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Abstract

This paper proposes a new method for the
K-armed dueling bandit problem, a variation
on the regular K-armed bandit problem that
offers only relative feedback about pairs of
arms. Our approach extends the Upper Con-
fidence Bound algorithm to the relative set-
ting by using estimates of the pairwise prob-
abilities to select a promising arm and apply-
ing Upper Confidence Bound with the winner
as a benchmark. We prove a sharp finite-time
regret bound of order O(K log T ) on a very
general class of dueling bandit problems that
matches a lower bound proven in (Yue et al.,
2012). In addition, our empirical results us-
ing real data from an information retrieval
application show that it greatly outperforms
the state of the art.

1. Introduction
In this paper, we propose and analyze a new algorithm,
called Relative Upper Confidence Bound (RUCB), for
the K-armed dueling bandit problem (Yue et al., 2012),
a variation on the K-armed bandit problem in which
the feedback comes in the form of pairwise preferences.
We assess the performance of this algorithm using one
of the main current applications of the K-armed du-
eling bandit problem, ranker evaluation (Joachims,
2002; Yue & Joachims, 2011; Hofmann et al., 2013b),
which is used in information retrieval, ad placement
and recommender systems, among others.

The K-armed dueling bandit problem is part of the
general framework of preference learning (Fürnkranz
& Hüllermeier, 2010), where the goal is to learn, not
from real-valued feedback, but from relative feedback,
which specifies only which of two alternatives is pre-
ferred. Developing effective preference learning meth-
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ods is important for dealing with domains in which
feedback is much more reliable if given in the form of
a comparison (e.g., when provided by a human) and
specifying real-valued feedback instead would be arbi-
trary or inefficient.

Other algorithms proposed for this problem are Inter-
leaved Filter (IF) (Yue et al., 2012), Beat the Mean
(BTM) (Yue & Joachims, 2011), and SAVAGE (Ur-
voy et al., 2013). All of these methods were designed
for the finite-horizon setting, in which the algorithm
requires as input the exploration horizon, T , the time
by which the algorithm needs to produce the best arm.
The algorithm is then judged based upon either the ac-
curacy of the returned best arm or the regret accumu-
lated in the exploration phase.1 All three of these al-
gorithms use the exploration horizon to set their inter-
nal parameters so that, for each T , there is a separate
algorithm IFT , BTMT and SAVAGET . By contrast,
RUCB does not require this input, making it more
useful in practice, since a good exploration horizon is
often difficult to guess. Nonetheless, RUCB outper-
forms these algorithms in terms of the accuracy and
regret metrics used in the finite-horizon setting.

The main idea of RUCB is to maintain optimistic esti-
mates of the probabilities of all possible pairwise out-
comes, and (1) use these estimates to select a potential
champion, which is an arm that has a chance of be-
ing the best arm, and (2) select an arm to compare to
this potential champion by performing regular Upper
Confidence Bound (Agrawal, 1995) relative to it.

We prove a finite-time high-probability bound of
O(K log T ) on the cumulative regret of RUCB, from
which we deduce a bound on the expectation and all
higher moments of cumulative regret. These bounds
rely on substantially less restrictive assumptions on the
K-armed dueling bandit problem than IF and BTM
and have better multiplicative constants than those of
SAVAGE. Furthermore, our bounds are the first ex-

1These terms are formalized in Section 2.
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plicitly non-asymptotic results for the K-armed duel-
ing bandit problem.

More importantly, the main distinction of our result
is that it holds for all time-steps. By contrast, given
an exploration horizon T , the results for IF, BTM and
SAVAGE bound only the regret accumulated by IFT ,
BTMT and SAVAGET in the first T time-steps.

Finally, we evaluate our method empirically using real
data from an information retrieval application. The
results show that RUCB can learn quickly and effec-
tively and greatly outperforms BTM and SAVAGE.

The main contributions of this paper are as follows:
• A novel algorithm for the K-armed dueling bandit

problem that is more broadly applicable than exist-
ing algorithms,

• Regret bounds that make significantly less restric-
tive assumptions than IF and BTM, have better
multiplicative constants than the results of SAV-
AGE, apply to all time-steps, and match an existing
asymptotic lower bound,

• A novel proof technique that allows us to obtain
the first logarithmic high probability regret bound
for a UCB-type algorithm that does not require the
probability of failure to be passed to the algorithm
as a parameter: as a corollary, we also get the first
logarithmic bounds on all higher moments of the
cumulative regret for all times, and

• Experimental results, based on a real-world applica-
tion, demonstrating the superior performance of our
algorithm compared to existing methods.

2. Problem Setting
The K-armed dueling bandit problem (Yue et al.,
2012) is a modification of the K-armed bandit prob-
lem (Thompson, 1933): the latter considers K arms
{a1, . . . , aK} and at each time-step, an arm ai can
be pulled, generating a reward drawn from an un-
known stationary distribution with expected value µi.
The K-armed dueling bandit problem is a variation in
which, instead of pulling a single arm, we choose a pair
(ai, aj) and receive one of them as the better choice,
with the probability of ai being picked equal to an un-
known constant pij and that of aj equal to pji = 1−pij .
We define the preference matrix P = [pij ], whose ij
entry is equal to pij .

In this paper, we assume that there exists a Condorcet
winner (Urvoy et al., 2013): an arm, which without
loss of generality we label a1, such that p1i >

1
2 for all

i > 1. Given a Condorcet winner, we define regret for
each time-step as follows (Yue et al., 2012): if arms
ai and aj were chosen for comparison at time t, then

regret at that time is rt :=
∆i+∆j

2 , with ∆k := p1k− 1
2

for all k ∈ {1, . . . ,K}. Thus, regret measures the aver-
age advantage that the Condorcet winner has over the
two arms being compared against each other. Given
our assumption on the probabilities p1k, this implies
that r = 0 if and only if the best arm is compared
against itself. We define cumulative regret up to time
T to be RT :=

∑T
t=1 rt.

The goal of a bandit algorithm can be formalized in
several ways. We consider two standard settings:
1. The finite-horizon setting, in which the algorithm is

told in advance the exploration horizon, T , i.e., the
number of time-steps that the evaluation process is
given to explore before it has to produce a single
arm as the best, which will be exploited thence-
forth. In this setting, the algorithm can be assessed
on its accuracy, the probability that a given run of
the algorithm reports the Condorcet winner as the
best arm (Urvoy et al., 2013), which is related to
expected simple regret : the regret associated with
the algorithm’s choice of the best arm, i.e., rT+1

(Bubeck et al., 2009). Another measure of success
in this setting is the amount of regret accumulated
during the exploration phase, as used in the explore-
then-exploit problem formulation (Yue et al., 2012).

2. The horizonless setting, in which no horizon is spec-
ified and the evaluation process continues indefi-
nitely. Thus, it is no longer sufficient for the algo-
rithm to maximize accuracy or minimize regret af-
ter a single horizon is reached. Instead, it must min-
imize regret across all horizons by rapidly decreas-
ing the frequency of comparisons involving subop-
timal arms, particularly those that fare worse in
comparison to the best arm. This goal can be for-
mulated as minimizing the cumulative regret over
time, rather than with respect to a fixed horizon
(Lai & Robbins, 1985).

