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ABSTRACT.This paper is about a special version of PDL, proposed by Marcus Kracht, for rea-
soning about sibling ordered trees. It has four basic programs corresponding to the child,
parent, left- and right-sibling relations in such trees. The original motivation for this language
is rooted in the field of model-theoretic syntax. Motivated by recent developments in the area
of semi-structured data, and, especially, in the field of query languages for XML (eXtensible
Markup Language) documents, we revisit the language. This renewed interest comes with a
special focus on complexity and expressivity aspects of the language, aspects that have so far
largely been ignored. We survey and derive complexity results, and spend most of the paper
on the most important open question concerning the language: what is its expressive power?
We approach this question from two angles: Which first-order properties can be expressed?
And which second-order properties? While we are still some way from definitive answers to
these questions, we discuss two first-order fragments of the PDL language for ordered trees,
and show how the language can be used to express some typical (second-order) problems, like
the boolean circuit and the frontier problem.
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1. Introduction

The purpose of this paper is to revive interest in a version of PDL proposed by
Marcus Kracht [KRA 95, KRA 97]. This version, calledPDLtree here, is specially
designed for models which are sibling ordered trees. Such models are of interest in at
least two research communities: linguistics, in particular the field of model-theoretic
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syntax, and computer science, in particular for those working with the World Wide
Web, semi-structured data and XML (eXtensible Markup Language).

Model-theoretic syntax is an uncompromisingly declarative approach to natural
language syntax: grammatical theories are logical theories, and grammatical struc-
tures are their models. These models consists of parse trees, i.e., node labeled, sibling
ordered finite trees. Perhaps the best known work in this tradition is that of James
Rogers (for example [ROG 98]) in which grammatical theories are stated in monadic
second-order logic. However other authors (in particular [BLA 94, KRA 95, KRA 97,
PAL 99]) use various kinds ofmodal logic(in essence, variable free formalisms for
describing relational structures) to specify grammatical constraints. Palm [PAL 99]
contains some interesting linguistic examples and is a good introduction to (and moti-
vation for) this approach.

The World Wide Web is a freely evolving, ever-changing collection of data with
flexible structure. The Web’s nature escapes the conventional database scenario of
manipulating data: data on the Web simply do not comply with the strict schemas
used for conventional databases. Web data such as home pages, news sites, pages
on commercial sites, usually enjoy some amount of structure, but that is not strictly
enforced, and there are no uniformly adopted standards, not even for simple bits of
information such as addresses. Hence, data on the Web is essentially semi-structured
[ABI 00]. In search for suitable models for semi-structured data, the World Wide
Web Consortium proposed the eXtensible Markup Language (XML) [Wor ]. XML
is a standard for textual representation of semi-structured data and was designed to
describe any type of textual information. It looks like a flexible variant of HTML,
allowing for the mark-up of data with information about its content rather than its
presentation. The logical abstraction of an XML document (the so-called DOM) is a
finite, node labeled, ordered tree.

Motivated by the renewed need for clean, well-understood declarative tree descrip-
tion formalisms brought about by the developments in semi-structured data outlined
above, we want to revive interest in the special variant of PDL developed for sibling
ordered trees. We focus on complexity and expressivity aspects of the language. Sec-
tion 2 introduces the language. Section 3 discusses complexity, and in Section 4 and
Section 5 we address expressivity issues. Section 4 is devoted to the expressiveness
of the language in terms of first-order properties; we discuss the first-order fragment
of PDLtree, recall some known results, and show the language in action by expressing
the until modality over the document order relation.

It follows from the failure of Beth’s Theorem for deterministic PDL interpreted
on finite trees [KRA 99] thatPDLtree is strictly less expressive than unary monadic
second-order logic (MSO). The most pressing issue thus is to determine the exact
expressive power ofPDLtree in terms of a suitable fragment of unary MSO. This re-
mains an open problem, but to improve our understanding ofPDLtree’s expressive
power, we adopt a well-known strategy by examining a number of ‘typical’ second-
order problems and properties. Specifically, in Section 5 we show how we can express
the boolean circuit and the frontier problem, and we discuss infinity axioms. These
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examples suggest thatPDLtree is expressive enough to encode natural hard second-
order problems. Boolean circuits is one of the main problems used to show that a
logic is weaker than MSO. The frontier problem is a typical linguistic application. We
conclude in Section 6.

2. PDL for ordered trees

We recall the definition ofPDLtree from [KRA 95, KRA 97]. PDLtree is a propo-
sitional modal language identical to Propositional Dynamic Logic (PDL) [HAR 00]
over four basic programsleft, right, up anddown, which explore the left-sister,
right-sister, mother-of, and daughter-of relations. Recall that PDL has two sorts of ex-
pressions: programs and propositions. We suppose we have fixed a non-empty, finite
or countably infinite, set of atomic symbols A whose elements are typically denoted
by p. PDLtree’s syntax is as follows, writingπ for programs andφ for propositions:

π ::= left | right | up | down | π;π | π ∪ π | π∗ | φ?
φ ::= p | > | ¬φ | φ ∧ φ | 〈π〉φ.

We sometimes writePDLtree(A) to emphasize the dependence on A. We employ the
usual boolean abbreviations and use[[π]]φ for ¬〈π〉¬φ.

