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ABSTRACTThis paper is about a special version of PDL, proposed by Marcus Kracht, for rea-
soning about sibling ordered trees. It has four basic programs corresponding to the child,
parent, left- and right-sibling relations in such trees. The original motivation for this language

is rooted in the field of model-theoretic syntax. Motivated by recent developments in the area
of semi-structured data, and, especially, in the field of query languages for XML (eXtensible
Markup Language) documents, we revisit the language. This renewed interest comes with a
special focus on complexity and expressivity aspects of the language, aspects that have so far
largely been ignored. We survey and derive complexity results, and spend most of the paper
on the most important open question concerning the language: what is its expressive power?
We approach this question from two angles: Which first-order properties can be expressed?
And which second-order properties? While we are still some way from definitive answers to
these questions, we discuss two first-order fragments of the PDL language for ordered trees,
and show how the language can be used to express some typical (second-order) problems, like
the boolean circuit and the frontier problem.

KEYwoRDspdI, ordered trees, definability, expresivity, complexity

1. Introduction

The purpose of this paper is to revive interest in a version of PDL proposed by
Marcus Kracht [KRA 95, KRA 97]. This version, calleRDL;... here, is specially
designed for models which are sibling ordered trees. Such models are of interest in at
least two research communities: linguistics, in particular the field of model-theoretic
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syntax, and computer science, in particular for those working with the World Wide
Web, semi-structured data and XML (eXtensible Markup Language).

Model-theoretic syntax is an uncompromisingly declarative approach to natural
language syntax: grammatical theories are logical theories, and grammatical struc-
tures are their models. These models consists of parse trees, i.e., node labeled, sibling
ordered finite trees. Perhaps the best known work in this tradition is that of James
Rogers (for example [ROG 98]) in which grammatical theories are stated in monadic
second-order logic. However other authors (in particular [BLA 94, KRA 95, KRA 97,
PAL 99]) use various kinds ahodal logic(in essence, variable free formalisms for
describing relational structures) to specify grammatical constraints. Palm [PAL 99]
contains some interesting linguistic examples and is a good introduction to (and moti-
vation for) this approach.

The World Wide Web is a freely evolving, ever-changing collection of data with
flexible structure. The Web’s nature escapes the conventional database scenario of
manipulating data: data on the Web simply do not comply with the strict schemas
used for conventional databases. Web data such as home pages, news sites, pages
on commercial sites, usually enjoy some amount of structure, but that is not strictly
enforced, and there are no uniformly adopted standards, not even for simple bits of
information such as addresses. Hence, data on the Web is essentially semi-structured
[ABI 00]. In search for suitable models for semi-structured data, the World Wide
Web Consortium proposed the eXtensible Markup Language (XML) [Wor]. XML
is a standard for textual representation of semi-structured data and was designed to
describe any type of textual information. It looks like a flexible variant of HTML,
allowing for the mark-up of data with information about its content rather than its
presentation. The logical abstraction of an XML document (the so-called DOM) is a
finite, node labeled, ordered tree.

Motivated by the renewed need for clean, well-understood declarative tree descrip-
tion formalisms brought about by the developments in semi-structured data outlined
above, we want to revive interest in the special variant of PDL developed for sibling
ordered trees. We focus on complexity and expressivity aspects of the language. Sec-
tion 2 introduces the language. Section 3 discusses complexity, and in Section 4 and
Section 5 we address expressivity issues. Section 4 is devoted to the expressiveness
of the language in terms of first-order properties; we discuss the first-order fragment
of PDLye, recall some known results, and show the language in action by expressing
the until modality over the document order relation.

It follows from the failure of Beth's Theorem for deterministic PDL interpreted
on finite trees [KRA 99] thaPDL,. is strictly less expressive than unary monadic
second-order logic (MSO). The most pressing issue thus is to determine the exact
expressive power d?PDL,.. in terms of a suitable fragment of unary MSO. This re-
mains an open problem, but to improve our understandinBf;,..’'s expressive
power, we adopt a well-known strategy by examining a number of ‘typical’ second-
order problems and properties. Specifically, in Section 5 we show how we can express
the boolean circuit and the frontier problem, and we discuss infinity axioms. These
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examples suggest thBDL,.. is expressive enough to encode natural hard second-
order problems. Boolean circuits is one of the main problems used to show that a
logic is weaker than MSO. The frontier problem is a typical linguistic application. We
conclude in Section 6.

2. PDL for ordered trees

We recall the definition oPDLy. from [KRA 95, KRA 97]. PDLy, iS a propo-
sitional modal language identical to Propositional Dynamic Logic (PDL) [HAR 00]
over four basic programseft, right, up anddown, which explore the left-sister,
right-sister, mother-of, and daughter-of relations. Recall that PDL has two sorts of ex-
pressions: programs and propositions. We suppose we have fixed a non-empty, finite
or countably infinite, set of atomic symbols A whose elements are typically denoted
by p. PDLye's syntax is as follows, writingr for programs and for propositions:

n= left|right| up | down | mw |7wUm |7 | §?

™
¢ u= plT|-¢loAd]| (Mo

We sometimes writ€DL..(A) to emphasize the dependence on A. We employ the
usual boolean abbreviations and {igle for —(m)—¢.

