictions
on the distance between the optimized system and the initial system can bring larger
performance improvements, as we observed in Section 2.7.2.

With respect to Figure 2.11 and Figure 2.12, the improvements still exist but are not
so significant compared to those with the handcrafted reward function in Figure 2.8 and
Figure 2.9. A potential reason is that it is hard to recover a high-quality reward function
given user behaviors generated by a random reward function. Especially before the first
iteration, the system still performs randomly (the initial system is randomly initialized)
and it is difficult to collect useful interaction traces for reward learning, and this is also
the reason why, in Figure 2.11 and Figure 2.12, the average returns of some curves
even drop after the first iteration. However, in the real world, users always have their
preferences and the reward function in users’ minds is unlikely to be random. Besides,
the initial system will not behave randomly because in most cases a real interactive
system (e.g., search engine, digital assistant) will be tested offline first and will not be
deployed before it can achieve reasonable performance. This will alleviate the reward
learning stress to some degree. We have this random reward function here simply to
validate how well the method could perform with most uncontrollable behaviors.

2.7.3 Limitations
First, to recover a reliable reward function, a large number of high-quality user in-
teraction traces are essential, which can come with a great cost in real life (but is
not impossible). Furthermore, an interactive system usually serves different users,

34

2.8. Conclusions and Future Work

which can lead to a violation of Assumption 5 about the homogeneity of user behavior.
Therefore, we would need to work on personalizing the recovered reward functions. A
possible way to address this limitation in the future is to incorporate the user features
into the state space, but this still needs to be explored.

Second, as shown in Section 2.7.1, the final performance of the optimized system
highly relies on the quality of the recovered reward function. With respect to the more ad-
vanced extension of Maximum Entropy Inverse Reinforcement Learning (MaxEnt-IRL),
which is Adversarial Inverse Reinforcement Learning (AIRL), the adversarial training
process is intractable for complex real behavior. The two limitations above boil down to
the quality of recovered reward functions, given limited user traces in real life. Third,
after we have inferred the reward function, we will update the system in a reformu-
lated MDP setup, where we switch the roles between the agent and environment. The
potential problem that can arise is that the action space for the new MDP could be
extremely large and this may present challenges for the scalability of the Reinforcement
Learning (RL) process.

Finally, we validate our method in two simulated experimental setups. Although
we try to design our setups as close as possible to the real-word scenarios, there is
a potential gap between the designed systems and real-world applications. But the
positive verification of our method in a simulated setup helps us to better understand
the pros and cons of the proposed approach and help us with planning the experiments
with the real-world scenarios in the near future.

To summarize, we have proposed two experimental setups to test the proposed frame-
work: tabular and neural. In both cases, the results demonstrate significant improvements
in interactive systems when applying ISO. We conclude this section acknowledging a
number of possible limitations, some of which can be considered as future directions.

2.8 Conclusions and Future Work

We have recognized that previous work on interactive systems has relied on the assump-
tion that handcrafted objective functions can accurately reflect users’ preferences and
intentions while interacting with interaction systems. As a result, interactive systems
have been optimized for manually designed objectives that do not always align with the
true user preferences and cannot be generalized across different domains. To overcome
this discrepancy, we have proposed a novel two-step framework to optimize interactive
systems, which first infers the user reward model given collected user interaction traces
and then updates the system with the inferred reward functions via a novel algorithm:
the Interactive System Optimizer (ISO).

Firstly, we modeled user-system interactions using MDP, where the agent is the user,
and the stochastic environment is the interactive system. User satisfaction is modeled
via rewards received from interactions, and the user interaction history is represented by
a set of trajectories. We followed the previously justified assumption that user incentive
to interact with the system if they are rewarded. Treating an interactive system as a
changeable and programmable environment is novel and reasonable because we have
complete control of the interactive systems since we are the system designers.

Secondly, we formalized an optimization problem to infer user needs from observed

35

2. Optimizing Interactive Systems via Data-driven Objectives

user-system interactions, in the form of a data-driven objective. Importantly, our method
works without any domain knowledge and is thus even applicable when prior knowledge
is absent.

Thirdly, we proposed a novel, Interactive System Optimizer (ISO), that iterates
between optimizing the interactive system for the current inferred objective; and letting
the user adapt to the new system behavior. This process repeats until both the user and
system policies converge. Our experimental results show that ISO robustly improves
user satisfaction.

Given the solutions above and the experiment results, it is obvious that the answer
to research question RQ1 is “Yes”. The newly proposed solution to optimize an
interactive system based on data-driven objectives is novel, many promising directions
for future work are possible. For instance, while ISO performs well for users with a
single goal, this approach could be extended to settings with multiple goals. Similarly,
extensions considering more personalized goals could benefit the overall user experience.
Finally, investigating the scalability and real-world applicability of ISO could open
many research possibilities.

In the following chapter, we will start the experiments with more realistic appli-
cations, dialogue systems. The interactive system optimizer proposed in this chapter
is more like a theoretical guideline. We will verify the effectiveness of data-driven
objectives in optimizing the dialogue generation model, which is a typical interactive
system.

36

3
Dialogue Generation:

From Imitation Learning to Inverse
Reinforcement Learning

In this chapter, we investigate two adversarial training methods for open-domain dia-
logue systems. They can be regarded as practical applications of data-driven objectives.
We conduct different experiments to answer the research question:

Can data-driven reward functions be used to successfully improve open-domain
dialogue systems?

3.1 Introduction

The task of an open-domain dialogue system is to generate sensible dialogue responses
given a dialogue context [68, 69, 108, 123, 154]. There are two broad directions for
training a dialogue generation system: the first employs defined rules or templates
to construct possible responses and the second builds a chatbot to learn the response
generation model with a machine translation framework from social dialogue col-
lections [120, 121, 123, 128]. Sequence-to-sequence (Seq2Seq) models enjoy the
advantages of scalability and language independence and the maximum likelihood
estimation objectives make it simple to train them. However, in dialogue generation,
the trained model suffers from generating dull and generic responses such as “I don’t
know” [66, 69, 120, 128], which are meaningless. Li et al. [66] suggest that “by
optimizing for the likelihood of outputs given inputs, neural models assign a high prob-
ability to ‘safe’ responses”. To alleviate this problem, Li et al. [68] introduce a neural
Reinforcement Learning (RL) generation method to generate coherent and interesting
dialogues by optimizing the manually defined reward function covering ideal dialogue
properties. However, a handcrafted reward function is expensive to maintain and does
not generalize over different domains [27, 32]. Especially for open-domain dialogue
systems, it is hard to decide what knowledge is essential to design a proper reward
function [69]. Additionally, the accuracy of defined reward functions can degrade when
the dialogue context becomes more complex. Li et al. [69] use adversarial training for

This chapter was published as [75].

37

3. From Imitation Learning to Inverse Reinforcement Learning

dialogue generation, where they jointly train two systems, a generative model to produce
response sequences and a discriminator to distinguish between the human-generated
dialogues and the machine-generated ones. Feedback from the discriminator is used
as a reward to push the generator to produce more realistic replies. The discriminator
takes a dialogue consisting of a context-reply pair as input and outputs the probability
that this dialogue is from real human dialogues.

In Li et al. [69], during generator training, the reward of each generated word during
decoding should be supplied and the Monte Carlo search is applied to estimate the
reward for each word position. A potential problem is that the returned reward from
the discriminator could be very sparse and unstable, which may lead the generator to
produce unintended and nonsense replies. Moreover, Li et al. [69] put no constraints on
the generator policy, which can result in two problems. First, the learned policy may
prefer to generate general responses. Second, the training step can easily get stuck in a
local optimum, which leads the generator to produce identical responses regardless of
the input context or even worse – the outputs from the generator are always the same
ungrammatical sentence.

In this chapter, we first extend the adversarial dialogue generation method introduced
by Li et al. [69] to a new model, DG-AIL, which incorporates an entropy regularization
term to the generation objective function. This addition can alleviate the problem of
mode collapse. Then we adopt adversarial inverse reinforcement learning to train a
dialogue generation model, DG-AIRL. This method enables us to both make use of
an efficient adversarial formulation and recover a more precise reward function for
open-domain dialogue training. Unlike Shi et al. [125], we design a specific reward
function structure to measure the reward of each word in generated sentences while
taking account of the dialogue context. We also consider two human evaluation settings
to assess the overall performance of our model.
To summarize, we make the following contributions:
• A novel reward model architecture to evaluate the reward of each word in a dialog,

which enables us to have a more accurate signal for adversarial dialogue training;
• A novel Seq2Seq model, DG-AIRL, for addressing the task of dialogue generation

built on adversarial inverse reinforcement learning;
• An improvement of the training stability of adversarial training by employing causal

entropy regularization;

3.2 Background

Preliminaries

As in Chapter 2, we build our dialogue system as a Markov Decision Process (MDP),
which is defined by a tuple (S,A, τ, r, γ), where S and A are the state space and action
space, respectively, τ is the transition probability, and τ(s, a, s′) is the probability of
transitioning from state s to state s′ under action a at time t:

τ(s′ | s, a) = P (st+1 = s′ | st = s, at = a). (3.1)

Here, r(s, a) is the immediate reward after taking action a in state s; γ ∈ [0, 1] is a
discount factor.

38

3.2. Background

The dialogue response strategy is represented by a policy, which is a mapping π ∈ Π
from states s ∈ S and actions a ∈ A to π(a|s), which is the probability of performing
action at = a by the user when in state st = s:

π(a|s) = P (at = a | st = s). (3.2)

Maximum causal entropy

Motivated by the task of decision prediction in sequential interactions, Ziebart et al.
[165] propose to use maximum causal entropy to model the availability and influence
of sequentially revealed side information. The causal entropy of policy π is defined as:

H(π) , Eπ[− log π(a|s)]), (3.3)

which measures the uncertainty presented in policy π [165].

Maximum entropy inverse reinforcement learning (MaxEnt-IRL)

Given a set of demonstrated (expert) behavior, which can be seen as the trajectories
resulting from executing expert policy πE , Inverse Reinforcement Learning (IRL) aims
to find a reward function that can rationalize the given behavior. In Maximum En-
tropy Inverse Reinforcement Learning (MaxEnt-IRL) [164], the demonstrated behavior
Ddemo = {ζ1, . . . , ζN} is assumed to be the result of an expert acting stochastically
and near-optimally with respect to an unknown reward function. Trajectories with
equivalent rewards have equal probability to be selected and trajectories are sampled
from the distribution:

p(ζi | θ)=
1

Z(θ)
exprθ(ζi) =

1

Z(θ)
exp

∑|ζi|−1
t=0 rθ(st,at), (3.4)

where Z(θ) =
∫

exp(rθ(ζ))dζ is the partition function and rθ is the reward function,
which takes a state-action pair as input. MaxEnt-IRL maximizes the likelihood of the
demonstrated data Ddemo under the maximum entropy (exponential family) distribution
and the objective is given as:

L(θ) = −Eζ∼Ddemo rθ(ζ) + logZ. (3.5)

This task can be seen as a classification problem where each trajectory represents
one class. However, it is difficult to apply vanilla MaxEnt-IRL to complex and high-
dimensional settings since computing the partition function Z(θ) is intractable in the
original method. To overcome this drawback, Finn et al. [27] combine sample-based
maximum entropy IRL with forward reinforcement learning to estimate the partition
function Z, where:

L(θ) = −Eζi∼p rθ(ζi) + log

(
Eζj∼q

[
exp(rθ(ζj))

q(ζj)

])
. (3.6)

Here, p represents the distribution of demonstrated samples, while q is the background
distribution for estimating the partition function

∫
exp(rθ(ζ))dζ. This work alternates

between updating the reward function rθ to maximize the likelihood of the demonstrated
data and optimizing the background distribution q to minimize the variance of the
importance sampling estimation.

39

3. From Imitation Learning to Inverse Reinforcement Learning

Generative adversarial imitation learning

Recovering the true reward function is intractable in real scenarios [32, 41, 164]. In
previous research, if only the optimal policy is pursued, imitation learning is used to
rebuild the policy network directly by skipping recovering reward functions. Ho and
Ermon [41] cast the problem of IRL as an optimization problem in the paradigm of
Generative Adversarial Networks (GANs), where the discriminator corresponds to the
reward function and the generator corresponds to the policy used to sample trajectories.
The optimization problem is given as:

max
r∈R

(
min
π∈Π
−λH(π)− Eπ[r(s, a)]

)
+ EπE [r(s, a)]. (3.7)

The optimization of Eq. 3.7 is converted to an imitation learning algorithm:

min
π∈Π
−λH(π) +DJS(ρπ, ρπE), (3.8)

which finds a policy π whose occupancy measure ρπ minimizes the Jensen-Shannon
divergence to the expert’s policy πE (the policy of demonstrated data). The occupancy
measure ρπ can be interpreted as the unnormalized distribution of state-action pairs that
an agent encounters when navigating the environment with policy π. Eq. 3.8 can be
solved by finding a saddle point (π,D) of the expression

Eπ[− log(D(s, a))] + EπE [− log(1−D(s, a))]− λH(π), (3.9)

where D is a binary classifier to distinguish state-action pairs of π and πE .

3.3 Method

In this section, we will first extend the work by Li et al. [69] to the framework of
adversarial imitation learning, and then introduce our main model, which applies
adversarial inverse reinforcement learning to train a dialogue system.

3.3.1 Problem setting
In a dialogue setting, the word sequence 〈w1, w2, . . . , wt〉 in an utterance can be re-
garded as corresponding actions 〈a1, a2, . . . , an〉 taken by the policy network at dif-
ferent time steps. We use a state function f to compress the dialogue context and
the words already generated in the current utterance to an intermediate representation,
which will be regarded as the current state. For example, s0 = f(p) represents the
state at time step 0 and it takes the dialogue context p as input. State st is given as
st = f(p, a1, a2, . . . , at−1). In this work, we limit the range of the dialogue context to
the utterances in the last two conversation turns.

Given an initial state s0 representing the history of previous dialogues, a well-trained
dialogue system should reply with a reasonable sentence 〈w0, w1, . . . , wt〉 generated by
selecting a specific word at different time steps. The length t is automatically decided
by the policy network. We aim to find the optimal policy π(at|st) that selects the most
appropriate word at each time step.

40

3.3. Method

3.3.2 Dialogue generation with adversarial imitation learning (DG-
AIL)

In the framework of adversarial imitation learning, we aim to train a dialogue system to
imitate the way humans talk by observing real human dialogues. This model DG-AIL
can be regarded as an extension of the work of Li et al. [69].

Unlike previous work, we do not only consider the difference between the distri-
butions of real dialogues and generated dialogues but also take into account how the
previous state-action pairs affect future words under a specific policy network π, which
can be measured by the causal entropy H(π).

In adversarial learning, the task of the discriminator D is to distinguish dialogues
from the true data distribution and dialogues from the generator. As shown in Figure 3.1,
we adopt a hierarchical structure to represent the discriminator model. The first layer is
an input encoder that compresses the utterances from each speaker in the conversation.
Then, a context encoder sequentially takes as input the utterance representations and
generates a final state to represent the whole dialogue. In the end, the final state is fed
to a binary classifier that predicts whether the dialogue is real or fake with a confidence
value.

.amI good

M
L
P

Input EncoderInput Encoder

Context Encoder

?areHow you

Figure 3.1: Discriminator architecture in DG-AIL.

According to Eq. 3.9, the gradient of the discriminator parameters is given as:

∇Dθ = Eζ∼π[∇θ log(Dθ(s, a))] + Eζ∼πE [∇θ log(1−Dθ(s, a))]. (3.10)

The generative model G attempts to generate high-quality human-like responses to
confuse the discriminative classifier D while maintaining a high policy entropy. The
gradient to update the generator parameters can be inferred from Eq. 3.9 as follows:

∇Gφ = ∇φ[−λH(πφ)− Eζ∼πφ [Dθ(s, a)]]

= − Eζ∼πφ∇φ[log(πφ(a|s))](Qθ(s, a)− λ log πφ(a|s))
(3.11)

whereQθ(s, a) = Eζ [log(Dθ(s, a))|s0 = s̄, a0 = ā] is estimated with Monte Carlo
search.

41

3. From Imitation Learning to Inverse Reinforcement Learning

3.3.3 Dialogue reward learning with adversarial inverse reinforce-
ment learning (DG-AIRL)

Our main model DG-AIRL adopts inverse reinforcement learning techniques to train a
dialogue generation model. We assume that human participants in a dialogue are using a
true reward function that guides them to formulate a policy to react with different replies
to different dialogue contexts. Unlike the use of a classifier to supply a reward signal
in the model DG-AIL, the reward model in DG-AIRL has a more specific architecture
to evaluate the reward for each state-action pair, which can provide more accurate and
precise reward signal to update the generator.

Dialogue response policy

In MaxEnt-IRL, the reward model (discriminator) attempts to assign high rewards
to demonstrated trajectories (from the expert policy) and low rewards to sampled
trajectories from other policies. In this way, when the reward function is fixed, the
expert policy can be found by solving a common reinforcement learning problem:

Gφ(rθ) = arg min
π∈Π
−λH(π)− Eζ∼π[rθ(ζ)], (3.12)

where ζ represents the sampled dialogues and H(π) is the causal entropy regularization
term; rθ(ζ) is the reward of dialogue ζ that can be accessed from the reward model.
The goal of the generator is to generate dialogues that can achieve higher rewards from
the reward model. The found policy maximizes the expected cumulative reward while
maintaining high-entropy.

The derivative can be inferred as follows:

∇φG(r)φ = ∇φ[−λH(πφ)− Eζ∼πφ [rθ(ζ)]]

= − Eζ∼πφ∇φ[log(πφ(ζ))](rθ(ζ)− λ log πφ(ζ)).
(3.13)

If we decompose dialogue ζ into different time steps, the gradient is given as:

∇φG(r)φ =− Eζ∼πφ∇φ[log(πφ(ζ))](rθ(ζ)− λ log πφ(ζ))

=−
∑
t Eπφ(at|st)∇φ[log(πφ(at | st))](rθ(ζt:T)− λ log πφ(at | st)).

(3.14)

The reward rθ(ζt:T) of a partial dialogue from time t to T is estimated with Monte
Carlo search.

Reward learning

Following prior work on sample-based maximum entropy IRL (Eq. 3.6), the objective
(loss function) of our reward model is given as:

L(θ)=−Eζi∼πErθ(ζi) + logEζj∼π
(

exp(rθ(ζj))

q(ζj)

)
, (3.15)

where πE denotes the policy of demonstrated trajectories and π the policy of background
samples. The term q denotes the background distribution from which dialogues ζj were

42

3.4. Experimental Setup

.amI good

?areHow you

</s>

reward

Input Encoder

State Encoder

<action>

<state>

MLP

Reward layers

Figure 3.2: Reward model architecture in DG-AIRL.

sampled. In our setting, q is the distribution of dialogues generated with the current
dialogue policy π. We useDdemo andDsamp to represent the set of dialogues generated
with policy πE and π, respectively.

The gradient of the reward function is given by:

∇θL(θ) = − Eζi∈Ddemo∇θrθ(ζi) +
1

Z

∑
ζj∈Dsamp

wj∇θrθ(ζj), (3.16)

where wj =
exp(rθ(ζj))

q(ζj)
and Z =

∑
j wj .

As shown in Figure 3.2, our reward model in DG-AIRL consists of two RNN
encoders and one MLP network. The input encoder compresses the utterances from the
context into a context representation which becomes the initial state in the next step.
The state encoder takes as input the dialogue context and generated words before time t
and outputs the new state representation st for time step t. Then the state and action
representations are fed to two separate MLP layers respectively. The outputs of these
two models are concatenated and form the input to the third MLP layer to get the final
reward value of current state-action pair 〈st, at〉.