We interpretPDLtree(A) onfinite ordered treeswhose nodes arelabeledwith sym-
bols drawn from A. We assume that the reader is familiar with finite trees and such
concepts as ‘daughter-of’, ‘mother-of’, ‘sister-of’, ‘root-node’, ‘terminal-node,’ and
so on. If a node has no sister to its immediate right we call it a last node, and if it has
no sister to its immediate left we call it a first node. The root node is both first and
last, and calledroot. A labeling of a finite tree associates a subset of A with each tree
node.

A sibling ordered tree is a structure isomorphic to(N,Rdown, Rright) whereN is
a set of finite sequences of natural numbers closed under taking initial segments, and
for any sequences, if s · k ∈ N , then eitherk = 0 or s · k − 1 ∈ N . Forn, n′ ∈ N ,
nRdownn

′ holds if, and only if,n′ = n · k for k a natural number;nRrightan
′ holds

if, and only if,n = s · k andn′ = s · k + 1. We present finite ordered trees (trees for
short) as tuplesT = (T,Rdown, Rright). HereT is the set of tree nodes andRright and
Rdown are the right-sister and daughter-of relations, respectively. A pairM = (T, V ),
whereT is a finite tree andV : A −→ Pow(T ), is called amodel, and we say thatV
is a labeling functionor avaluation. Given a modelM, we simultaneously define a
set of relations onT × T and the interpretation of the languagePDLtree(A) onM:

Rup = R−1
down Rπ∪π′ = Rπ ∪Rπ′

Rleft = R−1
right Rπ;π′ = Rπ ◦Rπ′

Rπ∗ = R∗
π Rφ? = {(t, t) | M, t |= φ}
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M, t |= p if, and only if, t ∈ V (p), for all p ∈ A
M, t |= > if, and only if, t ∈ T

M, t |= ¬φ if, and only if, M, t 6|= φ
M, t |= φ ∧ ψ if, and only if, M, t |= φ andM, t |= ψ
M, t |= 〈π〉φ if, and only if, ∃t′ (tRπt

′ and M, t′ |= φ).

If M, t |= φ, then we sayφ is satisfiedin M att. For any formulaφ, if there is a model
M such thatM, root |= φ, then we say thatφ is satisfiable. ForΓ a set of formulas,
andφ a formula, we say thatφ is a consequence ofΓ (denoted byΓ |= φ) if for every
model in whichΓ is satisfied at every node,φ is also satisfied at every node.

Note that we could have definedPDLtree by takingdown andright as the sole
primitive programs and closing the set of programs under converses. As converse
commutes with all program operators, these two definitions are equally expressive.

Let us consider some examples: if universally true, (1) says that everya node has
a b and ac daughter, in that order, and no other daughters; and (2) says that every
a node has ab first daughter followed by some number ofc daughters, and no other
daughters.

a → 〈down〉(¬〈left〉> ∧ b ∧ 〈right〉(c ∧ ¬〈right〉>)) (1)

a → 〈down〉(¬〈left〉> ∧ b ∧ 〈(right; c?)∗〉¬〈right〉>). (2)

Now consider (3). This projects a labelp down to some leaf node:

〈(p?; down)∗〉(p ∧ ¬〈down〉>) (3)

That is, whenever this formula is satisfied in some model at some pointt, there will be
a path fromt to some leaf nodel such that every node on the path is markedp. We end
the short examples with a list of useful abbreviations:root is short for¬〈up〉>, leaf
is short for¬〈down〉>, first is short for¬〈left〉>, andlast abbreviates¬〈right〉>.

3. Complexity

There are two natural problems for which we want to know the complexity. First
the model checking problem: given a treeM, a nodet, and a formulaφ, how difficult
is it to decide whetherM, t |= φ?

THEOREM 1 ([ALE 00]). — M, t |= φ can be determined in time linear in the size
of M and ofφ.

See [ALE 03] for a large number of related results.

Secondly, consider the complexity of thePDLtree consequence problem: how dif-
ficult is it to decide whether, on finite ordered trees,Γ |= χ, for finite Γ. Decidability
of this problem follows from the interpretation ofPDLtree into L2

K,P [ROG 98] (see
the beginning of Section 5). (The decidability of the satisfiability problem forL2

K,P
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follows, in turn, via an interpretation into Rabin’sSωS.) But although this reduction
yields decidability, it only gives us a non-elementary decision procedure. So what is
the complexity of the consequence problem?

Let us first deal with the lower bound.

THEOREM 2 ([FIS 79, SPA 93]). — The consequence problem for thePDLtree

fragment with onlydown is EXPTIME-hard.

PROOF. This is a corollary of the analysis of the lower bound result for PDL given
by [SPA 93], based on [FIS 79]. The following fragment of PDL isEXPTIME-hard:
formulas of the formψ ∧ [a∗]θ (whereψ andθ contain only the atomic programa
and no embedded modalities) that are satisfiable at the root of a finite binary tree.
Identifying the programa with down, the result follows (because[[down∗]]θ ∧ ψ is
satisfiable at the root of a finite tree if, and only if,θ 6|= root → ¬ψ). QED

For full PDL this bound is optimal. There is even a stronger result: every satisfiable
PDL formulaφ can be satisfied on a model with size exponential in the length ofφ.
However with tree-based models there is no hope for such a result for it is easy to
show that:

For every natural numbern, there exists a satisfiable formula of size
O(n2) which can only be satisfied on at least binary branching trees of
depth at least2n.

