
US Baby Names 1880-2010
The United States Social Security Administration (SSA) has made available data on the
frequency of baby names from 1880 through the present. Hadley Wickham, an author
of several popular R packages, has often made use of this data set in illustrating data
manipulation in R.

In [4]: names.head(10)
Out[4]:
 name sex births year
0 Mary F 7065 1880
1 Anna F 2604 1880
2 Emma F 2003 1880
3 Elizabeth F 1939 1880
4 Minnie F 1746 1880
5 Margaret F 1578 1880
6 Ida F 1472 1880
7 Alice F 1414 1880
8 Bertha F 1320 1880
9 Sarah F 1288 1880

There are many things you might want to do with the data set:

• Visualize the proportion of babies given a particular name (your own, or another
name) over time.

• Determine the relative rank of a name.

• Determine the most popular names in each year or the names with largest increases
or decreases.

• Analyze trends in names: vowels, consonants, length, overall diversity, changes in
spelling, first and last letters

• Analyze external sources of trends: biblical names, celebrities, demographic
changes

Using the tools we’ve looked at so far, most of these kinds of analyses are very straight-
forward, so I will walk you through many of them. I encourage you to download and
explore the data yourself. If you find an interesting pattern in the data, I would love to
hear about it.

As of this writing, the US Social Security Administration makes available data files, one
per year, containing the total number of births for each sex/name combination. The
raw archive of these files can be obtained here:

http://www.ssa.gov/oact/babynames/limits.html

In the event that this page has been moved by the time you’re reading this, it can most
likely be located again by Internet search. After downloading the “National data” file
names.zip and unzipping it, you will have a directory containing a series of files like
yob1880.txt. I use the UNIX head command to look at the first 10 lines of one of the
files (on Windows, you can use the more command or open it in a text editor):

32 | Chapter 2: Introductory Examples

www.it-ebooks.info

In [367]: !head -n 10 names/yob1880.txt
Mary,F,7065
Anna,F,2604
Emma,F,2003
Elizabeth,F,1939
Minnie,F,1746
Margaret,F,1578
Ida,F,1472
Alice,F,1414
Bertha,F,1320
Sarah,F,1288

As this is a nicely comma-separated form, it can be loaded into a DataFrame with
pandas.read_csv:

In [368]: import pandas as pd

In [369]: names1880 = pd.read_csv('names/yob1880.txt', names=['name', 'sex', 'births'])

In [370]: names1880
Out[370]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 2000 entries, 0 to 1999
Data columns:
name 2000 non-null values
sex 2000 non-null values
births 2000 non-null values
dtypes: int64(1), object(2)

These files only contain names with at least 5 occurrences in each year, so for simplic-
ity’s sake we can use the sum of the births column by sex as the total number of births
in that year:

In [371]: names1880.groupby('sex').births.sum()
Out[371]:
sex
F 90993
M 110493
Name: births

Since the data set is split into files by year, one of the first things to do is to assemble
all of the data into a single DataFrame and further to add a year field. This is easy to
do using pandas.concat:

2010 is the last available year right now
years = range(1880, 2011)

pieces = []
columns = ['name', 'sex', 'births']

for year in years:
 path = 'names/yob%d.txt' % year
 frame = pd.read_csv(path, names=columns)

 frame['year'] = year
 pieces.append(frame)

US Baby Names 1880-2010 | 33

www.it-ebooks.info

Concatenate everything into a single DataFrame
names = pd.concat(pieces, ignore_index=True)

There are a couple things to note here. First, remember that concat glues the DataFrame
objects together row-wise by default. Secondly, you have to pass ignore_index=True
because we’re not interested in preserving the original row numbers returned from
read_csv. So we now have a very large DataFrame containing all of the names data:

Now the names DataFrame looks like:

In [373]: names
Out[373]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1690784 entries, 0 to 1690783
Data columns:
name 1690784 non-null values
sex 1690784 non-null values
births 1690784 non-null values
year 1690784 non-null values
dtypes: int64(2), object(2)