3.4 Experimental Setup

3.4.1 Dataset

The MovieTriples dataset [120] has been developed by expanding and preprocessing the
Movie-Dic corpus [6] of film transcripts and each dialogue consists of 3 turns between
two interlocutors. The dialogues are collected from the scripts of more than 600 movies,
which span a wide range of topics. We limit the length of the utterances from one
speaker in each dialogue turn between 4 and 80. In the final dataset, there are around
157,000 dialogues in the training set, 19,000 in the validation set, and 19,000 in the test
set. The average length of each dialogue is about 54.

43

3. From Imitation Learning to Inverse Reinforcement Learning

3.4.2 Experimental settings

We limit the vocabulary table size to the top 20k most frequent words for the Movi-
eTriples dataset. All words that are not in the vocabulary tables are replaced with the
token “〈unk〉”. Following the preprocessing method from [120], all names and numbers
are replaced with the “〈person〉” and “〈number〉” tokens, respectively [108]. Since
the context input in each dialogue is made up of several utterances from two different
speakers, to capture the interactive structure, we insert a special token “〈/s〉” between
the first turn and the second. The word embedding size is 200.

Next, we list the models we consider. We implement all models based on Tensor-
flow1 except VHRED.

DG-AIRL This is our main model that adopts adversarial inverse reinforcement learning
techniques to train a dialogue system. The encoder and decoder in the generator
(policy network) are built from a 2-layer GRU with 1024 hidden units and an attention
mechanism is incorporated into the decoding step. With respect to the reward function
structure, we choose a 2-layer GRU with 1024 hidden units as the context encoding
layer to compress the input to an intermediate representation. Then a 1-layer GRU with
1024 hidden units is used to take state-action pair as input and output the next state as
shown in Fig.3.2.

Seq2Seq The encoder and decoder in this baseline are copied from the generator in the
DG-AIRL model and built from a 2-layer GRU with 1024 hidden units; an attention
mechanism is incorporated into the decoding step.

SeqGan This is the model from [69]. In terms of the generator, SeqGan shares the same
architecture as the DG-AIRL model. With respect to the discriminator in this model,
both the first encoder layer and the second context layer are built from a 2-layer GRU
with 1024 units separately.

VHRED For the VHRED model, we reuse the original implementation from the authors,
including their tuning techniques.2

DG-AIL This is the model with the adversarial imitation learning method, which is also
an extension of SeqGan. The DG-AIL model shares the same structure as the SeqGan
model, including generator and discriminator. The only difference is the loss function,
as we discussed in Section 3.3.

We optimize the models using Adam [52] and the learning rate is initialized as 0.001
except for VHRED. Dropout with probability 0.3 was applied to the GRUs and we apply
gradient clipping for both policy models and reward models. We set the beam size to
8 for Monte Carlo search during training and beam search during testing. During the
training of SeqGan, DG-AIL, and DG-AIRL, we employ the teacher-forcing technique
from Li et al. [69] to increase training efficiency.3

1https://www.tensorflow.org/
2For more details, see https://github.com/julianser/hed-dlg-truncated.
3The source code of this work is available at https://bitbucket.org/ZimingLi/dg-irl-

aaai2019

44

https://www.tensorflow.org/
https://github.com/julianser/hed-dlg-truncated
https://bitbucket.org/ZimingLi/dg-irl-aaai2019
https://bitbucket.org/ZimingLi/dg-irl-aaai2019

3.4. Experimental Setup

3.4.3 Evaluation metrics

To evaluate the response quality in dialogue generation, recent work has adopted word-
overlap metrics from machine translation to compare a machine-generated response
to a single target response [33, 67, 98, 109]. Since the response to the input context in
dialogue could be very diverse and open, a single target response is not able to cover all
reasonable answers. Liu et al. [84] show that word-overlap metrics such as BLEU [98]
correlate very weakly with reply quality judgments from human annotators. To assess
the performance of our proposed algorithm, we use two evaluation methods, one is to
use word embedding based metrics and the other is to employ human annotators to
judge the response quality. We also tried to evaluate the response diversity with the
metric Distinct but we found that the result is not aligned with the results based on
human evaluations; we do not include results based on Distinct in this chapter.

Embedding metrics

With respect to word embedding based methods, we use three metrics that are also used
in [121]:
• Average embedding: This method applies cosine-similarity to measure the similarity

between the mean word embeddings of the target utterance and the predicted utterance.
• Greedy embedding: This metric relies on cosine-similarity but adopts greedy matching

to find the closest word in the target response for each word in the generated response
[111].

• Extrema embedding: This method computes the word embedding extrema scores [30]
that embed the responses by taking the extrema (maximum of the absolute value) of
each dimension, and afterward computes the cosine similarity between them.

A higher score indicates that the generated reply shares similar semantic content with the
target response. For all three metrics, we use pre-trained Word2Vec word embeddings
trained on the Google News Corpus, which is public access4.

Human evaluation

Proper quality evaluation of dialogue responses should cover not only topic-similarity
but also lexical aspects, informativeness, interestingness, and so on. There is currently
no reliable metric to assess the overall quality of dialogue responses. For this reason,
we create human annotations to evaluate the quality of responses given dialogue context
with a crowdsourcing platform5. Previous work involving human evaluation usually
has two experimental settings: pairwise comparison and pointwise scoring. In pairwise
comparisons, annotators are asked to choose the better response from replies generated
by two models while in the pointwise method, annotators are asked to rate the overall
quality of each response, typically on a scale from 0 (low quality) to 4 (high quality). We
employ both pairwise and pointwise assessments. We use a pairwise setting to directly
contrast the overall performance of our model against others. Pointwise scoring may be
noisier than pairwise judgments since human annotators need to give an exact score.

4https://code.google.com/archive/p/word2vec/
5FigureEight: https://www.figure-eight.com/

45

https://code.google.com/archive/p/word2vec/
https://www.figure-eight.com/

3. From Imitation Learning to Inverse Reinforcement Learning

However, pointwise judgments give us a chance to analyze the differences between
replies at a fine-grained level of detail.

We randomly sample 1,000 dialogue contexts from the test set of the MovieTriple
dataset. Each context has five replies from five generation models and we have 5,000
context-reply pairs in total; 2,500 are used for pointwise scoring while the remaining
2,500 are grouped into 2,000 comparison pairs for the pairwise setting. Each comparison
pair has one dialogue context and two replies, where one is from our DG-AIRL model
and the other is from a baseline model.

For the pairwise setting, we ask annotators to judge which of the two responses is
more appropriate given a dialogue context. We instruct annotators which aspects they
should take into account when making a decision. The top priority is that an appropriate
response must be relevant; besides, they should consider:
• whether the response is natural;
• whether the response is interesting;
• whether the response can make the conversation continue, that is, whether the response

is proactive; and
• whether the response is the only possible reply to the given context.
If the annotators think neither of the responses is more appropriate or it is impossible to
infer the conversation from the given context, they are asked to choose the third choice –
“Neither is more appropriate”. We insert test questions to exclude annotators who lack
the capacity to finish the tasks, such as limited English skills. We only accept annotators
considered “highly trusted” by the crowdsourcing platform and require 90% accuracy
on designed “test questions”. Each comparison pair is assessed by three annotators.

For pointwise judgments, annotators were asked to judge the overall quality from 0
to 2:
+2: The response is not only relevant and natural but also informative and interesting;

the response need not be so interesting, but it is natural and can make the conver-
sation continue (more proactive); the response is the only possible reply to the
dialogue.

+1: The response can be used as a reply to the context, but it is too generic like “I don’t
know”. These replies are usually more reactive.

0: The response cannot be used as a reply to the context. It is either semantically
irrelevant or disfluent.

At the start of the annotation effort, we instruct the annotators and show them several
examples of how to assign grades to a given dialogue. We use the same quality checks
and annotator selection criteria as in the pairwise setting. Each context-reply is assigned
to three human annotators.

3.5 Results and Analysis

3.5.1 Results using embedding metrics

In Table 3.1, we report the scores obtained using the embedding metrics (Section 3.4.3).
All response generation models are fine-tuned to obtain the highest score on the vali-
dation dataset. We found 0.01 and 0.1 to be the optimal values of λ for the DG-AIL

46

3.5. Results and Analysis

Table 3.1: Performance in terms of embedding metrics of response generation models,
with 95% confidence intervals. * indicates the result is statistically significant (p <
0.005) with a paired t-test over DG-AIRL and other baseline models.

Model Average Greedy Extrema Length

Seq2Seq 0.563± 0.003 0.167± 0.001 0.352± 0.002 8.8
SeqGan 0.564± 0.003 0.165± 0.001 0.354± 0.002 9.7
VHRED 0.507± 0.003 0.145± 0.001 0.309± 0.002 12.0
DG-AIL 0.553± 0.003 0.171∗ ± 0.001 0.356± 0.002 7.7
DG-AIRL 0.589∗ ± 0.003 0.169± 0.001 0.368∗ ± 0.002 10

model and the DG-AIRL model.
The DG-AIRL and DG-AIL models achieve the highest scores using the embedding

metrics, which means that they can better capture the topic of the target response than
other models.

The performance of the VHRED model is unexpected since this method achieves
the lowest value while it is one of the state-of-the-art methods in dialogue response
generation. A possible reason is that the other four models adopt an attention mechanism
to directly capture the relation between generated words and input words from context.
Serban et al. [121] state that VHRED produces longer responses and its responses are on
average more diverse based on unigram entropy. Besides, DG-AIL and DG-AIRL are
also supposed to generate more diverse responses. However, a more diverse response
does not mean it is an appropriate response. If the response deviates too much from
the target topic, the response content will not be relevant to the dialogue context and it
deserves a lower quality score. On the other hand, if a diverse response is appropriate to
the dialogue context, it is unfair to use embedding-based metrics to assess these kinds
of generative models.

Given these considerations, we believe that embedding-based metrics may not be
powerful enough to reflect the overall response quality and that it is essential to carry
out human evaluations.

3.5.2 Results using human annotations

Pairwise evaluation

As shown in Table 3.2, our model DG-AIRL outperforms other response generation
models based on pairwise comparisons. Among the first three models, the DG-AIRL
model outperforms them all at the probability 0.46.

The difference is that the Win rate of VHRED (the lose rate of DG-AIRL) is lower
than Seq2Seq and SeqGan. In other words, although VHRED has a higher probability
to be tied with DG-AIRL, it loses more compared to Seq2Seq and SeqGan.

As we said in the last section, a possible explanation for these results is that VHRED
does produce longer responses (Table 3.1) but the contents of these responses deviate
too much from the target topic, which could result in lower performance. In our human
evaluation setting, fluency is not the only aspect annotators need to consider while
determining their preference for a response. By taking into account different factors,

47

3. From Imitation Learning to Inverse Reinforcement Learning

Table 3.2: Performance in terms of pairwise human annotations of response generation
models.

Model pair Win Tie Loss

DG-AIRL-Seq2Seq 0.44 0.29 0.27
DG-AIRL-VHRED 0.46 0.32 0.22
DG-AIRL-SeqGan 0.47 0.25 0.28
DG-AIRL-DG-AIL 0.36 0.37 0.27

Table 3.3: Performance in terms of pointwise human evaluations of response generation
models. “Freq of N” is the relative frequency of a model’s responses with a score of N .

Model Freq of +2 Freq of +1 Freq of 0 Avg Score

Seq2Seq 0.09 0.22 0.69 0.40
SeqGan 0.09 0.21 0.70 0.39
VHRED 0.12 0.25 0.63 0.49
DG-AIL 0.12 0.29 0.59 0.53
DG-AIRL 0.13 0.28 0.59 0.54

such as relevance, fluency, informativeness, we think the final judgments from human
annotators are trustworthy. The Fleiss’ kappa score, which indicates the agreement
among labelers [29], is around 0.23. This value is not high and a possible reason is
that judging the response quality is challenging for human annotators when only 1 or 2
utterances are provided as context, especially on the MovieTriples dataset.

Compared to the first three models, the DG-AIL model achieves a better perfor-
mance. According to the performance of DG-AIL and SeqGan, we can claim that
causal entropy regularization improves the performance of dialogue models that employ
adversarial training because they share the same structure and the only difference is
the entropy regularization term. This also echoes the use of entropy regularization in
adversarial models [42]. Although the DG-AIRL model still beats DG-AIL, the differ-
ence between the Win and the Loss rates is much smaller compared to other models.
DG-AIL model has a higher chance to draw with the DG-AIRL model. These two
models both adopt entropy regularization and they have the same generator structure.
The performance difference comes from the reward model: DG-AIRL is able to improve
the response quality because it has a specific reward model for each state-action pair
and adopts importance sampling. The reward signal in DG-AIRL is more concrete and
reliable compared to DG-AIL.

Pointwise evaluation

The evaluation results based on pointwise judgments are shown in Table 3.3. According
to the average score, the DG-AIRL and DG-AIL models outperform other models, and
the performance of DG-AIRL and DG-AIL is quite close. This does not mean that
the result of the pointwise evaluation conflicts with the conclusion we made in the last
section, viz. that the DG-AIRL model beats the DG-AIL model based on the pairwise

48

3.5. Results and Analysis

Table 3.4: Example output. People names are replaced with the token “〈person〉”. All
words are converted to lowercase.

Context Next Reply from Speaker A

Speaker A: we did a story on this guy .
he owns half of arizona .
Speaker B: is he a fraud ?

Reference: how would you ever know ?
Seq2Seq: yeah . no . i do not know who
he is .
SeqGan: sure , i guess not .
VHRED: he doesn’t want to know .
DG-AIL: no . no , he is not .
DG-AIRL: no . maybe he is a good man
.

Speaker A: and i am honored that you
want to be with me because you would
never be with anyone who was not
truly worthy .
Speaker B: i feel exactly the same way
about you .

Reference: oh, 〈person〉, do not say that
, please , that just makes it worse .
Seq2Seq: do you love your 〈unk〉 .
SeqGan: can we i . you . you . you . you
. you . you . . you .
VHRED: 〈person〉 ?
DG-AIL: what is it .
DG-AIRL: is that what you think .

Speaker A: oh , that was not my father .
Speaker B: what ?

Reference: that was not him . i heard
him tell the cops .
Seq2Seq: i am sorry . i needed to know
how i felt about it .
SeqGan: you said he was a singer .
VHRED: i can’t . i’m sorry .
DG-AIL: i do not know . i guess .
DG-AIRL: it is not him . i do not know
what happened .

evaluation. Compared to the pairwise evaluation, the pointwise evaluation needs to
assign an exact score to each context-reply pair and this score is independent of the
other replies to the same dialogue context. In contrast, in the pairwise evaluation, we
consider a pair of replies to the same context at the same time and it is more natural and
reliable if we want a ranked list based on performance. The advantage of the pointwise
setting is that it can provide quality distributions of different models and help us find
out what makes a model performance different.

As shown in Table 3.3, we find that VHRED, DG-AIL, and DG-AIRL generate
almost the same number of high-quality responses (responses that received a score
“+2”). The VHRED model loses the competition with DG-AIRL and DG-AIL models
because it generates more low-quality replies (responses that get score “0”). In our
experimental setup, we ask annotators to grade the reply quality as “+1” (fine quality) if
the response can be used as a reply to the message, but is too generic. In Section 3.1, we
expect to generate more diverse responses and avoid producing too generic responses,

49

3. From Imitation Learning to Inverse Reinforcement Learning

such as “I don’t know”. However, in some dialogue contexts, “I don’t know” is still an
appropriate and reasonable response. As shown in Table 3.4, DG-AIRL, and DG-AIL
improve the proportion of high-quality responses without losing the capacity to generate
fine quality replies.

3.6 Related Work

Based on developments in sequential neural networks, Shang et al. [123] and Sordoni
et al. [128] propose to generate high-quality replies in a dialogue system with a recurrent
neural network. To formulate the complex dependencies between different utterances
in multi-turn dialogs, Serban et al. [120] propose to adopt a hierarchical recurrent
encoder-decoder neural network (HRED) to the dialogue domain, where word-level and
utterance-level Recurrent Neural Networks (RNN) are used.

Built on HRED, the same group of authors create a more powerful generative
architecture [121] with latent stochastic variables that span a variable number of time
steps (VHRED). To train these RNN models, supervised training is commonly used,
which minimizes the cross-entropy between the generated reply and an oracle reply.
However, in terms of open-domain dialogue systems, there could be multiple reasonable
replies for the same input context. In other words, the entropy of the target replies is
high.

Li et al. [69] cast the task of open-domain dialogue generation as an RL problem
and train a generator based on the signal from a discriminator to generate response
sequences indistinguishable from human-generated dialogs.

3.7 Conclusion

In this chapter, we have investigated two adversarial training methods for open-domain
dialogue systems. We have first adopted adversarial imitation learning to force our
model to generate human-like dialogue responses. Besides that, we have incorporated
an entropy regularization term to the generator objective function, which can alleviate
the problem of mode collapse. Our second and main method, DG-AIRL, relies on
techniques of adversarial inverse reinforcement learning. We design a specific reward
architecture to supply a more accurate and precise reward signal for the generator
training.

To assess the overall performance of our models, we propose two human-evaluation
settings. We adopt the results from a pairwise evaluation setting to show that our
model can outperform state-of-the-art methods in open-domain dialogue generation. To
analyze the differences in replies from different models, we explore the results from
a pointwise evaluation setting, which can provide a general quality distribution for
different models.

In terms of the answer to the research question RQ2, we can confirm that data-driven
reward functions can help with building high-quality dialogue generation models. With
respect to the future work, it is promising to extend the idea of reward learning to multi-
turn dialogue generation, which can propagate the reward signal between conversation
turns. Another promising research direction is to explore the usefulness of recovered

50

3.7. Conclusion

reward models, for instance, to evaluate the quality of generated responses from other
models.

In this chapter, we apply the policy gradient-based algorithm to update the dialogue
policy. This is the only choice to utilize data-driven reward functions in the schema of
adversarial training. In the next chapter, we will explore if it is possible to make off-
policy based algorithms (e.g., DQN[91]) also benefit from data-driven reward functions
in the area of task-oriented dialogue systems.

51

4
Guided Dialogue Policy Learning

without Adversarial Learning in the Loop

This chapter is aimed at answering the following research question:

Can off-policy Reinforcement Learning (RL) methods benefit from data-driven
objectives in dialogue policy learning for Task-oriented dialogue systems (TDSs)?

We decompose the vanilla adversarial training used for dialogue policy learning into
two sequential steps and apply it to task-oriented dialogue systems with off-policy
reinforcement learning methods.

4.1 Introduction

Task-oriented dialogue systems (TDSs), such as Siri, Google Assistant, and Amazon
Alexa, aim to offer users assistance with completing tasks. TDSs need dialogue policies
to select appropriate actions at each dialogue step according to the current context of
the conversation [13]. The development of Reinforcement Learning (RL) in robotics
and other domains has brought a new view on learning dialogue policies [34, 130, 147]:
it allows us to train with far more data than can be feasibly collected from actual
users. The aim of Task-oriented dialogue system (TDS) is to maximize positive user
feedback. TDS based on RL are amenable to training with user simulators instead of
real humans [70, 115]. User simulators rely on a reward function that scores system
actions given dialogue context [21, 101, 129, 149].

The most straightforward way to design a dialogue reward function is to score
the agent based on the dialogue status in a rule-based fashion: if the dialogue ends
successfully, a large positive reward will be returned; if the dialogue fails, the reward
will be a large negative value; if the dialogue is still ongoing, a small negative value
will be returned to encourage shorter sessions [101]. However, the rule-based solution
is inflexible as it assigns the same negative reward to all the system actions before
the dialogue ends. The sparse reward makes the qualities of different actions indistin-
guishable. Additionally, the rule-based approaches only return a meaningful reward
when dialogue finishes, which can delay the penalty for low-quality actions and a high

This chapter was published as [78].