A formula containing most of the requirements to force such a deep branch is given
in Proposition 6.51 of [BLA 01]. To this formula we only have to add the conjunct
[[down∗]](〈down〉p ∧ 〈down〉¬p) for some new variablep to enforce binary branching.
Note that the size of such a model is double exponential in the size of the formula.
This means that a decision algorithm which tries to construct a tree model must use at
least exponential space, as it will need to keep a whole branch in memory.

So we have to think more carefully about the upper bound. One way to proceed
is to take a clue from the completeness proof for a related language in [BLA 94]. In-
stead of constructing a model it is possible to design an algorithm which searches for
a “good” set of labellings of the nodes of a model. Label sets consist of subformulas
of the formulaφ whose satisfiability is to be decided. From a good set of labels we
can construct a labeled tree model which satisfiesφ. The number of labels is bound
by an exponential in the number of subformulas ofφ, and the search for a good set of
labels among the possible ones can be implemented in time polynomial in the num-
ber of possible labels using the technique of elimination of Hintikka sets developed
in [PRA 79]. A direct proof using this technique was given in [BLA 03] for the lan-
guageLcp (see Section 4). Unfortunately, the technique cannot be straightforwardly
applied toPDLtree. Here we show how an old result of Vardi and Wolper [VAR 86]
on deterministic PDL with converse yields the desired upper bound.

THEOREM 3. — ThePDLtree consequence problem is inEXPTIME.
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PROOF. First note thatγ1, . . . , γn |= χ if and only if |= root → ([[down∗]](γ1 ∧ . . . ∧
γn) → χ). Thus we need only decide satisfiability ofPDLtree formulas at the root of
finite trees.

Consider the languageL2, the modal language with the two programs{↓1, ↓2}
and their inverses{↑1, ↑2}. L2 is interpreted on finite at mostbinary-branchingtrees,
with ↓1 and↓2 interpreted by the first and second daughter relation, respectively. We
will effectively reducePDLtree satisfiability toL2 satisfiability. L2 is a fragment of
deterministic PDL with converse. [VAR 86] shows that the satisfiability problem for
this latter language is decidable inEXPTIME over the class of all models. This is done
by constructing for each formulaφ a tree automatonAφ which accepts exactly all tree
models in whichφ is satisfied. Thus deciding satisfiability ofφ reduces to checking
emptiness ofAφ. The last check can be done in time polynomial in the size ofAφ.
As the size ofAφ is exponential in the length ofφ, this yields the exponential time
decision procedure.

But we want satisfiability onfinite trees. This is easy to cope with in an automata-
theoretic framework: construct an automatonAfin_tree , which accepts only finite bi-
nary trees, and check emptiness ofAφ ∩ Afin_tree . The size ofAfin_tree does not
depend onφ, so this problem is still inEXPTIME.

The reduction fromPDLtree to L2 formulas is very simple: replace thePDLtree

programsdown, up, right, left by theL2 programs

↓1; ↓∗2, ↑∗2; ↑1, ↓2, ↑2,

respectively. It is straightforward to prove that this reduction preserves satisfiability,
following the reduction fromSωS toS2S as explained in [WEY 02]: aPDLtree model
(T,Rright, Rdown, V ) is turned into anL2 model(T,R1, R2, V ) by defining

R1 = {(x, y) | xRdowny andy is the first daughter ofx}

andR2 = Rright. Turn anL2 model(T,R1, R2, V ) into aPDLtree model(T ,Rright,
Rdown, V ) by definingRright = R2 andRdown = R1 ◦R∗

2. QED

4. Expressivity 1: first-order logic

LetLFO denote the first-order language over the signature with binary predicates
{Rdown+ , Rright+} and countably many unary predicates.LFO is interpreted on or-
dered trees in the obvious way:Rdown+ is interpreted by the transitive closure of the
daughter-of relation, andRright+ is interpreted by the transitive closure of the right-
sister relation. Note that the language is first order, even though we interpret the two
primitive relations as second order relations over a more primitive relations. This is
not strange, but just another perspective: we take descendant as primitive instead of
the immediate daughter relation. Of course the latter is first order definable from the
descendant relation.
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Two other modal languages proposed in the model-theoretic syntax literature can
be considered as first-order fragments ofPDLtree. That is, they can be considered as
versions ofPDLtree with a more limited repertoire of programs. As first-order logic
is a natural point of reference for the expressivity of languages it is useful to consider
first-order fragments ofPDLtree. We consider two, one predating and one postdating
the introduction ofPDLtree.

The language proposed by Blackburn, Meyer-Viol and de Rijke [BLA 96], here
calledLCore , contains only the core machinery for describing trees: the four basic
programs plus theirtransitiveclosures, denoted by a superscript(·)+. This language
is precisely as expressive1 as (i.e., can define the same sets of nodes as) the fragment
of PDLtree generated by the following programs:

π ::= left | right | up | down | π∗,

or equivalently by

π ::= left | right | up | down | π;π | π ∪ π | φ? |
a∗, for a one of the four atomic programs.

The language proposed by Palm [PAL 99], here calledLcp (with cp abbreviatingcon-
ditional path), lies betweenLCore andPDLtree with respect to expressive power. It
can be thought of as the fragment ofPDLtree generated by the following programs:

π ::= left | right | up | down | π;φ? | π∗,

or equivalently by

π ::= left | right | up | down | π;π | π ∪ π | φ? |
(a;φ?)∗, for a one of the four atomic programs.