We interpret DLy (A) onfinite ordered treesrhose nodes atabeledwith sym-
bols drawn from A. We assume that the reader is familiar with finite trees and such
concepts as ‘daughter-of’, ‘mother-of’, ‘sister-of’, ‘root-node’, ‘terminal-node,” and
so on. If a node has no sister to its immediate right we call it a last node, and if it has
no sister to its immediate left we call it a first node. The root node is both first and
last, and calledoot. A labeling of a finite tree associates a subset of A with each tree
node.

A sibling ordered tree is a structure isomorphiq 6, Ryoun, Rrignt) WhereN is
a set of finite sequences of natural numbers closed under taking initial segments, and
for any sequence, if s - k € N, theneitheic =0ors-k— 1€ N. Forn,n’ € N,
nRaomn’ holds if, and only if,n” = n - k for & a natural numben R,z an’ holds
if, and only if,n = s - k andn’ = s - k + 1. We present finite ordered trees (trees for
short) as tuple¥" = (T, Raoun, Rrignt ). HereT is the set of tree nodes aifit} ;.. and
Ryoun are the right-sister and daughter-of relations, respectively. A)fiait (T, V),
whereT is a finite tree and’ : A — Pow(T), is called amode] and we say thal’
is alabeling functionor avaluation Given a modefJt, we simultaneously define a
set of relations of” x T and the interpretation of the langua@BL;,e.(A4) onM1:

R“P = R;otm RTrUTr’ - Rﬂ' U Rﬂr/
Riese = R;ilght Rew = RpoRy
Bre = Ry Ry = {(t,t)| Mt = ¢}
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Mt =p if,andonlyif, te€V(p), forallpeA
Mt =T if,andonlyif, teT
Mt =-¢ if,andonlyif, Mt ¢
MtEopAy if,andonlyif, Mt Pandd, t =
M, t = (my¢ if,andonlyif, 3t (tR.t' and M, = ¢).

If M, ¢t = ¢, then we say is satisfiedn 9t at¢. For any formulap, if there is a model
M such thatht, root = ¢, then we say thap is satisfiable ForT" a set of formulas,
and¢ a formula, we say that is a consequence &f(denoted by" |= ¢) if for every
model in whichl" is satisfied at every node,is also satisfied at every node.

Note that we could have defindDL.. by takingdown andright as the sole
primitive programs and closing the set of programs under converses. As converse
commutes with all program operators, these two definitions are equally expressive.

Let us consider some examples: if universally true, (1) says that eveogde has
a b and ac daughter, in that order, and no other daughters; and (2) says that every
a node has & first daughter followed by some number ©flaughters, and no other
daughters.

a — (down)(—(left)T AbA (right)(c A = (right)T)) 1)
a — (down)(—(left)T AbA ((right;c?)*)—(right)T). 2

Now consider (3). This projects a laetown to some leaf node:
{(p?; down)™)(p A —(down)T) 3)

That is, whenever this formula is satisfied in some model at some fdivere will be
a path fron¥ to some leaf nodésuch that every node on the path is marke@/e end
the short examples with a list of useful abbreviatiorsst is short for—(up) T, leaf
is short for—(down) T, first is short for-(1eft) T, andlast abbreviates(right)T.

3. Complexity

There are two natural problems for which we want to know the complexity. First
the model checking problem: given a t#& a nodet, and a formulap, how difficult
is it to decide whethed, ¢ = ¢?

THEOREM1 ([ALE 00]). — M, ¢ = ¢ can be determined in time linear in the size
of M and of¢.

See [ALE 03] for a large number of related results.

Secondly, consider the complexity of tR®L;... consequence problem: how dif-
ficult is it to decide whether, on finite ordered treEs= x, for finite I'. Decidability
of this problem follows from the interpretation 8DL,, into L%P [ROG 98] (see
the beginning of Section 5). (The decidability of the satisfiability problemLfigrP
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follows, in turn, via an interpretation into Rabin%u.S.) But although this reduction
yields decidability, it only gives us a non-elementary decision procedure. So what is
the complexity of the consequence problem?

Let us first deal with the lower bound.

THEOREM 2 ([FIS 79, SPA 93]). — The consequence problem for tR®OL e
fragment with onlown is EXPTIME-hard.

PrROOF This is a corollary of the analysis of the lower bound result for PDL given
by [SPA 93], based on [FIS 79]. The following fragment of PDLEisPTIME-hard:
formulas of the formy> A [a*]0 (wheret) and @ contain only the atomic program

and no embedded modalities) that are satisfiable at the root of a finite binary tree.
Identifying the programu with down, the result follows (becaudéown*]0 A ¢ is
satisfiable at the root of a finite tree if, and onlydfj= root — —)). QED

For full PDL this bound is optimal. There is even a stronger result: every satisfiable
PDL formula¢ can be satisfied on a model with size exponential in the length of
However with tree-based models there is no hope for such a result for it is easy to
show that:

For every natural numben, there exists a satisfiable formula of size
O(n?) which can only be satisfied on at least binary branching trees of
depth at leasp™.