With this data in hand, we can already start aggregating the data at the year and sex
level using groupby or pivot_table, see Figure 2-4:

In [374]: total_births = names.pivot_table('births', rows='year',
 : cols='sex', aggfunc=sum)

In [375]: total_births.tail()
Out[375]:
sex F M
year
2006 1896468 2050234
2007 1916888 2069242
2008 1883645 2032310
2009 1827643 1973359
2010 1759010 1898382

In [376]: total_births.plot(title='Total births by sex and year')

Next, let’s insert a column prop with the fraction of babies given each name relative to
the total number of births. A prop value of 0.02 would indicate that 2 out of every 100
babies was given a particular name. Thus, we group the data by year and sex, then add
the new column to each group:

def add_prop(group):
 # Integer division floors
 births = group.births.astype(float)

 group['prop'] = births / births.sum()
 return group
names = names.groupby(['year', 'sex']).apply(add_prop)

34 | Chapter 2: Introductory Examples

www.it-ebooks.info

Remember that because births is of integer type, we have to cast either
the numerator or denominator to floating point to compute a fraction
(unless you are using Python 3!).

The resulting complete data set now has the following columns:

In [378]: names
Out[378]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1690784 entries, 0 to 1690783
Data columns:
name 1690784 non-null values
sex 1690784 non-null values
births 1690784 non-null values
year 1690784 non-null values
prop 1690784 non-null values
dtypes: float64(1), int64(2), object(2)

When performing a group operation like this, it's often valuable to do a sanity check,
like verifying that the prop column sums to 1 within all the groups. Since this is floating
point data, use np.allclose to check that the group sums are sufficiently close to (but
perhaps not exactly equal to) 1:

In [379]: np.allclose(names.groupby(['year', 'sex']).prop.sum(), 1)
Out[379]: True

Now that this is done, I’m going to extract a subset of the data to facilitate further
analysis: the top 1000 names for each sex/year combination. This is yet another group
operation:

def get_top1000(group):
 return group.sort_index(by='births', ascending=False)[:1000]

Figure 2-4. Total births by sex and year

US Baby Names 1880-2010 | 35

www.it-ebooks.info

grouped = names.groupby(['year', 'sex'])
top1000 = grouped.apply(get_top1000)

If you prefer a do-it-yourself approach, you could also do:

pieces = []
for year, group in names.groupby(['year', 'sex']):
 pieces.append(group.sort_index(by='births', ascending=False)[:1000])
top1000 = pd.concat(pieces, ignore_index=True)

The resulting data set is now quite a bit smaller:

In [382]: top1000
Out[382]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 261877 entries, 0 to 261876
Data columns:
name 261877 non-null values
sex 261877 non-null values
births 261877 non-null values
year 261877 non-null values
prop 261877 non-null values
dtypes: float64(1), int64(2), object(2)

We’ll use this Top 1,000 data set in the following investigations into the data.

Analyzing Naming Trends
With the full data set and Top 1,000 data set in hand, we can start analyzing various
naming trends of interest. Splitting the Top 1,000 names into the boy and girl portions
is easy to do first:

In [383]: boys = top1000[top1000.sex == 'M']

In [384]: girls = top1000[top1000.sex == 'F']

Simple time series, like the number of Johns or Marys for each year can be plotted but
require a bit of munging to be a bit more useful. Let’s form a pivot table of the total
number of births by year and name:

In [385]: total_births = top1000.pivot_table('births', rows='year', cols='name',
 : aggfunc=sum)

Now, this can be plotted for a handful of names using DataFrame’s plot method:

In [386]: total_births
Out[386]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 131 entries, 1880 to 2010
Columns: 6865 entries, Aaden to Zuri
dtypes: float64(6865)

In [387]: subset = total_births[['John', 'Harry', 'Mary', 'Marilyn']]

In [388]: subset.plot(subplots=True, figsize=(12, 10), grid=False,
 : title="Number of births per year")

36 | Chapter 2: Introductory Examples

www.it-ebooks.info

See Figure 2-5 for the result. On looking at this, you might conclude that these names
have grown out of favor with the American population. But the story is actually more
complicated than that, as will be explored in the next section.

