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ABSTRACT
Ranking documents using their historical click-through rate (CTR)
can improve relevance for frequently occurring queries, i.e., so-
called head queries. It is difficult to use such click signals on non-
head queries as they receive fewer clicks. In this paper, we address
the challenge of dealing with torso queries on which the production
ranker is performing poorly. Torso queries are queries that occur
frequently enough so that they are not considered as tail queries
and yet not frequently enough to be head queries either. They com-
prise a large portion of most commercial search engines’ traffic, so
the presence of a large number of underperforming torso queries
can harm the overall performance significantly. We propose a prac-
tical method for dealing with such cases, drawing inspiration from
the literature on learning to rank (LTR). Our method requires rela-
tively few clicks from users to derive a strong re-ranking signal by
comparing document relevance between pairs of documents instead
of using absolute numbers of clicks per document. By infusing a
modest amount of exploration into the ranked lists produced by a
production ranker and extracting preferences between documents,
we obtain substantial improvements over the production ranker in
terms of page-level online metrics. We use an exploration dataset
consisting of real user clicks from a large-scale commercial search
engine to demonstrate the effectiveness of the method. We con-
duct further experimentation on public benchmark data using sim-
ulated clicks to gain insight into the inner workings of the proposed
method. Our results indicate a need for LTR methods that make
more explicit use of the query and other contextual information.
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1. INTRODUCTION
An important problem in Information Retrieval (IR) is to rank the

documents retrieved in response to a query such that the informa-
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tion need of the user is satisfied as quickly as possible. Originally,
this problem was addressed by ranking documents based on their
textual similarity to the query, using a feature ranker such as BM25.
With the proliferation of such features, arose the problem of com-
bining the recommendations put forth by the multitude of features.
Machine learning algorithms rose to prominence as the preferred
solution, and this gave rise to the field of learning to rank [32, LTR].

Despite the success of LTR, invariably the learned model per-
forms suboptimally on certain queries, either due to the inadequacy
of the features or because the query does not fit the profile of the
“generic” query and since LTR methods are statistical by their very
nature, they gladly sacrifice a minority of “misbehaving” queries to
boost the overall performance across the full population. This prob-
lem might disappear with the introduction of new features or LTR
algorithms. However, given the delay involved in the development
and deployment process, it is desirable to devise a more automated
and agile method for remedying underperformance. We propose a
method for achieving this aim using implicit feedback from users.

We are particularly interested in improving the performance of
LTR algorithms on a specific class of queries: underperforming
torso queries. Torso queries are queries that occur less frequently
than head queries, but are not so rare to be considered tail queries
[33]. When sorted by frequency and split into three quantiles,
queries in the second quantile are called torso queries [23]. We
use a pragmatic definition that is given in absolute terms: queries
that receive between 10 and 200 impressions during our two-week
experimental period. Of course, the frequency of a torso query is
highly dependent on the amount of traffic a search engine encoun-
ters; often, it is high enough to render our ideas practical.

A torso query is underperforming if the document ranking pro-
duced in response to it by the production ranker is of lower qual-
ity than the best ranking according to a page-level metric of in-
terest [16, 27]. How can we use click feedback to improve the
performance of an offline trained ranker on torso queries?

The idea of using click feedback to improve search results pre-
dates many LTR algorithms in use today. For instance, Joachims
[24] proposed extracting pairwise preferences between documents
for a given query, by searching through click logs produced by an
already deployed ranker for skipped-clicked pairs: pairs of docu-
ments that appeared in one impression and the document that was
placed in the lower position was clicked, but not the one in the
higher position. Because the lower document was clicked and so
inspected, assuming that the user scanned the list in descending or-
der, we can deduce that the higher document must have also been
inspected, but not clicked, so it is likely to be less relevant.

Despite the astuteness of the observation in the last paragraph,
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without some level of exploration in the ranker that was used to
collect the click logs, the estimated preferences are biased and so
in practice, in the absence of intervention or prior assumptions [2],
this method may not be as effective as one would hope. We test
the hypothesis that, with adequate exploration, the preferences ex-
pressed by users, through their clicks, can lead to significant gains
in performance. We adapt an idea that has proven effective in su-
pervised LTR to our setting: in [5], lambda-gradients were pro-
posed as a method for reordering the documents used in training
according to their relative relevance, where the relevances were
obtained from manually-labeled assessments. Applying this idea
to the click-based preferences obtained through the procedure de-
scribed in the last paragraph, we arrive at our method, which we
call click-based lambdas and describe more explicitly in §2.2.

We test the effectiveness of click-based lambdas using real users
interacting with a commercial search engine (cf. §3). A key find-
ing in §3.5 is that, given proper exploration, click-based lambdas
can lead to significant improvements over existing LTR methods.
The most immediate application of the findings in this paper is to
remedy queries on which a production ranker is performing sub-
optimally. Given a set of queries that have been identified to be
underperforming using one of several methods developed in recent
years [16, 27, 29], they could be singled out for exploration and
re-ranking without affecting the remainder of the traffic.

In addition to experiments with real users, we conduct more con-
trolled experiments using simulated user clicks obtained from a
click model in order to help us deepen our understanding of the pro-
posed method, particularly in relation to LTR methods; see §4.1. In
particular, our results show that click-based lambdas are most ef-
fective in the case of underperforming queries; see §4.4.

Importantly, our click-based lambdas method does not general-
ize across query-document pairs. The intended practical use case
are queries on which the production ranker performs sub-optimally
and for which this performance gap fails to be remedied by making
modifications to the model. In such a situation, click-based lamb-
das can be used temporarily, as an unsupervised1 hot fix.

We address the following research questions: (RQ1) Can click
signals together with exploration be used to improve online perfor-
mance of a commercial search engine on torso queries that receive
much fewer click signals than head queries? (RQ2) To what extent
does LambdaMART (the state-of-the-art LTR method) obtain the
best ranking for each query? (RQ3) Can a combination of click
feedback obtained from exploration and scores produced by Lamb-
daMART lead to improvements over both methods? (RQ4) Is there
a relationship between the effect of click-based lambdas on a query
and the performance of the original LambdaMART model on it?

