{ "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "source": [ "> This is one of the 100 recipes of the [IPython Cookbook](http://ipython-books.github.io/), the definitive guide to high-performance scientific computing and data science in Python.\n" ], "cell_type": "markdown", "metadata": [] }, { "source": [ "# 15.1. Diving into symbolic computing with SymPy" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "SymPy is a pure Python package for symbolic mathematics." ], "cell_type": "markdown", "metadata": {} }, { "source": [ "First, we import SymPy, and enable rich display LaTeX-based printing in the IPython notebook (using the MathJax Javascript library)." ], "cell_type": "markdown", "metadata": {} }, { "cell_type": "code", "language": "python", "outputs": [], "collapsed": false, "input": [ "from sympy import *\n", "init_printing()" ], "metadata": {} }, { "source": [ "With NumPy and the other packages we have been using so far, we were dealing with numbers and numerical arrays. With SymPy, we deal with symbolic variables. It's a radically different shift of paradigm, which mathematicians may be more familiar with." ], "cell_type": "markdown", "metadata": {} }, { "source": [ "To deal with symbolic variables, we need to declare them." ], "cell_type": "markdown", "metadata": {} }, { "cell_type": "code", "language": "python", "outputs": [], "collapsed": false, "input": [ "var('x y')" ], "metadata": {} }, { "source": [ "The var function creates symbols and injects them into the namespace. This function should only be used in interactive mode. In a Python module, it is better to use the symbol function which returns the symbols." ], "cell_type": "markdown", "metadata": {} }, { "cell_type": "code", "language": "python", "outputs": [], "collapsed": false, "input": [ "x, y = symbols('x y')" ], "metadata": {} }, { "source": [ "We can create mathematical expressions with these symbols." ], "cell_type": "markdown", "metadata": {} }, { "cell_type": "code", "language": "python", "outputs": [], "collapsed": false, "input": [ "expr1 = (x + 1)**2\n", "expr2 = x**2 + 2*x + 1" ], "metadata": {} }, { "source": [ "Are these expressions equal?" ], "cell_type": "markdown", "metadata": {} }, { "cell_type": "code", "language": "python", "outputs": [], "collapsed": false, "input": [ "expr1 == expr2" ], "metadata": {} }, { "source": [ "These expressions are mathematically equal, but not syntactically identical. To test whether they are equal, we can ask SymPy to simplify the difference algebraically." ], "cell_type": "markdown", "metadata": {} }, { "cell_type": "code", "language": "python", "outputs": [], "collapsed": false, "input": [ "simplify(expr1-expr2)" ], "metadata": {} }, { "source": [ "A very common operation with symbolic expressions is substitution of a symbol by another symbol, expression, or a number." ], "cell_type": "markdown", "metadata": {} }, { "cell_type": "code", "language": "python", "outputs": [], "collapsed": false, "input": [ "expr1.subs(x, expr1)" ], "metadata": {} }, { "cell_type": "code", "language": "python", "outputs": [], "collapsed": false, "input": [ "expr1.subs(x, pi)" ], "metadata": {} }, { "source": [ "A rational number cannot be written simply as \"1/2\" as this Python expression evaluates to 0. A possibility is to use a SymPy object for 1, for example using the function S." ], "cell_type": "markdown", "metadata": {} }, { "cell_type": "code", "language": "python", "outputs": [], "collapsed": false, "input": [ "expr1.subs(x, S(1)/2)" ], "metadata": {} }, { "source": [ "Exactly-represented numbers can be evaluated numerically with evalf:" ], "cell_type": "markdown", "metadata": {} }, { "cell_type": "code", "language": "python", "outputs": [], "collapsed": false, "input": [ "_.evalf()" ], "metadata": {} }, { "source": [ "We can transform this *symbolic* function into an actual Python function that can be evaluated on NumPy arrays, using the `lambdify` function." ], "cell_type": "markdown", "metadata": {} }, { "cell_type": "code", "language": "python", "outputs": [], "collapsed": false, "input": [ "f = lambdify(x, expr1)" ], "metadata": {} }, { "cell_type": "code", "language": "python", "outputs": [], "collapsed": false, "input": [ "import numpy as np\n", "f(np.linspace(-2., 2., 5))" ], "metadata": {} }, { "source": [ "> You'll find all the explanations, figures, references, and much more in the book (to be released later this summer).\n\n> [IPython Cookbook](http://ipython-books.github.io/), by [Cyrille Rossant](http://cyrille.rossant.net), Packt Publishing, 2014 (500 pages)." ], "cell_type": "markdown", "metadata": {} } ], "metadata": {} } ], "metadata": { "name": "", "signature": "sha256:1a44a052735860b741a061de62cffe517472f116340d626f48d65f15e847db29" } }