All existing K-armed dueling bandit methods target
the finite-horizon setting. However, we argue that
the horizonless setting is more relevant in practice for
the following reason: finite-horizon methods require a
horizon as input and often behave differently for differ-
ent horizons. This poses a practical problem because
it is typically difficult to know in advance how many
comparisons are required to determine the best arm
with confidence and thus how to set the horizon. If
the horizon is set too long, the algorithm is too ex-
ploratory, increasing the number of evaluations needed
to find the best arm. If it is set too short, the best arm
remains unknown when the horizon is reached and the
algorithm must be restarted with a longer horizon.

Moreover, any algorithm that can deal with the hori-
zonless setting can easily be modified to address the
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finite-horizon setting by simply stopping the algorithm
when it reaches the horizon and returning the best
arm. By contrast, for the reverse direction, one would
have to resort to the “doubling trick” (Cesa-Bianchi
& Lugosi, 2006, Section 2.3), which leads to substan-
tially worse regret results: this is because all of the up-
per bounds proven for methods addressing the finite-
horizon setting so far are in O(log T ) and applying
the doubling trick to such results would lead to regret
bounds of order (log T )2, with the extra log factor com-
ing from the number of partitions.

To the best of our knowledge, RUCB is the first K-
armed dueling bandit algorithm that can function in
the horizonless setting without resorting to the dou-
bling trick. We show in Section 4 how it can be
adapted to the finite-horizon setting.

3. Related Work
The first two methods proposed for the K-armed du-
eling bandit problem are Interleaved Filter (IF) (Yue
et al., 2012) and Beat the Mean (BTM) (Yue &
Joachims, 2011), both of which were designed for a
finite-horizon scenario. These methods work under
the following restrictions: a total ordering of the arms,
Stochastic Triangle Inequality (STI) and either Strong
Stochastic Transitivity (SST) in the case of IF or Re-
laxed Stochastic Transitivity (RST) with parameter γ
(for BTM); γ, which measures the degree to which SST
fails to hold, needs to be passed to the algorithm: the
higher γ is, the more challenging the problem becomes,
with SST holding when γ = 1 (cf. §8.1 of the supple-
mentary material for formal definitions and evidence
that these assumptions are often violated in practice).

Given these assumptions, the following regret bounds
have been proven for IF and BTM. For large T we have

E
[
RIFT
T

]
≤ CK log T

∆min
, and

RBTMT

T ≤ C ′ γ
7K log T

∆min
with high probability,

where IFT means that IF is run with the exploration
horizon set to T and similarly for BTMT ; ∆min is the
smallest gap ∆j := p1j − 1

2 , assuming that a1 is the

best arm; and C and C
′

are universal constants that
do not depend on the specific dueling bandit problem.

The first bound holds only when γ = 1 but matches
the lower bound in (Yue et al., 2012, Theorem 2). The
second bound holds for γ ≥ 1 and is sharp when γ = 1.
Note that this lower bound was proven for certain K-
armed dueling bandit problems that satisfy ∆i = ∆j

for all i, j 6= 1. In this case, our asymptotic regret
bound matches this lower bound as well, without any
dependence on γ (cf. Theorem 4).

Sensitivity Analysis of VAriables for Generic Explo-
ration (SAVAGE) (Urvoy et al., 2013) is a recently pro-
posed algorithm that outperforms both IF and BTM
by a wide margin when the number of arms is of mod-
erate size. Moreover, one version of SAVAGE, called
Condorcet SAVAGE, makes the Condorcet assumption
and has the best theoretical results among the algo-
rithms studied in that paper (Urvoy et al., 2013, The-
orem 3). However, the regret bounds provided for Con-
dorcet SAVAGE are of the form O(K2 log T ), and so
are not as tight as those of IF, BTM or our algorithm.

Finally, note that all of the above results bound only
RT , where T is the predetermined horizon, since
IF, BTM and SAVAGE were designed for the finite-
horizon setting. By contrast, in Section 5, we bound
the cumulative regret of RUCB for all time-steps.

4. Method

Algorithm 1 Relative Upper Confidence Bound

Input: α > 1
2 , T ∈ {1, 2, . . .} ∪ {∞}

1: W = [wij ] ← 0K×K // 2D array of wins: wij is
the number of times ai beat aj

2: B = ∅
3: for t = 1, . . . , T do

4: U := [uij ] = W
W+WT +

√
α ln t

W+WT // All oper-

ations are element-wise; x
0 := 1 for any x.

5: uii ← 1
2 for each i = 1, . . . ,K.

6: C ←
{
ac | ∀ j : ucj ≥ 1

2

}
.

7: If C = ∅, then pick c randomly from {1, . . . ,K}.
8: B ← B ∩ C.
9: If |C| = 1, then B ← C and ac to be the unique

element in C.
10: if |C| > 1 then
11: Sample ac from C using the distribution:

p(ac) =

{
0.5 if ac ∈ B,

1

2
|B| |C\B|

otherwise.

12: end if
13: d ← arg maxj ujc, with ties broken randomly.

Moreover, if there is a tie, d is not allowed to be
equal to c.

14: Compare arms ac and ad and increment wcd or
wdc depending on which arm wins.

15: end for
Return: An arm ac that beats the most arms, i.e., c

with the largest count #
{
j| wcj
wcj+wjc

> 1
2

}
.

We now introduce Relative Upper Confidence Bound
(RUCB), which is applicable to any K-armed duel-
ing bandit problem with a Condorcet winner. In each
time-step, RUCB, shown in Algorithm 1, goes through
the following three stages:

(1) RUCB puts all arms in a pool of potential champi-
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ons. Then, it compares each arm ai against all other
arms optimistically: for all i 6= j, it computes the up-
per bound uij(t) = µij(t) + cij(t), where µij(t) is the
frequentist estimate of pij at time t and cij(t) is an op-
timism bonus that increases with t and decreases with
the number of comparisons between i and j (Line 4).
If uij <

1
2 for any j, then ai is removed from the pool:

the set of remaining arms is called C. If we are left with
a single potential champion at the end of this process,
we let ac be that arm and put it in the set B of the
hypothesized best arm (Line 9). Note that B is always
either empty or contains one arm; moreover, an arm is
demoted from its status as the hypothesized best arm
as soon as it optimistically loses to another arm (Line
8). Next, from the remaining potential champions, a
champion arm ac is chosen in one of two ways: if B is
empty, we sample an arm from C uniformly randomly;
if B is non-empty, the probability of picking the arm in
B is set to 1

2 and the remaining arms are given equal
probability of being chosen (Line 11).

(2) Regular UCB is performed using ac as a bench-
mark (Line 13), i.e., UCB is performed on the set
of arms a1c . . . aKc. Specifically, we select the arm
d = arg maxj ujc. When c 6= j, ujc is defined as above.