Our results are useful for IR researchers because they demon-
strate a gap that exists between what the state-of-the-art LTR algo-
rithms achieve and what could be achieved if one were to utilize
user feedback; this presents a challenge to the researcher to invent
novel methods for combining offline LTR algorithms with interac-
tion data. Another challenge is to devise improved methods for
detecting underperforming queries. Our results are useful for IR
practitioners because they provide a simple yet effective solution
for obtaining meaningful gains on torso queries, which comprise
a large portion of the traffic, particularly in the case of underper-
forming queries. Given the simplicity of the proposed method, we
believe it will be broadly useful in practice.

In summary, we provide an unbiased comparison of a click-
based ranker against both a highly optimized, commercial search
engine and the state-of-the-art LTR algorithm, LambdaMART, and
1By “unsupervised” we mean without the use of manually curated
labels.

demonstrate that using a small dose of exploration we can obtain
improvements over both. The required exploration is small enough
that the proposed method could be useful for underperforming torso
queries, affecting a large segment of the traffic.

2. METHOD
In this section, we describe our method, click-based-lambdas, as

well as the necessary background.

2.1 Background
We begin by introducing some notions and notations used in the

rest of the paper. We are concerned with improving the perfor-
mance of a production ranker on a fixed segment of the queries.
For the sake of simplicity of the exposition, we will consider a sin-
gle query in this segment, denoted q, with documents d1, . . . , dL.
The goal, then, is to order these documents so as to optimize some
metric and in this paper we will assume that the metric of interest is
a page-level online metric, which is evaluated based on the way the
users react when presented with the given ranking of d1, . . . , dL.
An instance of such a metric is page click-through rate above a cer-
tain threshold K, i.e. the probability of receiving a click on any of
the top K ranked results: we denote this by PCTR@K.

Let us point out that when considering PCTR, we may choose
to limit ourselves to satisfied clicks if need be, where a click is
deemed satisfied if the user spent 30 seconds or more reading the
clicked document or if it was the last click in the session [2]. In-
deed, inspired by previous work [11], this is a restriction that we
impose. Other popular online metrics include time to success and
session success rate. However, we use PCTR to evaluate the dif-
ferent methods under consideration here, since it is an online click-
based metric that we could safely use in the case of both the real
user data and the click model experiments.

Note that if the goal was to optimize an offline metric, such as
Discounted Cumulative Gain (DCG), which is calculated based on
annotated relevance judgments, then we could directly apply the
many LTR algorithms in the literature. However, without assuming
a particular user click model that could be used to estimate online
metrics, LTR methods cannot be used to directly address the prob-
lem of optimizing an online metric; the only option is to optimize
for an offline metric, such as DCG, which correlates well with the
online metric of interest.

Next, we briefly review the main ideas behind the state-of-the-
art LTR algorithm [7], called LambdaMART [6], which is the main
source of inspiration for our proposed method. The idea is to use a
succession of regression trees, each estimating the so-called lamb-
das, which are numbers that are assigned to each query-document
pair (q, di) and indicate how much the score assigned to di by the
previous trees needs to be modified to improve the offline metric of
interest. More precisely, consider a query q and two documents di
and dj such that di has a higher relevance score for q than dj , and
suppose that the sum of the scores assigned by the regression trees
grown so far to each document dk is sk; moreover, assume that we
are interested in an offline metric M (e.g., DCG), and let ∆Mij

denote the difference in terms ofM between the ranked list of doc-
uments sorted according to the scores sk and the same list with the
documents di and dj swapped. Note that we are assuming that this
quantity can be calculated, which is the case when dealing with of-
fline metrics that can be calculated based on relevance judgments,
but not so for online metrics, which is what we are concerned with
in this paper. Then we define

λij =
∆Mij

1 + eσ(si−sj)
, (1)



Algorithm 1 Click-based lambdas

Input: Query q, documents d1, . . . , dL and T impressions where q
was issued to the search engine, a ranking of the documents di
was displayed to the user and the resulting clicks were recorded

1: λi ← 0 for each i = 1, . . . , L
2: for t ∈ {1, . . . , T} do
3: for (i, j) such that di was clicked in impression t and dj

was not clicked, but was ranked higher than the last clicked
document do

4: λi ← λi + 1
5: λj ← λj − 1
6: end for
7: end for

Return: The documents di sorted in decreasing order of λi

where σ is a positive number that is tuned for performance in prac-
tice. Then, for each document di, λi is obtained by summing λij
over j such that document dj is less relevant than di and subtracting
λji for every document dj that is more relevant than di.

The general idea is that for every document that is ranked above
di and should be ranked below it, di gets an “up-vote” and for every
document that is ranked below di but should be above it, di gets a
“down-vote” and the sum of these votes tells us whether di should
be moved up or down in the list and how far. Then, LambdaMART
fits a new regression tree to the λi and adds the tree to the ensem-
ble. Although LambdaMART is known to be locally optimal for
optimizing offline metrics [10], the same does not necessarily hold
for online metrics that we focus on in this work.

2.2 Click-based lambdas
We propose using an online, click-based analogue of the lamb-

das used in LambdaMART to decide which documents should be
pushed to the top. Unlike LambdaMART, our method, click-based
lambdas, is unsupervised and only uses interaction data.

Algorithm 1 provides the pseudo-code for the method: given a
query q with documents d1, . . . , dL, a number of impressions re-
cording the order in which these documents were presented to vari-
ous users and the resulting clicks, we start out by setting λi = 0 for
each document di (Line 1), and updating them as described in the
following. Given an impression, suppose that the documents were
presented in the order

di1

di2 X
di3

di4 X
...

with the check mark X denoting the positions where clicks were
observed. Then, given a document di that was clicked and a doc-
ument dj that lies above the last clicked document and was not
clicked (e.g., (i, j) = (i2, i3) or (i4, i1)), we set λij = 1 and
λji = −1, which is equivalent to setting σ to 0 and ∆Mij to 1 in
(1). Given this, we update the λi as follows (Lines 4 and 5):

λi = λi + λij

λj = λj + λji.