Note that while the two definitions forLcp give rise to equally expressive languages,
not every program of the second language is equivalent to a program of the first lan-
guage. For example, the programs(a;φ?)+ and(φ?; a)∗ can be expressed only in the
second language. In this paper we will considerLcp to be the fragment ofPDLtree

generated by the programs given in the second definition.

Both languages are easily seen to be fragments ofLFO, the first order language
for sibling ordered trees. In fact we know exactly which fragments. Atree property
is a class of pairs(T,N) consisting of a treeT and a subsetN of its domain. A tree
propertyP is definablein a languageL if there is a formulaφ ∈ L such that(T,N)
is inP if, and only if, the denotation ofφ in T equalsN . For instance, the property of
having at least two children is definable by the formula〈down〉〈right〉>.

THEOREM 4 ([PAL 97, MAR 04A ]). — The following are equivalent on ordered
trees. ForP a tree property:

1. At this point we are only interested in the expressiveness of the modal language, not of the
set of programs. So we measure the expressive power of aPDLtree fragment in terms of which
sets of nodes can be defined in it.
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– P is definable by anLcp formula;

– P is definable by anLFO formula in one free variable.

THEOREM 5 ([MAR 04B]). — The following are equivalent on ordered trees. For
P a tree property:

– P is definable by anLCore formula;

– P is definable by anLFO formula in one free variable which

1) contains at most two (free and bound) variables (possibly reused), and

2) which may use additional atomic relations corresponding to the daughter-of
and right-sister relation.

The first theorem can be seen as a generalization of Kamp’s Theorem [KAM 68] to
ordered trees. The theorem was announced in [PAL 97], but the proof is hard to fol-
low. [MAR 04a] contains a proof based on Gabbay’s notion of separation [GAB 84].
The second theorem is also a generalization of a result for temporal logic on linear
structures, this time due to Etessami, Vardi and Wilke [ETE 97].

We end this section by giving some insight into the expressive power ofLcp. First
note that the temporal until(φ, ψ) modality can be expressed, in all four directions.
For the downward direction, until(φ, ψ) is expressed as〈(ψ?; down)∗〉φ. Indeed, this
formula is true at a noden if, and only if,φ is true atn or there exists a descendantn′

of n at whichφ is true and at all nodes, starting withn and descending ton′ exclusive,
ψ is true.

So far, we have only considered expressivity with respect to sets of nodes. We will
now consider expressivity with respect to binary relations on the set of nodes: which
binary relations can be defined by means of a program of the language?

THEOREM 6 ([MAR 05]). — The following are equivalent on ordered trees. ForP
a binary relation:

– P is definable by anLcp program;

– P is definable by anLFO formula in two free variables.

We now give a representative example of a first-order formula and its equivalentLcp

program. In the context of XML documents, the order in which the nodes are written
is an important relation, calleddocument order. Figure 1 contains an example of an
XML file, its corresponding tree model and the numbers of the nodes correspond to
their document ordering. The document order relation� is defined as

� ≡ down+ ∪ up∗; right+; down∗.

On finite trees it makes sense to speak about the successor relation of the document
order. The simple definition is� ∩ � ◦ �. It can be defined also with theLcp

programs as

down; first? ∪ leaf?; right ∪ (last?; up)+; right. (4)
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<AA1>
<BB2>

<CC3/>
<CC4/>

</BB2>
<DD5>

<EE6/>
<FF7/>

</DD5>
<GG8>

<HH9/>
<JJ10/>

</GG8>
</AA1>

AA1

BB2

CC3 CC4

DD5

EE6 FF7

GG8

HH9 JJ10

Figure 1. An XML document and its corresponding tree model.

Next we show how to define the relation

x� y ∧ φ(x) ∧ ψ(y) ∧ ∀z(x� z � y → φ(z)), (5)

from theLcp programs, and once we have this, the “until in document-order” modal-
ity: until�(ψ, φ) holds atx if, and only if,ψ(x)∨∃y(5). Note that Theorem 4 ensures
that the setψ(x)∨∃y (5) isLcp definable, but not that therelation(5) is definable from
theLcp programs.

We must use the definition ofLcp programs containing union and composition.
The definition is a case distinction based on the definition ofx� y:

1) x down+ y

2) x up+; right+; down+ y

3) x up+; right+ y

4) x right+; down+ y

5) x right+ y.

We only show the easiest (first) and the hardest (second) case. The others are varia-
tions of these. For the first case we want to express that

x down+y ∧ φ(x) ∧ ψ(y) ∧ ∀z(x� z � y → φ(z)).
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We explain our formulas by examples. Supposex is node 1 andy is node 7 in Figure 1.
Thenφ must hold at nodes 1–6 andψ must hold at node 7. This holds just in casex
andy are related by

φ? ;

(down; (φ ∧ [[left+]][[down∗]]φ)?)∗ ; (6)

down; (ψ ∧ [[left+]][[down∗]]φ)?.

The first line of (6) ensures thatφ holds at the node 1. The second line is evaluated
at the node 5 and ensures that the nodes 2–5 makeφ true. The third line says thatψ
holds at the node 7 andφ holds at the node 6.