When c = j, since pcc = 1
2 , we set ucc = 1

2 (Line 5).

(3) The pair (ac, ad) is compared and the score sheet
is updated as appropriate (Line 7).

Note that in stage (1) the comparisons are based on
ucj , i.e., ac is compared optimistically to the other
arms, making it easier for it to become the champion.
By contrast, in stage (2) the comparisons are based on
ujc, i.e., ac is compared to the other arms pessimisti-
cally, making it more difficult for ac to be compared
against itself. This is important because comparing an
arm against itself yields no information. Thus, RUCB
strives to avoid auto-comparisons until there is great
certainty that ac is indeed the Condorcet winner.

Eventually, as more comparisons are conducted, the
estimates µ1j tend to concentrate above 1

2 and the
optimism bonuses c1j(t) become small. Thus, both
stages of the algorithm increasingly select a1, i.e., ac =
ad = a1, which accumulates zero regret.

Note that Algorithm 1 is a finite-horizon algorithm if
T <∞ and a horizonless one if T =∞, in which case
the for loop never terminates.

5. Theoretical Results
In this section, we prove finite-time high-probability
and expected regret bounds for RUCB. We first state
Lemma 1 and use it to prove a high-probability bound
on the number of comparisons for each suboptimal arm
in Proposition 2. An immediate consequence of this

result is a high probability regret bound of the form
O(K2 log T ), which is similar to the bound for SAV-
AGE (Urvoy et al., 2013) but for the horizonless set-
ting. However, in Theorem 4 we show that this can
be lowered to O(K log T ) and we deduce an expected
regret bound in Theorem 5. This result is proven un-
der conditions that are much more general than those
for IF (Yue et al., 2012) and without requiring the
user to specify the γ parameter as BTM does (Yue &
Joachims, 2011). Moreover, it matches the asymptotic
lower bound proven in (Yue et al., 2012, Theorem 2).

The results in Theorems 4 and 5 are surprising be-
cause a K-armed dueling bandit problem depends on

roughly K2

2 independent parameters, so one would ex-
pect a bound of the form O(K2 log T ) unless strong
prior information is infused into the algorithm, as with
IF and BTM. However, these theorems show that one
can get asymptotic behaviour resembling that of a reg-
ular K-armed bandit algorithm on a very broad class
of dueling bandit problems with very little prior knowl-
edge. This finding is also of great practical significance
because there are many situations in which one has a
choice between applying a K-armed bandit algorithm
to an unreliable quantity, such as Click Through Rate,
or using a K-armed dueling bandit algorithm to con-
duct direct comparisons, which are known to be more
reliable when dealing with humans (Hofmann et al.,
2013a, §2.1). These results show that, given such a
dilemma, using a dueling bandit approach does not
come at the expense of the asymptotic behaviour.

Finally, note that the high probability bound proven in
Theorem 4 does not rely on the probability of failure, δ,
being passed to the algorithm. Thus, we can use it to
also bound higher moments (hence also the variance)
of the cumulative regret for RUCB for all times. This
is in contrast to high probability bounds that require
δ to be specified before the algorithm starts (Audibert
et al., 2009; Srinivas et al., 2010; Abbasi-yadkori et al.,
2011), from which one cannot obtain expected regret
bounds for all times. While, given a time T , one can
set δ = 1/T in the algorithm to get a logarithmic ex-
pected regret bound at time T , getting a logarithmic
expected regret bound at time T 1+ε for any ε > 0,
requires rerunning the algorithm with δ = 1/T 1+ε.

As before, we assume without loss of generality that
a1 is the optimal arm. See Table 1 for definitions of
symbols used throughout.

Lemma 1. Let P := [pij ] be the preference ma-
trix of a K-armed dueling bandit problem with arms
{a1, . . . , aK}. Then, for any dueling bandit algorithm
and any α > 1

2 and δ > 0, we have

P
(
∀ t > C(δ), i, j, pij ∈ [lij(t), uij(t)]

)
> 1− δ.
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Table 1. List of notation used in this section

Symbol Definition

K Number of arms
α The input of Algorithm 1
Nij(t) Number of comparisons between ai and aj un-

til time t
wij(t) Number of wins of ai over aj until time t

uij(t)
wij(t)

Nij(t)
+

√
α ln t

Nij(t)
lij(t) 1− uji(t)
δ Probability of failure

C(δ)

(
(4α− 1)K2

(2α− 1)δ

) 1
2α−1

∆j p1j − 0.5

∆ij
∆i + ∆j

2
∆max maxi ∆i

Dij
4α

min{∆2
i ,∆

2
j}

, or
4α

∆2
j

if i = 1, or 0 if i = j

D
∑
i<j

Dij

Ĉ(δ)

(
4∆max log

2

δ
+ 2∆maxC

(
δ

2

)
+ 2D ln 2D

)
D̂j

2α (∆j + 4∆max)

∆2
j

T̂δ Definition 3

Tδ A time between C(δ/2) and T̂δ when a1 was
compared against itself

a ∨ b max{a, b}

Proof. See §8.2 in the supplementary material.

Let us now turn to our first high-probability bound:

Proposition 2. Given K arms {a1, . . . , aK} with
preference matrix P = [pij ], such that a1 is the Con-
dorcet winner, and δ > 0 and α > 1

2 , then, if we apply
Algorithm 1 to this K-armed dueling bandit problem,
given any pair (i, j) 6= (1, 1), the number of compar-
isons between arms ai and aj performed up to time t,
denoted by Nij(t), satisfies

P
(
∃ t, (i, j) 6= (1, 1): Nij(t) > C(δ)∨Dij ln t

)
< δ (1)

and, Nδ
ij(t), the number of times ai was compared

against aj between time-steps C(δ) and t, satisfies

P
(
∃ t > C(δ), (i, j) 6= (1, 1): Nδ

ij(t) > Dij ln t
)
< δ (2)

Proof. Given Lemma 1, we know with probability 1−δ
that pij ∈ [lij(t), uij(t)] for all t > C(δ). Let us first
deal with the easy case when i = j 6= 1: when t > C(δ)
holds, ai cannot be played against itself, since if we get
c = i in Algorithm 1, then by Lemma 1 and the fact
that a1 is the Condorcet winner we have d 6= i since
uii(t) = 1

2 < p1i ≤ u1i(t).