As the discussion of LambdaMART in §2.1 indicates, it is possible
to modify the above procedure by adopting a more complex defini-
tion for λij , but in this paper we are more interested in the question
of whether or not click signals can be used to improve online per-
formance, rather than the most optimal method for doing so.

A few comments are in order: first of all, note that there are no
requirements on the ranking di1 , di2 , . . . , so it could very well be

provided by a deterministic ranker. However, the method benefits
strongly from exploration; this is due to the following observation:
consider a pair of documents di and dj that are retrieved in response
to a query q and consider the sum of the λij across all impressions
involving q; if these impressions presented random rankings, then
this sum would be an estimate of the preference that the users have
for di over dj . Now, suppose that the ranker is deterministic and
di always appears above dj ; then, the sum of the λij could never
be positive, even if di is strongly preferred to dj : it can at best be
equal to 0. Our experience with click-based lambdas confirms the
intuition that without exploration they can lead to degradation; we
do not present these negative results due to space constraints.

Given the above observations, our experiments employ two types
of exploration. In the experiments with real user clicks discussed
in §3, we use uniformly random shuffling of the top 5 documents
ranked by the production system, while for the more flexible click
model-based experiments in §4, we use a less disruptive form of
exploration obtained through interleaving the existing ranker with
a random one, which results in roughly half of the documents being
chosen randomly. The former exploration scheme was imposed
upon us due to the evaluation methodology, as discussed in §3.3.

A final comment is that our click-based lambdas method does
not generalize across query-document pairs and so it is not to be
thought of as a replacement for LTR methods, but as a remedy for
their shortcomings, and hence should be run alongside LTR meth-
ods or as a post-processing step to such methods. See §5.

3. THE PRACTICAL IMPACT OF CLICK-
BASED LAMBDAS

In this section, we address our first research question and present
our experiments on real users to test the extent to which the idea of
click-based lambdas can lead to improvements in practice over a
production ranker in a large-scale commercial search engine. We
describe our experimental setup, the data, the evaluation method
and the results.

3.1 Experimental design
In order to answer RQ1, we use click logs collected by a popular

search engine, where the results produced by the production ranker
were randomized. The purpose of the randomization is twofold.
First, we would like to test the hypothesis that infusing exploration
into the ranked lists and using the resulting feedback can lead to
improved rerankings. Secondly, and more importantly, such ran-
domized click logs allow for a counterfactual comparison of the
production ranker against the outcome of our click-based lambdas
as well as a number of other baselines discussed below without the
need to run numerous A/B tests on real users. In particular, we
compare these methods based on their performance according to
PCTR@3, as described in §2.1. Below, we detail the specifics of
our experiments and evaluation methodology.

3.2 Exploration click logs
In this section, we describe the click logs that were used in the

experiments aimed at answering RQ1. The top 5 results produced
by a commercial search engine were shuffled uniformly at random
before being presented to the users, and the clicks on the reshuf-
fled ranked list were recorded. This randomization was applied to
a fraction of the non-head queries that were issued to the search en-
gine over a period of two weeks. The data was split into two parts,
one for training the rankers being compared and the other for eval-
uation. As pointed out above, the shuffling is necessary for us to be
able to conduct unbiased evaluation of our various modifications to
the production ranker, without having to run expensive A/B tests.



Algorithm 2 Get Importance Probabilities

Input: Exploration log and evaluation cutoff K
1: for each ranking P ∈ CLK do
2: C(P ) = #{Ij | I1,...,Kj = P}
3: end for
4: IP(P ) = C(P )∑

Q C(Q)
for each P ∈ CLK

Return: IP

The choice of 5 as the number of documents to be shuffled was
motivated by the practical issue of the amount of exploration data
that would be needed for us to be able to carry out our experiments.
The difficulty with importance sampling, the technical core of the
unbiased evaluation approach as described below, in the context
of ranking is that the number of possible rankings (a.k.a. actions)
grows rapidly with the length of the list. More specifically, given
ranked lists of length L, in order to be able to evaluate the top L
results of any ranker, we would like to have all L! different impres-
sions in our randomized logs. Since 5! is equal to 120, this means
that less than 1% of the impressions in the exploration log can be
used for evaluation. Now, given that the randomization of the re-
sults was only applied to a small fraction of the non-head traffic,
shuffling even the top 6 documents would have required the ran-
domization of a far greater portion of the traffic than was allowed
by our exploration budget. It should be noted that such considera-
tions apply to the empirical evaluation protocol we adopt here, not
to the click-based lambdas approach proposed in this work.

To carry out the needed comparisons, the dataset is randomly
split into two folds of equal size: one fold is reserved for the unbi-
ased IPS evaluation (see below) and part of the other fold is used
for training. More specifically, for a given training size, nimps, we
randomly select nimps impressions per query in the training fold
and train click-based lambdas and each of the baseline algorithms
discussed above on these nimps impressions and evaluate the re-
sulting rankers using the test fold. Naturally, in the case of the pro-
duction and random rankers, we skip the training part of the above
procedure and only evaluate it on the test fold, since the produc-
tion ranker is pre-determined by the commercial search engine and
there is nothing to learn for the random ranker.

In order to avoid issues with bias, we restrict ourselves to queries
such that the top 3 documents in their impressions in the test fold
contain all 60 (= 5 × 4 × 3) possible ordered lists of 3 docu-
ments chosen out of the top 5 documents, which were shuffled in
our dataset. Imposing this restriction leaves us with 57 queries and
roughly 58,000 impressions. This restriction is put in place for the
sake of our evaluation methodology: our method click-based lamb-
das imposes no such requirement.