A formula containing most of the requirements to force such a deep branch is given
in Proposition 6.51 of [BLA 01]. To this formula we only have to add the conjunct
[down*]((down)p A (down)—p) for some new variable to enforce binary branching.

Note that the size of such a model is double exponential in the size of the formula.
This means that a decision algorithm which tries to construct a tree model must use at
least exponential space, as it will need to keep a whole branch in memory.

So we have to think more carefully about the upper bound. One way to proceed
is to take a clue from the completeness proof for a related language in [BLA 94]. In-
stead of constructing a model it is possible to design an algorithm which searches for
a “good” set of labellings of the nodes of a model. Label sets consist of subformulas
of the formula¢ whose satisfiability is to be decided. From a good set of labels we
can construct a labeled tree model which satisfie3he number of labels is bound
by an exponential in the number of subformulagpénd the search for a good set of
labels among the possible ones can be implemented in time polynomial in the num-
ber of possible labels using the technique of elimination of Hintikka sets developed
in [PRA 79]. A direct proof using this technique was given in [BLA 03] for the lan-
guageL., (see Section 4). Unfortunately, the technique cannot be straightforwardly
applied toPDL.... Here we show how an old result of Vardi and Wolper [VAR 86]
on deterministic PDL with converse yields the desired upper bound.

THEOREM 3. — ThePDL. consequence problem is @XPTIME.



6 Journal of Applied Non-Classical Logies- 18th January 2005,
th submission.

PROOEF First note thatys, ... ,v, = x if and only if = root — ([down*](7y1 A ... A
vn) — X). Thus we need only decide satisfiabilityPDL;... formulas at the root of
finite trees.

Consider the languagé,, the modal language with the two prografis, |2}
and their inverse$?y, 12}. £ is interpreted on finite at mobinary-branchingrees,
with |1 and |, interpreted by the first and second daughter relation, respectively. We
will effectively reducePDL.,.. Satisfiability toL, satisfiability. £, is a fragment of
deterministic PDL with converse. [VAR 86] shows that the satisfiability problem for
this latter language is decidabledxPTIME over the class of all models. This is done
by constructing for each formulaa tree automator, which accepts exactly all tree
models in whichy is satisfied. Thus deciding satisfiability ¢freduces to checking
emptiness ofd,. The last check can be done in time polynomial in the sizél pf
As the size of4, is exponential in the length af, this yields the exponential time
decision procedure.

But we want satisfiability ofinite trees. This is easy to cope with in an automata-
theoretic framework: construct an automatdg,, ..., which accepts only finite bi-
nary trees, and check emptinessAf N Agy, tree. The size ofAg), tree does not
depend o, so this problem is still iTEXPTIME.

The reduction fronPDLy. to Lo formulas is very simple: replace tHRDL; e
programsiown, up, right, left by the L, programs

ll;l;a T;lea l27 T2a

respectively. It is straightforward to prove that this reduction preserves satisfiability,
following the reduction fronbw.S to S2.5 as explained in [WEY 02]: DL, model
(T, Rrignt, Raown, V) is turned into anC, model(T', Ry, Rz, V') by defining

Ry = {(2,y) | * Raowmy andy is the first daughter of }

andRy = Ryigne. Turn anl, model(7T, Ry, Ry, V') into aPDLye. model(T', Ryigne,
Raoun, V') by definingRyigne = R2 aNdRaom = R1 0 R3. QED

4. Expressivity 1: first-order logic

Let Lro denote the first-order language over the signature with binary predicates
{Raount, Rrigne+ } @nd countably many unary predicatesro is interpreted on or-
dered trees in the obvious waRy..+ IS interpreted by the transitive closure of the
daughter-of relation, anf, ;. + is interpreted by the transitive closure of the right-
sister relation. Note that the language is first order, even though we interpret the two
primitive relations as second order relations over a more primitive relations. This is
not strange, but just another perspective: we take descendant as primitive instead of
the immediate daughter relation. Of course the latter is first order definable from the
descendant relation.
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Two other modal languages proposed in the model-theoretic syntax literature can
be considered as first-order fragment$@fL, ... That is, they can be considered as
versions ofPDL... With a more limited repertoire of programs. As first-order logic
is a natural point of reference for the expressivity of languages it is useful to consider
first-order fragments dPDL.... We consider two, one predating and one postdating
the introduction oPDLec.

The language proposed by Blackburn, Meyer-Viol and de Rijke [BLA 96], here
called L¢,., contains only the core machinery for describing trees: the four basic
programs plus theirransitiveclosures, denoted by a supersciigt™. This language
is precisely as expressivas (i.e., can define the same sets of nodes as) the fragment
of PDL.. generated by the following programs:

7 = left | right | up | down | 7",
or equivalently by

m = left|right| up | down |m7|7wUm|$?|
a*, for a one of the four atomic programs

The language proposed by Palm [PAL 99], here callggl(with ¢p abbreviatingcon-
ditional path), lies betweern_ ¢,,. andPDL;.. With respect to expressive power. It
can be thought of as the fragmentRIDL;... generated by the following programs:

7 = left | right | up | down |m;¢? |7,
or equivalently by

m = left|right| up | down |m7 |wUm|P? |
(a; ¢7)*, for a one of the four atomic programs

Note that while the two definitions fof., give rise to equally expressive languages,
not every program of the second language is equivalent to a program of the first lan-
guage. For example, the progratas¢?)* and(¢?; a)* can be expressed only in the
second language. In this paper we will considey to be the fragment oPDLyee
generated by the programs given in the second definition.