Now, let us assume that distinct arms ai and aj have
been compared against each other more than Dij ln t
times and that t > C(δ). If s is the last time ai and
aj were compared against each other, we must have

a1

1
2

a1

ai aj

1
2

pi1

ai
∆i

1
2

pj1

aj
∆j

Figure 1. An illustration of the proof of Proposition 2. The
figure shows an example of the internal state of RUCB
at time s. The height of the dot in the block in row
am and column an represents the comparisons probabil-
ity pmn, while the interval, where present, represents the
confidence interval [lmn, umn]: we have only included them
in the (ai, aj) and the (aj , ai) blocks of the figure because
those are the ones that are discussed in the proof. More-
over, in those blocks, we have included the outcomes of two
different runs: one drawn to the left of the dots represent-
ing pij and pji, and the other to the right (the horizontal
axis in these plots has no other significance). These two
outcomes are included to address the dichotomy present
in the proof. Note that for a given run, we must have
[lji(s), uji(s)] = [1−uij(s), 1− lij(s)] for any time s, hence
the symmetry present in this figure.

uij(s)− lij(s) = 2

√
α ln s

Nij(t)
(3)

≤ 2

√
α ln t

Nij(t)
< 2

√√√√ α ln t
4α ln t

min{∆2
i ,∆

2
j}

= min{∆i,∆j}.

On the other hand, for ai to have been compared
against aj at time s, one of the following two scenarios
must have happened:

I. In Algorithm 1, we had c = i and d = j, in which
case both of the following inequalities must hold:

a. uij(s) ≥ 1
2 , since otherwise c could not have been

set to i by Line 5 of Algorithm 1, and

b. lij(s) = 1− uji(s) ≤ 1− p1i = pi1, since we know
that p1i ≤ u1i(t), by Lemma 1 and the fact that
t > C(δ), and for d = j to be satisfied, we must
have u1i(t) ≤ uji(t) by Line 6 of Algorithm 1.

From these two inequalities, we can conclude

uij(s)− lij(s) ≥
1

2
− pi1 = ∆i. (4)

This inequality is illustrated using the lower right



Relative Upper Confidence Bound

confidence interval in the (ai, aj) block of Figure 1,
where the interval shows [lij(s), uij(s)] and the dis-
tance between the dotted lines is 1

2 − pi1.

II. In Algorithm 1, we had c = j and d = i, in which
case swapping i and j in the above argument gives

uji(s)− lji(s) ≥
1

2
− pj1 = ∆j . (5)

Similarly, this is illustrated using the lower left confi-
dence interval in the (aj , ai) block of Figure 1, where
the interval shows [lji(s), uji(s)] and the distance be-
tween the dotted lines is 1

2 − pj1.

Putting (4) and (5) together with (3) yields a contra-
diction, so with probability 1 − δ we cannot have Nij
be larger than both C(δ) and Dij ln t. This gives us
both (1) and (2).

We use the next definition in what follows:

Definition 3. Let T̂δ be the smallest time satisfying

T̂δ > C

(
δ

2

)
+
∑

i<j

Dij ln T̂δ,

which is guaranteed to exist since the expression on the
left of the inequality grows linearly with T̂δ and the ex-
pression on the right grows logarithmically. Note that
T̂δ is specified by the K-armed dueling bandit problem.

With this in hand, we now state our main result:

Theorem 4. Given the setup of Proposition 2, for any
δ > 0, we have with probability 1− δ that for all times
T the following bound on the cumulative regret holds:

RT ≤ Ĉ(δ) +

K∑

j=2

D̂j lnT, (6)

where

Ĉ(δ) :=

(
4 ln

2

δ
+ 2C

(
δ

2

)
+ 2D ln 2D

)
∆max

D̂j := D1j (∆1j + 2∆max) =
2α (∆j + 4∆max)

∆2
j

,

with C(·) and D as in Proposition 2, and ∆max :=

maxi ∆i and ∆ij:=
∆i+∆j

2 , while RT is the cumulative
regret as defined in Section 2.

Proof. If we apply Inequality (2) in Proposition 2 with

t = T̂δ (as in Definition 3), we know that with prob-

ability 1 − δ
2 there is a time Tδ ∈

(
C
(
δ
2

)
, T̂δ

]
when

arm a1 was compared against itself, which means that
at that time we had uj1(Tδ) <

1
2 . This in turn implies

that B = {a1} from that point on, since by Lemma 1
we have that 1

2 < p1j ≤ u1j(t) for all t > Tδ > C
(
δ
2

)
.

Since we have B = {a1}, we know that when choos-
ing ac in Algorithm 1, the probability of choosing a1

is equal to 1
2 . Given this, we can expect that from

Tδ onwards, the algorithm will spend roughly half of

its time comparing a1 against other arms. In what
follows, we show that this is indeed the case.

Let Ñij(T ) denote the number of times arm ai was
compared against aj between times Tδ and T . Propo-
sition 2 shows that, again with probability 1 − δ

2 , we

have Ñij(T ) ≤ Dij lnT for all i < j: note that this
1− δ

2 is the same as the one used above. In particular,

this means that Ñ1(T ), the number of times between
times Tδ and T when we had c = 1 6= d, is bounded by

Ñ1(T ) ≤
K∑

j=2

Ñ1j(T ) ≤
K∑

j=2

D1j lnT =: N̂1(T ). (7)

Let us introduce here two sets of random variables:

• τ0, τ1, τ2, . . ., where τ0 := Tδ and τl is the lth time
arm a1 was compared against another arm after Tδ.

• n1, n2, . . ., where nl is the number of times in Algo-
rithm 1 we had c 6= 1 6= d between τl−1 and τl.

Now, note that RUCB chooses c 6= 1 or d 6= 1 in time-
step t if and only if uj1(t) ≥ 1

2 for some j > 1 and that
we can have uj1(t+1) < uj1(t) only if at the end of the
tth iteration, arm a1 was compared against arm aj . In
other words, whenever we have uj1(T ) ≥ 1

2 for some
j > 1, the algorithm will continue to set (c, d) 6= (1, 1)
until all of the uj1 with j > 1 get submerged below
1
2 and that the last comparison before we get to this
state must be between a1 and another arm. With this
picture in mind, with probability 1− δ

2 , we have

RT ≤ Tδ∆max +

K∑

j=2

D1j∆1j lnT +

N̂1(T )∑

l=1

nl∆max, (8)

where N̂1(T ) is as in Inequality (7), and so all we need
to do is bound Tδ and the sum of the intervals nl for
l = 1, . . . , N̂1(T ). Let us deal with the former first: we

know that Tδ ≤ T̂δ and that the latter is defined to be
the smallest time-step satisfying the inequality in Def-
inition 3, so all we need to do is produce one number
that, when plugged in for T̂δ, satisfies the inequality,
and one such number is 2C

(
δ
2

)
+ 2D ln 2D. To see

this, let us temporarily use the notation C := C
(
δ
2

)
,

and use the concavity of the log function, a first order
Taylor expansion, and the fact that we have lnx < x
for any x, to get

C +D ln(2C + 2D ln 2D)

≤ C +D ln(2D ln 2D) +��D
�2C

��2D ln 2D

≤ C +D ln(2D)2 + C = 2C + 2D ln 2D,

where we used the fact that D > 2 and so ln 2D > 1.