The above process is repeated 1000 times for training sizes nimps

going between 2 and 20 impressions per query in increments of 2
and between 20 and 200 impressions in increments of 20.

3.3 Evaluation method
We set as our main metric of interest satisfied page click-through

rate on the top 3 positions, which we denote by PCTR@3. This
is the probability that we observe a satisfied click on one of the
top 3 documents presented by the ranker, where a click is deemed
satisfied if the user spent 30 seconds or more reading the clicked
document or if it was the last click in the session. One important
reason for this choice is that at least on some (mobile) devices the
top 3 documents are visible to the users without any extra effort on
their part (i.e., without having to scroll down), and so it is desirable
to improve the quality of the top 3 results as much as possible. Of
course, for any K, given the appropriate exploration dataset, one
can replicate our experiments to evaluate for PCTR@K.

Algorithm 3 Get Importance Numerators

Input: Exploration log of length N , evaluation cutoff K and
ranker R with rankings R1, . . . , Rr

1: IN (P ) = 0 for all P ∈ CLK
2: for i ∈ {1, . . . , r} do
3: IN (Ri) = #{Ij | R(Ij) = Ri}/N
4: end for

Return: IN

Algorithm 4 Evaluate CTR@K of ranker

Input: Exploration log of length N , number of shuffled docu-
ments L, evaluation cutoff K and ranker R with rankings
R1, . . . , Rr

1: Let (d1, . . . , dK) = I1
2: Let σ1, . . . , σn ∈ CLK be permutations on K elements such

that ranking Ri orders the documents as dσi(1), . . . , dσi(K)

3: IN = Get Importance Numerators({Ij},K,R)
4: IP = Get Importance Probabilities({Ij},K)
5: nM = 0
6: nCM = 0
7: for i ∈ {1, . . . , N} do
8: P = I1,...,Ki

9: nM = nM + IN (P )/IP(P )
10: if Ii received a click on the top K documents then
11: nCM = nCM + IN (P )/IP(P )
12: end if
13: end for
14: CTR@K = nCM /nM
Return: CTR@K

Next, we explain the Inverse Propensity Scoring (IPS) evaluator
[4, 30, 31, 41] used to evaluate rankers on the exploration click logs.
To understand the basic idea, let us first consider the situation with a
single query, i.e., we will fix a query q andL documents d1, . . . , dL
that need to be ranked in response to the issued query q. Let us
also assume that all permutations of the L documents have been
presented to users and the clicks have been logged. Then, given any
ranker and any page-level metric, we can extract all impressions in
our exploration log that order the L documents in the same way
as our ranker and evaluate the metric on those impressions only.
Such a procedure is statistically equivalent to an actual A/B test, so
will give us an unbiased estimate of the metric on the given ranker;
consequently, this estimate converges to the true value of the metric
given enough exploration data.

This basic idea needs to be modified to address both the existence
of multiple queries and the case that the ranker under consideration
does not produce the same ranking of the documents d1, . . . , dL
in every impression (e.g., due to personalization). To deal with
this, we make use of importance sampling to evaluate the metric
by treating the impressions in the randomized log as samples from
a “source” distribution and the rankings produced by the ranker
we would like to evaluate as samples from a “target” distribution.
Then, we weight the contribution of each matching impression by
the ratio of the probability of observing the given impression under
the target and the source distributions: these probabilities are cal-
culated from the data using Algorithms 3 and 2, respectively. These
ratios are then combined as in Algorithm 4 to get the desired esti-
mate. Since we are interested in PCTR@K, we can use impressions
that match only the top K results produced by our ranker. Below,
we provide the details of the IPS evaluator.

DEFINITION 1. We denote by CLK the set of K-element ordered
subsets (called “rankings”) of the documents d1, . . . , dL. Note that
the size of CLK is equal to L!/(L−K)!.



Suppose we are given an exploration log, by which we mean im-
pressions I1, . . . , IN , each consisting of some permutation of the
documents d1, . . . , dL, such that for each ranking P ∈ CLK , there
is one impression, Ij , in the log such that the ordered subset of
top K documents (denoted by I1,...,Kj ) matches P . Algorithm 2
calculates the probability of seeing each ranking P in the log.

Moreover, let R be a ranker that assigns one of the rankings
R1, . . . , Rr ∈ CLK to each impression. We will denote by R(Ij)
the ranking that R assigns to the j-th impression. Algorithm 3 cal-
culates the probability of encountering each Rj in the log.

Algorithm 4 loops through the N impressions and whenever
there is a match between R(Ij) and I1,...,Kj , it increments the
number of matches (i.e. nM ) by the ratio between IN(I1,...,Kj )
and IP (R(Ij)), and if additionally there was a click on the top K
documents, we also increment the number of clicked matches (i.e.
nCM ). The algorithm returns the ratio of the final nM and nCM .

3.4 Baselines
We compare click-based lambdas to the following baselines,

which are applied to the same nimps impressions used to calculate
our click-based lambdas:
CTR ranker: Given a query, for each of the top 5 ranked docu-

ments, we record its click-through rate (CTR), which is equal
to the number of times the document received a click divided
by the number of times it was displayed (i.e., the number of
times the query was issued). The CTR ranker then sorts the
documents in decreasing order of their CTRs.

CTR1 ranker: Same as above with CTR replaced by CTR1, i.e.,
the number of times the document was clicked while at the top
of the list divided by the number of times it appeared there.

Position bias corrected CTR ranker: This is a modification of
the CTR ranker, where the clicks are counted as follows: given
a query q appearing in impressions I1, . . . , IN , we first count
for each j the number, nj , of impressions with clicks at the jth

position; now, given an impression with a click on document d
that appears at the jth position, instead of incrementing the nu-
merator of the CTR for document d by 1 as in the CTR ranker,
we add 1/nj . The idea is that if you are half as likely to get a
click on the second position than on the first position in a col-
lection of randomly shuffled result pages, then receiving a click
on the second position is worth two clicks on the first position.