Both languages are easily seen to be fragmenid;qf, the first order language
for sibling ordered trees. In fact we know exactly which fragmentgre& property
is a class of pair§T', N) consisting of a tre€" and a subse¥ of its domain. A tree
property P is definablein a languagd. if there is a formulap € L such tha{T, N)
is in P if, and only if, the denotation af in T" equalsN. For instance, the property of
having at least two children is definable by the form{dawn)(right)T.

THEOREM 4 ([PAL 97, MAR 04a]). — The following are equivalent on ordered
trees. ForP a tree property:

1. At this point we are only interested in the expressiveness of the modal language, not of the
set of programs. So we measure the expressive powePbila.. fragment in terms of which
sets of nodes can be defined in it.
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— P is definable by arC., formula;
— P is definable by art o formula in one free variable.

THEOREMS5 ([MAR 04B]). — The following are equivalent on ordered trees. For
P atree property:

— P is definable by art ¢, formula;
— P is definable by aif ro formula in one free variable which

1) contains at most two (free and bound) variables (possibly reused), and

2) which may use additional atomic relations corresponding to the daughter-of
and right-sister relation.

The first theorem can be seen as a generalization of Kamp’s Theorem [KAM 68] to
ordered trees. The theorem was announced in [PAL 97], but the proof is hard to fol-
low. [MAR 04a] contains a proof based on Gabbay’s notion of separation [GAB 84].
The second theorem is also a generalization of a result for temporal logic on linear
structures, this time due to Etessami, Vardi and Wilke [ETE 97].

We end this section by giving some insight into the expressive powér,offFirst
note that the temporal untib, /) modality can be expressed, in all four directions.
For the downward direction, untip, 1) is expressed ag7; down)*)¢. Indeed, this
formula is true at a node if, and only if, ¢ is true atn or there exists a descendarit
of n at which¢ is true and at all nodes, starting withrand descending t@’ exclusive,

1 is true.

So far, we have only considered expressivity with respect to sets of nodes. We will
now consider expressivity with respect to binary relations on the set of nodes: which
binary relations can be defined by means of a program of the language?

THEOREM 6 ([MAR 05]). — The following are equivalent on ordered trees. For
a binary relation:

— P is definable by arC., program;

— P is definable by aif o formula in two free variables.
We now give a representative example of a first-order formula and its equivalgnt
program. In the context of XML documents, the order in which the nodes are written
is an important relation, calledocument order Figure 1 contains an example of an

XML file, its corresponding tree model and the numbers of the nodes correspond to
their document ordering. The document order relatioiis defined as

< = down" U up*;right™;down*.

On finite trees it makes sense to speak about the successor relation of the document
order. The simple definition ik N € o <. It can be defined also with thé,,
programs as

down; first? U leaf?;right U (last?;up)™;right. 4
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<AA1>
<BB2>
<CC3/>
<Cc4/>
</BB2>
<DD5>

<EE6/>
<FF7/> BB2 DD5 GG8

</DD5> CC3 CC4 EE6 FF7 HH9 JI0
<GG8>
<HH9/>
<JJ10/>
</GG8>
</AA1>

AA1l

Figure 1. An XML document and its corresponding tree model.

Next we show how to define the relation

T << YyAd(a) ANp(y) ANVz(z < 2 <y — ¢(2)), (5)

from the L., programs, and once we have this, the “until in document-order” modal-
ity: until « (¢, ¢) holds atx if, and only if, ¢)(x) VV Jy(5). Note that Theorem 4 ensures
that the sety(x) v3y (5) is L, definable, but not that threlation (5) is definable from

the L., programs.

We must use the definition of., programs containing union and composition.
The definition is a case distinction based on the definition & y:

1) z down™ y

2) zupt;right™;down™ y

3)zupT;right™y

4) x right™;down™ y

5)xright™y.
We only show the easiest (first) and the hardest (second) case. The others are varia-
tions of these. For the first case we want to express that

xdownTy A ¢(z) AY(y) AVz(z < 2 < y — ¢(2)).
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We explain our formulas by examples. Supposenode 1 ang is node 7 in Figure 1.
Then¢ must hold at nodes 1-6 angimust hold at node 7. This holds just in case
andy are related by

o7
(down; (¢ A [LeftT][down*]¢)?)* ; (6)
down; (1 A [Left™][down*]p)?.

The first line of (6) ensures that holds at the node 1. The second line is evaluated
at the node 5 and ensures that the nodes 2-5 makee. The third line says that
holds at the node 7 antlholds at the node 6.