Figure 2-5. A few boy and girl names over time

Measuring the increase in naming diversity

One explanation for the decrease in plots above is that fewer parents are choosing
common names for their children. This hypothesis can be explored and confirmed in
the data. One measure is the proportion of births represented by the top 1000 most
popular names, which I aggregate and plot by year and sex:

In [390]: table = top1000.pivot_table('prop', rows='year',
 : cols='sex', aggfunc=sum)

In [391]: table.plot(title='Sum of table1000.prop by year and sex',
 : yticks=np.linspace(0, 1.2, 13), xticks=range(1880, 2020, 10))

See Figure 2-6 for this plot. So you can see that, indeed, there appears to be increasing
name diversity (decreasing total proportion in the top 1,000). Another interesting met-
ric is the number of distinct names, taken in order of popularity from highest to lowest,
in the top 50% of births. This number is a bit more tricky to compute. Let’s consider
just the boy names from 2010:

In [392]: df = boys[boys.year == 2010]

In [393]: df
Out[393]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1000 entries, 260877 to 261876
Data columns:

US Baby Names 1880-2010 | 37

www.it-ebooks.info

name 1000 non-null values
sex 1000 non-null values
births 1000 non-null values
year 1000 non-null values
prop 1000 non-null values
dtypes: float64(1), int64(2), object(2)

Figure 2-6. Proportion of births represented in top 1000 names by sex

After sorting prop in descending order, we want to know how many of the most popular
names it takes to reach 50%. You could write a for loop to do this, but a vectorized
NumPy way is a bit more clever. Taking the cumulative sum, cumsum, of prop then calling
the method searchsorted returns the position in the cumulative sum at which 0.5 would
need to be inserted to keep it in sorted order:

In [394]: prop_cumsum = df.sort_index(by='prop', ascending=False).prop.cumsum()

In [395]: prop_cumsum[:10]
Out[395]:
260877 0.011523
260878 0.020934
260879 0.029959
260880 0.038930
260881 0.047817
260882 0.056579
260883 0.065155
260884 0.073414
260885 0.081528
260886 0.089621

In [396]: prop_cumsum.searchsorted(0.5)
Out[396]: 116

38 | Chapter 2: Introductory Examples

www.it-ebooks.info

Since arrays are zero-indexed, adding 1 to this result gives you a result of 117. By con-
trast, in 1900 this number was much smaller:

In [397]: df = boys[boys.year == 1900]

In [398]: in1900 = df.sort_index(by='prop', ascending=False).prop.cumsum()

In [399]: in1900.searchsorted(0.5) + 1
Out[399]: 25

It should now be fairly straightforward to apply this operation to each year/sex com-
bination; groupby those fields and apply a function returning the count for each group:

def get_quantile_count(group, q=0.5):
 group = group.sort_index(by='prop', ascending=False)
 return group.prop.cumsum().searchsorted(q) + 1

diversity = top1000.groupby(['year', 'sex']).apply(get_quantile_count)
diversity = diversity.unstack('sex')

This resulting DataFrame diversity now has two time series, one for each sex, indexed
by year. This can be inspected in IPython and plotted as before (see Figure 2-7):

In [401]: diversity.head()
Out[401]:
sex F M
year
1880 38 14
1881 38 14
1882 38 15
1883 39 15
1884 39 16

In [402]: diversity.plot(title="Number of popular names in top 50%")

Figure 2-7. Plot of diversity metric by year

US Baby Names 1880-2010 | 39

www.it-ebooks.info

As you can see, girl names have always been more diverse than boy names, and they
have only become more so over time. Further analysis of what exactly is driving the
diversity, like the increase of alternate spellings, is left to the reader.