Let us now return to the task of bounding the sum of
the intervals nl. To do so, we introduce the random
variables n̂1, n̂2, . . ., which are independent samples
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from the geometric distribution with decay 1
2 . Note

that n̂l bounds nl from above since it counts the num-
ber of iterations it would take for Line 11 of Algo-
rithm 1 to produce a1 and once we have c = 1, we
are guaranteed to have a comparison between a1 and
another arm, as long as uj1 ≥ 1

2 for some j > 1. Fur-
thermore, the sum of independent geometric random
variables has a negative binomial distribution (Feller,
1968, §VI.8), with the following probability mass func-
tion, cf. (Feller, 1968, Equation VI.8.1):

f(n; r) := P

(
r∑

l=1

n̂l = n

)
=

(
n+r−1
n

)

2n+r
,

where in our case p = 1
2 and so it is eliminated from

the notation of the PMF. In order to bound this sum
with high probability, we note that when n ≥ 2r, then
we have

f(n; r)

f(n+ 1; r)
=

(
n+r−1
n

)

2n+r(
n+r
n+1

)

2n+r+1

=

(n+ r − 1)!

n!(r − 1)!

(n+ r)!

(n+ 1)!(r − 1)!× 2

=
2(n+ 1)

n+ r
= 2

[
1− r − 1

n+ r

]
≥ 2− 2r − 2

3r
>

4

3
.

Thus, we have f(n; r) ≤ f(2r; r)
(

3
4

)n−2r ≤
(

3
4

)n−2r

for all n ≥ 2r, since f(2r; r) is a probability and so at
most equal to 1. From this we can conclude that with

probability 1− δ
2 , we have n ≤ 2r+

ln δ
2

ln 3
4

< 2r− 4 ln δ
2 :

note that both the numerator and the denominator of
the second summand are negative and so the fraction
is positive. Now, setting r = N̂1(T ) :=

∑K
j=2D1j lnT

and plugging the resulting upper bound into the regret
bound given in (8) give us the desired result.

Next, we state our expected regret bound, which is a
direct consequence of Theorem 4:

Theorem 5. Given the setup of Proposition 2 together
with the notation of Theorem 4, we have the following
expected regret bound for RUCB, where the expecta-
tions are taken across different runs of the algorithm:
if we have α > 1, the expected regret accumulated by
RUCB after T iterations is bounded by

E[RT ] ≤
[

8 +

(
2(4α− 1)K2

2α− 1

) 1
2α−1 2α− 1

α− 1

]
∆max

+ 2D∆max ln 2D +

K∑

j=2

2α (∆j + 4∆max)

∆2
j

lnT,

Proof. See §8.3 in the supplementary material.

Remark 6. (1) Using a very similar argument as the
one used to prove Theorem 5, we can also bound the

mth moment of RT whenever we have α > m+1
2 , which

can be used to bound its variance for α > 1.5.

(2) In general, our regret bounds are not directly com-
parable to those of IF and BTM, since those bounds
depend only on ∆min; so, if the majority of the ∆j are
larger than ∆min, then our upper bound is lower than
that of IF and BTM. On the other hand, if most ∆j

are close to ∆min, but ∆max is much larger, then the
upper bound for IF would be lower: the same would
hold for BTM if γ is small.

(3) Note that RUCB uses the upper-confidence bounds
(Line 3 of Algorithm 1) introduced in the original ver-
sion of UCB (Auer et al., 2002) (up to the α fac-
tor). Recently refined upper-confidence bounds (such
as UCB-V (Audibert et al., 2009) or KL-UCB (Cappé
et al., 2013)) have improved performance for the regu-
lar K-armed bandit problem. However, in our setting
the arm distributions are Bernoulli and the comparison
value is 1/2. Thus, since we have 2∆2

i ≤ kl(p1,i, 1/2) ≤
4∆2

i (where kl(a, b) = a ln a
b + (1 − a) ln 1−a

1−b is the
KL divergence between Bernoulli distributions with
parameters a and b), we deduce that using KL-UCB
instead of UCB does not improve the leading constant
in the logarithmic term of the regret by a numerical
factor of more than 2.

6. Experiments
To evaluate RUCB, we apply it to the problem of
ranker evaluation from the field of information re-
trieval (IR) (Manning et al., 2008). A ranker is a
function that takes as input a user’s search query and
ranks the documents in a collection according to their
relevance to that query. Ranker evaluation aims to de-
termine which among a set of rankers performs best.
One effective way to achieve this is to use interleaved
comparisons (Radlinski et al., 2008), which interleave
the documents proposed by two different rankers and
presents the resulting list to the user, whose result-
ing click feedback is used to infer a noisy preference
for one of the rankers. Given a set of K rankers, the
problem of finding the best ranker can then be mod-
eled as a K-armed dueling bandit problem, with each
arm corresponding to a ranker.

We evaluated RUCB, Condorcet SAVAGE and BTM
using randomly chosen subsets from the pool of 64
rankers provided by LETOR, a standard IR dataset
(see §8.4 for more details of the experimental setup),
yielding K-armed dueling bandit problems with K ∈
{16, 32, 64}. For each set of rankers, we performed
100 independent runs of each algorithm for a max-
imum of 4.5 million iterations. For RUCB we set
α = 0.51, which approaches the limit set by our high-
probability result. Since BTM and SAVAGE require
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Figure 2. Average cumulative regret for 100 runs of BTM, Condorcet SAVAGE and RUCB with α = 0.51 applied to three
K-armed dueling bandit problems with K = 16, 32, 64. Note the time axis uses a log scale, so that the curves depict the
relation between log T and RT ; also, the dotted curves signify best and worst regret performances across all runs.

the exploration horizon as input, we ran BTMT and
CSAVAGET for various horizons T ranging from 1000
to 4.5 million. In the plots in Figure 2, the markers
on the green and the blue curves show the regret ac-
cumulated by BTMT and CSAVAGET in the first T
iteration of the algorithm for each of these horizons.
Thus, each marker corresponds, not to the continua-
tion of the runs that produced the previous marker,
but to new runs conducted with a larger T .

Since RUCB is horizonless, we ran it for 4.5 million
iterations and plotted the cumulative regret, as shown
using the red curves in the plots in Figure 2. For all
three algorithms, the middle curve shows average cu-
mulative regret and the dotted lines show minimum
and maximum cumulative regret across runs. Note
that these plots are in log-linear scale, so they de-
pict the relation between RT and log T , which can be
seen to be asymptotically linear. The regret curves
for BTM are cut-off in these plots, since in all three
experiments RBTMT

T grew linearly with T in the first
4.5 million iterations. As can be seen from the plots
in Figure 2, RUCB accumulates the least regret of the
three algorithms: the average regret accumulated by
RUCB is less than half of that Condorcet SAVAGE
by the end of each of the three experiments and even
the worst performing run of RUCB accumulated con-
siderably less regret than the best performing run of
Condorcet SAVAGE.

7. Conclusions
This paper proposed a new method called Relative Up-
per Confidence Bound (RUCB) for the K-armed duel-
ing bandit problem that extends the Upper Confidence
Bound (UCB) algorithm to the relative setting by us-
ing optimistic estimates of the pairwise probabilities
to choose a potential champion and conducting regu-
lar UCB with the champion as the benchmark.