53

4. Guided Dialogue Policy Learning without Adversarial Learning in the Loop

reward for high-quality ones during the conversation itself. Liu and Lane [83] address
the difficulties listed above by employing adversarial training for policy learning by
jointly training two systems: (1) a policy model that decides which action to take at each
turn, and (2) a discriminator that marks if a dialogue was successful or not. Feedback
from the discriminator is used as a reward to push the policy model to complete a task
indistinguishably from humans. Improving upon this solution, Takanobu et al. [133]
propose to replace the discriminator with a reward function that acts at the dialogue
action level and returns the reward for the given action relying on the dialogue state,
system action, and next dialogue state as its input. However, the described methods are
limited to policy gradient-based algorithms, such as REINFORCE [152] and Proximal
Policy Optimization (PPO) [118], to alternatively update the dialogue policy and the re-
ward model on the fly, while off-policy methods are not able to benefit from self-learned
reward functions. Furthermore, an alternating training schema for the dialogue agent
and the reward model can easily get stuck in local optima or result in mode collapse.

To alleviate the problems mentioned above, in this chapter we propose a new
approach for training dialogue policy by decomposing the adversarial learning method
into two sequential steps. First, we learn the reward function using an auxiliary dialogue
state generator where the loss from the discriminator can be backpropagated to the
generator directly. Second, the trained discriminator as the dialogue reward model
will be incorporated into the RL process to guide dialogue policy learning and will
not be updated, while the state generator is discarded. Therefore, we can utilize any
RL algorithm to update the dialogue policy, including both on-policy and off-policy
methods. Additionally, since the reward function is pre-trained in an offline manner,
we can first infer common information contained in high-quality human-generated
dialogues by distinguishing human-generated dialogues from machine-generated ones,
and then make full use of the learned information to guide the dialogue policy learning
in a new domain in the style of transfer learning.

To summarize, our contributions are:
• A reward learning method that is applicable to off-policy RL methods in dialogue

training.
• A reward learning method that can alleviate the problem of local optima for adversarial

dialogue training.
• A reward function that can transfer knowledge learned in existing domains to a new

dialogue domain.

4.2 Related Work

RL methods [21, 71, 75, 82, 99, 131, 149], have been widely utilized to train a dialogue
agent by interacting with users. The reward used to update the dialogue policy is usually
from a reward function predefined with domain knowledge and it could become very
complex, e.g., in the case of multi-domain dialogue scenarios. To provide the dialogue
policy with a high-quality reward signal, Peng et al. [100] propose to make use of
the adversarial loss as an extra critic in addition to shape the main reward function.
Inspired by the success of adversarial learning in other research fields, Liu and Lane
[83] learn the reward function directly from dialogue samples by alternatively updating

54

4.3. Learning Reward Functions

the dialogue policy and the reward function. The reward function is a discriminator
aiming to assign a high value to real human dialogues and a low value to dialogues
generated by the current dialogue policy. In contrast, the dialogue policy attempts to
achieve higher rewards from the discriminator given the generated dialogue. Following
this solution, Takanobu et al. [133] replaces the discriminator with a reward function
that acts at the dialogue action level, which takes as input the dialogue state, system
action, and next dialogue state and returns the reward for the given dialogue action.

The key distinction of our work in this chapter compared to previous efforts is being
able to train dialogue agents with both: (1) off-policy methods in adversarial learning
settings; (2) the on-policy based approaches while avoiding potential training issues,
such as mode collapse and local optimum. We propose to train (1) a reward model
and (2) dialogue policy consecutively, rather than alternatively [83, 133]. To train the
reward model, we introduce an auxiliary generator that is used to explore potential
dialogue situations. The advantage of our setup is the transfer from a SeqGAN [156]
to a vanilla GAN [37]. In a SeqGAN setup, the policy gradient method is essential to
deliver the update signal from the discriminator to the dialogue agent. In contrast, in
the vanilla GAN, the discriminator can directly backpropagate the update signal to the
generator. Once we restore a high-quality reward model, we update the dialogue agent
using common RL methods, including both on-policy and off-policy.

4.3 Learning Reward Functions

In this section, we introduce our method to learn reward functions with an auxiliary
generator.

4.3.1 Dialogue state tracker

We reuse the rule-based ConvLab dialogue state tracker [61] to keep track of the
information emerging in the interactions, including the informable slots that show the
constraints given by users and requestable slots that indicates what users request. A
belief vector is maintained and updated for each slot in every domain.

Dialogue state The collected information from the dialogue state tracker is used to
form a structured state representation statet at every time step t. The final representation
is formed by (1) the embedded results of returned entities for a query, (2) the availability
of the booking option with respect to a given domain, (3) the state of informable slots,
(4) the state of the requestable slot, (5) the last user action, and (6) the repeated times
of the last user action. The final state representation S is a binary vector with 392
dimensions.

Dialogue action Each atomic action is a concatenation of domain name, action type
and slot name, e.g., Attraction Inform Address, Hotel Request Internet. Since in the
real scenarios, the response from a human or a dialogue agent can cover a combination
of atomic actions, we extract the most frequently used dialogue actions from the
human-human dialogue collections to form the final action space – A. For example,

55

4. Guided Dialogue Policy Learning without Adversarial Learning in the Loop

[Attraction Inform Address, Hotel Request Internet] is regarded as a new action that
the policy agent can execute. The final size of A is 300. We utilize one-hot embeddings
to represent the actions.

4.3.2 Exploring dialogue scenarios with an auxiliary generator
We aim to train a reward function that can distinguish high-quality dialogues from
unreasonable and inappropriate ones. To generate negative samples, we use an auxiliary
generator Gen to explore the possible dialogue scenarios that could happen in real life.
The dialogue scenario at time t is a pair of a dialogue state st and the corresponding
system action at. The dialogue state-action pairs generated by Gen are fed to the reward
model as negative samples. During reward training, the reward function can benefit
from the rich and high-quality negative instances generated by the advanced generator
Gen to improve the discriminability. Next, we will explain how states and actions are
simulated, and our setup for adversarial learning.

Action simulation

To simulate the dialogue actions, we use a Multilayer Perceptron (MLP) as the action
generator Gena followed by a Gumbel-Softmax function with 300 dimensions, where
each dimension corresponds to a specific action from the defined A. The Gumbel-Max
trick [38] is commonly used to draw a sample u from a categorical distribution with
class probabilities p:

u = one hot(arg max
i

[gi + log pi]), (4.1)

where gi is independently sampled from Gumbel (0, 1). Since the arg max operation is
not differentiable, no gradient can be backpropagated through u. Instead, we employ
the soft-argmax approximation [46] as a continuous and differentiable approximation to
arg max and to generate the k-dimensional sample vector y following:

yi =
exp((log(pi) + gi)/τ)∑k
j=1 exp((log(pj) + gj)/τ)

, (4.2)

for i = 1, . . . , k. When the temperature τ → 0, the arg max operation is exactly
recovered but the gradient will vanish. In contrast, when τ goes up, the Gumbel-
Softmax samples are getting similar to samples from a uniform distribution over k
categories. In practice, τ should be selected to balance the approximation bias and
the magnitude of gradient variance. In this chapter, p corresponding to the output
distribution of generator Gena and k equals to the action dimension 300.

State simulation

Compared to the GAN scenarios in computer vision, the output of the generator in our
setting is a discrete vector which makes it challenging to backpropagate the loss from
discriminator to the generator directly. To address this problem, we propose to project
the discrete representation x in the expert demonstrations to a continuous space with

56

4.3. Learning Reward Functions

an encoder Enc from a pre-trained variational autoencoder [53]. We assume that the
human-human dialogue state s is generated by a latent variable zvae via the decoder
Dec p(s|zvae;ψ). Then we can regard the variable zvae as the desired representation in
a continuous space. Given a human-generated state s, the VAE utilizes a conditional
probabilistic encoder Enc to infer zvae as follows:

zvae ∼ Enc(s) = qω(zvae|s), (4.3)

where ω and ψ are the variational parameters encoder and decoder respectively. The
optimization objective is given as:

Lvae(ω, ψ) = Ezvae∼qω(zvae|s)[log pψ(s|zvae)]︸ ︷︷ ︸
(1)

+ KL(qω(zvae|s)||p(zvae))︸ ︷︷ ︸
(2)

,
(4.4)

where (1) is responsible for encouraging the decoder parameterized with ψ to learn
to reconstruct the input x; (2) is the KL-divergence between the encoder distribution
qω(zvae|s;ω) and a standard Gaussian distribution p(zvae) = N(0, I).

The benefit of projecting the state representations to a new space is directly simu-
lating the dialogue states in the continuous space Sembed similar to generating realistic
images in computer vision. Besides, similar dialogue states are embedded into close
latent representations in the continuous space to improve the generalizability. Figure 4.1
shows the overall process of learning the state projecting function Encω(s) given dia-
logue states from real human-human dialogues. We use sreal to denote the continuous
representation of real state s while ssim for the simulated one.

Adversarial training

We can approximate the real state-action distribution in a differentiable setup (1) by
applying Gumbel-Softmax to simulate actions asim; and (2) by directly generating
simulated states ssim in the continuous space Sembed. The auxiliary generator Genθ to
simulate ssim and asim has following components:

h = MLP1(zsa)

asim = fGumbel(MLP2(h))

ssim = MLP3(h)

(s, a)sim = ssim ⊕ asim,

(4.5)

where θ denotes all the parameters in the generator and⊕ is the concatenation operation.
During the adversarial training process, the generator Genθ takes noise zsa as input and
outputs a sample (s, a)sim and it aims to get higher reward signal from the discriminator
Dφ. The training loss for the generator Genθ can be given as:

LG(θ) = −E(s,a)sim∼Genθ (Rφ((s, a)sim), (4.6)

where Rφ((s, a)sim) = − log(1 − Dφ((s, a)sim) and Dφ denotes the discriminator
measuring the reality of generated state-action pairs (s, a)sim.

57

4. Guided Dialogue Policy Learning without Adversarial Learning in the Loop

s

Enc(s)

D

s

zsa

Real or Simulated?

Enc(s) Dec(Enc(s))

Embedding

State State

a

a

a simreal

Figure 4.1: The architecture to simulate state-action representations with a variational
autoencoder. zsa is the sampled Gaussian noise.

The discriminator Dφ in this chapter is an MLP that takes as input the state-action
pair (s, a) and outputs the probability D(s, a) that the sample is from the real data
distribution. Since the discriminator’s goal is to assign a higher probability to the real
data while lower scores to simulated data, the objective can be given as the average
log probability it assigns to the correct classification. Given an equal mixture of real
data samples and generated samples from the generator Genθ, the loss function for the
discriminator Dφ is:

LD(φ) =E((s,a)sim)∼Genθ (log(1−Dφ((s, a)sim)))

− E(s,a)∼data(Dφ(Encω(s), a)real)). (4.7)

After the adversarial training is finished, we will keep the discriminator Dφ as the
reward function for future dialogue agent training while the generator Genθ will be
discarded.

Next, we discuss a suitable experimental environment for validating the presented
method.

4.4 Experimental Setup

4.4.1 Dataset and training environment

MultiWOZ is a multi-domain dialogue dataset spanning 7 distinct domains1, and
10, 438 dialogues [11]. The main scenario in this dataset is that a dialogue agent is
trying to satisfy the demand from tourists such as booking a restaurant or recommending
a hotel with specific requirements. The average number of turns is 8.93 and 15.39 for
single and multi-domain dialogues, respectively.

1Attraction, Hospital, Police, Hotel, Restaurant, Taxi, Train.

58

4.4. Experimental Setup

ConvLab is an open-source multi-domain end-to-end dialogue system platform offer-
ing the annotated MultiWOZ dataset and associated pre-trained reference models [61].
We reuse the rule-based dialogue state tracker from ConvLab to track the information
that emerges during interactions between users and the dialogue agent. Besides, an
agenda-based [115] user simulator is embedded and used for multi-domain dialogue
scenarios.

Evaluation metrics Before a conversation starts, a user goal will be randomly sam-
pled. The user goal consists of two parts: (1) the constraints on different domain slots
or booking requirements, e.g., Restaurant Inform Food = Thai; (2) the slot values that
show what the user is looking for, e.g., Restaurant Request phone = ?. The task is
completed successfully if a dialogue agent has provided all the requested information
and made a booking according to the requirements. We use average turn and success
rate to evaluate the efficiency and level of task completion of dialogue agents.

4.4.2 Architecture and training details

Variational autoencoder The encoder is a two-layer MLP that takes the discrete state
representation (392 dimensions) as input and outputs two intermediate embeddings (64
dimensions) corresponding to the mean and the variance, respectively. For inference,
we regard the mean µ as the embedded representation for a given state input s.

Auxiliary generator The auxiliary generator takes randomly sampled Gaussian noise
as input and outputs a continuous state representation and a one-hot action embedding.
The input noise is fed to a one-layer MLP first followed by the state generator Gens
and action generator Gena. Gens is implemented with a two-layer MLP which output
is the simulated state representation (64 dimensions) corresponding to the input noise.
The main component of Gena is a two-layer MLP followed by a Gumbel-Softmax
function. The output of the Gumbel-Softmax function is a one-hot representation (300
dimensions). Specifically, we implemented the “Straight-Through” Gumbel-Softmax
Estimator [46] and the temperature for the function is set to 0.8.

Discriminator The discriminator is a three-layer MLP that takes as input the concate-
nation of latent state representation (64 dimensions) and one-hot encoding of the action
(300 dimensions). During adversarial training, the real samples come from the real
human dialogues in the training set while the simulated samples have three different
sources. The main source is the output of the auxiliary generator introduced above. The
second one is a random sample of state-action pairs from the training set where the ac-
tion in each pair is replaced with a different one to build a simulated state-action pair. As
a third source, we keep a history buffer with size 10k to record the simulated state-action
pairs from the generator, where the state-action pairs are replaced randomly by the newly
generated pairs from the generator. To strengthen the reward, we incorporate the human
feedback rHuman into the pre-trained reward function. As the final reward function to
train the dialogue agent we use the mixed reward rGAN-VAE = rHuman + log(D(s, a)).

59

4. Guided Dialogue Policy Learning without Adversarial Learning in the Loop

4.4.3 Reinforcement learning methods

In this chapter, we validate our pre-trained reward using two different types of RL
methods: Deep Q-learning (DQN) [92], which is an off-policy RL algorithm, and
PPO [118], which is a policy-gradient-based RL method. To increase the training speed,
we extend the vanilla DQN to WDQN, where the real dialogue state-action pairs from
the training set are used to warm up the dialogue policy at the very beginning and
then gradually removed from the training buffer. We implemented the DQN and PPO
algorithms by utilizing the RL training modules in ConvLab.

4.4.4 Baselines

The handcrafted reward function rHuman is defined at the conversation level as follows:
if the dialogue agent successfully accomplishes the task within T turns, it will receive
T ∗ 2 as a reward; otherwise, it will receive −T as a penalty. T is the maximum number
of dialogue turns. T is set 40 for experimentation. Furthermore, the dialogue agent
will receive −1 as an intermediate reward during the dialogue to encourage shorter
interactions.

In terms of DQN-based methods, we have DQN(Human) trained with rHuman and
DQN(GAN-VAE) trained with rGAN-VAE. We also develop a variant DQN(GAN-AE) by
replacing the variational autoencoder in DQN(GAN-VAE) with an vanilla autoencoder.
With respect to WDQN, we provide three different dialogue agents trained with reward
functions from Human, GAN-AE, and GAN-VAE.

In terms of PPO-based methods, we implemented Generative Adversarial Imitation
Learning (GAIL) [41] and Adversarial Inverse Reinforcement Learning (AIRL) [133].
In GAIL, the reward is provided with a discriminator where its parameter will be updated
during the adversarial training process. AIRL is an adversarial learning method as well.
The difference is that the discriminator in GAIL is replaced with a reward function that
acts at the action level, which takes as input the dialogue state, system action, and the
next state and returns the reward for the given dialogue action. For a fair comparison,
both the GAIL discriminator and the AIRL reward model have been pre-trained. We
also utilize teacher-forcing [7] for human dialogues to stabilize the adversarial training
process.

Next, we report the average performance by running the same method 8 times with
different random seeds.

4.5 Experimental Results

4.5.1 Results with DQN-based agents

Figure 4.2 plots the results of DQN-based methods with different reward functions but
the same user simulator. The dialogue policy trained with GAN-VAE shows the best
performance in terms of convergence speed and success rate. In comparison with GAN-
VAE and GAN-AE, the updating signal from the handcrafted reward function rHuman can
still guide the dialogue policy to a reasonable performance but with a slower speed. This
suggests that denser reward signals could speed up dialogue policy training. Moreover,

60

4.5. Experimental Results

0 60k 120k 160k 240k 300k 360k 420k
Frame

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Su
cc

es
s r

at
e

WDQN(Human)
WDQN(GAN-VAE)
WDQN(GAN-AE)
DQN(Human)
DQN(GAN-VAE)
DQN(GAN-AE)

Figure 4.2: The learning process of DQN-based dialogue agents with different reward
functions. One frame represents one interaction between the user and the dialogue
agent.

the policy with rHuman converges to a lower success rate compare to GAN-VAE and GAN-
AE. It suggests that, to some extent, the pre-trained reward functions have mastered
the underlying information to measure the quality of given state-action pairs. The
knowledge that the reward function learned during the adversarial learning step could
be generalized to unseen dialogue states and actions to avoid a potential local optimum.
In contrast, the dialogue agent DQN(Human) only relies on the final reward signal from
the simulator at the end of the dialogue, which cannot provide enough guidance to the
ongoing turns during conversations. This could be the reason why DQN(Human) shows
lower success rate compare to DQN(GAN-VAE) and DQN(GAN-AE). The representation
quality of the learned state embeddings leads to higher GAN-VAE performance over
GAN-AE, because VAE generalizes better thereby bringing more benefits to the reward
functions.

Examining closer WDQN agents, we can see all three methods achieve their inflec-
tion points after the first 30k frames. Comparing DQN(Human) and WDQN(Human),
we found that the real human-human generated dialogue pairs from the training set do
alleviate the problem of sparse reward provided by rHuman at the start stage of policy
training. Similar results could be observed from agents trained with the pre-trained
reward function rGAN-VAE. After 24k frames, the WDQN(Human) curve coincides in
position with DQN(Human) and they converge to the same point in the end. The faster
convergence speed on WDQN(Human) did not bring a higher success rate because the
dialogue policy still has no access to precise intermediate reward signals for the ongoing
dialogue turns.

Table 4.1 reports the final performance of different dialogue agents during test
time. All the agents have been trained with 500k frames and we save and evaluate the
model that has the best performance during the training stage. Interestingly, DQN(GAN-
VAE) outperforms WDQN(GAN-VAE) while WDQN(Human) beats DQN(Human). The

61

4. Guided Dialogue Policy Learning without Adversarial Learning in the Loop

Table 4.1: The final performance of DQN-based dialogue agents with different reward
functions.