For the second case we want to express that
rupt;right;down™y A é(z) AY(y) AVz(r < 2 <y — ¢(2)). @)

This holds exactly whem andy are related by

[own']o? ; (8)
([right*][down’]¢?;up)* 9)
(right;[down*]¢?)* ; (20)

right; ¢? ; (12)

(down; (¢ A [LeftT][down*]¢)?)* (12)
down; (¢ A [Left][down*]¢)?. (13)

This formula is best explained using a more elaborate tree, as in Figure 2. Suppose
nodesC and R stand in the relation (7). Then (8) ensures thdt B, C} makesg

true; the tesfright™][down*]¢ in (9) will be evaluated at nodeS and G, thereby
ensuring thaty holds in{F, D, E} and{J, H, I}, respectively. The tegown*]¢ in

(10) will be evaluated at all nodes strictly in betweknandU, so here taking care
thate holds at{ N, L, M }. (11) ensures that is true atU. Now (12) and (13) are just

the subprograms of (6) from the first case, ensuring ¢ghiadlds at{@Q, O, P, T} and

¢ holds at{ R}.

5. Expressivity 2: second-order properties

In this section we look at three concrete examples of non-trivial second-order prop-
erties of trees that are expressibléliDL . ; first though, some background. The lan-
guagePDLy.. can express properties beyond the reacaf. For examplePDLyee
can express the property of having an odd number of daughters:

(down)(first A ((right;right)*)last). (24)
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Figure 2. Example tree for the second case.

Note that the second conjungtright; right)*)last says that by chaining together a
succession of doubleight steps we can reach the rightmost daughter node — which
means that there must be an odd number of daughter nodes. This is a property that no
Lo formula can express.

On the other hand?DL,,.. is contained inL%QP, Rogers monadic second-order
logic of variably branching trees [ROG 9843(, p just extend<C o by quantification
over unary predicates. The translationRidL,,... formulas intoL%Q p is straightfor-
ward. Note, in particular, that we can use second-order quantification to define the
transitive closure of a relation: fa® any binary relationg R*y holds iff

r=yVVX(X(2)AVz,2 (X (2)A 2Rz — X(2) — X(y)).

Thus PDLy. Can be seen as a fragment of undr%gﬁp. Kracht showed that the
inclusion is strict:

THEOREM7 ([KRA 99]). — UnaryL%P is strictly more expressive thd&DL,ce.

This brings us to the most important open problem concerfDb, e.:

OPEN PROBLEM. Characterize the expressive powePdiL .. interpreted on finite
ordered trees in terms of a suitable fragment of monadic second-order logic.

Within the context of query languages for XML documents a humber of proposals for
second-order languages have been made. The goal, then, is to express unary MSO,
MSO formulas denoting a set of nodes. We mention monadic datalog of [GOT 02]
and the efficient tree logic of [NEV 00a], which are both as expressive as unary MSO.

Neven and Schwentick [NEV 00a] argue that unary MSO rather thas is the
gold standard for a language designed for specifying nodes in finite ordered trees.
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Their most convincing example is a variant of the boolean circuit problem. In order to
obtain a better understanding of the second order expressivitibf..., we encode

a number of second-order propertiesHBL.... In addition to the boolean circuit
problem just mentioned, we encode the frontier problem and we show that finiteness of
ordered trees can be expresse®DL.... The frontier problem is a typical linguistic
problem. Expressing finiteness within a large class of tree-like structures shows the
robustness of the language. We look at the upshot of these examples at the end of this
section. We start with the frontier problem.

5.1. The frontier problem

Thefrontier of atree is the set of leaves ordered from left to right. In a parse tree of
a natural language sentence, the frontier is exactly that sentence. Usually the frontier
is where the actual data contained in a tree is located.

Given a conditiony on the frontier, we want to write aPDL,.. expression which
is true at the root of a tree if, and only if, the frontier of the tree satigfi¢=or instance,
¢ could be a regular expression over atomic symbols, (ike)*. The most natural
application is when we know that each leaf nhode makes exactly one atomic symbol
true. Then a tree satisfiesif and only if the frontier is a word irfp; ¢)*. But nothing
forbids us to use arbitrary compl®DL,,.. formulas in place op andq. E.g.,(up*)np
states that the current word of the parsed sentence is part of a noun-phrasg’}:'an
Thus we do not view the frontier as a unique string, but as an infinite collection of
strings, made up from formulas which are true at the respective nodes. Nowdet
a regular expression in which arbitraPp L. formulas are the letters. We say that a
tree’s frontierl; ... , 1, satisfies if, and only if, there aréDL,,.. formulas¢; such
that for alls, I; = ¢; and the stringpy, ... , ¢, is aword inr.

What we need for expressing frontier conditions is the successor relation between
frontier nodes. This is naturally defined using the document order relation from the
previous section. A frontier nodgis the successor of a frontier nodef and only if
x < y and there is no leaf node in betweeandy in the document order. An intuitive
definition of the next_frontier_node relation between leaves can now be given as:

leaf?; [(—last)? U (last?; up) T]; right; (down; first?)*; leaf?. (15)

Because we evaluate tidL... formula at the root, we should add to (15) the step
from the root to the first leaf. So define thext_frontier_node relation as

root?; (down; first?)*;leaf? U (15).

Letlast_frontier_node be an abbreviation déaf A ((last?; up)*)root, which indeed is
true exactly at the last frontier node (or simply at the root, if the root is the only node
in the model).