For the second case we want to express that

x up+; right+; down+y ∧ φ(x) ∧ ψ(y) ∧ ∀z(x� z � y → φ(z)). (7)

This holds exactly whenx andy are related by

[[down∗]]φ? ; (8)

([[right+]][[down∗]]φ?; up)+ ; (9)

(right; [[down∗]]φ?)∗ ; (10)

right;φ? ; (11)

(down; (φ ∧ [[left+]][[down∗]]φ)?)∗ ; (12)

down; (ψ ∧ [[left+]][[down∗]]φ)?. (13)

This formula is best explained using a more elaborate tree, as in Figure 2. Suppose
nodesC andR stand in the relation (7). Then (8) ensures that{A,B,C} makesφ
true; the test[[right+]][[down∗]]φ in (9) will be evaluated at nodesC andG, thereby
ensuring thatφ holds in{F,D,E} and{J,H, I}, respectively. The test[[down∗]]φ in
(10) will be evaluated at all nodes strictly in betweenK andU , so here taking care
thatφ holds at{N,L,M}. (11) ensures thatφ is true atU . Now (12) and (13) are just
the subprograms of (6) from the first case, ensuring thatφ holds at{Q,O, P, T} and
ψ holds at{R}.

5. Expressivity 2: second-order properties

In this section we look at three concrete examples of non-trivial second-order prop-
erties of trees that are expressible inPDLtree; first though, some background. The lan-
guagePDLtree can express properties beyond the reach ofLFO. For example,PDLtree

can express the property of having an odd number of daughters:

〈down〉(first ∧ 〈(right; right)∗〉last). (14)
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V

K

G

C

A B

F

D E

J

H I

N

L M

U

Q

O P

T

R S

Figure 2. Example tree for the second case.

Note that the second conjunct〈(right; right)∗〉last says that by chaining together a
succession of doubleright steps we can reach the rightmost daughter node — which
means that there must be an odd number of daughter nodes. This is a property that no
LFO formula can express.

On the other hand,PDLtree is contained inL2
K,P , Rogers monadic second-order

logic of variably branching trees [ROG 98].L2
K,P just extendsLFO by quantification

over unary predicates. The translation ofPDLtree formulas intoL2
K,P is straightfor-

ward. Note, in particular, that we can use second-order quantification to define the
transitive closure of a relation: forR any binary relation,xR∗y holds iff

x = y ∨ ∀X(X(x) ∧ ∀z, z′(X(z) ∧ zRz′ → X(z′)) → X(y)).

Thus PDLtree can be seen as a fragment of unaryL2
K,P . Kracht showed that the

inclusion is strict:

THEOREM 7 ([KRA 99]). — UnaryL2
K,P is strictly more expressive thanPDLtree.

This brings us to the most important open problem concerningPDLtree:

OPEN PROBLEM. Characterize the expressive power ofPDLtree interpreted on finite
ordered trees in terms of a suitable fragment of monadic second-order logic.

Within the context of query languages for XML documents a number of proposals for
second-order languages have been made. The goal, then, is to express unary MSO,
MSO formulas denoting a set of nodes. We mention monadic datalog of [GOT 02]
and the efficient tree logic of [NEV 00a], which are both as expressive as unary MSO.

Neven and Schwentick [NEV 00a] argue that unary MSO rather thanLFO is the
gold standard for a language designed for specifying nodes in finite ordered trees.
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Their most convincing example is a variant of the boolean circuit problem. In order to
obtain a better understanding of the second order expressivity ofPDLtree, we encode
a number of second-order properties inPDLtree. In addition to the boolean circuit
problem just mentioned, we encode the frontier problem and we show that finiteness of
ordered trees can be expressed inPDLtree. The frontier problem is a typical linguistic
problem. Expressing finiteness within a large class of tree-like structures shows the
robustness of the language. We look at the upshot of these examples at the end of this
section. We start with the frontier problem.

5.1. The frontier problem

Thefrontier of a tree is the set of leaves ordered from left to right. In a parse tree of
a natural language sentence, the frontier is exactly that sentence. Usually the frontier
is where the actual data contained in a tree is located.

Given a conditionφ on the frontier, we want to write anPDLtree expression which
is true at the root of a tree if, and only if, the frontier of the tree satisfiesφ. For instance,
φ could be a regular expression over atomic symbols, like(p; q)∗. The most natural
application is when we know that each leaf node makes exactly one atomic symbol
true. Then a tree satisfiesφ if and only if the frontier is a word in(p; q)∗. But nothing
forbids us to use arbitrary complexPDLtree formulas in place ofp andq. E.g.,〈up∗〉np
states that the current word of the parsed sentence is part of a noun-phrase (“annp”).
Thus we do not view the frontier as a unique string, but as an infinite collection of
strings, made up from formulas which are true at the respective nodes. Now letr be
a regular expression in which arbitraryPDLtree formulas are the letters. We say that a
tree’s frontierl1 . . . , ln satisfiesr if, and only if, there arePDLtree formulasφi such
that for alli, li |= φi and the stringφ1, . . . , φn is a word inr.

What we need for expressing frontier conditions is the successor relation between
frontier nodes. This is naturally defined using the document order relation from the
previous section. A frontier nodey is the successor of a frontier nodex if and only if
x� y and there is no leaf node in betweenx andy in the document order. An intuitive
definition of the next_frontier_node relation between leaves can now be given as:

leaf?; [(¬last)? ∪ (last?; up)+]; right; (down; first?)∗; leaf?. (15)

Because we evaluate thePDLtree formula at the root, we should add to (15) the step
from the root to the first leaf. So define thenext_frontier_node relation as

root?; (down; first?)∗; leaf? ∪ (15).

Let last_frontier_node be an abbreviation ofleaf∧〈(last?; up)∗〉root, which indeed is
true exactly at the last frontier node (or simply at the root, if the root is the only node
in the model).