Dialogue agent Success Rate Average Turn

WDQNkeep(Human) 0.741 19.144
WDQNkeep(GAN-AE) 0.879 15.118

WDQN(Human) 0.906 13.580
WDQN(GAN-AE) 0.911 13.298
WDQN(GAN-VAE) 0.937 12.260

DQN(Human) 0.870 14.960
DQN(GAN-AE) 0.953 12.300
DQN(GAN-VAE) 0.985 11.040

warming-up stage in WDQN(GAN-VAE) does improve the training speed but it results
in a lower final success rate. The potential reason is that the real human-human dialogue
can bring a strong update signal at the beginning of the training process but at the same
time limits the exploration ability of the agent. To verify this finding, we designed two
more WDQN agents: WDQNkeep(Human) and WDQNkeep(GAN-AE), which keep ex-
pert dialogues examples during the entire training phase, rather than removing them grad-
ually. Their performance is shown in Table 4.1. As to agents trained with rHuman, there is
a huge performance gap, WDQN(Human) outperforms WDQNkeep(Human) almost by
15%. The difference in the performance of WDQNkeep(GAN-AE) and WDQN(GAN-AE)
is significantly smaller because the pre-trained reward function brings more precise and
consistent update signals that are explored and disclosed during the adversarial training
step.

0 80k 160k 240k 320k 400k 480k
Frame

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75

Re
ce

iv
ed

 R
ew

ar
d

Validation
DQN(Human)
DQN(GAN-VAE)

Figure 4.3: The reward returned by the pre-trained reward function during dialogue
policy training.

Figure 4.3 shows curves presenting the reward changes during the RL training. The

62

4.5. Experimental Results

curve Validation denotes the average reward received based on the real human-human
dialogues, which can be regarded as the human performance evaluated by the pre-train
reward function rGAN-VAE and it is ∼ 0.74.2 For DQN(Human) and DQN(GAN-VAE)
training, we feed generated in real-time dialogue batches to reward function rGAN-VAE.
We can see that both approaches are getting a high reward, but DQN(GAN-VAE) is
growing faster because rGAN-VAE is used for the training of DQN(GAN-VAE). That is
a promising finding since we can suggest that a well-trained reward function can be
utilized not only to guide the dialogue policy training but also to judge the quality of
different agents.

4.5.2 Results with PPO-based agents
As for GAIL and AIRL, the reward functions are updated on the fly, and therefore we
can only employ policy gradient-based RL algorithms. We use PPO algorithms to train
the dialogue agent with different reward functions. Before initiating training, we first
warm-up all the dialogue agents with human dialogues via imitation learning. As a
result, the warmed-up agents share similar success rates which are ∼ 33%. We also
pre-train discriminators in GAIL and reward models in AIRL utilizing positive examples
from the training set and negative examples from the pre-trained dialogue agents.

0 40k 80k 120k 160k 200k 240k
Frame

0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

Su
cc

es
s r

at
e

PPO(GAN-VAE)
PPO(Human)
AIRL
Supervised
GAIL

Figure 4.4: The learning process of PPO-based dialogue agents with different reward
functions.

Figure 4.4 demonstrates that in terms of success rate GAIL and AIRL rise faster
than PPO(GAN-VAE) and PPO(Human) during first 120k frames. Then both methods
flattened and converged at∼ 81%. It is important to note, that we utilize teacher-forcing
in the adversarial step by feeding human-human dialogues to the agents every several
frames while training GAIL and AIRL. Due to the large task action space, it is nearly
impossible to successfully train a high-quality dialogue agent without teaching-forcing

2Ideally, the reward on human dialogues should be equals to 0.5 because the discriminator is not able to
distinguish the simulated dialogues from real human-human ones after generator and discriminator converge
according to Eq. 4.7.

63

4. Guided Dialogue Policy Learning without Adversarial Learning in the Loop

0 20k 40k 60k 80k 100k 120k 140k
Frame

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Su
cc

es
s r

at
e

DQN(Human)
DQNnew(GAN-VAE + NoHotel)
DQNori(GAN-VAE + FullDomain)
DQNnew(GAN-VAE + FullDomain)

Figure 4.5: The learning process of dialogue agents in different domains.

steps in adversarial learning methods. The agent called supervised represents the setup
where we discard the training signals from the discriminators or the reward models
in GAIL and AIRL and only train the policy network using teacher-forcing with the
same frequency. We can observe that the adversarial training signal in GAIL and AIRL
degenerates the performance of supervised learning methods.

Discussion

We explored various parameters for GAIL and AIRL setups, unfortunately unsuccessful.
The potential reason is ConvLab has 300 actions, and it is intractable for a dialogue
agent to explore the action space relying only on the sparse positive reward signals which
can easily lead to a local optimum. Takanobu et al. [133] successfully applied AIRL to
learn dialogue policy, but the considered size of action space was only half compared to
our setup. More importantly, Takanobu et al. [133] formulated dialogue policy learning
as a multi-label classification task where it is easier to achieve a higher success rate by
selecting as many actions as possible in one turn. Moreover, DQN-based RL algorithms
are not applicable in their setup. In comparison, our agent PPO(GAN-VAE) can achieve
higher performance in the more commonly used setup. Comparing PPO(GAN-VAE)
and PPO(Human), we can verify our claim that the dialogue agent benefits from the
pre-trained reward function rGAN-VAE. As shown in Figure 4.2 and Figure 4.4, the agents
trained using the hand-crafted reward function, such as DQN(Human) and PPO(Human),
share a similar final performance ∼ 87%. Another important finding the DQN-based
agents benefit more compared to the PPO-based ones from incorporating the reward
signals from the same reward function rGAN-VAE.

4.5.3 Transfer learning with a pre-trained reward function

To define the action space, we utilize the 300 most frequent actions from the MultiWoz
dataset and use one-hot embedding to represent them. As shown in Figure 4.1, the

64

4.6. Conclusion

action, and the state representations are concatenated to form a specific state-action
pair. This approach ignores the relations between different actions. For example,
Restaurant Inform Price and Restaurant Request People should be close for the same
conversation since they happen to be in the same domain. However, even for different do-
mains, connections between actions are possible, e.g., Inform Price and Request People
can also happen in the Hotel domain, corresponding to actions Hotel Inform Price and
Hotel Request People. We ask ourselves if we can transfer the knowledge learned in
existing domains to a new domain, which we have never seen before via the pre-trained
reward function. To answer this question, we first reformulate the action representation
as a concatenation of three different segments: Onehot(Domain), Onehot(Diact), One-
hot(Slot). Following this approach, actions containing similar information will be linked
through the corresponding segments in their representation. Utilizing this formulation,
we retrained our reward function in selected domains and incorporate it into the training
of a dialogue agent in a new unseen domain. Concretely, we train the reward function
based on the following domains: Restaurant, Bus, Attraction, and Train. As a testing
domain, we pick Hotel since it has the most slot types and some of them are unique,
such as Internet, Parking, Stars. DQNori in Figure 4.5 corresponds to the dialogue agent
trained with all domains and the action is represented with a single one-hot embedding.
By replacing the action representation in DQNori with the new action formulation we get
agent – DQNnew. Based on the obtained results, we can conclude DQNnew(GAN-VAE +
NoHotel) benefits from the reward function trained in different domains and it outper-
forms DQN(Human). As expected, the agents DQNnew(GAN-VAE + FullDomain) and
DQNori(GAN-VAE + FullDomain), which are trained using reward from all domains,
have a better performance compared to DQNnew(GAN-VAE + NoHotel).

4.6 Conclusion

In this chapter, we have proposed a guided dialogue policy training method without
using adversarial training in the loop. First, we trained the reward model with an
auxiliary generator. Then the trained reward model was incorporated into a common
reinforcement learning method to guide the training of a high-quality dialogue agent.
By conducting extensive experimentation, we demonstrated that the proposed methods
achieve remarkable performance, in terms of task success, as well as the potential to
transfer knowledge from previously utilized task domains to new ones.

With respect to the answer to research question RQ3 it is obvious that off-policy
methods can benefit from data-driven reward functions in task-oriented dialogue systems.
In this work, we only use it to train dialogue agents and additionally regard it as a bridge
to transfer knowledge among domains. In the future, we can dig deeper into the usage
of the recovered reward functions. For example, it is quite challenging to evaluate the
quality of generated responses in open-domain dialogue systems because one dialogue
context could have multiple responses and all of them are reasonable and appropriate.
It is promising if we can train a data-driven reward function with huge amounts of
dialogue collections (e.g., training data-driven reward functions with a pre-trained
language model, like BERT [20]) and then use the trained reward function as a tool to
judge the quality of generated responses.

65

4. Guided Dialogue Policy Learning without Adversarial Learning in the Loop

In this chapter, to transfer the discrete state space to continuous space, we rely on
variational autoencoders and this setup may lead to the mode collapse in the training
of variational autoencoders. Besides, we need high-quality human-human dialogue
collections to train the reward function and reliable user simulators to train the dialogue
agent with RL methods. With more uncontrollable factors involved in the whole pipeline,
the errors produced in the previous modules may be accumulated and lead to undesirable
results in the dialogue agent step. These potential issues push us to rethink the use of
RL methods in task-oriented dialogue systems and revisit some traditional dialogue
training methods in the following chapter.

66

5
Rethinking Supervised Learning and

Reinforcement Learning
in Task-Oriented Dialogue Systems

This chapter is aimed at answering the following research question:

Are we really making progress in applying only Reinforcement Learning (RL) to
dialogue policy learning for Task-oriented dialogue systems (TDSs)?

We propose two supervised learning approaches and one adversarial learning method
to train the dialogue policy for Task-oriented dialogue systems without building user
simulators. We show the advantages and disadvantages of different dialogue policy
learning methods.

5.1 Introduction

The aim of dialogue policies in TDSs is to select appropriate actions at each time step
according to the current context of the conversation and user feedback [13]. In early
work, dialogue policies were manually designed as a set of rules that map the dialogue
context to a corresponding system action [142]. The ability of rule-based solutions
is limited by the domain complexity and task scalability. Moreover, the design and
maintenance of these rules require a lot of effort and domain knowledge.

Due to recent advantages in deep learning and the availability of labeled conver-
sational datasets, supervised learning can be employed for dialogue policy training to
overcome the disadvantages of rule-based systems. The downside of the supervised
learning approach is that the dialogues observed in the datasets are unlikely to represent
all possible conversation scenarios; in some extreme cases, the required conversational
dataset cannot be collected or acquiring it might be cost-prohibitive.

The success of RL in other areas holds promises for dialogue Policy Learning
(PL) [147]. Using RL techniques, we can train dialogue policies and optimize auto-
matically, from scratch and utilizing interactions with users [34, 130]. In RL-based
solutions, the dialogue system takes actions that are controlled by the dialogue policy,

This chapter was published as [77].

67

5. Rethinking Supervised Learning and Reinforcement Learning

and user feedback (the reward signal), which is provided when the dialogue is finished,
is utilized to adjust the initial policy [21, 101, 149]. In practice, reward signals are
not always available and may be inconsistent [129]. As it is not practical to ask for
explicit user feedback for each dialogue during policy training, different strategies
have been proposed to design a rule-based user simulator along with a reward function
that can approximate the real reward function which exists only in each user’s mind.
Designing an appropriate user simulator and accurate reward function requires strong
domain knowledge. This process has the same disadvantages as rule-based dialogue
systems [138]. The difference is that rule-based approaches to system design meet this
problem at the dialogue agent side while rule-based user simulators need to solve it at
the environment side.

If the task is simple and easy to solve, why not just build a rule-based system rather
than a user-simulator that is then used with RL techniques to train the dialogue system,
where more uncontrollable factors are involved? And if the task domain is complex and
hard to solve, is it easier to design and maintain a complicated rule-based user simulator
than to build a rule-based dialogue agent? Supervised learning methods do not suffer
from these issues but require labeled conversational data; in some exceptional cases, if
the data cannot be collected for privacy reasons, RL is the solution. However, collecting
labeled data is feasible for many applications [11, 143, 148]. Therefore, in this chapter
we seek to answer the following research question: Are we really making progress in
TDSs focusing purely on advancing RL-based methods?

To address this question, we introduce three dialogue PL methods that do not
require a user simulator. The proposed methods can achieve comparable or even higher
performance compared to state-of-the-art (SOTA) RL methods. The first method utilizes
an action decoder to predict dialogue combinations. The second method regards the
dialogue PL task as a multi-label classification problem. Unlike previous work, we
assign a dense layer to each action label in the action space. Based on the second
method, we propose an adversarial learning method for dialogue PL without utilizing
RL. To backpropagate the loss from the reward model to the policy model, we utilize
the Gumbel-Softmax to connect the policy model and the reward model in our third
method. We compare our methods with RL and adversarial RL based dialogue training
solutions to show how we can achieve comparable performance without utilizing costly
user simulator.

To summarize, our contributions are:
• A dialogue action decoder to learn the dialogue policy with supervised learning.
• A multi-label classification solution to learn the dialogue policy.
• A simulation-free adversarial learning method to improve the performance of dialogue

agents.
• Achieving SOTA performance in dialogue PL with fewer efforts and costs compared

to existing RL-based solutions.

5.2 Related Work

A number of RL methods, including deep Q-learning [71, 78, 82, 99, 131] and policy
gradient methods [21, 149], have been applied to optimize dialogue policies by interact-

68

5.3. Multi-Domain Dialogue Agent

ing with real users or user simulators. RL methods help the dialogue agent to explore
contexts that may not exist in previously observed data. A key component in RL is the
quality of the reward signal used to update the agent policy. Most existing RL-based
methods require access to a reward signal based on user feedback or a pre-defined one
if the feedback loop is not possible. Besides, designing a good reward function and a
realistic user simulator is not easy as it typically requires strong domain knowledge,
which is similar to the problem that rule-base methods meet. Peng et al. [100] propose
to utilize adversarial loss as an extra critic in addition to the main reward function based
on task completion. Inspired by the success of adversarial training in other NLP tasks,
Liu and Lane [83] propose to learn dialogue rewards directly from dialogue samples,
where a dialogue agent and a dialogue discriminator are trained jointly. Following the
success of inverse reinforcement learning (IRL) in different domains, Takanobu et al.
[133] employ adversarial IRL to train the dialogue agent. They replace the discriminator
in GAIL [41] with a reward function with a specific architecture. The learned reward
function can provide a stable reward signal and adversarial training can benefit from
high-quality feedback.

Compared to existing RL based methods, we propose a strategy that can eliminate
designing a user simulator and sensitive parameter-tuning process while bringing a
significant performance improvement with respect to a number of metrics. The absence
of user simulators involved will largely reduce the required domain knowledge and
supervised learning can lead to robust agent performance.

5.3 Multi-Domain Dialogue Agent

dialogue state tracking (DST) In a standard Task-oriented dialogue system (TDS)
pipeline [61, 70], the rule-based DST is deployed to keep track of information emerging
in interactions between users and the dialogue agent. The output from the natural lan-
guage understanding (NLU) module is fed to the DST to extract information, including
informable slots about the constraints from users and requestable slots that indicate
what users inquire about. In our setup, the dialogue agents and user-simulators are
interacting through predefined dialogue actions therefore no NLU is involved. Besides,
a belief vector is maintained and updated for each slot in every domain.

Dialogue state We formulate a structured state representation st according to the
information resulting from the DST at time step t. There are 4 main types of information
in the final representation: (1) corresponding to the embedded results of returned entities
for a query, (2) the last user action, (3) the last system action, and (4) the belief state
from the rule-based state tracker. The final state representation s is a vector of 553 bits.

Dialogue action We regard the dialogue response problem as a multi-label prediction
task, where in the same dialogue turn, several atomic dialogue actions can be covered
and combined at the same moment. In the action space, each action is a concatenation
of domain name, action type and slot name, e.g. ‘attraction-inform-address’, which
we call an atomic action1. Lee et al. [61] propose that the action space covers both

1There are 166 atomic actions in total in the action space.

69

5. Rethinking Supervised Learning and Reinforcement Learning

SOA a1 a2

a1 a2 EOA

G
R
U

G
R
U

G
R
U

M
LP

State

vs vs vs

Figure 5.1: Architecture to approximate a dialogue policy with an action decoder. SOA
and EOA are special actions corresponding to the starting signal and ending signal
respectively.

the atomic action space and the top-k most frequent atomic action combinations in the
dataset and then the dialogue PL task can be regarded as a single label classification
task. However, the expressive power of the dialogue agent is limited and it is beneficial
if the agent can learn the action structure from the data and this could lead to more
flexible and powerful system responses.

5.4 Dialogue Policy Learning (PL)

5.4.1 PL as a sequential decision process
Different atomic dialogue actions contained in the same response are usually related to
each other. To fully make use of information contained in co-occurrence dependencies,
we decompose the multi-label classification task in dialogue PL as follows. Assuming
the system response consists of two atomic actions, ‘hotel-inform-address’ and ‘hotel-
inform-phone’, the model takes the dialogue state as input and predict the atomic actions
sequentially. The path could be described as either ‘hotel-inform-address’→ ‘hotel-
inform-phone’ or ‘hotel-inform-phone’→ ‘hotel-inform-address’. Before the training
stage, the relative order of all the atomic actions will be predefined and fixed. Following
this solution, we apply a GRU-based [15] decoder to model the conditional dependency
between the actions in one single turn as shown in Figure 5.1.

The proposed model first extracts state features vs by feeding the raw state input s
to an Multilayer Perceptron (MLP). In the next state, the state representation vs will be
used as the initial hidden state h0 of action decoder GRU. To avoid information loss
during decoding, the input to the action decoder is:

inputt = embedding(at−1)⊕ vs. (5.1)

The starting input input0 is the concatenation of starting action SOA and state represen-

70

5.4. Dialogue Policy Learning (PL)

tation vs. at−1 denotes the dialogue action in the prediction path at time step t− 1 and
embedding(a) returns the action embedding of the given action a. In the next steps,
actions will be generated consecutively according to:

ot, ht = GRU(inputt, ht−1), (5.2)

where ot is the output of the action decoder. We use cross-entropy to train the action
decoder together with the MLP for feature extraction. We use beam-search to find the
most appropriate action path.

5.4.2 PL with adversarial learning

Next, we introduce an adversarial learning solution, DiaAdv, to train the dialogue
policy without a user simulator along with a dialogue discriminator. Feedback from
the discriminator is used as a reward signal to push the policy model to interact with
users in a way that is indistinguishable from how a human agent completes the task.
However, since the output of the dialogue policy is a set of discrete dialogue actions, it
is difficult to pass the gradient update from the discriminator to the policy model. To
cross this barrier, we propose to utilize the Gumbel-Softmax function [46] to link the
discriminator to the generator. Next, we will give a brief introduction about the dialogue
policy model and the dialogue discriminator. Afterward, we will show how we can
utilize Gumbel-Softmax to backpropagate the gradient.

Dialogue policy To generate dialogue actions, we employ an MLP as the action
generator Gensa followed by a set of Gumbel-Softmax functions, where each function
corresponds to a specific action in the atomic action space (Figure 5.2) and the output of
each function has two dimensions. We first introduce how it works when there is only
one Gumbel-Softmax function in the setting and then extend it to multiple functions.
The Gumbel-Max trick [38] is commonly used to draw samples u from a categorical
distribution with class probabilities p. The process of Genθ can be formulated as
follows:

p = MLP(s) (5.3)
u = one hot(arg max

i
[gi + log pi]), (5.4)

where gi is independently sampled from Gumbel (0, 1). However, the arg max operation
is not differentiable, thus no gradient can be backpropagated through u. Instead, we
can employ the soft-argmax approximation [46] as a continuous and differentiable
approximation to arg max and to generate k-dimensional sample vectors below:

yi =
exp((log(pi) + gi)/τ)∑k
j=1 exp((log(pj) + gj)/τ)

, (5.5)

for i = 1, . . . , k. In practice, τ should be selected to balance the approximation bias and
the magnitude of gradient variance. In our case, p corresponds to the dialogue action
status distribution p(ail|s) where l ∈ {0, . . . , k− 1} and i ∈ {1, . . . ,m}. In our setting,

71

5. Rethinking Supervised Learning and Reinforcement Learning

M
LP

State

Discriminator

State, Action

Expert Data

+

Real or Fake?fake action

Gumbel-Softmax1

Gumbel-Softmaxm

. . .