Now letr be a regular expression over a seP&fL ;... formulas. Then for any tree
T, T's frontier satisfies: if and only if the root ofT" satisfies(r°)last_frontier_node,
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wherer® is r with ; placed between alPDL,.. formulas which act as letters in
and any such formula is replaced byiext frontier node; ¢?. For instance, the
frontier is in(ab)*, wherea andb are atomic symbols if, and only if, the root satisfies

((next_frontier_node;a?;next_frontier node;b?)*}last_frontier_node.

Note that the formula is true on a tree containing only the root; thus it correctly rec-
ognizes the empty string.

5.2. The boolean circuit problem

We show how the boolean circuit problem can be expresseéRDib; .. Our
PDLye formula is based on the same idea as in [NEV 00b]: use a depth first traversal
of the tree. We start with defining the boolean circuit problem.

DEFINITION 8 (BOOLEAN CIRCUITS). — Boolean circuitsare finite{1,0,C,D}-
labeled ordered binary trees such that

1) each leaf is labeled with exactly onedf, 0}, and
2) each non-leaf is labeled with exactly one{@f, D}.

If B is a boolean circuit antl € B then with5, we denote the subtree frooted at
b. With B; we denote the tree which we obtain by removing everything béloso
in particular we have thdtis a leaf of 3;.

The intended meaning of the labels is as one might expkctieans ‘true’,0
means ‘false’, C means conjunction and D means disjunction. For any boolean circuit
B, define the boolean function eval from the domainsofo {‘true’, ‘false’} in the
expected way. For instance, as the Datalog program:

eval(x) :- 1(x).
eval(x) :- D(x), Raom(x,y), eval(y).
eval(x) :- C(x), Raoun(X,¥), Rrignt(y,2), eval(y), eval(z).

Also for anyb € B let height(b) denote the length of the longest path starting at, but
not including,b to a leaf. So i is a leaf, then height(b}- 0.

GENERAL IDEA. To check if a boolean circuit evaluates to true we look for substruc-
tures that can be constructed as follows. We start at the root and move down. At
disjunctive nodes we select one child. At conjunctive nodes we take both children.
When we reach a leaf, it should be labeled withWe check if such a substructure ex-
ists in a depth first fashion. So, we walk down the tree, where at conjunctive nodes we
always take the left route and make sure (by selecting the correct child at disjunctive
nodes) we end up in a leaf labelédWe let the relationky denote such a path. That

is, for all z andy we haver Ryy if, and only if, the following three cases apply.

1)3k>1ty,...,t S.t.x = tydowntsdown - - - downty, =y
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2)Foralll <i < kif ¢; IF C, thent; 1 IF first
)ty -1

Next we walk up again until we are at a left child of a conjunctive node. We move
right, to nodeb, say, and repeat the procedure. When we return at hode realize

that we are about to enter a conjunctive node from the right and move further up until
the next conjunctive node. WitR; we denote this relation. So for all andy we
havex R,y if, and only if, the following two cases apply.

1) 3k >1ty,...,tx Stz =tjuptoup- - -upty =y
2)Foralll <4 <k,t;IF (up)C — last

When we reach the root of the boolean circuit the procedure stops. We can express
both relationsR, and R; asPDL;... programsr, andr; as follows. Letr, be the
program, which corresponds I&,. That is

mo = ((D?; down) U (C?; down; first?))*; 17.
Let 7, be the program corresponding® . That is
m1 = (({up)C — last)?; up)".
Finally define
B = (mp; m1; (right; mo; 1) *)root.
Before we move on let us make a remark. On first sight one might think that we need
in the definition ofR; a third clause. Namely

3) tx IF {up)C A —last or ¢, IF root.

And, consequently, instead #f we should have
m1; ((up)C A —last V root)?.

This is not necessary. With the current definitionfyf we allow for a check (but do

not consider it necessary) that the second child of a disjunctive node is true when we
already know that the first child is. This is just as harmless as it is useless. Neverthe-
less, the proof below (in particular Lemma 13) does not work without this omission.

THEOREM9. — g is forced at the root of a boolean circuit iff evdl) is true.
The proof follows below, but first several lemmas.

LEMMA 10. — Let B be a boolean circuit. For all nodels € B we have the follow-
ing.

1)bIF S AC— [down]s

2)blF S AD — (down)s
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PROOF First we show 1. Suppo$dt 5 A C. Letd; be the left child ob andb,. be the
right child of b. It is easy to see thaf I+ 3. To show thab,. I 3 we need a lemma.

LEmMmA 11. — For any « for which notz(up)*b; (e.g. « ¢ By,) we have that if
by (mo; m1; (right; mo; m1)*)a thenby(right; mo; m1 ) * 2.
PrRoOF Chooser as stated. We show with induction arthat
if by(mo;m1; (right;mo; m1)™)x thenb; (right; mo; m)* .
If n = 0 then for some, b;mytmiz. Clearlyt(up)*b, andt(up)*z. So, by choice of,

by (up)* . But this is clearly in contradiction with the definition of.