Now letr be a regular expression over a set ofPDLtree formulas. Then for any tree
T , T ’s frontier satisfiesr if and only if the root ofT satisfies〈r◦〉last_frontier_node,
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wherer◦ is r with ; placed between allPDLtree formulas which act as letters inr
and any such formulaφ is replaced bynext_frontier_node;φ?. For instance, the
frontier is in(ab)∗, wherea andb are atomic symbols if, and only if, the root satisfies

〈(next_frontier_node; a?; next_frontier_node; b?)∗〉last_frontier_node.

Note that the formula is true on a tree containing only the root; thus it correctly rec-
ognizes the empty string.

5.2. The boolean circuit problem

We show how the boolean circuit problem can be expressed inPDLtree. Our
PDLtree formula is based on the same idea as in [NEV 00b]: use a depth first traversal
of the tree. We start with defining the boolean circuit problem.

DEFINITION 8 (BOOLEAN CIRCUITS). — Boolean circuitsare finite{1, 0,C,D}-
labeled ordered binary trees such that

1) each leaf is labeled with exactly one of{1, 0}, and

2) each non-leaf is labeled with exactly one of{C,D}.

If B is a boolean circuit andb ∈ B then withBb we denote the subtree ofB rooted at
b. With Bb we denote the tree which we obtain by removing everything belowb. So
in particular we have thatb is a leaf ofBb.

The intended meaning of the labels is as one might expect:1 means ‘true’,0
means ‘false’, C means conjunction and D means disjunction. For any boolean circuit
B, define the boolean function eval from the domain ofB to {‘true’, ‘false’} in the
expected way. For instance, as the Datalog program:

eval(x) :- 1(x).

eval(x) :- D(x), Rdown(x,y), eval(y).

eval(x) :- C(x), Rdown(x,y), Rright(y,z), eval(y), eval(z).

Also for anyb ∈ B let height(b) denote the length of the longest path starting at, but
not including,b to a leaf. So ifb is a leaf, then height(b)= 0.

GENERAL IDEA. To check if a boolean circuit evaluates to true we look for substruc-
tures that can be constructed as follows. We start at the root and move down. At
disjunctive nodes we select one child. At conjunctive nodes we take both children.
When we reach a leaf, it should be labeled with1. We check if such a substructure ex-
ists in a depth first fashion. So, we walk down the tree, where at conjunctive nodes we
always take the left route and make sure (by selecting the correct child at disjunctive
nodes) we end up in a leaf labeled1. We let the relationR0 denote such a path. That
is, for allx andy we havexR0y if, and only if, the following three cases apply.

1) ∃ k ≥ 1 t1, . . . , tk s.t.x = t1downt2down · · · downtk = y
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2) For all1 ≤ i < k if ti 
 C, thenti+1 
 first

3) tk 
 1

Next we walk up again until we are at a left child of a conjunctive node. We move
right, to nodebr say, and repeat the procedure. When we return at nodebr we realize
that we are about to enter a conjunctive node from the right and move further up until
the next conjunctive node. WithR1 we denote this relation. So for allx andy we
havexR1y if, and only if, the following two cases apply.

1) ∃k ≥ 1 t1, . . . , tk s.t.x = t1upt2up · · · uptk = y

2) For all1 ≤ i < k, ti 
 〈up〉C→ last

When we reach the root of the boolean circuit the procedure stops. We can express
both relationsR0 andR1 asPDLtree programsπ0 andπ1 as follows. Letπ0 be the
program, which corresponds toR0. That is

π0 = ((D?; down) ∪ (C?; down; first?))∗; 1?.

Let π1 be the program corresponding toR1. That is

π1 = ((〈up〉C→ last)?; up)∗.

Finally define

β = 〈π0;π1; (right;π0;π1)∗〉root.

Before we move on let us make a remark. On first sight one might think that we need
in the definition ofR1 a third clause. Namely

3) tk 
 〈up〉C∧ ¬last or tk 
 root.

And, consequently, instead ofπ1 we should have

π1; (〈up〉C∧ ¬last ∨ root)?.

This is not necessary. With the current definition ofR1 we allow for a check (but do
not consider it necessary) that the second child of a disjunctive node is true when we
already know that the first child is. This is just as harmless as it is useless. Neverthe-
less, the proof below (in particular Lemma 13) does not work without this omission.

THEOREM 9. — β is forced at the rootr of a boolean circuit iff eval(r) is true.

The proof follows below, but first several lemmas.

LEMMA 10. — LetB be a boolean circuit. For all nodesb ∈ B we have the follow-
ing.

1) b 
 β ∧ C→ [[down]]β
2) b 
 β ∧ D → 〈down〉β
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PROOF. First we show 1. Supposeb 
 β∧C. Letbl be the left child ofb andbr be the
right child of b. It is easy to see thatbl 
 β. To show thatbr 
 β we need a lemma.

LEMMA 11. — For any x for which notx(up)∗bl (e.g. x 6∈ Bbl
) we have that if

bl(π0;π1; (right;π0;π1)∗)x thenbl(right;π0;π1)∗x.

PROOF. Choosex as stated. We show with induction onn that

if bl(π0;π1; (right;π0;π1)n)x thenbl(right;π0;π1)∗x.

If n = 0 then for somet, blπ0tπ1x. Clearlyt(up)∗bl andt(up)∗x. So, by choice ofx,
bl(up)+x. But this is clearly in contradiction with the definition ofπ1.