. . .
real state

Figure 5.2: Architecture to approximate the dialogue policy with adversarial learning.
The dialogue policy dialogue discriminator is linked to the dialogue policy through a
set of Gumbel-Softmax functions; + denotes the concatenation operation.

k is set to 2 and each dimension denotes one specific action status, which could be 1 if
selected or 0 if not selected. m is set to the size of the action space – 166. By taking
into account the multiple actions, we rewrite the sampled vector y as yil where l and i
denote the corresponding dialogue action status and the ith atomic action in the action
space respectively. The final combined action is2:

afake = y1
0 ⊕ y1

1 ⊕ . . .⊕ y166
0 ⊕ y166

1 . (5.6)

Next, the generated action afake is fed to the reward model Dω along with the corre-
sponding state s. The dialogue policy Genθ aims to get a higher reward signal from the
discriminator D; the training loss function for the generator Genθ is:

LG(θ) = −Es,afake∼Gen(Dω(s, afake)). (5.7)

Dialogue reward As to the dialogue discriminator, we build a reward model Dω that
takes as input the state-action pair (s, a) and outputs the reward D(s, a). Instead of
using a discriminator to predict the probability of a generated state-action pair as being
real or fake, inspired by Wasserstein GANs [4], we replace the discriminator model
with a reward model that scores a given pair (s, a). Since the reward model assigns
a higher reward to the real data and a lower value to the fake data, the objective can
be given as the average reward it assigns to the correct classification. Given an equal
mixture of real data samples and generated samples from the dialogue policy Genθ, the

2Dim(afake) = 166 ∗ 2.

72

5.5. Experimental Setup

loss function for the reward model Dω is:

LD(ω) =− Es,afake∼Genθ (Dω(s, afake)) (5.8)
+ Es,a∼data(Dω(s, a))). (5.9)

During training, the policy network and the reward model are be updated in an alternat-
ing manner.

5.4.3 PL as multi-label classification with dense layers
We introduced DiaAdv, which can bridge the policy network and the reward model
together utilizing Gumbel-Softmax functions. A by-product of this framework is the
policy network with dense layers and a set of Gumbel-Softmax functions. If we
discard the Gumbel-Softmax functions but keep the dense layers, we obtain a new
model, DiaMultiDense, to solve the multi-label classification problem. Each dense
layer corresponds to a specific dialogue action and the output of the dense layer has
two dimensions denoting the two possible values for action status, selected and not
selected. We expect the dense layers can extract informative information particularly
for their corresponding actions and discard noisy information. During inference, the
two possible values for the status of action will be compared and the higher one will be
the label for the current dialogue action. DiaMultiDense can be regarded as a simple
but efficient state de-noising method for dialogue PL with multi-label classification.

5.5 Experimental Setup

MultiWOZ dataset is a multi-domain dialogue dataset with 7 distinct domains3,
and 10, 438 dialogues [11]. The main used scenario is a dialogue agent is trying to
satisfy the tourists’ demands such as booking a restaurant or recommending a hotel with
specific requirements. Each dialogue trajectory is decomposed into a set of state-action
pairs with the same TDS that is used for training. In total, we have 56, 700 dialogue
state-action pairs in the training set, with 7, 300 in the validation set, and 7, 300 in the
test set.

Baselines Three types of baseline are considered:

(B1): Supervised Learning, where the dialogue action selection task is regarded as a
multi-label classification problem.

(B2): Reinforcement Learning, where the reward function is handcrafted and defined
as follows: at the end of a dialogue, if the dialogue agent accomplishes the task
within T turns, it will receive T ∗ 2 as a reward; otherwise, it will receive −T as a
penalty. T is the maximum number of turns in each dialogue; we set it to 40 in all
experiments. Furthermore, the dialogue agent will receive −1 as an intermediate
reward during the dialogue to encourage shorter interactions. In our experiments,
we used three methods, namely: GP-MBCM [35], ACER [140], PPO [118].

3Attraction, Hospital, Police, Hotel, Restaurant, Taxi, Train.

73

5. Rethinking Supervised Learning and Reinforcement Learning

(B3): Adversarial learning, where the dialogue agent is trained with a user simulator,
we conduct comparisons with two methods: GAIL [41] and GDPL [133]. The
dialogue agents in GAIL and GDPL are both PPO agents while these two methods
have different reward models. We report the performance of ALDM [83] for
completeness.

5.5.1 Training setup

DiaSeq With respect to DiaSeq, we use a two-layer MLP to extract features from the
raw state representation. First, we sort the action order according to the action
frequency in the training set. All action combinations in the dataset will be
transferred to an action path based on the action order. Three special actions –
PAD, SOA, EOA, corresponding to padding, start of action decoding and end of
action decoding – are added to the action space for action decoder training. We
use beam search to predict the action combinations and the beam size is set to 6.
The action embedding size is set to 30; the hidden size of the GRU is 50.

DiaAdv For the policy network of DiaAdv, a two-layer MLP is used to extract state
features followed by 166 dense layers and Gumbel-Softmax functions consecu-
tively. To sample a discrete action representation, we implemented the “Straight-
Through” Gumbel-Softmax Estimator [46]; the temperature τ for each function
is set to 0.005. As to the discriminator, a three-layer MLP takes as input the
concatenation of dialogue state and action and outputs a real value as the reward
for the state-action pair.

DiaMultiDense We reuse the policy network from DiaAdv except for the Gumbel-
Softmax functions.

GDPL The policy network and value network are three-layer MLPs.

PPO The policy network in PPO shares the same architecture as GDPL. The difference
is that the reward model is replaced with a handcrafted one.

GAIL GAIL shares the same policy network as GDPL. The discriminator is a two-layer
MLP taking as input the state-action pair.

DiaMultiClass The policy network is a three-layer MLP and trained with cross-entropy.
It has the same architecture as the policy network in GDPL.

We reuse the reported performance of GP-MBCM, ACER, and ALDM from [133] since
we share the same TDS and user simulator. The methods based on RL or adversarial
learning are pre-trained with real human dialogues.

5.5.2 Evaluation metrics

Before a conversation starts, a user goal will be randomly sampled. The sampled user
goal mainly contains two parts of information. The first part is about the constraints of
different domain slots or booking requirements, e.g. ‘restaurant-inform-food’ = ‘Thai’,

74

5.6. Results and Discussion

Table 5.1: The performance of different dialogue agents, which is calculated based on
the average results by running each method 5 times. * indicates statistically significant
improvements (p < 0.005) using a paired t-test over the GDPL success rate and the
proposed methods.

Dialogue agent Turn Match Rec F1 Success rate

GP-MBCM 2.99 0.44 – 0.19 28.9
ACER 10.49 0.62 – 0.78 50.8
PPO (human) 15.56 0.60 0.72 0.77 57.4
ALDM 12.47 0.69 – 0.81 61.2
GDPL 7.80 0.81 0.89 0.87 81.7
GAIL 7.96 0.81 0.87 0.86 80.5

DiaMultiClass 12.66 0.58 0.71 0.79 57.2

DiaMultiDense 9.33 0.85 0.94 0.87 86.3∗

DiaSeq 9.03 0.81 0.88 0.85 81.6
DiaAdv 8.80 0.85 0.94 0.85 87.4∗

‘restaurant-infor-area’ = ‘east’, ‘restaurant-book-people’ = 4 which means the user
wants to book a table for 4 persons to have Thai food in the east area. The information
contained in the second part is about the slot values that the user is looking for, such
as restaurant-request-phone = ?, ‘restaurant-request-address’ = ?, which means the
user wants to know the phone and address of the recommended restaurant. We use
Match, Recall, F1 score to check if all the slot constraints and requested slot information
have been satisfied. F1 score evaluates whether all the requested information has
been provided while Match evaluates whether the booked entities match the indicated
constraints. We use Average Turn and Success rate to evaluate the efficiency and
level of task completion of dialogue agents. If an agent has provided all the requested
information and made a booking according to the requirements, the agent completes the
task successfully.

5.6 Results and Discussion

5.6.1 Performance of different dialogue agents

Table 5.1 shows the performance of different dialogue agents. With respect to the
success rate, DiaAdv manages to achieve the highest performance by 6% compared to
the second-highest method GDPL. However, DiaAdv is not able to beat GDPL in terms
of average turns. A possible reason is that GDPL can generate more informative and
denser dialogue action combinations. With a user simulator in the training loop, the
dialogue agent can explore more unseen dialogue states in the dataset. Furthermore, the
same user simulator will be used to test the dialogue agent and the dialogue agent will
benefit from what he has explored in the training stage. However, more informative and
denser responses will not guarantee all the users’ requirements will be satisfied and this
will lead to a lower Match score as shown in Table 5.1.

75

5. Rethinking Supervised Learning and Reinforcement Learning

Table 5.2: Total number of parameters for supervised learning models.

Dialogue agent DiaSeq DiaMultiClass DiaMultiDense

#Parameters 251,000 184,000 133,000

Table 5.3: The performance of different dialogue agents with different numbers of
expert dialogues. We only report Average Turn and Success rate here due to limited
space.

Agent
Dataset MultiWOZ (0.1) MultiWOZ (0.4) MultiWOZ (0.7)

Turn Success rate Turn Success rate Turn Success rate

DiaMultiClass 17.14 31.7 12.56 59.0 13.10 53.6
DiaSeq 10.77 70.4 9.99 75.5 9.35 77.2

DiaMultiDense 18.36 27.0 10.76 79.4 10.02 85.1
GDPL 9.21 21.2 8.49 68.0 8.10 73.3

DiaAdv 16.80 37.2 9.90 81.6 9.30 87.0

As to DiaSeq, it can achieve almost the same performance as GDPL from different
perspectives while GDPL has a slightly higher F1 score. However, the potential cost
benefits of DiaSeq are huge since it does not require a user simulator in the training
loop. The training of DiaSeq is well-understood and we can get rid of tuning the
sensitive parameters in RL and Adversarial Learning. To sum up, DiaSeq is far more
cost-efficient solution.

Another supervised learning method, DiaMultiDense achieves remarkable perfor-
mance with respect to different metrics. Compared to the traditional solution DiaMul-
tiClass, joining of dense layers as in DiaMultiDense brings a huge performance gain;
it manages to beat DiaMultiClass on all the metrics. And it achieves higher F1 score
than DiaAdv. Since the only difference between DiaMultiDense and DiaMultiClass
is that we replace the last layer of DiaMultiClass with a stack of dense layers, the
change in the number of parameters may lead to the performance gap. We report the
number of parameters of three supervised learning methods in Table 5.2. DiaMultiDense
achieves the highest performance among these three methods while using the fewest
parameters. We believe the dense layers have been trained to filter noisy information
from the previous module and the final classification can benefit from the high-quality
information flow.

5.6.2 User experience evaluation

Automatic metrics can only capture part of the performance difference between different
dialogue agents. For example, we use the success rate to reflect the level of task
completion and use turn numbers to represent the efficiency of dialogue agents. However,
the final goal of a TDS is to assist real users to complete tasks. To fully evaluate
system performance while interacting with real users, we launch an evaluation task
on Amazon MTurk4 to rate the user experience with the proposed dialogue systems.

4Amazon MTurk: https://www.mturk.com/

76

https://www.mturk.com/

5.6. Results and Discussion

Table 5.4: Human evaluation results.

Dialogue pair Win Loose Tie

DiaMultiDense vs. GDPL 42 50 8
DiaSeq vs. GDPL 50 44 6
DiaAdv vs. GDPL 39 51 10

For each evaluation task, we will first present an MTurk worker with a randomly
sampled user goal, which contains the constraints about specific domain slots and
some slot information that the user is looking for. In the next step, according to the
sampled goal, two generated dialogues from two different dialogue agents are shown
to the worker. The worker needs to pick the dialogue agent that provides a better
user experience. Different factors will be taken into account, such as response quality,
response naturalness, how similar it is compared to a real human assistant. If the
worker thinks two dialogue agents perform equally good/bad or it’s hard to distinguish
which one is better, the option ‘Neutral’ can be selected. Four dialogue agents are
evaluated: GDPL, DiaSeq, DiaMultiDense and DiaAdv, and there are three comparison
pairs DiaMultiDense-GDPL, DiaSeq-GDPL, DiaAdv-GDPL since GDPL is regarded
as the SOTA method. Each comparison pair has 100 dialogue goals sampled and 200
corresponding dialogues from two different dialogue agents. All the dialogue actions
in the dialogue turns are translated into human-readable utterances with the language
generation module from ConvLab [61]. Each dialogue pair is annotated by three MTurk
workers. The final results are shown in Table 5.4.

The method DiaAdv can be regarded as an extension of DiaMultiDense by adding
a classifier to provide a stronger training signal. According to the results from Sec-
tion 5.6.1, these two methods do improve the success rate of dialogue agents. However,
as shown in Table 5.4, while the success rate improves, the user experience degrades.
According to Table 5.1, GDPL and DiaAdv have similar F1 scores but the DiaAdv
has a higher Recall value; this means that DiaAdv achieves a lower Precision. The
unnecessary information mixed in the system response annoys users and results in
lower user experience. Given the relatively large difference in terms of success rate,
the trade-off between success rate and user experience should be carefully examined.
From another perspective, it is understandable that GDPL can provide a better user
experience because a pre-designed user simulator is involved and the discriminator will
encounter more diverse state-action combinations that are not seen in the training data.
In contrast, the discriminator in DiaAdv only has access to the training data and this
limits its judging ability. This does not imply that having a user simulator in the loop
is essential to provide high-quality user experience: DiaSeq, which is a completely
supervised learning method, outperforms GDPL.

5.6.3 Discussion

How many expert dialogues are enough to train a dialogue agent with supervised
learning? One motivation for dropping supervised learning and employing RL meth-
ods in TDSs is that building high-quality conversational datasets is expensive and

77

5. Rethinking Supervised Learning and Reinforcement Learning

time-consuming. In contrast, training dialogue agents with a user-simulator is cheaper
and more affordable in many cases. Since we have no control over how much domain
knowledge should be involved to build a user-simulator, we are not able to measure the
expense of a reliable user-simulator. However, we can conduct an experiment to show
how many real human dialogues are required to train a high-quality dialogue agent.

Based on the original MultiWoZ dataset, we build three smaller subsets: Mul-
tiWoZ(0.1), MultiWoZ(0.4), MultiWoZ(0.7) by only keeping 10%, 40%, and 70%
dialogue pairs from the original dataset, respectively. We retrain DiaMultiClass, GDPL,
DiaAdv, DiaMultiDense, DiaSeq and report the performance in Table 5.3. With respect
to supervised learning agents, with only 10% expert dialogue pairs, DiaMultiClass gets
half the success rate compared to the original performance (Table 5.1). By adding 30%
more dialogue pairs to the training set, DiaMultiClass can achieve the same performance
59% with the original success rate of 57.2%. Beyond this, DiaMultiClass does not
benefit from the increase in expert dialogues and starts to fluctuate between 55% and
59%. In contrast, DiaSeq can achieve higher performance when there are only 10%
expert dialogue pairs, and the success rate increases with the number of available expert
dialogues. DiaMultiDense achieves the best performance with the same amount of ex-
pert dialogues compared to the other two supervised learning methods. The performance
difference among the three supervised learning methods shows that the method itself is
the main factor to influence the performance rather than the number of available expert
dialogues in the given dialogue environment. To some extent, traditional DiaMultiClass
does not exert the potential of a given dataset to the fullest in dialogue PL.

Can adversarial learning eliminate expert dialogues? As can be concluded from
Table 5.3, GDPL and DiaAdv manage to improve the performance with the increasing
number of expert dialogues. GDPL and DiaAdv have the reward models that are
supposed to distinguish real dialogue pairs from the machine-generated ones. By
observing more expert dialogues, the reward model can provide a dialogue policy with
more reliable and consistent updating signals. Figure 5.3 shows the success rate gain

0.0 0.1 0.4 0.7 1.0
Data Size

20

30

40

50

60

70

80

Su
cc

es
s r

at
e

DiaAdv
GDPL
DiaMultiDense
DiaMultiClass

Figure 5.3: The performance gain between the pre-trained and their corresponding
adversarial learning models with different amounts of expert dialogues.

78

5.6. Results and Discussion

by applying adversarial learning methods to the corresponding pre-trained models 5.
When the success rates of DiaMultiClass with MultiWoZ(0.4) and MultiWoZ(1.0) are
both around 60%, deploying GDPL manages to bring 10% performance gain. The
performance difference can be caused by the improved quality of the reward model.
Conversely, if the reward model has no access to a sufficient amount of expert behaviors,
it has little clue how the expert dialogues should look like. This can lead to poor
reward signals for the policy network. We can see it in the case of GDPL that the
success rate drops to 21% while the pre-trained model can achieve a 31% success rate
on MultiWoZ(0.1). The performance gain between DiaMultiDense and DiaAdv is not
so remarkable with respect to success rate compared to the gain between DiaMultiClass
and DiaAdv. However, DiaAdv does help to reduce the dialogue turns while improving
the success rate as shown in Table 5.3. We can regard DiaAdv as a promising method to
fine-tune the DiaMultiDense to explore more potential dialogue states.

How sensitive are adversarial learning to pre-trained dialogue policy? We ex-
plore how pre-trained dialogue policies affect the final performance of adversarial
learning-based dialogue agents. We first use supervised learning to pre-train the dia-
logue policies of GDPL and DiaAdv respectively with different training epochs. As

0 1 4 7 10
Pretrain Epoch

0
10
20
30
40
50
60
70
80

Su
cc

es
s r

at
e

DiaAdv
GDPL
DiaMultiDense
DiaMultiClass

Figure 5.4: The performance gain between the pre-trained and their corresponding
adversarial learning models with different amounts of pre-training epochs.

shown in Figure 5.4, the performance gain between the pre-trained dialogue policy and
the corresponding adversarial are limited. With respect to GDPL, it even degenerates
the original performance of the pre-trained policy when the starting points are relatively
low. In other words, the main contributions to the adversarial dialogue agents come
from the supervised learning stage; it is challenging for the dialogue agents to achieve
the same performance without a promising pre-trained dialogue policy.

5DiaAdv is the adversarial extension of DiaMultiDense while GDPL is the adversarial extension of
DiaMultiClass.

79

5. Rethinking Supervised Learning and Reinforcement Learning

5.7 Conclusion

In this chapter, we proposed two supervised learning approaches and one adversarial
learning method to train the dialogue policy for TDSs without building user simulators.
The proposed methods can achieve state-of-the-art performance suggested by existing
approaches based on RL and adversarial learning. However, we have demonstrated
that our methods require fewer training efforts, namely the domain knowledge needed
to design a user simulator and the intractable parameter tuning for RL or adversarial
learning. Our findings have questioned if the full potential of supervised learning for
dialogue PL has been exerted and if RL methods have been used in the appropriate TDS
scenarios.

From a research perspective, since we are not dealing with real users, we can simply
say that the answer to RQ4 is “Yes” in specific setups, meaning that we are making
progress in applying reinforcement learning to dialogue policy learning under certain
conditions. Different advanced RL methods for dialogue policy have been studied in the
last few years and they help us to exploit the potential usages of RL-method in TDSs.
In terms of the practical ability of these proposed RL-methods, the question remains
open until we deploy the specific method to a dialogue system dealing with real users.