In addition to the above, we also compare against the production
and random rankers, where the random ranker shuffles the top 5
results produced by the production ranker.

3.5 Results
In this section, we provide results to answer RQ1. We make

use of the experimental setup outlined in §3.1. The average perfor-
mances (determined over the 1,000 repetitions described at the end
of §3.2) are depicted in Fig. 1, with 95% confidence bands drawn
around each mean curve. Moreover, the results are normalized by
the performance of the production ranker.

As these results illustrate, even with as few as 20 shuffled im-
pressions per query, all four click-based methods improve signif-
icantly upon the production ranker, with three of them giving im-
provements even with as few as 10 impressions (click-based lamb-
das, CTR ranker, Bias corrected CTR ranker). Moreover, click-
based lambdas give us the largest boost as the number of impres-
sions grows.

Furthermore, inspecting the plot more closely, one can make the
following observations:
• The performances of both the click-based lambdas method and

the CTR1 ranker improve as the training size increases, whereas

that does not seem to be the case with the CTR ranker and its
position bias corrected variant.
• For training sizes that are equal to 80 impressions per query or

larger, click-based lambdas significantly outperform all other
methods.
• Despite the asymptotic flaw of the two CTR rankers, they ap-

pear to be very sample efficient, as even 6 randomized impres-
sions per query suffice for them to improve upon the production
ranker.
• The position bias correction employed here does not remedy

the shortcomings of the CTR ranker, since the results of the two
rankers (the CTR ranker and its position bias corrected version)
are intertwined with each other.

The most perplexing of these observations are those involving the
CTR ranker and its bias corrected variant, which seem to suggest
that CTR can result in non-trivial improvements quickly, but then it
hits a ceiling. We are not aware of any user models that can explain
this, so we leave it as future work to come up with an explanation.

Given these results, we can answer RQ1 in the affirmative, with
the addition that relative comparisons between documents can lead
to the largest improvements, as demonstrated by the click-based
lambdas method. Importantly, this can be done efficiently enough
to be useful for torso queries (with between 10 and 200 impressions
in our exploration log), hence our click-based lambdas method has
the potential to positively affect a large portion of the traffic.

4. ANALYZING THE IMPACT OF CLICK-
BASED LAMBDAS

In this section, we take a closer look at the click-based lambdas
method in an attempt to gain a deeper understanding of its inner
workings. To this end, we conduct experiments using simulated
clicks generated by a click model. This allows us to acquire a more
detailed understanding of the effect of click-based lambdas and to
investigate less severe forms of exploration. We opted for a more
artificial experimental setup because of both the extra flexibility and
the added control over the production ranker that it affords us. As
we will see, in this setup we can dissect the results using quantities
that cannot even be calculated in the case of real click logs.

4.1 Experimental design
The click model [8] we use for this set of experiments is a prob-

abilistic version of the cascade click model [9, 15, 18], which in-
spects the documents in the result list from top to bottom and clicks
on each document with a probability that depends on its relevance
and abandons the search with another probability, which also de-
pends on the current document under examination: note that we
allow for more than one click on a result page. This click model
is applied to the MSLR Web-30K [34] and Yahoo! Learning to
Rank Challenge [7] datasets; see Table 1 for the specifics of these
datasets. In particular, the documents in these datasets are assigned
one of five relevance labels and we use the parameters specified
by the navigational click model described in previous work [20] to
set the click and abandonment probabilities, which depend on the
relevance of the document being examined by the simulated user.

One important benefit of this setup is that it allows us to compute
the normalized page click-through rate, denoted nPCTR, of a page,

Table 1: The specifics of the datasets used.

Datasets Queries URLs Features

MSLR-WEB30K [34] 31, 531 3, 771, 125 136
YLR Set 1 [7] 29, 921 709, 877 519
YLR Set 2 [7] 6, 330 172, 870 596
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Figure 1: Page CTR@3 results for increasing numbers of impressions per query. The right plot is a zoomed version of the left one.

which we define as follows:

DEFINITION 2. Given a click model, a query q and ranked doc-
uments d1, . . . , dL, we define nPCTR@K of the ranked list to be
equal to PCTR@K of the ranked list divided by the PCTR@K of
the perfect ranking, i.e., the one obtained by sorting the documents
in descending order of relevance.

Note that PCTR is related to nPCTR in the same way that Dis-
counted Cumulative Gain (DCG) is related to Normalized DCG
(NDCG). Even though our ultimate objective is to optimize for
PCTR, the utility of nPCTR is in that it gives us an indication of
how suboptimal our ranked list is. Note that PCTR might be small
because either there are no relevant documents to present or the
ranked list is of low quality: nPCTR resolves this uncertainty by
only measuring the quality of the ranker, rather than that of the
documents being ranked. We will make extensive use of this met-
ric in our click model based experiments in order to get a better
understanding of the aggregate results, as explained below.

Using this setup, we carry out three sets of experiments:
1. To address RQ2, we consider a per query decomposition of

the performance of an offline-trained LambdaMART model ac-
cording to the nPCTR performance of each query: by an offline-
trained model, we mean one that has been trained on the manu-
ally produced relevance judgments provided with our LTR data-
sets. This gives us a more detailed understanding of how subop-
timal the performance of LambdaMART is across queries. The
results are presented in §4.2.

2. To address RQ3, we interleave the above LambdaMART
model with a random ranker for a fixed number of impressions
for each query and combine the resulting click-based lambdas
with the scores produced by LambdaMART in various ways and
compare the performance of the resulting ranker against that of
the off-line model. The results are presented in §4.3.

3. To address RQ4 and better understand the performance
changes observed in the last set of experiments, we consider
a decomposition of the results into query segments according
to the performance of the LambdaMART ranker on the query,
where performance is measured according to nPCTR. The re-
sults are provided in §4.4.