Now suppose; (mo; m1; (right; mo; 71)" 1)z, Choose such that
by (mo; m1; (right; mo; m1)™)t andt(right; mo; 71 ).

We can assume thatup)*b; (otherwise we are done by (IH)). We also can assume
thatt # b, and thug(up) ™ b;. Fix somet’ for whicht(right; mo)t'm1 2. By the above
we obtaint’ (up)*b;. Similar as in the case = 0 this leads us to a contradictioQeD

Now we continue with showing that I+ 5. Sinceb; IF 3 we can find some, xo, . ..
such that

by = 21 (mo; m1)x2(Tight; mo; m1)as - - - (right; mo; w1 )7,

wherer is the root ofB. Leti be that smallest number such that motup)*;. Note
thati > 2. So, by the above lemma and by choice ofve haveb; (right; mo; 71 ) ;.
So,b,(mp; m1 )z; and thus,. I+ 8. We have shown 1.

Item 2 is rather trivial. For if we suppose that- 5 A D then it is easy to verify,
using the definition ofry, thatb I- (down) . QED

COROLLARY 12. — LetB be a boolean circuit. For all noddsc B we have that if
b Ik 3 then evald) is true.

PROOFE Induction on height(b). If height(b} 0 then the claim is clear by the defini-
tion of my. So suppose height(b) 0. There are two cases to consider.

Case:b IF C. By Lemma 10 we havé I- [down]S. So, by (IH), we have that for
all childrend’ of b that eval?’) is true and thus evél) is true.

Case:d I D. By Lemma 10 we havé |- (down)s. So, by (IH), for some child’
of b we have evdb’) is true and thus evdl) is true. QED

LEMMA 13. — Let B be a boolean circuit. For alb € B for which evalb) is true
we have thab(mg; 71; (right; mo; m1)*)b.
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PrROOFE Induction on height(b). If height(b)}= 0 then this is clear. So suppose
height(b)> 0. There are two cases to consider.

Casexb I+ C. Then forb’s childrend; andb,. we have that evéb;) and evalb,.) are
true. By (IH), b;(mo; 71; (xight; mo; w1)* )b andb,.(mo; 71; (right; mo; m1)* )b, SO,
the pair(b, b) is contained in the following relation:

C?; down; first?; mo; m1; (right; mo; m1)™; right; mo; m1; (right; mo; m1)™; last?; up.
Thus, as one can easily verify, we have
b(mo; m1; (right; mo; m1)")b.

Case:b I D. Then for at least one chilel of b we have evdb;) is true. So by (IH)
we obtainb, (mg; 1; (right; mo; 71)*)b;. Thus

b(D?; down; (mo; m1; (right; mo; )™ ); (—{up)C)?; up)b.

Which impliesb(m; 71; (right; mo; m1)*)b. QED
Now we are ready to prove Theorem 9.

PROOF OFTHEOREM 9. (=) Immediate from Corollary 12(<«) Suppose evét)
is true. By Lemma 13 we have(mg; 71; (right; mo; m1)*)r. So in particulan I+
(mo;m1; (right; mo; w1 )*)root, i.e.,r |- 3. QED

5.3. Expressing finiteness

We let go of the restriction to finite trees. Normally one would define arbitrary trees
as partially ordered sef$V, <) with a unique root and such that for eache W the
set{v | v < w} is well-ordered By<. The height of a node is then defined as the
order-type of{v | v < w} and we say that a tree is of heightwhen the height of
each node is finite. We can do a little bit better. Below we define first-order definable
structures such that the part tiddL,.. can see is a tree of height

First, for a binary relatiorR we say thay is adirect successoof  whenz Ry and
for no z we haver Rz Ry. We definedirect predecessan a similar way. We say that
R is discretewhen for anyz Ry such thaty is not a direct successor of there exists
some direct successorof x with x RzRy. Notice that discrete relations are always
irreflexive. We say that a structuk@’, Ragun+, Rrigne+) (NOte that, in this context,
Ryount+ @Nd R, n+ are primitive relation symbols themselvesjrise-likewhen

1) R4.un+ is a discrete and partial order @hwith a unique root,
2) eacht € T has at most one dire@y,.,+-predecessor,

3) R.igne+ is discrete and linearly orders the direct successors oft anyr’, in
particular ifx R, + y thenz andy have the same direéty,,,+ -predecessor.
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Clearly, this class of structures is first-order definable within the class of Kripke
frames with two accessibility relations and any tree is a tree-like structure. We de-
fine the relationsRaom, Rrigne @and all the other relation®,. that may occur within
PDL.-modalities as above in Section 2. But note that although we doﬂa\@ -
Ryoun+ Rfight C Ryigne+, in general these inclusions will be proper. At =

(T, Raoun+ » Rrigne+) 1S @ tree-like structure with roet then we writeZ,. for the struc-

tUT€ (1) (7, Ryum, Rusgns) » thE SUbSTrUCture ofl', R, .., R ) generated by using the
defined relationsRaowm and Ry igne, in the usual modal logic sense. Of course for
any PDLy,. formula¢ we have thatZ,» I+ ¢ iff 7., I ¢. So without danger of
confusion we can write I+ ¢.