In both supervised training setup and adversarial training setup, high-quality human-
human dialogue collections are vital components. The data-driven reward functions
in Chapter 2,3 also strongly rely on expert demonstrations. However, in most cases,
only the interaction logs between users and interactive systems are available and it
is most likely that the collected interaction logs are noisy and suboptimal. So it is
challenging but also promising to recover reward functions from noisy user behaviors.
Besides, inferring the reward functions without actively collecting feedback in an
adversarial training schema could also be an interesting direction. In the next chapter,
more discussions about the current data-driven optimization framework will be given.

80

6
Conclusions

This chapter concludes this dissertation by revisiting our research questions from
Chapter 1 (Section 1.1) and discussing our main findings (Section 6.1), and sketching
directions for future research (Section 6.2). We focus on the main findings and general
lessons, additional detailed findings are in the conclusion sections of the individual
chapters.

6.1 Main Findings

The work included in this dissertation emerged from the following research challenge:
how to mine objectives directly from user interactions and use them to optimize the
system. In a series of empirical studies, we investigated several concrete research
questions, which we will discuss next in turn.

6.1.1 Optimizing interactive systems with data-driven objectives
We started by addressing the following question:

RQ1 Can interactive systems be optimized using objectives recovered from user inter-
actions directly?

The short answer is “Yes”. To answer this question in more detail, we first modeled
user-system interactions using a Markov Decision Process (MDP). Different from
previous work on modeling user interactions with interactive systems, we regarded the
user as the agent while treating the interactive system as the stochastic environment.
First, we suggest that users’ behavior can be described by an unknown utility function
which they tend to maximize through their interactions. Further, we assume a user’s
incentive to interact with the system is that he is getting rewards after each action.
Treating an interactive system as a changeable and programmable environment is
novel and practical because we have complete control of the interactive systems as
system designers. Secondly, we formalized the objectives of optimizing interactive
systems based on a restored user reward function which has taken into account the user
preferences. After obtaining the objective, we proposed a novel algorithm, Interactive
System Optimizer (ISO), that iterates between optimizing the interactive system for the
current inferred objective; and let the user adapt to the new system behavior. This process

81

6. Conclusions

repeats until both the user and system policies converge. The objective formulation
in the second step and interactive system optimization in the last step are happening
simultaneously:

1. inferring an objective function directly from data, namely unlabeled trajectories
of user interactions with the system;

2. iteratively optimizing the system according to the recovered data-driven objective
as shown in Figure 2.1.

Therefore, in the whole process, no domain knowledge is required. To verify the
feasibility of the proposed framework, we conducted two different simulated interactive
setups, namely:

1. a tabular-based world with a finite set of states and actions; and

2. a neural network-based world with continuous state and action spaces.

In the second setup, the agent, the environment, and the reward function are all repre-
sented with separate neural networks because they have huge potential to represent the
complex decision-making process for diverse interactive systems. In both experimental
setups, we showed that the proposed framework can robustly improve user satisfaction
while optimizing interactive systems.

The proposed interactive system optimizer can be viewed as a theoretical guideline.
Hence, the solutions for real applications have required some tuning and adaptation.
Regardless of the theoretical framework or practical application, the key idea, data-
driven objectives, is a constant factor in this thesis. Next, we considered experiments
with practical applications of interactive systems, namely dialogue systems.

6.1.2 Optimizing open-domain dialogue systems
with data-driven objectives

We have started our investigation on applying ISO strategies to real-world applications
by considering open-domain dialogue systems. Therefore, the second research question
we studied in this dissertation is:

RQ2 Can data-driven reward functions be used to successfully improve open-domain
dialogue systems?

To verify the effectiveness of the suggested data-driven reward functions, we started
by investigating the drawbacks of existing optimization methods, namely adversarial
training in dialogue generation. Due to the sparse and unstable reward signal from
a poor discriminator, dialogue policy training suffers from mode collapse, leading to
redundant and generic responses. We extended the adversarial dialogue generation
approach to an adversarial imitation learning solution, which incorporates an entropy
regularization term to the generation objective function. This addition could alleviate the
problem of mode collapse. Then we adopted adversarial inverse reinforcement learning
to train an open-domain dialogue generation model. The recovered reward function
managed to provide a more precise reward for dialogue policy training. Especially for

82

6.1. Main Findings

the reward model, it acts at the word level, which takes as input the dialogue context,
the newly generated word by the generator and returns the reward for the given dialogue
context-action pair. With respect to the evaluation of generated responses, we proposed
two human-evaluation settings along with several automatic evaluation metrics. Our
experimental results demonstrated that our models can generate more high-quality
responses and achieve higher overall performance than the state-of-the-art (SOTA)
methods.

Our main finding for RQ2 is that by exploring the usage of data-driven reward
functions, we proved that making use of data-driven reward function for response
generation in open-domain dialogue systems is promising and helpful.

6.1.3 Optimizing task-oriented dialogue systems
with data-driven objectives

By answering RQ2, we demonstrated the effectiveness of data-driven objectives in
open-domain dialogue generation. Meanwhile, some researchers are investigating the
potential of applying adversarial training to Task-oriented dialogue systems (TDSs),
where multi-turn interactions are involved and long-term action influence between
different dialogue turns should be considered. By going through all these methods, we
found we were limited to policy gradient methods, such as REINFORCE and PPO, for
the dialogue policy learning because alternating training between the dialogue agent and
the reward model (or discriminator) is essential in an adversarial setup. Furthermore,
the alternating training schema for the dialogue agent and the reward model can easily
get stuck in local optima or result in mode collapse. There are some advanced off-policy
Reinforcement Learning (RL) methods that have been proposed in the last few decades,
such as Deep Q-learning (DQN), but these methods have so far been missing from
data-driven system optimization. Therefore, our third research question was:

RQ3 Can off-policy RL methods benefit from data-driven objectives in dialogue policy
learning for TDSs?

To apply data-driven objectives together with off-policy RL methods in dialogue policy
learning, we decomposed the vanilla adversarial training into two sequential steps. We
proposed to train a data-driven reward function and a dialogue policy consecutively,
rather than in an alternating manner [83, 133]. Then we incorporate the trained dialogue
reward model into the RL process of dialogue policy learning. In terms of the reward
function training, we utilize an auxiliary dialogue state generator where the loss from
the reward model can be directly backpropagated to the generator. It should be noted
that this dialogue state generator is only used for reward training as a state explorer and
it has no correlation with the dialogue agent in traditional adversarial dialogue training.
Although we also have an adversarial training step in the whole optimization pipeline, it
happens in the first step and will not hurt the dialogue policy in the second step. More
importantly, the transfer from a SeqGAN [156] to a vanilla GAN [37] setting, leads us
to a differentiable optimization environment. In a SeqGAN setup, the policy gradient
method is essential to deliver the update signal from the discriminator to the dialogue
agent. In contrast, in the vanilla GAN, the discriminator can directly backpropagate

83

6. Conclusions

the update signal to the generator due to the strait and close connection between the
discriminator and generator.

Our main findings for RQ3 are two-fold. First, once we obtain the reward function,
we are free to incorporate it in different reinforcement learning processes, including
off-policy and on-policy methods, to guide dialogue policy learning. Since the learned
reward function will not be updated during the dialogue policy training, we can also
alleviate the problem of mode collapse in vanilla adversarial dialogue policy training
setups. Secondly, finding is the potential of storing knowledge from existing domains
into the reward function and then transferring it to new domains via RL. The knowledge
is stored when the reward model is trained to distinguish human-generated dialogues
from machine-generated ones, where the common information contained in high-quality
human-generated dialogues are distilled. The stored information will be reused in the
format of a reward signal during the training in an unseen domain. We verified the
success of the proposed solution within a popular task-oriented dialogue system. We
demonstrated that the proposed methods achieve remarkable performance, in terms of
task success, as well as the potential to transfer knowledge from previously utilized task
domains to new ones.

So far, we have considered two application scenarios of data-driven objectives:

• open-domain dialogue systems (RQ2);

• task-oriented dialogue systems (RQ3).

We have demonstrated the promising prospect of optimizing interactive systems with
data-driven objectives. At the same time, we also need to recognize potential factors
that could result in difficulties in applying this technique. All the frameworks and
solutions introduced above rely on the use of deep RL methods. These methods require
the model to actively interact with its environment and explicit feedback from the
environment should be supplied. Considering TDSs as an example, the dialogue system
predicts actions based on the dialogue policy, and the user feedback (the reward signal),
which is provided when the dialogue is finished, is utilized to adjust the initial dialogue
policy [21, 101, 149]. As it is not practical to ask for explicit user feedback for each
dialogue during policy training, different strategies have been proposed to design a
rule-based user simulator along with a reward function that can approximate the real
reward function, which exists only in each user’s mind. Ideally, we want a user simulator
that can mimic real users and have realistic human-like behavior. However, this requires
strong domain knowledge and becomes intractable when scaled to complex dialogue
scenarios, such as dialogue systems dealing with multiple domains and diverse user
behaviors. For example, if the task domain is complex and hard to solve, is it easier to
design and maintain a complicated rule-based user simulator than to build a rule-based
dialogue agent? Besides, adversarial training during reward learning may also require
lots of effort. Solutions for interactive system optimization that involve reinforcement
learning and inverse reinforcement learning have become relatively sophisticated. As
another family of optimizing methods with data-driven objectives, what is the capability
of supervised learning? These concerns, as relevant thinking of our studies into RQ2
and RQ3, push us to raise the following research question:

RQ4 Are we really making progress in applying only RL to dialogue policy learning

84

6.1. Main Findings

for TDSs?

This is not an easy question to answer due to the customized experimental setups
(e.g., diverse domains, different action space, and user simulators) from existing work.
Besides, the evaluation is not unified either, and this can bring unfairness in comparisons
of the methods. Despite this, we think it is worth to conduct this investigation as far as
possible. We first borrowed the idea of sequential classification from computer vision
and proposed a dialogue action decoder within the framework of RNN to predict the
appropriate actions sequentially. Furthermore, we revisited a traditional multi-label
classification solution for dialogue policy learning. Based on it, we simply added
dense layers and managed to improve the system significantly. The third method we
presented is based on adversarial training between a dialogue agent and a discriminator
and no user simulator is involved in the whole process. We have shown that all three
methods can achieve comparable performance with the SOTA RL-based methods but
with fewer efforts. Compared to existing RL based methods, we proposed a strategy
that can eliminate designing a user simulator and sensitive parameter-tuning process
while bringing a significant performance improvement with respect to a number of
metrics. The absence of user simulators involved will largely reduce the required domain
knowledge and supervised learning can lead to robust agent performance. However,
we are not arguing that we should use supervised learning to replace reinforcement
learning. There is a trade-off between designing a reliable user simulator and a high-
quality labeled dialogue collection. For scenarios where collecting expert behaviors is
feasible and affordable [11, 143, 148], RL may not be the best choice since traditional
supervised learning solutions can achieve the same performance more easily. Indeed,
off-line reinforcement learning is also a choice when a realistic user simulator is not
accessible. But research into offline reinforcement learning is just getting started and
we may not be able to find suitable algorithms for specific applications. In some cases,
if the data cannot be collected for privacy or financial reasons, RL is the solution. Then,
system performance after deployed to real scenarios highly depends on how realistic
the user behavior generated by the user simulator are.

Back to dialogue policy learning in TDSs, the answer to RQ4 depends on how
we evaluate dialogue systems and the answer can vary with different focuses and
application scenarios. Simply relying on automatic metrics, of course, is not convincing.
Even though some work has started adopting human evaluation as additional quality
measurement, the answer is still not clear. For example, in many cases, human annotators
are just responsible for judging the quality of the already generated dialogues between
a dialogue agent and a user simulator, which means the human annotators are still
not in the interaction loop. In another word, it is tricky to judge the performance
of a dialogue agent in real-life scenarios when only the interaction histories of the
same agent interacting with a user simulator are given. Therefore, a set of unified and
reliable evaluation metrics for dialogue policy management is highly in demand. We
presented some preliminary attempts of using the recovered reward functions to evaluate
interactive systems in Chapter 3 and 4. This line of work is still at the very beginning
and more concrete solutions should be investigated.

From a research perspective, since we are not dealing with real users, we can simply
say that the answer to RQ4 is “Yes” in specific setups, meaning that we are making

85

6. Conclusions

progress in applying reinforcement learning to dialogue policy learning under certain
conditions. Different advanced RL methods for dialogue policy have been studied
in the last few years and they help us to exploit the potential usages of RL-method
in Task-oriented dialogue system (TDS). In terms of the practical ability of these
proposed RL-methods, the question remains open until we deploy the specific method
to a dialogue system dealing with real users. In Chapter 5, we show that traditional
supervised learning methods can achieve more stable and higher performance with
fewer efforts, such as the domain knowledge required to design a user simulator and
the intractable parameter tuning in reinforcement learning. Our findings demonstrate
the value of rethinking the role of RL and supervised learning in optimizing TDSs.
Applying RL methods to dialogue policy learning without considering the situations in
real TDSs is not helpful to the progress of building more advanced dialogue systems.

6.2 Limitations and Future Directions

The work in Chapter 2 is our proposal for formulating interactive system optimization
with data-driven objectives, while Chapter 3, 4, and 5 serve as the practical applications
on the basis of ideas from Chapter 2. In this section, we will discuss two main limitations
existing in the current optimization framework along with possible solution directions,
namely:

• Section 6.2.1 discusses limitations that come along with building data-driven
reward functions; and

• Section 6.2.2 provides overviews of possible limitations while working with user
simulators in TDSs.

For a more detailed description of the limitations of each research question, readers can
refer to the contents in the corresponding chapter.

6.2.1 Data-driven reward functions
As shown in Chapter 2, the final performance of the optimized system strongly relies
on the quality of the recovered reward function. Recovering a reliable reward function
requires a large number of high-quality user-system interaction trajectories. This could
be the main difficulty preventing utilizing data-driven reward functions in applications
dealing with real-world users. The dialogue trajectories used for reward learning in
Chapter 4 and 5 are from a collection of human-human interactions that require a
significant investment. Furthermore, a real-world interactive system usually serves
different users. This makes collecting expert demonstrations with crowd-sourcing
platforms more challenging because the collections should take into account different
user preferences and behavior.

The most popular methods to recover a reward function are Maximum Entropy
Inverse Reinforcement Learning (MaxEnt-IRL) and its more advanced extension,
Adversarial Inverse Reinforcement Learning (AIRL). Since the scalability of vanilla
MaxEnt-IRL is quite limited, AIRL is a more common choice for recovering rewards.
However, this method is conducted within the framework of adversarial training and

86

6.2. Limitations and Future Directions

this could potentially result in local optima and mode collapse, which are the inherent
downside of adversarial training.

Possible solutions are exploring less data-sensitive reward recovery methods. Mean-
while, personalized user preferences should also be taken into account during reward
learning. For example, user profile information can be incorporated in the state space or
action space.

6.2.2 Interacting with user simulators
In the two-step optimization framework in Chapter 2, the user is involved in the whole
pipeline, from the reward recovery step to the system optimization stage. During the
reward recovery step, the user serves as the agent and has to actively execute actions
to interact with the system. User feedback is essential for adversarial reward recovery.
In terms of the next step, system optimization, the user serves as the environment to
provide necessary responses for the state transitions with RL-based methods. Since it is
not practical to have humans in the training step, most existing work replaces the real
user with a rule-based user simulator. This is also the case for the TDSs in Chapter 4 and
5, where user simulators are essential for data-driven or RL approaches. The potential
issue of this solution is that the user simulator may not be able to mimic real human
behaviors. The behavior gap existing between user simulator and human behaviors
will bring further issues to the evaluation and deployment of the optimized interactive
system. These problems may have a negative impact on dialogue policy management
in TDSs. Additionally, a unified and reliable evaluation method for dialogue agents
is missing. Though human evaluation could be an alternative choice, this would be
expensive and time-consuming. To have a more realistic user simulator, lots of domain
knowledge is required and it is intractable when user behaviors are getting extremely
complex (e.g., a system serving a huge user group and each individual has different
preferences).

In recent years, off-line RL has attracted a lot of interest. The advantage of this type
of approach is that it is not necessary to actively collect new interaction trajectories
with the environment anymore. In our case, we can skip the user simulator in the
second step of the optimization framework proposed in Chapter 2, and in the off-policy
dialogue agent training in Chapter 4. Alternatively, we directly optimize the system with
given historical interaction trajectories. However, we should recognize that the study of
off-line deep RL just started several years ago and we may not be able to find suitable
algorithms for the specific application yet. Furthermore, if we can extend off-line RL to
off-line Inverse Reinforcement Learning (IRL), we will omit the user simulator utilized
in the reward recovery step in Chapter 2 and 4 as well. The situation for off-line IRL is
more challenging since this area is still virgin land that has not been explored.

87

Bibliography

[1] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. In ICML, pages
1–8. ACM, 2004. (Cited on pages 15 and 16.)

[2] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino, M. Plappert,
G. Powell, R. Ribas, et al. Solving rubik’s cube with a robot hand. arXiv preprint arXiv:1910.07113,
2019. (Cited on pages 14 and 16.)

[3] F. Argelaguet, L. Hoyet, M. Trico, and A. Lécuyer. The role of interaction in virtual embodiment:
Effects of the virtual hand representation. In VR, pages 3–10. IEEE, 2016. (Cited on pages 1 and 11.)

[4] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gan. arXiv preprint arXiv:1701.07875, 2017.
(Cited on pages 2 and 72.)

[5] L. Azzopardi. Modelling interaction with economic models of search. In SIGIR, pages 3–12. ACM,
2014. (Cited on pages 12 and 14.)

[6] R. E. Banchs. Movie-dic: a movie dialogue corpus for research and development. In ACL, pages
203–207, 2012. (Cited on page 43.)

[7] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer. Scheduled sampling for sequence prediction with
recurrent neural networks. In NeurIPS, pages 1171–1179, 2015. (Cited on page 60.)

[8] L. E. Blume, S. Durlauf, and L. E. Blume. The New Palgrave Dictionary of Economics. Palgrave
Macmillan Manchester, 2008. (Cited on page 12.)

[9] A. Borisov, I. Markov, M. de Rijke, and P. Serdyukov. A neural click model for web search. In WWW,
pages 531–541, 2016. (Cited on pages 1 and 11.)

[10] A. Boularias, J. Kober, and J. Peters. Relative entropy inverse reinforcement learning. In AISTATS,
pages 182–189, 2011. (Cited on pages 15 and 16.)

[11] P. Budzianowski, T.-H. Wen, B.-H. Tseng, I. Casanueva, S. Ultes, O. Ramadan, and M. Gasic.
Multiwoz: A large-scale multi-domain wizard-of-oz dataset for task-oriented dialogue modelling. In
EMNLP, pages 5016–5026, 2018. (Cited on pages 58, 68, 73, and 85.)

[12] B. Burchfiel, C. Tomasi, and R. Parr. Distance minimization for reward learning from scored trajectories.
In AAAI, pages 3330–3336. AAAI Press, 2016. (Cited on page 20.)

[13] H. Chen, X. Liu, D. Yin, and J. Tang. A survey on dialogue systems: recent advances and new frontiers.
ACM SIGKDD Explorations Newsletter, 19(2):25–35, 2017. (Cited on pages 53 and 67.)

[14] M. Chen, A. Beutel, P. Covington, S. Jain, F. Belletti, and E. H. Chi. Top-k off-policy correction for a
reinforce recommender system. In WSDM, pages 456–464, 2019. (Cited on page 12.)

[15] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio.
Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv
preprint arXiv:1406.1078, 2014. (Cited on page 70.)

[16] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei. Deep reinforcement learning
from human preferences. In NeurIPS, pages 4299–4307, 2017. (Cited on page 15.)

[17] J. W. Crandall. Towards minimizing disappointment in repeated games. Journal of Artificial Intelli-
gence Research, 49:111–142, 2014. (Cited on page 12.)