We proved finite-time high-probability and expected
regret bounds for RUCB that match an existing lower
bound. Unlike existing results, our regret bounds hold

for all time-steps, rather than just a specific horizon
T input to the algorithm. Furthermore, they take
the form O(K log T ) while making much less restric-
tive assumptions than existing algorithms with simi-
lar bounds. Finally, the empirical results showed that
RUCB greatly outperforms state-of-the-art methods.

In future work, we will consider two extensions to
this research. First, building off extensions of UCB
to the continuous bandit setting (Srinivas et al., 2010;
Bubeck et al., 2011; Munos, 2011; de Freitas et al.,
2012; Valko et al., 2013), we aim to extend RUCB
to the continuous dueling bandit setting, without a
convexity assumption as in (Yue & Joachims, 2009;
Jamieson et al., 2012). Second, building off Thomp-
son Sampling (Thompson, 1933; Agrawal & Goyal,
2012; Kauffmann et al., 2012), an elegant and effective
sampling-based alternative to UCB, we will investigate
whether a sampling-based extension to RUCB would
be amenable to theoretical analysis. Both these exten-
sions involve overcoming not only the technical diffi-
culties present in the regular bandit setting, but also
those that arise from the two-stage nature of RUCB.
Since the submission of this paper, the latter of these
two ideas has been validated experimentally in (Zoghi
et al., 2014), although a theoretical analysis is still
lacking.
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Cappé, O., Garivier, A., Maillard, O.-A., Munos, R.,
and Stoltz, G. Kullback-Leibler upper confidence
bounds for optimal sequential allocation. Annals of
Statistics, 41(3):1516–1541, 2013.

Cesa-Bianchi, N. and Lugosi, G. Prediction, Learning,
and Games. Cambridge University Press, 2006.

Craswell, N., Zoeter, O., Taylor, M., and Ramsey, B.
An experimental comparison of click position-bias
models. In WSDM ’08, pp. 87–94, 2008.

de Freitas, N., Smola, A., and Zoghi, M. Exponential
regret bounds for Gaussian process bandits with de-
terministic observations. In ICML, 2012.

Feller, W. An Introduction to Probability Theory and
Its Applications, volume 1. Wiley, 1968.
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8. Appendix

Here we provide some details that were alluded to in
the main body of the paper.

8.1. The Condorcet Assumption

In the K-armed dueling bandit problem, regret is mea-
sured with respect to the Condorcet winner. The Con-
dorcet winner differs in a subtle but important way
from the Borda winner (Urvoy et al., 2013), which
is an arm ab that satisfies

∑
j pbj ≥

∑
j pij , for all

i = 1, . . . ,K. In other words, when averaged across
all other arms, the Borda winner is the arm with the
highest probability of winning a given comparison.

In the K-armed dueling bandit problem, the Con-
dorcet winner is sought rather than the Borda winner,
for two reasons. First, in many applications, includ-
ing the ranker evaluation problem addressed in our
experiments, the eventual goal is to adapt to the pref-
erences of the users of the system. Given a choice be-
tween the Borda and Condorcet winners, those users
prefer the latter in a direct comparison, so it is im-
material how these two arms fare against the others.
Second, in settings where the Borda winner is more
appropriate, no special methods are required: one can
simply solve the K-armed bandit algorithm with arms
{a1, . . . , aK}, where pulling ai means choosing an in-
dex j ∈ {1, . . . ,K} randomly and comparing ai against
aj . Thus, research on the K-armed dueling bandit
problem focuses on finding the Condorcet winner, for
which special methods are required to avoid mistak-
enly choosing the Borda winner.
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Figure 3. The probability that the Condorcet and the to-
tal ordering assumptions hold for subsets of the feature
rankers. The probability is shown as a function of the size
of the subset.

As mentioned in Section 3, IF and BTM assume more
than the existence of a Condorcet winner. They
also require the comparison probabilities pij to sat-
isfy certain restrictive and difficult to verify condi-
tions. Specifically, IF and BTM require a total order-
ing {a1, . . . , aK} of the arms to exist such that pij >

1
2

for all i < j. Here we provide evidence that this as-
sumption is often violated in practice. By contrast,
the algorithm we propose in Section 4 makes only the
Condorcet assumption, which is implied by the total
ordering assumption of IF and BTM.

In order to test how stringent an assumption the ex-
istence of a Condorcet winner is compared to the to-
tal ordering assumption, we estimated the probabil-
ity of each assumption holding in our ranker evalu-
ation application. Using the same preference matrix
as in our experiments in Section 6, we computed for
each K = 1, . . . , 64 the probability PK that a given
K-armed dueling bandit problem obtained from con-
sidering K of our 64 feature rankers would have a Con-
dorcet winner as follows: first, we calculated the num-
ber of K-armed dueling bandit problems that have
a Condorcet winner by calculating for each feature
ranker r how many K-armed dueling bandit problems
it can be the Condorcet winner of: for each r, this is
equal to

(
Nr
K

)
, where Nr is the number rankers that r

beats; next, we divided this total number of K-armed
dueling bandit problems with a Condorcet winner by(

64
K

)
, which is the number of all K-armed dueling ban-

dit problems that one could construct from these 64
rankers.

The probabilities PK , plotted as a function of K in
Figure 3 (the red curve), were all larger than 0.97.
The same plot also shows an estimate of the prob-
ability that the total ordering assumption holds for
a given K (the blue curve), which was obtained by
randomly selecting 100, 000 K-armed dueling bandit
problems and searching for ones that satisfy the to-
tal ordering assumption. As can be seen from Figure
3, as K grows the probability that the total ordering
assumption holds decreases rapidly. This is because
there exist cyclical relationships between these feature
rankers and as soon as the chosen subset of feature
rankers contains one of these cycles, it fails to satisfy
the total ordering condition. By contrast, the Con-
dorcet assumption will still be satisfied as long as the
cycle does not include the Condorcet winner. More-
over, because of the presence of these cycles, the prob-
ability that the Condorcet assumption holds decreases
initially as K increases, but then increases again be-
cause the number of all possible K-armed dueling ban-
dit decreases as K approaches 64.
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Furthermore, in addition to the total ordering assump-
tion, IF and BTM each require a form of stochastic
transitivity. In particular, IF requires strong stochas-
tic transitivity ; for any triple (i, j, k), with i < j < k,
the following condition needs to be satisfied:

pik ≥ max{pij , pjk}.

BTM requires the less restrictive relaxed stochastic
transitivity, i.e., that there exists a number γ ≥ 1 such
that for all pairs (j, k) with 1 < j < k, we have

γp1k ≥ max{p1j , pjk}.

As pointed out in (Yue & Joachims, 2011), strong
stochastic transitivity is often violated in practice, a
phenomenon also observed in our experiments: for in-
stance, all of the K-armed dueling bandit problems on
which we experimented require γ > 1.