The rationale behind the type of exploration experiment carried
out in the two sets of experiments outlined above is the following:
given a set of queries on which our production ranker is perform-
ing substantially worse than the ideal ranker, it might be easier to
motivate an exploration scheme where a certain fraction of the top
results are chosen at random, rather than a complete shuffling of the

results as in the case of the exploration click log used in §3. Note
that in the case of the latter, complete shuffling was necessary to
facilitate offline evaluation of the re-ranking schemes investigated
in this paper, but it is not necessary for the methods themselves.

4.2 Detailed analysis of the performance of
LambdaMART

Given the results in §3, a natural question is how close the results
produced by LTR models are to being optimal across queries. This
question is interesting because it offers us a deeper understanding
of whether or not there is a need for paying closer attention to in-
dividual queries. This is the purpose of RQ2. In order to address
it, we take a closer look at the quality of the rankings produced
by a parameter-tuned2 LambdaMART model trained on two large
datasets and inspect the nPCTR of the queries in the dataset, as
measured using the click-model experimental setup described in
§4.1. The motivation for using nPCTR, as opposed to PCTR, is
that the former is a more direct indicator of the quality of the ranker,
regardless of the relevance of the documents in the dataset.

More precisely, using a large parameter sweep, we train Lambda-
MART models using the training folds of the MSLR and Yahoo!
Set 13 datasets; we also use the validation fold to regularize the
number of trees grown by the model through early stopping of the
tree growing process if no improvement on the validation set was
observed after the addition of 50 consecutive trees. Given all mod-
els trained in this manner, the model with the highest nPCTR@3
performance on the validation fold is evaluated on the test fold,
keeping track of the performance on individual queries.

Before proceeding to the results, let us address the issue of the
target metric used by LambdaMART: we use PCTR, nPCTR and
NDCG with cut-offs of 3, 5 and 10 in the training process. It turns
out that the model with the highest nPCTR@3 performance uses
NDCG as the training metric. This is probably because NDCG is
an easier objective function to optimize than PCTR and nPCTR
perhaps because of the discounting used in NDCG, which might
make it a more slowly varying metric as a function of the ranking.

2Meaning that the parameters used by LambdaMART, e.g., max
tree depth, have all been tuned. In machine learning this is some-
times called “hyperparameter-tuned.”
3For the results in this section and the ones that follow, we leave
out Yahoo! Set 2 because the results of the two subsets of the Ya-
hoo! were qualitatively similar, so we chose to leave those plots
out of this presentation, in order to leave room for a more detailed
discussion of the results.
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Figure 2: Histogram of the nPCTR@3 performance of LambdaMART on individual queries in the MSLR and Yahoo! datasets.

The plots in Fig. 2 show histograms of the nPCTR@3 perfor-
mance of the parameter-tuned LambdaMART model selected as
above on the individual queries in the test fold of the MSLR and Ya-
hoo! Set 1 datasets. The most clear distinction between the two sets
of results is that the ranking results produced by the model that was
trained on the larger of the two datasets (i.e. MSLR) tend to be of
much lower quality: in the case of the Yahoo! dataset, for roughly
55% of the queries, the PCTR@3 of our LambdaMART model is
90% of PCTR@3 of the ideal ranking (i.e. their nPCTR@3 is at
least 0.9), whereas in the case of the MSLR dataset this is true of
less than 23% of the queries.

We hypothesize that the above discrepancy is due to the follow-
ing: even though the specific features that accompany the Yahoo!
dataset are not specified, according to the overview provided by
the challenge organizers [7], the feature set contains many click
features, which could potentially aid in training a model that per-
forms better on online metrics. In contrast, there are only three
features among the 136 included with the MSLR dataset that per-
tain to clicks (cf. the feature list in [34]). Also, another potential
explanation could be that the MSLR dataset has many more doc-
uments per query than the Yahoo! one, so this might hinder the
ability of LambdaMART to learn the ideal ranking for each query.

Given the above observations, we see that the answer to RQ2
depends to a large extent on the quality of the features used to train
the model, but that a large fraction of the queries tend to under-
perform: for instance, our results for the Yahoo! dataset show that,
in the case of more than 30% of the queries, the LambdaMART
model attains nPCTR@3 of 0.8 or lower; in other words, there is
room for a 20% improvement in the PCTR@3 of almost a third of
the queries. In the case of the MSLR dataset, the same holds for
more than 60% of the queries.

4.3 Click-based lambdas vs. LambdaMART
In this section, we continue using our click-model based setup

to examine the effect that click-based lambdas have on page-level
performance of our LambdaMART model. In particular, we inter-
leave the offline-trained ranker against a random ranker, using the
Team Draft interleaving procedure [39], and calculate click-based
lambdas using the procedure described in §2.2. Please note that in-
terleaving is used as a mechanism for introducing randomness into
the ranked lists for the purpose of exploration, rather than the usual
goal of comparing two rankers. This is performed for various num-
bers of interleaved impressions per query (denoted nimps). We then
consider convex combinations of the resulting click-based lambdas
and the scores produced by our LambdaMART model and evaluate
the resulting rankers. The reason for considering convex combina-

tions of the LambdaMART scores and the click-based lambdas is
to make use of the information provided by both methods.

The plots in Fig. 3 illustrate the results of these experiments on
the MSLR and the Yahoo! datasets for 5 different values of nimps.
As with the results in the previous section, there are qualitative
differences between the results for the two datasets:
• After 20 interleaved impressions, click-based lambdas already

outperform LambdaMART in the case of the MSLR dataset: to
see this, note that in the bottom curve in the left plot in Fig. 3,
the right end (i.e., where α = 1), which corresponds to click-
based lambdas, is higher than the left end (i.e., α = 0), which
corresponds to LambdaMART. On the other hand, in the case of
the Yahoo! dataset, we need more impressions for click-based
lambdas to outperform LambdaMART on their own.
• In the case of the MSLR dataset, given 100 interleaved im-

pressions, there is very little that is gained from combining the
scores of LambdaMART with click-based lambdas over how
the latter was performing, which is in contrast to the Yahoo!
dataset, on which even 100 interleavings against the random
ranker are not enough to render the offline model unnecessary.