[18] C. Cui, W. Wang, X. Song, M. Huang, X.-S. Xu, and L. Nie. User attention-guided multimodal dialog
systems. In SIGIR, pages 445–454. ACM, 2019. (Cited on pages 1 and 12.)

[19] M. Dehghani, H. Zamani, A. Severyn, J. Kamps, and W. B. Croft. Neural ranking models with weak
supervision. In SIGIR, pages 65–74. ACM, 2017. (Cited on pages 1, 11, and 14.)

[20] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional transformers
for language understanding. arXiv preprint arXiv:1810.04805, 2018. (Cited on page 65.)

[21] B. Dhingra, L. Li, X. Li, J. Gao, Y.-N. Chen, F. Ahmed, and L. Deng. Towards end-to-end reinforcement
learning of dialogue agents for information access. arXiv preprint arXiv:1609.00777, 2016. (Cited on
pages 1, 11, 14, 53, 54, 68, and 84.)

[22] A. Drutsa, G. Gusev, and P. Serdyukov. Engagement periodicity in search engine usage: Analysis and
its application to search quality evaluation. In WSDM, pages 27–36, 2015. (Cited on page 12.)

[23] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and P. Abbeel. RL2: Fast reinforcement
learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016. (Cited on pages 14
and 16.)

[24] G. Dupret and M. Lalmas. Absence time and user engagement: evaluating ranking functions. In
WSDM, pages 173–182, 2013. (Cited on page 12.)

[25] L. El Asri, R. Laroche, and O. Pietquin. Reward shaping for statistical optimisation of dialogue
management. In SLSP, pages 93–101. Springer, 2013. (Cited on page 20.)

[26] C. Finn, P. Christiano, P. Abbeel, and S. Levine. A connection between generative adversarial networks,

89

6. Bibliography

inverse reinforcement learning, and energy-based models. arXiv preprint arXiv:1611.03852, 2016.
(Cited on pages 15 and 16.)

[27] C. Finn, S. Levine, and P. Abbeel. Guided cost learning: Deep inverse optimal control via policy
optimization. In ICML, pages 49–58, 2016. (Cited on pages 2, 15, 16, 20, 37, and 39.)

[28] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine. One-shot visual imitation learning via meta-learning.
In CoRL, pages 357–368, 2017. (Cited on page 12.)

[29] J. L. Fleiss and J. Cohen. The equivalence of weighted kappa and the intraclass correlation coefficient
as measures of reliability. Educational and Psychological Measurement, 33(3):613–619, 1973. (Cited
on page 48.)

[30] G. Forgues, J. Pineau, J.-M. Larchevêque, and R. Tremblay. Bootstrapping dialog systems with word
embeddings. In NeurIPS, MML-NLP Workshop, volume 2, 2014. (Cited on page 45.)

[31] S. Fox, K. Karnawat, M. Mydland, S. T. Dumais, and T. White. Evaluating implicit measures to
improve web search. ACM Transactions on Information Systems, 23(2):147–168, 2005. (Cited on
page 12.)

[32] J. Fu, K. Luo, and S. Levine. Learning robust rewards with adversarial inverse reinforcement learning.
arXiv preprint arXiv:1710.11248, 2017. (Cited on pages 2, 3, 15, 16, 20, 37, and 40.)

[33] M. Galley, C. Brockett, A. Sordoni, Y. Ji, M. Auli, C. Quirk, M. Mitchell, J. Gao, and B. Dolan.
deltableu: A discriminative metric for generation tasks with intrinsically diverse targets. arXiv preprint
arXiv:1506.06863, 2015. (Cited on page 45.)

[34] M. Gašić and S. Young. Gaussian processes for pomdp-based dialogue manager optimization.
IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(1):28–40, 2014. (Cited on
pages 3, 53, and 67.)

[35] M. Gašić, N. Mrkšić, P.-h. Su, D. Vandyke, T.-H. Wen, and S. Young. Policy committee for adaptation
in multi-domain spoken dialogue systems. In ASRU, pages 806–812. IEEE, 2015. (Cited on page 73.)

[36] M. Gombolay, R. Jensen, J. Stigile, T. Golen, N. Shah, S.-H. Son, and J. Shah. Human-machine
collaborative optimization via apprenticeship scheduling. Journal of Artificial Intelligence Research,
63:1–49, 2018. (Cited on page 12.)

[37] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. In NeurIPS, pages 2672–2680, 2014. (Cited on pages 3, 55,
and 83.)

[38] E. J. Gumbel. Statistical theory of extreme values and some practical applications: a series of lectures,
volume 33. US Government Printing Office, 1954. (Cited on pages 56 and 71.)

[39] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290, 2018. (Cited on
pages 14 and 16.)

[40] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by latent
imagination. arXiv preprint arXiv:1912.01603, 2019. (Cited on pages 14 and 16.)

[41] J. Ho and S. Ermon. Generative adversarial imitation learning. In NeurIPS, pages 4565–4573, 2016.
(Cited on pages 15, 16, 40, 60, 69, and 74.)

[42] J. Ho and S. Ermon. Generative adversarial imitation learning. In NeurIPS, pages 4565–4573, 2016.
(Cited on pages 3 and 48.)

[43] K. Hofmann, S. Whiteson, and M. de Rijke. Balancing exploration and exploitation in learning to rank
online. In ECIR, pages 251–263. Springer, 2011. (Cited on page 14.)

[44] K. Hofmann, A. Schuth, S. Whiteson, and M. de Rijke. Reusing historical interaction data for faster
online learning to rank for IR. In WSDM, pages 183–192. ACM, 2013. (Cited on pages 12 and 14.)

[45] K. Hofmann, S. Whiteson, and M. de Rijke. Balancing exploration and exploitation in listwise and
pairwise online learning to rank for information retrieval. Information Retrieval Journal, 16(1):63–90,
2013. (Cited on page 14.)

[46] E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016. (Cited on pages 56, 59, 71, and 74.)

[47] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of ir techniques. ACM Transactions
on Information Systems, 20(4):422–446, 2002. (Cited on page 12.)

[48] H. J. Jeon, S. Milli, and A. D. Dragan. Reward-rational (implicit) choice: A unifying formalism for
reward learning. arXiv preprint arXiv:2002.04833, 2020. (Cited on pages 12, 14, and 15.)

[49] T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay. Accurately interpreting clickthrough data
as implicit feedback. In SIGIR, pages 154–161, 2005. (Cited on page 12.)

[50] D. Kelly. Methods for evaluating interactive information retrieval systems with users. Foundations
and Trends in Information Retrieval, 3(1–2):1–224, 2009. (Cited on page 12.)

90

[51] D. Kelly. When effort exceeds expectations: A theory of search task difficulty. In ECIR, SCST
Workshop, 2015. (Cited on page 12.)

[52] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. (Cited on page 44.)

[53] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013. (Cited on page 57.)

[54] J. Kiseleva and M. de Rijke. Evaluating personal assistants on mobile devices. arXiv preprint
arXiv:1706.04524, 2017. (Cited on pages 1 and 11.)

[55] J. Kiseleva, E. Crestan, R. Brigo, and R. Dittel. Modelling and detecting changes in user satisfaction.
In CIKM, pages 1449–1458, 2014. (Cited on page 15.)

[56] J. Kiseleva, J. Kamps, V. Nikulin, and N. Makarov. Behavioral dynamics from the SERP’s perspective:
what are failed SERPs and how to fix them? In CIKM, pages 1561–1570, 2015. (Cited on page 15.)

[57] J. Kiseleva, K. Williams, A. H. Awadallah, I. Zitouni, A. Crook, and T. Anastasakos. Predicting user
satisfaction with intelligent assistants. In SIGIR, pages 45–54. ACM, 2016. (Cited on pages 1, 11,
and 12.)

[58] J. Kiseleva, K. Williams, J. Jiang, A. H. Awadallah, I. Zitouni, A. Crook, and T. Anastasakos.
Understanding user satisfaction with intelligent assistants. In CHIIR, pages 121–130, 2016. (Cited on
pages 1 and 11.)

[59] M. Kosinski, D. Stillwell, and T. Graepe. Private traits and attributes are predictable from digital
records of human behavior. PNAS, 110:5802–5805, 2013. (Cited on page 12.)

[60] M. Kutlu, V. Khetan, and M. Lease. Correlation and prediction of evaluation metrics in information
retrieval. arXiv preprint arXiv:1802.00323, 2018. (Cited on page 14.)

[61] S. Lee, Q. Zhu, R. Takanobu, X. Li, Y. Zhang, Z. Zhang, J. Li, B. Peng, X. Li, M. Huang, et al.
Convlab: Multi-domain end-to-end dialog system platform. arXiv preprint arXiv:1904.08637, 2019.
(Cited on pages 55, 59, 69, and 77.)

[62] J. Leike, D. Krueger, T. Everitt, M. Martic, V. Maini, and S. Legg. Scalable agent alignment via
reward modeling: a research direction. arXiv preprint arXiv:1811.07871, 2018. (Cited on pages 12,
14, and 15.)

[63] E. Levin, R. Pieraccini, and W. Eckert. A stochastic model of human-machine interaction for learning
dialog strategies. IEEE Transactions on speech and audio processing, 8(1):11–23, 2000. (Cited on
pages 12 and 14.)

[64] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies. Journal
of Machine Learning Research, 17(39):1–40, 2016. (Cited on pages 12, 14, and 16.)

[65] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen. Learning hand-eye coordination for
robotic grasping with deep learning and large-scale data collection. The International Journal of
Robotics Research, pages 173–184, 2016. (Cited on pages 12, 14, and 16.)

[66] J. Li, M. Galley, C. Brockett, J. Gao, and B. Dolan. A diversity-promoting objective function for
neural conversation models. In NAACL, pages 110–119, 2016. (Cited on pages 2 and 37.)

[67] J. Li, M. Galley, C. Brockett, G. P. Spithourakis, J. Gao, and B. Dolan. A persona-based neural
conversation model. arXiv preprint arXiv:1603.06155, 2016. (Cited on page 45.)

[68] J. Li, W. Monroe, A. Ritter, D. Jurafsky, M. Galley, and J. Gao. Deep reinforcement learning for
dialogue generation. In EMNLP, pages 1192–1202, 2016. (Cited on pages 1, 2, 11, 12, 14, and 37.)

[69] J. Li, W. Monroe, T. Shi, S. Jean, A. Ritter, and D. Jurafsky. Adversarial learning for neural dialogue
generation. In EMNLP, pages 2157–2169, 2017. (Cited on pages 2, 5, 37, 38, 40, 41, 44, and 50.)

[70] X. Li, Z. C. Lipton, B. Dhingra, L. Li, J. Gao, and Y.-N. Chen. A user simulator for task-completion
dialogues. arXiv preprint arXiv:1612.05688, 2016. (Cited on pages 3, 4, 6, 53, and 69.)

[71] X. Li, Y.-N. Chen, L. Li, J. Gao, and A. Celikyilmaz. End-to-end task-completion neural dialogue
systems. arXiv preprint arXiv:1703.01008, 2017. (Cited on pages 2, 14, 54, and 68.)

[72] Z. Li and M. de Rijke. The impact of linkage methods in hierarchical clustering for active learning to
rank. In SIGIR, pages 941–944, 2017.

[73] Z. Li, J. Kiseleva, M. de Rijke, and A. Grotov. Towards learning reward functions from user interactions.
In ICTIR, pages 289–292, 2017. (Cited on page 12.)

[74] Z. Li, J. Kiseleva, A. Agarwal, and M. de Rijke. Learning data-driven objectives to optimize interactive
systems. In NeurIPS LIRE 2019 Workshop: Learning with Rich Experience: Integration of Learning
Paradigms, 2019.

[75] Z. Li, J. Kiseleva, and M. de Rijke. Dialogue generation: From imitation learning to inverse rein-
forcement learning. In AAAI, volume 33, pages 6722–6729, 2019. (Cited on pages 1, 11, 15, 37,
and 54.)

91

6. Bibliography

[76] Z. Li, J. Kiseleva, A. Agarwal, M. de Rijke, and R. W. White. Optimizing interactive systems via
data-driven objectives. Journal of Artificial Intelligence Research, 2020. Submitted. (Cited on
page 11.)

[77] Z. Li, J. Kiseleva, and M. de Rijke. Rethinking supervised learning and reinforcement learning in
task-oriented dialogue systems. In EMNLP findings, 2020. (Cited on page 67.)

[78] Z. Li, S. Lee, B. Peng, J. Kiseleva, M. de Rijke, J. Li, S. Shayandeh, and J. Gao. Guided dialogue
policy learning without adversarial learning in the loop. In EMNLP findings, 2020. (Cited on pages 15,
53, and 68.)

[79] Z. Li, J. Kiseleva, and M. de Rijke. Generating coherent and informative responses with backward-
reasoning in open-domain dialogue systems. In NAACL, 2021. Submitted.

[80] Z. Li, D. Park, J. Kiseleva, and S. Lee. Estimating user satisfaction level for multi-turn dialogues. In
NAACL, 2021. Submitted.

[81] X. Lin, S. C. Adams, and P. A. Beling. Multi-agent inverse reinforcement learning for certain general-
sum stochastic games. Journal of Artificial Intelligence Research, 66:473–502, 2019. (Cited on
page 15.)

[82] Z. Lipton, X. Li, J. Gao, L. Li, F. Ahmed, and L. Deng. Bbq-networks: Efficient exploration in deep
reinforcement learning for task-oriented dialogue systems. In AAAI, 2018. (Cited on pages 12, 14, 54,
and 68.)

[83] B. Liu and I. Lane. Adversarial learning of task-oriented neural dialog models. In SIGDIAL, pages
350–359, 2018. (Cited on pages 3, 4, 5, 6, 54, 55, 69, 74, and 83.)

[84] C.-W. Liu, R. Lowe, I. Serban, M. Noseworthy, L. Charlin, and J. Pineau. How not to evaluate
your dialogue system: An empirical study of unsupervised evaluation metrics for dialogue response
generation. In EMNLP, pages 2122–2132, 2016. (Cited on page 45.)

[85] C.-W. Liu, R. Lowe, I. Serban, M. Noseworthy, L. Charlin, and J. Pineau. How not to evaluate
your dialogue system: An empirical study of unsupervised evaluation metrics for dialogue response
generation. In EMNLP, 2016. (Cited on page 12.)

[86] F. Lovett. Rational choice theory and explanation. Rationality and Society, 18(2):237–272, 2006.
(Cited on page 12.)

[87] R. Lowe, M. Noseworthy, I. V. Serban, N. Angelard-Gontier, Y. Bengio, and J. Pineau. Towards
an automatic turing test: Learning to evaluate dialogue responses. In ACL, pages 1116–1126, 2017.
(Cited on page 15.)

[88] J. Luo, X. Dong, and H. Yang. Learning to reinforce search effectiveness. In ICTIR, pages 271–280.
ACM, 2015. (Cited on page 14.)

[89] J. Luo, X. Dong, and H. Yang. Session search by direct policy learning. In ICTIR, pages 261–270.
ACM, 2015. (Cited on pages 1, 12, and 14.)

[90] J. Mitchell and B. Shneiderman. Dynamic versus static menus: an exploratory comparison. ACM
SigCHI Bulletin, 20(4):33–37, 1989. (Cited on page 13.)

[91] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013. (Cited on
pages 6 and 51.)

[92] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement learning. Nature,
518(7540):529, 2015. (Cited on pages 14, 16, and 60.)

[93] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine Learning. MIT Press, 2012.
(Cited on page 14.)

[94] M. Monfort, A. Liu, and B. Ziebart. Intent prediction and trajectory forecasting via predictive inverse
linear-quadratic regulation. In AAAI, pages 3672–3678, 2015. (Cited on page 15.)

[95] A. Y. Ng and S. J. Russell. Algorithms for inverse reinforcement learning. In ICML, pages 663–670.
ACM, 2000. (Cited on pages 15, 16, and 18.)

[96] H. Obendorf, H. Weinreich, E. Herder, and M. Mayer. Web page revisitation revisited: implications
of a long-term click-stream study of browser usage. In SIGCHI, pages 597–606, 2007. (Cited on
page 13.)

[97] D. Odijk, E. Meij, I. Sijaranamual, and M. de Rijke. Dynamic query modeling for related content
finding. In SIGIR, pages 33–42. ACM, 2015. (Cited on page 14.)

[98] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic evaluation of machine
translation. In ACL, pages 311–318, 2002. (Cited on pages 12 and 45.)

[99] B. Peng, X. Li, L. Li, J. Gao, A. Celikyilmaz, S. Lee, and K.-F. Wong. Composite task-completion
dialogue policy learning via hierarchical deep reinforcement learning. arXiv preprint arXiv:1704.03084,

92

2017. (Cited on pages 12, 14, 54, and 68.)
[100] B. Peng, X. Li, J. Gao, J. Liu, Y.-N. Chen, and K.-F. Wong. Adversarial advantage actor-critic model

for task-completion dialogue policy learning. In ICASSP, pages 6149–6153. IEEE, 2018. (Cited on
pages 1, 11, 54, and 69.)

[101] B. Peng, X. Li, J. Gao, J. Liu, and K.-F. Wong. Deep dyna-q: Integrating planning for task-completion
dialogue policy learning. In ACL, volume 1, pages 2182–2192, 2018. (Cited on pages 6, 53, 68,
and 84.)

[102] J. Perner and B. Lang. Development of theory of mind and executive control. Trends in cognitive
sciences, 3(9):337–344, 1999. (Cited on pages 1 and 12.)

[103] O. Pietquin. Inverse reinforcement learning for interactive systems. In Workshop on Machine Learning
for Interactive Systems, pages 71–75. ACM, 2013. (Cited on page 15.)

[104] A. H. Qureshi, B. Boots, and M. C. Yip. Adversarial imitation via variational inverse reinforcement
learning. In ICLR, 2019. (Cited on pages 15 and 16.)

[105] A. Ram, R. Prasad, C. Khatri, A. Venkatesh, R. Gabriel, Q. Liu, J. Nunn, B. Hedayatnia, M. Cheng,
A. Nagar, et al. Conversational ai: The science behind the alexa prize. arXiv preprint arXiv:1801.03604,
2018. (Cited on page 1.)

[106] N. D. Ratliff, D. Silver, and J. A. Bagnell. Learning to search: Functional gradient techniques for
imitation learning. Autonomous Robots, 27(1):25–53, 2009. (Cited on pages 15 and 16.)

[107] S. Reddy, A. D. Dragan, S. Levine, S. Legg, and J. Leike. Learning human objectives by evaluating
hypothetical behavior. arXiv preprint arXiv:1912.05652, 2019. (Cited on pages 12 and 14.)

[108] A. Ritter, C. Cherry, and B. Dolan. Unsupervised modeling of twitter conversations. In NAACL, pages
172–180, 2010. (Cited on pages 1, 37, and 44.)

[109] A. Ritter, C. Cherry, and W. B. Dolan. Data-driven response generation in social media. In EMNLP,
pages 583–593, 2011. (Cited on page 45.)

[110] A. I. Rudnicky, E. Thayer, P. Constantinides, C. Tchou, R. Shern, K. Lenzo, W. Xu, and A. Oh.
Creating natural dialogs in the carnegie mellon communicator system. In ECSCT, 1999. (Cited on
page 2.)

[111] V. Rus and M. Lintean. A comparison of greedy and optimal assessment of natural language student
input using word-to-word similarity metrics. In Proceedings of the Seventh Workshop on Building
Educational Applications Using NLP, pages 157–162, 2012. (Cited on page 45.)

[112] S. Russell. Learning agents for uncertain environments. In COLT, pages 101–103. ACM, 1998. (Cited
on pages 15 and 16.)