Now supposebl(π0;π1; (right;π0;π1)n+1)x. Chooset such that

bl(π0;π1; (right;π0;π1)n)t andt(right;π0;π1)x.

We can assume thatt(up)∗bl (otherwise we are done by (IH)). We also can assume
thatt 6= bl and thust(up)+bl. Fix somet′ for which t(right;π0)t′π1x. By the above
we obtaint′(up)+bl. Similar as in the casen = 0 this leads us to a contradiction.QED

Now we continue with showing thatbr 
 β. Sincebl 
 β we can find somex1, x2, . . .
such that

bl = x1(π0;π1)x2(right;π0;π1)x3 · · · (right;π0;π1)r,

wherer is the root ofB. Let i be that smallest number such that notxi(up)∗bl. Note
thati > 2. So, by the above lemma and by choice ofi, we havebl(right;π0;π1)xi.
So,br(π0;π1)xi and thusbr 
 β. We have shown 1.

Item 2 is rather trivial. For if we suppose thatb 
 β ∧ D then it is easy to verify,
using the definition ofπ0, thatb 
 〈down〉β. QED

COROLLARY 12. — LetB be a boolean circuit. For all nodesb ∈ B we have that if
b 
 β then eval(b) is true.

PROOF. Induction on height(b). If height(b)= 0 then the claim is clear by the defini-
tion of π0. So suppose height(b)> 0. There are two cases to consider.

Case:b 
 C. By Lemma 10 we haveb 
 [[down]]β. So, by (IH), we have that for
all childrenb′ of b that eval(b′) is true and thus eval(b) is true.

Case:b 
 D. By Lemma 10 we haveb 
 〈down〉β. So, by (IH), for some childb′

of b we have eval(b′) is true and thus eval(b) is true. QED

LEMMA 13. — LetB be a boolean circuit. For allb ∈ B for which eval(b) is true
we have thatb(π0;π1; (right;π0;π1)∗)b.
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PROOF. Induction on height(b). If height(b)= 0 then this is clear. So suppose
height(b)> 0. There are two cases to consider.

Case:b 
 C. Then forb’s childrenbl andbr we have that eval(bl) and eval(br) are
true. By (IH),bl(π0;π1; (right;π0;π1)∗)bl andbr(π0;π1; (right;π0;π1)∗)br. So,
the pair(b, b) is contained in the following relation:

C?; down; first?;π0;π1; (right;π0;π1)∗; right;π0;π1; (right;π0;π1)∗; last?; up.

Thus, as one can easily verify, we have

b(π0;π1; (right;π0;π1)∗)b.

Case:b 
 D. Then for at least one childbi of b we have eval(bi) is true. So by (IH)
we obtainbi(π0;π1; (right;π0;π1)∗)bi. Thus

b(D?; down; (π0;π1; (right;π0;π1)∗); (¬〈up〉C)?; up)b.

Which impliesb(π0;π1; (right;π0;π1)∗)b. QED

Now we are ready to prove Theorem 9.

PROOF OFTHEOREM 9. (⇒) Immediate from Corollary 12.(⇐) Suppose eval(r)
is true. By Lemma 13 we haver(π0;π1; (right;π0;π1)∗)r. So in particularr 

〈π0;π1; (right;π0;π1)∗〉root, i.e.,r 
 β. QED

5.3. Expressing finiteness

We let go of the restriction to finite trees. Normally one would define arbitrary trees
as partially ordered sets(W,<) with a unique root and such that for eachw ∈ W the
set{v | v < w} is well-ordered By<. The height of a nodew is then defined as the
order-type of{v | v < w} and we say that a tree is of heightω when the height of
each node is finite. We can do a little bit better. Below we define first-order definable
structures such that the part thatPDLtree can see is a tree of heightω.

First, for a binary relationR we say thaty is adirect successorof x whenxRy and
for no z we havexRzRy. We definedirect predecessorin a similar way. We say that
R is discretewhen for anyxRy such thaty is not a direct successor ofx, there exists
some direct successorz of x with xRzRy. Notice that discrete relations are always
irreflexive. We say that a structure〈T,Rdown+ , Rright+〉 (note that, in this context,
Rdown+ andRright+ are primitive relation symbols themselves) istree-likewhen

1) Rdown+ is a discrete and partial order onT with a unique root,

2) eacht ∈ T has at most one directRdown+ -predecessor,

3) Rright+ is discrete and linearly orders the direct successors of anyt ∈ T , in
particular ifxRright+y thenx andy have the same directRdown+ -predecessor.
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Clearly, this class of structures is first-order definable within the class of Kripke
frames with two accessibility relations and any tree is a tree-like structure. We de-
fine the relationsRdown, Rright and all the other relationsRπ that may occur within
PDLtree-modalities as above in Section 2. But note that although we do haveR+

down ⊆
Rdown+ , R+

right ⊆ Rright+ , in general these inclusions will be proper. IfT =
〈T,Rdown+ , Rright+〉 is a tree-like structure with rootr, then we writeTr for the struc-
ture〈r〉〈T,Rdown,Rright〉, the substructure of〈T,R+

down, R
+
right〉 generated byr using the

defined relationsRdown andRright, in the usual modal logic sense. Of course for
any PDLtree formulaφ we have thatT , r 
 φ iff Tr, r 
 φ. So without danger of
confusion we can writer 
 φ.