As a corollary to the proof of the definability of boolean circuits we will show that
PDLe can define finiteness of tree-like structures.

THEOREM 14. — There exists &@DL..-formula Fin such that for any tree-like
structure7” with rootr we haveT | r I Fin if, and only if, 7 is finite.

PROOF Letd andy be as defined in (16) and (17) below and let Fidhbe. The proof
proceeds in stages. In Lemma 15 we show that it is sufficient to show that- Fin
if, and only if, 7. is finite. This latter is shown in Lemmas 16, 17 and 18. QED

LEMMA 15. — For any tree-like structurg” with root r, 7. is an ordered tree of
heightw, and7,. is finite if, and only if, 7 is finite.

PROOF The first assertion is a direct consequence of the definition of tree-like struc-
tures. The second assertion follows from the fact that i a leaf inZ,. then by
discreteness there does not exist &3y,,+ descendant of in 7. QED

As a first approximation for finiteness put

0 = [down™]((1left™)first A (right™)last). (16)

LEMMA 16. — For any tree-like structurég” with rootr we have thatZ,.,r IF ¢ if,
and only if,7,. is finitely branching.

PROOF The left to right direction holds since #f€ 7, has infinitely many children
then by discreteness we can find an infinite, to the left or to the right.-chain.
The converse is obvious. QED

2. In case the tree is infinitely branching the sibling ord&gtg.: might be non-total, but this
does not matter, see Lemma 16.
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So in order to define the class of finite tree-like structures it is enough to define the
class of finite trees as a subclass from the class of ordered trees of heigiith are
finitely branching. To this end put

7o = (down; first?)™; leaf?,
m = (last?;up)*
and
v = (mp; m1; (right; mp; m1)*)root. a7

Before we move on let us introduce some terminologiarénchb in a finitely branch-
ing treeT" of heightw is a sequence

r = x1(down)xs(down) - - - (down)x,,(down) - - -

wherer is the root of7" and eithem is infinite and in this case i&lown) closed, or

its last element is a leaf. If andd’ are branches then we say tias to the leftof ¢’
whenever ifi is the smallest such thab; # b, thenb;(right)*b.. Clearly, sincel’

is finitely branching, this gives us a linear ordering on the branches of some fixed tree.
Fort € T andb a branch ofl" we writet < bif ¢ ¢ b andt occurs on some branch to

the left ofb. t < b meang < bort € b. Similar definitions hold fob < ¢, b < t.

LEMMA 17. — Supposd’ is finitely branching tree of height andt € T'. If T} is
finite thent (mp; 71; (right; mo; 1) *)t.

PROOF Induction on height(t). Similar to the proof of Lemma 13. QED

LEMMA 18. — Suppos€’ is finitely branching tree of height with rootr. If T is
infinite then not-(mg; 71; (right; mo; 1) *)r.

PrRoOOF SinceT is infinite, finitely branching and of height, 7" must contain an
infinite branch. Leth be the leftmost infinite branch &f. Such a branch can eas-
ily be constructed by starting fromand in each successive step select the leftmost
child of the previously selected node which roots an infinite subtree. The following is
obvious.

1) x < bandxz(m)y imply y < b

2) x < bandxz(m )y imply y < b

3)xz < bandz(right)y imply y <b
1 is clear, sincery only walks to leftmost children. 2 is clear, singg only walks
from rightmost children. 3 is clear, by definition of the ordering on branches.

Now let us assume tha{ng; 71; (right; mp; m1)*)r. Then there exists some se-
quence

r = ag(mp)ay (71)az(right)as(mp)ay - - - ag—o(m1)ak—1 = r.
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By the above three points it follows, with induction grthat
foralli < k,a; <b. (18)

Sinceay_3(mo)ar—2 we have thati,_, must be a leaf, and sineg _» (71 )r we also
have that the branch ifi' ending ina;_o only contains rightmost nodes. But this
implies thatb, as the leftmost infinite branch @f, must be on the left of the branch
ending inag_o. So in particulan < a;_o. But sincea;_» is a leaf we even have
b < aj_9, in contradiction with (18). QED

5.4. The upshot

What is the upshot of these examples? First and foremost, they were intended to
show the language in action, to show that semantic reasoning is naturally captured in
PDL;.. formulas, even when it comes to hard problems. Even though we provided
rigorous correctness proofs, we feel that once the semantic argument is understood,
correctness of theDL.,.. formalization is almost self-evident.

Although boolean circuits looks like a canonical MSO problem it has certain pe-
culiarities which we could exploit, in particular that one depth-first traversal of the
tree is sufficient to determine the truth of the formula. The problem suggest a possible
strengthening of the language: intersection of programs Wwith With this we can
specify the set of all pointsat whicheval(t) is true, and not just the root.

6. Conclusions

We hope that we convinced the reader that PDL is a natural formalism for rea-
soning about ordered trees. We showed that it has good complexity measures, both
in terms of model checking and in terms of satisfiability and consequence problems.
PDL¢ee has natural subfragments which are expressively complete with respect to first
order logic. The most pressing open problems are to determine the exact expressive
power of PDL. and to understand whether the extra expressivity given by unary
MSO is useful in specific applications as linguistics or the XML-world.
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