We attribute these differences to the worse performance of the
LambdaMART model trained on the MSLR dataset; see §4.2.

Irrespective of the difference between the results for the two
datasets, what can be readily observed in both plots is that even
after a small number of impressions for which the ranked re-
sults produced by LambdaMART are interleaved with a random
ranker, the scores produced by LambdaMART can be modified us-
ing click-based lambdas to produce significantly improved ranked
lists. Thus, the answer to RQ3 is affirmative: using a modest
amount of exploration, involving randomly selecting roughly half
of the documents in 20 impressions, we can combine the result-
ing click-based lambdas with the LambdaMART scores to obtain
substantial improvements over the LambdaMART model as well
as click-based lambdas themselves.

4.4 Decomposition of the effect of click-based
lambdas

Here, we inspect more closely the effect that combining click-
based lambdas with LambdaMART scores has on individual
queries. This is done by considering one particular value of α (as in
§4.3) and investigating the change in performance, compared to the
original LambdaMART model, on a per query basis. We then group
the queries according to their performance under LambdaMART.

The two plots in Fig. 4 depict this decomposition for the MSLR
and the Yahoo! datasets when α and nimps are set to be 0.1 and
100, respectively: the value of α is set to 0.1 because in all of the
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Figure 3: PCTR@3 of convex combinations of LambdaMART with click-based lambdas.

curves in the two plots in Fig. 3 the value at α = 0.1 is roughly
close to the maximum, so this seems like a good practical guess for
α in the absence of more detailed knowledge of the performances;
moreover, we chose the number of interleaved impressions to be
large to get a better understanding of the changes in the “limit” as
the amount of exploration becomes large.

In both plots in Fig. 4 the horizontal axis groups queries accord-
ing to nPCTR@3 of the LambdaMART model, while the vertical
axis measures the change in PCTR@3 as click-based lambdas are
added to the scores produced by LambdaMART. Perhaps the most
prominent phenomenon in these plots is that most of the degrada-
tion caused by click-based lambdas occurs in the case of queries
on which the performance of the original LambdaMART model is
rather close to being optimal. This is rather obvious in the case
of the Yahoo! dataset, where the majority of the degradations are
caused by queries on which the nPCTR@3 of the LambdaMART
model is higher than 0.975, i.e., those represented by the right-most
red bar in the bottom plot in Fig. 4. However, this is also the case
in the case of the MSLR dataset, although perhaps in a slightly less
extreme form. We consider this finding to be a positive one, since it
implies that if one can determine queries on which the production
ranker’s performance is close to being optimal, then we can avoid
applying the ideas presented in this paper to those queries and avoid
the pitfall of ruining the ranked lists produced by LambdaMART
where they are performing well, leading to more effective use of
the signals harvested from the exploration data.

In other words, RQ4 can be answered in the affirmative: click-
based lambdas tend to help most in the case of queries that are
underperforming under the offline-trained LambdaMART model,
so given an identification of such queries, it is advisable to apply
the method proposed in this paper to those queries only.

4.5 Summary
The issue of underperforming queries is one that LambdaMART

grapples with in most cases. Click-based lambdas used in conjunc-
tion with a small amount of exploration can lead to significant im-
provements, in particular when combined with the scores produced
by the original LambdaMART model. This suggests that a practi-
cal solution can be devised to remedy the underperforming queries
affecting our ranker’s performance, which we discuss next.

5. PRACTICAL CONSIDERATIONS
In this section, we say a few words about one possible use-case

for the click-based lambdas method. This is in particular relevant
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Figure 4: PCTR@3 improvements and degradations of queries
if LambdaMART were to be replaced by LambdaMART +
0.1 × Lambdas: the queries are grouped by their nPCTR@3
under LambdaMART. The green boxes take account of queries
whose PCTR@3 improves by the transition from Lambda-
MART to LambdaMART + 0.1×Lambdas, while the red boxes
correspond to queries that would suffer a loss. The height
of each box shows the average change in the PCTR@3 of the
queries in that bin and the width measures the number of
queries in the bin: so, the area of the box is an indication of
the effect that the changes in the performances of the queries in
the given box have on the overall performance.

given the fact that all of the methods discussed in this paper are
query-document specific, in the sense that the outcome is a re-
ranking of a specific set of documents for each query, with no
generalization across query-document pairs. This of course does
not conform to the regular mold of LTR methods. However, as
we describe below, our method can be used in conjunction with
them. The idea is that even though eventually better features and
LTR algorithms might be devised that could address the shortcom-



ings of the existing ranker, we would like to get better results right
away, rather than waiting for the invention and deployment of an
improved system. We see this as a more automated alternative to
rule-based patches that try to deal with specific types of queries.

Let us now address the issue of implementation in practice: given
a set of underperforming queries and their corresponding ranked
lists of documents provided by click-based lambdas, we can sim-
ply use the existing features to fit a (potentially large) regression
tree to the lambdas. Note that the goal here is not generalizability,
so the regression tree is simply a compression mechanism. More-
over, given a binary feature that singles out our underperforming
queries, we can add a node to the top of the above tree to make sure
it is only applied to the relevant query-document pairs. This mod-
ified tree can then be added to our existing ranker, either as a post
processing step or as an additional tree in our existing ensemble of
trees: in the latter case, we can modify the existing trees by adding
the same underperforming query identification to the root of each
tree to make sure the existing ranker is not applied to the queries
for which we have click-based lambdas. In this way, we incorpo-
rate the re-rankings learned by our method into the existing ranker
without the need to alter the existing infrastructure dramatically.