As a corollary to the proof of the definability of boolean circuits we will show that
PDLtree can define finiteness of tree-like structures.

THEOREM 14. — There exists aPDLtree-formula Fin such that for any tree-like
structureT with root r we haveT , r 
 Fin if, and only if,T is finite.

PROOF. Letδ andγ be as defined in (16) and (17) below and let Fin beδ∧γ. The proof
proceeds in stages. In Lemma 15 we show that it is sufficient to show thatTr, r 
 Fin
if, and only if,Tr is finite. This latter is shown in Lemmas 16, 17 and 18. QED

LEMMA 15. — For any tree-like structureT with root r, Tr is an ordered2 tree of
heightω, andTr is finite if, and only if,T is finite.

PROOF. The first assertion is a direct consequence of the definition of tree-like struc-
tures. The second assertion follows from the fact that ifx is a leaf inTr then by
discreteness there does not exist anyRdown+ descendant ofx in T . QED

As a first approximation for finiteness put

δ = [[down∗]](〈left∗〉first ∧ 〈right∗〉last). (16)

LEMMA 16. — For any tree-like structureT with root r we have thatTr, r 
 δ if,
and only if,Tr is finitely branching.

PROOF. The left to right direction holds since ift ∈ Tr has infinitely many children
then by discreteness we can find an infinite, to the left or to the right,Rright-chain.
The converse is obvious. QED

2. In case the tree is infinitely branching the sibling orderRright might be non-total, but this
does not matter, see Lemma 16.
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So in order to define the class of finite tree-like structures it is enough to define the
class of finite trees as a subclass from the class of ordered trees of heightω which are
finitely branching. To this end put

π0 = (down; first?)∗; leaf?,

π1 = (last?; up)∗

and

γ = 〈π0;π1; (right;π0;π1)∗〉root. (17)

Before we move on let us introduce some terminology. Abranchb in a finitely branch-
ing treeT of heightω is a sequence

r = x1(down)x2(down) · · · (down)xn(down) · · ·

wherer is the root ofT and eitherb is infinite and in this case is(down) closed, or
its last element is a leaf. Ifb andb′ are branches then we say thatb is to the leftof b′

whenever ifi is the smallesti such thatbi 6= b′i thenbi(right)+b′i. Clearly, sinceT
is finitely branching, this gives us a linear ordering on the branches of some fixed tree.
For t ∈ T andb a branch ofT we writet < b if t 6∈ b andt occurs on some branch to
the left ofb. t ≤ b meanst < b or t ∈ b. Similar definitions hold forb < t, b ≤ t.

LEMMA 17. — SupposeT is finitely branching tree of heightω and t ∈ T . If Tt is
finite thent(π0;π1; (right;π0;π1)∗)t.

PROOF. Induction on height(t). Similar to the proof of Lemma 13. QED

LEMMA 18. — SupposeT is finitely branching tree of heightω with root r. If T is
infinite then notr(π0;π1; (right;π0;π1)∗)r.

PROOF. SinceT is infinite, finitely branching and of heightω, T must contain an
infinite branch. Letb be the leftmost infinite branch ofT . Such a branch can eas-
ily be constructed by starting fromr and in each successive step select the leftmost
child of the previously selected node which roots an infinite subtree. The following is
obvious.

1) x ≤ b andx(π0)y imply y < b

2) x < b andx(π1)y imply y < b

3) x < b andx(right)y imply y ≤ b

1 is clear, sinceπ0 only walks to leftmost children. 2 is clear, sinceπ1 only walks
from rightmost children. 3 is clear, by definition of the ordering on branches.

Now let us assume thatr(π0;π1; (right;π0;π1)∗)r. Then there exists some se-
quence

r = a0(π0)a1(π1)a2(right)a3(π0)a4 · · · ak−2(π1)ak−1 = r.
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By the above three points it follows, with induction oni, that

for all i < k, ai ≤ b. (18)

Sinceak−3(π0)ak−2 we have thatak−2 must be a leaf, and sinceak−2(π1)r we also
have that the branch inT ending inak−2 only contains rightmost nodes. But this
implies thatb, as the leftmost infinite branch ofT , must be on the left of the branch
ending inak−2. So in particularb ≤ ak−2. But sinceak−2 is a leaf we even have
b < ak−2, in contradiction with (18). QED

5.4. The upshot

What is the upshot of these examples? First and foremost, they were intended to
show the language in action, to show that semantic reasoning is naturally captured in
PDLtree formulas, even when it comes to hard problems. Even though we provided
rigorous correctness proofs, we feel that once the semantic argument is understood,
correctness of thePDLtree formalization is almost self-evident.

Although boolean circuits looks like a canonical MSO problem it has certain pe-
culiarities which we could exploit, in particular that one depth-first traversal of the
tree is sufficient to determine the truth of the formula. The problem suggest a possible
strengthening of the language: intersection of programs with>?. With this we can
specify the set of all pointst at whicheval(t) is true, and not just the root.

6. Conclusions

We hope that we convinced the reader that PDL is a natural formalism for rea-
soning about ordered trees. We showed that it has good complexity measures, both
in terms of model checking and in terms of satisfiability and consequence problems.
PDLtree has natural subfragments which are expressively complete with respect to first
order logic. The most pressing open problems are to determine the exact expressive
power ofPDLtree and to understand whether the extra expressivity given by unary
MSO is useful in specific applications as linguistics or the XML-world.
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