Even though BTM permits a broader class of K-armed
dueling bandit problems, it requires γ to be explicitly
passed to it as a parameter, which poses substantial
difficulties in practice. If γ is underestimated, the al-
gorithm can in certain circumstances be misled with
high probability into choosing the Borda winner in-
stead of the Condorcet winner. On the other hand,
though overestimating γ does not cause the algorithm
to choose the wrong arm, it nonetheless results in a se-
vere penalty, since it makes the algorithm much more
exploratory, yielding the γ7 term in the upper bound
on the cumulative regret, as discussed in Section 3. For
instance, in the three-ranker evaluation experiments
discussed in Section 6, the values for γ are 4.85, 11.6
and 47.3 for the 16-, 32- and 64-armed examples: even
the smallest of these numbers raised to the power of 7
is on the order of tens of thousands, making this upper
bound very large.

8.2. Proof of Lemma 1

In this section, we prove Lemma 1, whose statement
is repeated here for convenience. Recall from Section
5 that we assume without loss of generality that a1

is the optimal arm. Moreover, given any K-armed
dueling bandit algorithm, we define wij(t) to be the
number of times arm ai has beaten aj in the first t
iterations of the algorithm. We also define uij(t) :=

wij(t)
wij(t)+wji(t)

+
√

α ln t
wij(t)+wji(t)

, where α is any positive

contant, and lij(t) := 1 − uji(t). Moreover, for any

δ > 0, define C(δ) :=
(

(4α−1)K2

(2α−1)δ

) 1
2α−1

.

Lemma 1. Let P := [pij ] be the preference ma-
trix of a K-armed dueling bandit problem with arms
{a1, . . . , aK}. Then, for any dueling bandit algorithm
and any α > 1

2 and δ > 0, we have

P
(
∀ t > C(δ), i, j, pij ∈ [lij(t), uij(t)]

)
> 1− δ. (9)

Proof. To decompose the lefthand side of (9), we in-
troduce the notation Gij(t) for the “good” event that
at time t we have pij ∈ [lij(t), uij(t)], which satisfies
the following:

(i) Gij(t) = Gji(t) because of the triple of equalities(
pji, lji(t), uji(t)

)
=
(

1− pij , 1− uij(t), 1− lij(t)
)

.

(ii) Gii(t) always holds, since (pii, lii(t), uii(t)) =(
1
2 ,

1
2 ,

1
2

)
. Together with (i), this means that we only

need to consider Gij(t) for i < j.

(iii) Define τ ijn to be the iteration at which arms i and
j were compared against each other for the nth time.
If Gij

(
τ ijn + 1

)
holds, then the events Gij(t) hold for

all t ∈
(
τ ijn , τ

ij
n+1

]
because when t ∈

(
τ ijn , τ

ij
n+1

]
, wij

and wji remain constant and so in the expressions
for uij(t) and uji(t) only the ln t changes, which is a
monotonically increasing function of t. So, we have

lij(t) ≤ lij(τ ijn + 1) ≤ pij ≤ uij(τ ijn + 1) ≤ uij(t).

Moreover, the same statement holds with τ ijn re-

placed by any T ∈
(
τ ijn , τ

ij
n+1

]
, i.e., if we know

that Gij(T ) holds, then Gij(t) also holds for all

t ∈
(
T, τ ijn+1

]
. This is illustrated in Figure 4.

Now, given the above three facts, we have for any T

P
(
∀ t ≥ T, i, j, Gij(t)

)
(10)

= P
(
∀ i > j, Gij(T ) and ∀n s.t. τ ijn > T, Gij(τ ijn )

)
.

Let us now flip things around and look at the comple-
ment of these events, i.e. the “bad” event Bij(t) that
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Figure 4. An illustrations of the idea behind Lemma 1 using an example of how the confidence intervals of a single pair
of arms (ai, aj), and their relation to the comparison probability pij , might evolve over time. The time-step τ ijm denotes
the mth time when the arms ai and aj were chosen by RUCB to be compared against each other. We also define
µijm := µij(τ

ij
m). The time T is when the confidence intervals [lij(t), uij(t)] begin to include pij . The lemma then states

that with probability 1− δ, we have T ≤ C(δ).

Moreover, for each time-step, the area of the shaded region under the vertical graphs is the bound given by the Chernoff-
Hoeffding (CH) bound on the probability that the confidence interval will not contain pij . Note that the CH bound has

the form e−(x−µijn )2 and so in order for this number to be the area under a graph (hence making it easier to illustrate in a

figure), we have drawn the derivative of this function, f ijn (x) := |x− µijn |e−(x−µijn )2 , which is why the graphs are equal to
0 in the middle. Note that this does not mean that µijn has very low probability of being close to pij : the graphs drawn
here are not the PDFs of the posteriors, but simply a manifestation of the bound given by the Chernoff-Hoeffding bound.

More specifically, the property that they satisfy is that P
(
pij /∈ [lij(t), uij(t)]

)
≤
∫ lij(t)
−∞ f ijNij(t)(x)dx+

∫∞
uij(t)

f ijNij(t)(x)dx.

pij /∈ [lij(t), uij(t)] occurs. Subtracting both sides of
Equation (10) from 1 and using the union bound gives

P
(
∃ t > T, i, j s.t. Bij(t)

)

≤
∑

i<j

[
P
(
Bij(T )

)
+ P

(
∃n : τ ijn > T and Bij(τ ijn )

)]
.

Further decomposing the righthand side using union
bounds and making the condition explicit, we get

P
(
∃ t > T, i, j s.t. Bij(t)

)

≤
∑

i>j

[
P

(∣∣∣pij − µijNij(T )

∣∣∣ >
√

α lnT

Nij(T )

)
+

P


∃n ≤ T s.t. τ ijn > T and

∣∣pij − µijn
∣∣ >

√
α ln τ ijn
n




+ P


∃n > T s.t.

∣∣pij − µijn
∣∣ >

√
α ln τ ijn
n



]
,

since T < n < τ ijn . Here, µijn :=
wij(τ

ij
n )

wij(τ
ij
n )+wji(τ

ij
n )

is the

frequentist estimate of pij after n comparisons between
arms ai and aj .

Now, in the above sum, we can upper-bound the first
term by looking at the higher probability event that
Bij(T ) happens for any possible number of compar-
isons between ai and aj , and since we know that
Nij(T ) ≤ T , we can replace Nij(T ) with a variable
n that can take values between 0 and T . For the sec-
ond term, we know that τ ijn > T , so we can replace
τ ijn with T and remove the condition τ ijn > T and look
at all n ≤ T . For the third term, since we always
have that n < τ ijn , we can replace τ ijn with n and get a
higher probability event. Putting all of this together,
we get the following looser bound:
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P
(
∃ t > T, i, j s.t. Bij(t)

)

≤
∑

i<j

[
P

(
∃n ∈ {0, . . . , T} :

∣∣pij − µijn
∣∣ >

√
α lnT

n

)

+ P

(
∃n ∈ {0, . . . , T} :

∣∣pij − µijn
∣∣ >

√
α lnT

n

)

+ P

(
∃n > T s.t.