A natural question at this point is whether or not it is possible to
use click-based lambdas to modify the LTR model globally, rather
than restricting the modification to the underperforming queries.
Preliminary results involving numerous attempts at augmenting the
LambdaMART model resulted in no improvements in the overall
performance of the ranker beyond that of the original Lambda-
MART model that was trained on the relevance judgments.

As the experimental results in §3.5 demonstrate, a few dozen
randomized impressions is all that is required to obtain non-trivial
improvements. So, given, e.g., a query that is issued a few hun-
dred times a week, using our click-based lambdas method, ob-
taining improvements over the course of a month is easily within
reach, even assuming that no more than 20% of the impressions
can be tampered with for the purpose of exploration. In the case
of many popular retrieval systems, be it web search engines or rec-
ommender systems, the rough requirements outlined above apply
to torso queries.4

6. RELATED WORK
In addition to the work on evaluation (based, in particular, on

inverse propensity scoring and click models) discussed in §3.3
and §4.1, we discuss related work on implicit feedback, exploration
and online learning to rank, and ranker specialization.

6.1 Implicit feedback
Learning from user feedback has a rather long history in IR

[1, 11, 22, 24, 36], much of it predating many of the major break-
throughs in LTR. As a result of that, many of the experimental re-
sults in the literature on this topic need to be revisited, given that
the baselines used for comparison are substantially weaker than the
LTR models [7] and features [42] in use today. Extensive user stud-
ies indicate that user clicks can be of great use in inferring the rel-
ative relevance of documents to a given query [25]. Given this, a
natural question is whether implicit feedback can still be useful de-
spite a decade of advances in LTR. Our results show that the answer
is yes.

An important exception to the above criticism regarding the
weakness of the baselines is [35], which is the work most closely

4This argument also applies to head queries, but the sample effi-
ciency demonstrated here is more likely to be of greater signifi-
cance in the case of the less frequent queries.

related to ours. Like us, the authors use a commercial search en-
gine as their main baseline. Their method corresponds to our CTR1
baseline, which our results in §3.5 show to be less efficient than
click-based lambdas in learning a good ranking. Also, CTR1 only
takes into account documents that appear in the first position, so it is
important that each document appears in the top position relatively
often. Another important difference between this work and [35]
is the latter’s focus on recency ranking, which is solely concerned
with queries with shifting intent; we make no such assumption.

6.2 Exploration and online LTR
Another body of work related to ours is that of online LTR, where

the goal is to balance exploration and exploitation [17, 26] while
improving the ranker incrementally [14, 19, 21, 28, 37, 38, 40, 43].
This is in contrast to the “explore first” strategy investigated in this
paper, where the exploration is carried out entirely before we set
out to extract a ranker from the data. The advantage of the adaptive
exploration scheme is in its potential ability to avoid unnecessary
exploration, however such online schemes are generally very diffi-
cult to utilize in industrial applications, both for technical and busi-
ness reasons. On the other hand, the exploration schemes discussed
here are not as sophisticated, but they tend to be much easier use
in practice. In particular, in the case of underperforming queries,
where there is compelling evidence that the existing ranker is per-
forming poorly, it is much easier to make the case for exploration.

6.3 Underperforming queries
One group of queries that have generated special attention and

inspired work on ranker specialization are so-called underperform-
ing queries [16, 27]. As discussed in §4.4, click-based lambdas
are most effective in the case of underperforming queries and most
harmful in the case of queries on which the production ranker
is performing well, so the method would benefit greatly from
prior knowledge of the quality of the existing ranker on individ-
ual queries. We have not made use of such underperforming query
detection techniques for the experiments in §3 and the results pre-
sented in §3.5 are not restricted to underperforming queries. Such a
restriction would of course inflate the improvements in the perfor-
mance of click-based lambdas compared to the production ranker.

One solution for dealing with underperforming queries is ranker
specialization [3, 12, 13, 16], where one explicitly takes into ac-
count the fact that queries vary significantly in terms of ranking
and may need different treatments. The general idea is to cluster
“similar” queries into different groups, based on different notions
of similarity, and train a specialized ranker for each cluster. The
main issue with this body of work is the weakness of the baselines
used for comparison because the models used for the specialized
rankers are linear and so are those of the baselines. It remains an
interesting open question to apply the same idea with more com-
plex models such as ensembles of trees.

7. CONCLUSION
We have investigated the use of click feedback together with ex-

ploration to improve upon learning to rank (LTR) methods. We
have carried out comparisons against both a commercial search
engine, using real users, and the state of the art LTR algo-
rithm, LambdaMART, using a well-established simulated user
model. Furthermore, we experimented with two different explo-
ration schemes: random shuffling of top L documents produced by
the production ranker in use, for some fixed number L, and inter-
leaving the results of the ranker against a random ranker.

The results of these experiments demonstrate that significant im-
provements can be obtained in terms of page-level online metrics,



in particular when employing relative comparisons between doc-
uments as with our click-based lambdas method. We provide a
simple yet efficient remedy to close the gap between the online
performance of LTR methods and that of click-based methods in
the case of underperforming torso queries.

We have focused on exploration methods that are simple and eas-
ily implementable. A more sophisticated exploration scheme that
actively adapts to user feedback (e.g., [37]) is likely to reduce the
amount of exploration needed to obtain meaningful gains, but the
added complexity makes it more challenging to use. The question
of what exploration scheme would lead to the largest gains while
minimizing the adverse effect on user experience remains an in-
teresting open problem. Another natural question arising out of
this work is that of improved methods for detecting underperform-
ing queries. One approach could be to use guided exploration in
the presented results to detect changes in the performance of the
ranker. We conjecture that the gap between the performance of the
LTR methods and that of the click-based methods explored here is
due to the context-insensitivity of the current state of the art, tree-
based LTR algorithms, which tend not to make extensive use of
query features, as well as other contextual features. If true, then a
natural direction for further research would be to devise LTR algo-
rithms that make better use of contextual information.
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