[113] T. Saracevic. Relevance: A review of and a framework for the thinking on the notion in information
science. Journal of the American Society for information science, 26(6):321–343, 1975. (Cited on
page 12.)

[114] T. Saracevic, P. Kantor, A. Y. Chamis, and D. Trivison. A study of information seeking and retrieving.
Journal of the American Society for Information science, 39(3):161–176; 177–196; 197–216, 1988.
(Cited on page 12.)

[115] J. Schatzmann, B. Thomson, K. Weilhammer, H. Ye, and S. Young. Agenda-based user simulation
for bootstrapping a pomdp dialogue system. In NAACL, pages 149–152, 2007. (Cited on pages 3, 53,
and 59.)

[116] T. Schnabel, P. N. Bennett, and T. Joachims. Shaping feedback data in recommender systems with
interventions based on information foraging theory. In WSDM, pages 546–554, 2019. (Cited on
pages 1 and 11.)

[117] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez, E. Lockhart,
D. Hassabis, T. Graepel, T. Lillicrap, and D. Silver. Mastering Atari, Go, chess and Shogi by planning
with a learned model. arXiv preprint arXiv:1911.08265, 2019. (Cited on pages 14 and 16.)

[118] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017. (Cited on pages 3, 14, 16, 28, 54, 60, and 73.)

[119] A. Sepliarskaia, J. Kiseleva, F. Radlinski, and M. de Rijke. Preference elicitation as an optimization
problem. In RecSys, pages 172–180, 2018. (Cited on pages 1 and 11.)

[120] I. V. Serban, A. Sordoni, Y. Bengio, A. C. Courville, and J. Pineau. Building end-to-end dialogue
systems using generative hierarchical neural network models. In AAAI, volume 16, pages 3776–3784,
2016. (Cited on pages 2, 37, 43, 44, and 50.)

[121] I. V. Serban, A. Sordoni, R. Lowe, L. Charlin, J. Pineau, A. C. Courville, and Y. Bengio. A hierarchical
latent variable encoder-decoder model for generating dialogues. In AAAI, pages 3295–3301, 2017.
(Cited on pages 2, 37, 45, 47, and 50.)

[122] S. K. Seyed Ghasemipour, S. S. Gu, and R. Zemel. Smile: Scalable meta inverse reinforcement

93

6. Bibliography

learning through context-conditional policies. In NeurIPS, pages 7881–7891. 2019. (Cited on pages 15
and 16.)

[123] L. Shang, Z. Lu, and H. Li. Neural responding machine for short-text conversation. In ACL, volume 1,
pages 1577–1586, 2015. (Cited on pages 1, 2, 37, and 50.)

[124] G. Shani, D. Heckerman, and R. I. Brafman. An MDP-based recommender system. Journal of Machine
Learning Research, 6(Sep):1265–1295, 2005. (Cited on page 14.)

[125] Z. Shi, X. Chen, X. Qiu, and X. Huang. Towards diverse text generation with inverse reinforcement
learning. arXiv preprint arXiv:1804.11258, 2018. (Cited on page 38.)

[126] H.-Y. Shum, X.-d. He, and D. Li. From eliza to xiaoice: challenges and opportunities with social
chatbots. Frontiers of Information Technology & Electronic Engineering, 19(1):10–26, 2018. (Cited
on page 1.)

[127] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the
game of Go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016. (Cited on
pages 12, 14, and 16.)

[128] A. Sordoni, M. Galley, M. Auli, C. Brockett, Y. Ji, M. Mitchell, J.-Y. Nie, J. Gao, and B. Dolan. A
neural network approach to context-sensitive generation of conversational responses. In NAACL, pages
196–205, 2015. (Cited on pages 2, 37, and 50.)

[129] P.-H. Su, M. Gasic, N. Mrkšić, L. M. R. Barahona, S. Ultes, D. Vandyke, T.-H. Wen, and S. Young.
On-line active reward learning for policy optimisation in spoken dialogue systems. In ACL, volume 1,
pages 2431–2441, 2016. (Cited on pages 53 and 68.)

[130] P.-H. Su, P. Budzianowski, S. Ultes, M. Gasic, and S. Young. Sample-efficient actor-critic reinforcement
learning with supervised data for dialogue management. arXiv preprint arXiv:1707.00130, 2017.
(Cited on pages 3, 53, and 67.)

[131] S.-Y. Su, X. Li, J. Gao, J. Liu, and Y.-N. Chen. Discriminative deep dyna-q: Robust planning for
dialogue policy learning. In EMNLP, 2018. (Cited on pages 12, 14, 54, and 68.)

[132] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018. (Cited on
pages 12, 14, 15, 16, 17, and 18.)

[133] R. Takanobu, H. Zhu, and M. Huang. Guided dialog policy learning: Reward estimation for multi-
domain task-oriented dialog. In EMNLP, pages 100–110, 2019. (Cited on pages 3, 4, 5, 6, 14, 15, 54,
55, 60, 64, 69, 74, and 83.)

[134] J. Teevan. How people recall, recognize, and reuse search results. ACM Transactions on Information
Systems (TOIS), 26(4):1–27, 2008. (Cited on page 13.)

[135] M. ter Hoeve, R. Sim, E. Nouri, A. Fourney, M. de Rijke, and R. W. White. Conversations with
documents: An exploration of document-centered assistance. In CHIIR, pages 43–52, 2020. (Cited on
pages 1 and 11.)

[136] H. R. Varian. Economics and search. In ACM SIGIR Forum, volume 33, pages 1–5. New York, 1999.
(Cited on page 12.)

[137] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi, R. Powell,
T. Ewalds, P. Georgiev, et al. Grandmaster level in starcraft ii using multi-agent reinforcement learning.
Nature, 575(7782):350–354, 2019. (Cited on pages 14 and 16.)

[138] M. A. Walker, D. J. Litman, C. A. Kamm, and A. Abella. Paradise: A framework for evaluating spoken
dialogue agents. arXiv preprint cmp-lg/9704004, 1997. (Cited on pages 1, 3, 4, and 68.)

[139] J. X. Wang, Z. Kurth-Nelson, D. Tirumala, H. Soyer, J. Z. Leibo, R. Munos, C. Blundell, D. Kumaran,
and M. Botvinick. Learning to reinforcement learn. arXiv preprint arXiv:1611.05763, 2016. (Cited on
pages 14 and 16.)

[140] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu, and N. de Freitas. Sample efficient
actor-critic with experience replay. arXiv preprint arXiv:1611.01224, 2016. (Cited on page 73.)

[141] H. Wei, F. Zhang, N. J. Yuan, C. Cao, H. Fu, X. Xie, Y. Rui, and W.-Y. Ma. Beyond the words:
Predicting user personality from heterogeneous information. In WSDM, pages 305–314. ACM, 2017.
(Cited on page 12.)

[142] J. Weizenbaum. Eliza—a computer program for the study of natural language communication between
man and machine. Communications of the ACM, 9(1):36–45, 1966. (Cited on pages 1 and 67.)

[143] J. Weston, A. Bordes, S. Chopra, A. M. Rush, B. van Merriënboer, A. Joulin, and T. Mikolov. Towards
ai-complete question answering: a set of prerequisite toy tasks. arXiv preprint arXiv:1502.05698,
2015. (Cited on pages 68 and 85.)

[144] R. W. White. Interactions with Search Systems. Cambridge University Press, 2016. (Cited on pages 1,

94

11, and 14.)
[145] R. W. White, I. Ruthven, and J. M. Jose. Finding relevant documents using top ranking sentences: an

evaluation of two alternative schemes. In SIGIR, pages 57–64, 2002. (Cited on page 13.)
[146] R. W. White, I. Ruthven, J. M. Jose, and C. V. Rijsbergen. Evaluating implicit feedback models using

searcher simulations. ACM Transactions on Information Systems (TOIS), 23(3):325–361, 2005. (Cited
on page 24.)

[147] J. D. Williams and S. Young. Partially observable markov decision processes for spoken dialog systems.
Computer Speech & Language, 21(2):393–422, 2007. (Cited on pages 53 and 67.)

[148] J. D. Williams, M. Henderson, A. Raux, B. Thomson, A. Black, and D. Ramachandran. The dialog
state tracking challenge series. AI Magazine, 35(4):121–124, 2014. (Cited on pages 68 and 85.)

[149] J. D. Williams, K. Asadi, and G. Zweig. Hybrid code networks: practical and efficient end-to-end
dialog control with supervised and reinforcement learning. arXiv preprint arXiv:1702.03274, 2017.
(Cited on pages 1, 11, 14, 53, 54, 68, and 84.)

[150] K. Williams, J. Kiseleva, A. Crook, I. Zitouni, A. H. Awadallah, and M. Khabsa. Is this your final
answer? evaluating the effect of answers on good abandonment in mobile search. In SIGIR, 2016.
(Cited on pages 1 and 11.)

[151] K. Williams, J. Kiseleva, A. C. Crook, I. Zitouni, A. H. Awadallah, and M. Khabsa. Detecting good
abandonment in mobile search. In WWW, pages 495–505, 2016. (Cited on pages 1, 11, and 12.)

[152] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992. (Cited on pages 3 and 54.)

[153] M. Wulfmeier, P. Ondruska, and I. Posner. Maximum entropy deep inverse reinforcement learning.
arXiv preprint arXiv:1507.04888, 2015. (Cited on page 2.)

[154] C. Xing, W. Wu, Y. Wu, J. Liu, Y. Huang, M. Zhou, and W.-Y. Ma. Topic aware neural response
generation. In AAAI, volume 17, pages 3351–3357, 2017. (Cited on pages 1 and 37.)

[155] E. Yilmaz, M. Verma, N. Craswell, F. Radlinski, and P. Bailey. Relevance and effort: An analysis of
document utility. In CIKM, pages 91–100, 2014. (Cited on page 12.)

[156] L. Yu, W. Zhang, J. Wang, and Y. Yu. Seqgan: Sequence generative adversarial nets with policy
gradient. In AAAI, 2017. (Cited on pages 3, 55, and 83.)

[157] Z. Yu, L. Nicolich-Henkin, A. W. Black, and A. Rudnicky. A wizard-of-oz study on a non-task-oriented
dialog systems that reacts to user engagement. In Proceedings of the 17th annual meeting of the
Special Interest Group on Discourse and Dialogue, pages 55–63, 2016. (Cited on page 1.)

[158] J. Y. Zhang and A. D. Dragan. Learning from extrapolated corrections. In ICRA, pages 7034–7040,
2019. (Cited on page 15.)

[159] X. Zhao, L. Zhang, Z. Ding, L. Xia, J. Tang, and D. Yin. Recommendations with negative feedback
via pairwise deep reinforcement learning. In SIGKDD, pages 1040–1048, 2018. (Cited on pages 12
and 14.)

[160] G. Zheng, F. Zhang, Z. Zheng, Y. Xiang, N. J. Yuan, X. Xie, and Z. Li. Drn: A deep reinforcement
learning framework for news recommendation. In WWW, pages 167–176, 2018. (Cited on page 12.)

[161] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and A. Farhadi. Target-driven visual
navigation in indoor scenes using deep reinforcement learning. In ICRA, pages 3357–3364, 2017.
(Cited on pages 14 and 16.)

[162] B. Ziebart, A. Dey, and J. A. Bagnell. Probabilistic pointing target prediction via inverse optimal
control. In IUI, pages 1–10. ACM, 2012. (Cited on page 15.)

[163] B. D. Ziebart. Modeling Purposeful Adaptive Behavior with the Principle of Maximum Causal Entropy.
PhD thesis, Carnegie Mellon University, 2010. (Cited on page 24.)

[164] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse reinforcement
learning. In AAAI, pages 1433–1438. AAAI Press, 2008. (Cited on pages 15, 16, 20, 39, and 40.)

[165] B. D. Ziebart, J. A. Bagnell, and A. K. Dey. Modeling interaction via the principle of maximum causal
entropy. In ICML, 2010. (Cited on page 39.)

[166] V. Zue, S. Seneff, J. R. Glass, J. Polifroni, C. Pao, T. J. Hazen, and L. Hetherington. Juplter: a
telephone-based conversational interface for weather information. IEEE Transactions on speech and
audio processing, 8(1):85–96, 2000. (Cited on page 2.)

[167] V. W. Zue and J. R. Glass. Conversational interfaces: Advances and challenges. Proceedings of the
IEEE, 88(8):1166–1180, 2000. (Cited on page 2.)

95

Summary

Interactive systems are becoming more and more popular to assist humans to obtain
information or complete tasks effectively and efficiently. Building such systems re-
quires a lot of effort, and understanding what users want and designing corresponding
optimization objectives are some of the key components. The reliability of hand-crafted
objectives strongly relies on the amount of domain knowledge incorporated in them. It
becomes intractable to obtain such objectives given more and more complex systems
and user behavior. A new solution to optimizing interactive systems is in high demand
and this leads us to the overall research topic of this dissertation: optimizing interactive
systems with data-driven objectives.

In the first part of this thesis, we explore how to optimize interactive systems
without handcrafting objectives in a more general setup, where the system and the user
are both simulated. We model the interactions between users and systems with two
separate MDPs: the first one is built to infer user objectives by recovering user reward
functions from demonstrations, and the second one is for optimizing the system with the
inferred objectives in a reinforcement learning setup. Importantly, our solution requires
no domain knowledge and is thus even applicable when prior knowledge is absent.
The results in two simulated experimental setups show that the proposed two-step
optimization framework can robustly improve the interactive system’s performance.

In the second part of the thesis, we first utilize the idea of data-driven objectives
for two types of interactive systems: open-domain dialogue systems and task-oriented
dialogue systems. In terms of open-domain dialogue systems, we start by investigating
the drawbacks of existing data-driven optimization methods, namely adversarial training
in dialogue generation. We make use of the causal entropy regularization term to
stabilize the adversarial training process. Furthermore, we adopt adversarial inverse
reinforcement learning to train a dialogue generation model. Especially for the reward
model, it acts at the word level and returns the reward for the given dialogue context-
action pair. With respect to dialogue policy learning in task-oriented dialogue systems,
off-policy based reinforcement learning methods are absent in the solutions of data-
driven objectives. To make off-policy methods also benefit from data-driven objectives
in dialogue policy learning, we propose to decompose vanilla adversarial dialogue policy
training into two consecutive steps: (1) training a data-driven reward function with an
auxiliary dialogue state generator, and (2) incorporating the inferred reward function to
different reinforcement learning processes, including off-policy and on-policy methods,
to guide dialogue policy learning. Furthermore, the trained data-driven reward function
can serve as a bridge to transfer knowledge from existing domains to new domains via
reinforcement learning.

In addition to exploring the promising usage scenarios of data-driven objectives, we
also investigate the limitations and potential problems of current deep reinforcement
learning based solutions for dialogue policy learning in task-oriented dialogue systems.
Solutions for dialogue system optimization that involve reinforcement learning and
inverse reinforcement learning have become relatively sophisticated. Are we really
making progress in applying reinforcement learning to dialogue policy learning? We
demonstrate how (1) traditional supervised learning together with (2) a simulator-free
adversarial learning method can be used to achieve performance comparable to state-

97

6. Summary

of-the-art reinforcement learning methods. Our findings have questioned if the full
potential of supervised learning for dialogue policy learning has been exerted and if
reinforcement learning methods have been used in the appropriate task-oriented dialogue
system scenarios.

98

Samenvatting

Interactieve systemen genieten toenemende populariteit bij het helpen van mensen om
effectief en efficiënt informatie te vinden en taken te volbrengen. Het bouwen van
dergelijke systemen vereist veel inspanning, waarbij het begrijpen van wat gebruik-
ers willen, en de bijbehorende optimalisatie doelen opstellen, een centrale rol spelen.
De betrouwbaarheid van manueel opgestelde optimalisatie-doelen (objectives) is sterk
afhankelijk van de domeinkennis die in de doelen worden vastgelegd. Het wordt snel
onhaalbaar om dergelijke optimalisatie doelen vast te stellen voor complexe systemen
en complexe gedragspatronen. Een nieuwe oplossing voor het optimaliseren van inter-
actieve systemen is daarom sterk gewenst en vormt het onderwerp van dit proefschrift:
het optimaliseren van interactieve systemen met data-gedreven optimalisatie-doelen.

In het eerste deel van dit proefschrift verkennen wij in een generieke opstelling hoe
interactieve systemen kunnen worden geoptimaliseerd zonder handmatige optimalisatie-
doelen, waarbij zowel de gebruiker als het systeem worden gesimuleerd. We modelleren
de interacties tussen gebruikers en systemen in twee aparte MDPs: De eerste achterhaalt
de beloningsfunctie voor het systeem uit demonstraties. De tweede optimaliseert het
systeem met de gegeven optimalisatie-doelen in een Reinforcement Learning context.
De belangrijkste observatie is dat deze oplossing geen a priori domeinkennis vereist en
daardoor kan worden toegepast in omstandigheden waar domeinkennis onbeschikbaar
is. Resultaten in twee simulatie experimenten laten zien dat deze twee-staps methode
een robuuste verbetering aan interactieve systemen kan bieden.

In het tweede deel van dit proefschrift gebruiken wij de data-gedreven optimalisatie-
doel methode voor twee typen interactieve systemen: open-domein dialoog systemen
en taakgeoriënteerde dialoog systemen. Voor open-domein dialoog systemen starten we
met een onderzoek naar de problemen bij bestaande data-gedreven optimalisatie meth-
oden, namelijk adversarial learning bij dialoog-generatie. We gebruiken een causale
entropie regularisatie term om het oppositionele systeem te stabiliseren. Daarnaast
gebruiken we inverse adversarial reinforcement learning om het dialoog generatie
model te trainen. Dit werkt vooral voor de beloningsfunctie, die op woordniveau,
op basis van de dialoog context, een woord kiest en daarbij een beloning genereert
voor de gegeven dialoog context-actie paren. Bij de dialoog-beleid leertaak in het
taakgeoriënteerde dialoog systeem zijn de off-policy acties géén onderdeel van de
data-gedreven optimalisatie-doelen. Om off-policy acties te kunnen gebruiken bij
data-gedreven optimalisatie doelen van dialoog-systemen, stellen wij voor om normaal
adversarial learning op te breken in twee opeenvolgende stappen: (1) een data-gedreven
beloningsfunctie trainen met een aanvullende dialoog generator en (2) de geleerde be-
loningsfunctie integreren in andere oppositionele leerprocessen met zowel on-policy als
off-policy methodes om het leerprocess te begeleiden. Daarnaast kunnen de getrainde
beloningsfuncties worden gebruikt als brug om kennis over te brengen van bekende
domeinen naar nieuwe domeinen via versterkingsleren.

Ter aanvulling van de verkenning van veelbelovende toepassingsscenario’s van
data-gedreven optimalisatiedoelen kijken we ook naar de beperkingen en problemen
van huidige deep-learning reinforcement learning gebaseerde oplossingen voor taak-
geörienteerde dialoogsystemen. Oplossingen voor dialoogsysteem-optimalisatie door
middel van reinforcement learning en inverse reinforcement learning zijn relatief hoog

99

6. Samenvatting

ontwikkeld. Boeken we echt vooruitgang in de toepassing van versterkingsleren in
dialoogsystemen? We laten zin hoe (1) traditionele begeleid leren (supervised learning)
samen met (2) simulatorvrij oppositioneel trainen kan worden gebruikt om vergelijk-
bare resultaten te halen als state-of-the-art reinforcement learning methodes. Onze
bevindingen werpen de vraag op of het volledige potentieel van begeleid leren voor di-
aloogsystemen is benut en of reinforcement learning methodes zijn gebruikt in geschikte
scenario’s voor taakgeoriënteerde dialoog systemen.

100