∣∣pij − µijn
∣∣ >

√
α lnn

n

)]

≤
∑

i<j

[
2

T∑

n=0

P

(
∣∣pij − µijn

∣∣ >
√
α lnT

n

)

+

∞∑

n=T+1

P

(
∣∣pij − µijn

∣∣ >
√
α lnn

n

)]
. (11)

To bound the expression on line (11), we apply the
Chernoff-Hoeffding bound, which in its simplest form
states that given i.i.d. random variables X1, . . . , Xn,
whose support is contained in [0, 1] and whose expecta-
tion satisfies E[Xk] = p, and defining µn := X1+···+Xn

n ,

we have P (|µn − p| > a) ≤ 2e−2na2 . This gives us

P
(
∃ t > T, i, j s.t. Bij(t)

)

≤
∑

i<j


2

T∑

n=1

2e
−2�n

α lnT

�n +

∞∑

n=T+1

2e
−2�n

α lnn

�n




=
K(K − 1)

2

[
T∑

n=1

4

T 2α
+

∞∑

n=T+1

2

n2α

]

≤ 2K2

T 2α−1
+K2

∫ ∞

T

dx

x2α
, since

1

x2α
is decreasing.

≤ 2K2

T 2α−1
+K2

∫ ∞

T

dx

x2α

=
2K2

T 2α−1
+

K2

(1− 2α)x2α−1

∣∣∣∣
∞

T

=
(4α− 1)K2

(2α− 1)T 2α−1
. (12)

Now, since C(δ) =
(

(4α−1)K2

(2α−1)δ

) 1
2α−1

for each δ > 0,

the bound in (12) gives us (9).

8.3. Proof of Theorem 5

Here, we provide the proof of the expected regret
bound claimed in Theorem 5, starting by repeating
the statement of the theorem:

Theorem 5. Given the setup of Proposition 2 together
with the notation of Theorem 4, we have the following
expected regret bound for RUCB, where the expecta-
tions are taken across different runs of the algorithm:
if we have α > 1, the expected regret accumulated by
RUCB after T iterations is bounded by

E[RT ] ≤
[

8 +

(
2(4α− 1)K2

2α− 1

) 1
2α−1 2α− 1

α− 1

]
∆max

+ 2D∆max ln 2D +

K∑

j=2

2α (∆j + 4∆max)

∆2
j

lnT.

(13)

Proof. We can obtain the bound in (13) from (6) by in-
tegrating with respect to δ from 0 to 1. This is because
given any one-dimensional random variable X with

CDF FX , we can use the identity E[X] =
∫ 1

0
F−1
X (q)dq.

In our case, X = RT for a fixed time t and, as il-
lustrated in Figure 5, we can deduce from (6) that
FRT (r) > H−1

T (r), which gives the bound

F−1
RT

(q) < HT (q) = Ĉ(1− q) +

K∑

j=2

D̂j lnT.

Now, assume that α > 1. To derive (13) from the
above inequality, we need to integrate the righthand
side, and since it is only the first two terms in the

0 r0 = Ht(q0) t
r

0
1

q 0
F
R
t(
r 0

)
q

FRt
(r)

H−1
t (r), the inverse function of

Ht(q) := C(1− q)∆∗ +
∑

i>jDij∆ij ln t

Figure 5. A schematic graph illustrating the proof of The-
orem 5. Note that the expression for HT (q) is extracted
from (6), which also implies that H−1

T is necessarily be-
low FRT : formulated in terms of CDFs, (6) states that
FRT (HT (q0)) > q0 = H−1

T (HT (q0)), where q0 = 1 − δ0
is a quantile. From this, we can conclude that FRT (r) >
H−1
T (r) for all r.
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Figure 6. Average accuracy for 100 runs of BTM, Condorcet SAVAGE and RUCB with α = 0.51 applied to three K-armed
dueling bandit problems with K = 16, 32, 64. Note that the x-axes in these plots use a log scale.

definition of Ĉ that depends on δ, that is all we need
to integrate. Let us deal with the first term first, using
the substitution 1− q = δ, dq = −dδ:
∫ 1

q=0

4∆max ln
2

1− q dq = 4∆max

[
ln 2−

∫ 0

δ=1

− ln δ dδ

]

= 4∆max

[
ln 2−

∫ 1

δ=0

ln δ dδ

]

= 4∆max(ln 2 + 1) < 8∆max

To deal with the second term in Ĉ, recall that it is

equal to 2∆maxC
(
δ
2

)
:= 2∆max

(
2(4α−1)K2

(2α−1)δ

) 1
2α−1

, so

to simplify notation, we define

L := 2∆max

(
2(4α− 1)K2

2α− 1

) 1
2α−1

.

Now, we can carry out the integration as follows, again
using the substitution 1− q = δ, dq = −dδ:
∫ 1

q=0

C(1− q)dq =

∫ 0

δ=1

−C(δ)dδ

=

∫ 1

0

2

(
2(4α− 1)K2

(2α− 1)δ

) 1
2α−1

dδ

= L

∫ 1

0

δ−
1

2α−1 dδ

= L

[
δ1− 1

2α−1

1− 1
2α−1

]1

0

=

(
2(4α− 1)K2

2α− 1

) 1
2α−1 2α− 1

α− 1
.

8.4. Experimental Details

Our experimental setup is built on real IR data,
namely the LETOR NP2004 dataset (Liu et al., 2007).
This dataset is based on the TREC Web track named-
page finding task, where a query is what the user be-
lieves to be a reasonable estimate of the name of the
webpage she is seeking. Using this data set, we create
a set of 64 rankers, each corresponding to a ranking
feature provided in the data set, e.g., PageRank. The
ranker evaluation task in this context corresponds to
determining which single feature constitutes the best
ranker (Hofmann et al., 2013b).

To compare a pair of rankers, we use probabilistic in-
terleave (PI) (Hofmann et al., 2011), a recently devel-
oped method for interleaved comparisons. To model
the user’s click behavior on the resulting interleaved
lists, we employ a probabilistic user model (Hofmann
et al., 2011; Craswell et al., 2008) that uses as input
the manual labels (classifying documents as relevant
or not for given queries) provided with the LETOR
NP2004 dataset. Queries are sampled randomly and
clicks are generated probabilistically by conditioning
on these assessments in a way that resembles the be-
havior of an actual user (Guo et al., 2009).

Following (Yue & Joachims, 2011), we first used the
above approach to estimate the comparison probabil-
ities pij for each pair of rankers and then used these
probabilities to simulate comparisons between rankers.
More specifically, we estimated the full preference ma-
trix by performing 4000 interleaved comparisons on
each pair of the 64 feature rankers.

Finally, the plots in Figure 6 show the accuracy of
all three algorithms across 100 runs, computed at the
same times as the exploration horizons used for BTM
and SAVAGE in Figure 2. Note that RUCB reaches
the 80% mark almost twice as fast as Condorcet SAV-
AGE, all without knowing the horizon T . The contrast
is even more stark when comparing to BTM.