The “Last letter” Revolution

In 2007, a baby name researcher Laura Wattenberg pointed out on her website (http:
//www.babynamewizard.com) that the distribution of boy names by final letter has
changed significantly over the last 100 years. To see this, I first aggregate all of the births
in the full data set by year, sex, and final letter:

extract last letter from name column
get_last_letter = lambda x: x[-1]
last_letters = names.name.map(get_last_letter)
last_letters.name = 'last_letter'

table = names.pivot_table('births', rows=last_letters,
 cols=['sex', 'year'], aggfunc=sum)

Then, I select out three representative years spanning the history and print the first few
rows:

In [404]: subtable = table.reindex(columns=[1910, 1960, 2010], level='year')

In [405]: subtable.head()
Out[405]:
sex F M
year 1910 1960 2010 1910 1960 2010
last_letter
a 108376 691247 670605 977 5204 28438
b NaN 694 450 411 3912 38859
c 5 49 946 482 15476 23125
d 6750 3729 2607 22111 262112 44398
e 133569 435013 313833 28655 178823 129012

Next, normalize the table by total births to compute a new table containing proportion
of total births for each sex ending in each letter:

In [406]: subtable.sum()
Out[406]:
sex year
F 1910 396416
 1960 2022062
 2010 1759010
M 1910 194198
 1960 2132588
 2010 1898382

In [407]: letter_prop = subtable / subtable.sum().astype(float)

With the letter proportions now in hand, I can make bar plots for each sex broken
down by year. See Figure 2-8:

import matplotlib.pyplot as plt

40 | Chapter 2: Introductory Examples

www.it-ebooks.info

fig, axes = plt.subplots(2, 1, figsize=(10, 8))
letter_prop['M'].plot(kind='bar', rot=0, ax=axes[0], title='Male')
letter_prop['F'].plot(kind='bar', rot=0, ax=axes[1], title='Female',
 legend=False)

Figure 2-8. Proportion of boy and girl names ending in each letter

As you can see, boy names ending in “n” have experienced significant growth since the
1960s. Going back to the full table created above, I again normalize by year and sex
and select a subset of letters for the boy names, finally transposing to make each column
a time series:

In [410]: letter_prop = table / table.sum().astype(float)

In [411]: dny_ts = letter_prop.ix[['d', 'n', 'y'], 'M'].T

In [412]: dny_ts.head()
Out[412]:
 d n y
year
1880 0.083055 0.153213 0.075760
1881 0.083247 0.153214 0.077451
1882 0.085340 0.149560 0.077537
1883 0.084066 0.151646 0.079144
1884 0.086120 0.149915 0.080405

With this DataFrame of time series in hand, I can make a plot of the trends over time
again with its plot method (see Figure 2-9):

In [414]: dny_ts.plot()

US Baby Names 1880-2010 | 41

www.it-ebooks.info

Figure 2-9. Proportion of boys born with names ending in d/n/y over time

Boy names that became girl names (and vice versa)

Another fun trend is looking at boy names that were more popular with one sex earlier
in the sample but have “changed sexes” in the present. One example is the name Lesley
or Leslie. Going back to the top1000 dataset, I compute a list of names occurring in the
dataset starting with 'lesl':

In [415]: all_names = top1000.name.unique()

In [416]: mask = np.array(['lesl' in x.lower() for x in all_names])

In [417]: lesley_like = all_names[mask]

In [418]: lesley_like
Out[418]: array([Leslie, Lesley, Leslee, Lesli, Lesly], dtype=object)

From there, we can filter down to just those names and sum births grouped by name
to see the relative frequencies:

In [419]: filtered = top1000[top1000.name.isin(lesley_like)]

In [420]: filtered.groupby('name').births.sum()
Out[420]:
name
Leslee 1082
Lesley 35022
Lesli 929
Leslie 370429
Lesly 10067
Name: births

Next, let’s aggregate by sex and year and normalize within year:

42 | Chapter 2: Introductory Examples

www.it-ebooks.info

In [421]: table = filtered.pivot_table('births', rows='year',
 : cols='sex', aggfunc='sum')

In [422]: table = table.div(table.sum(1), axis=0)

In [423]: table.tail()
Out[423]:
sex F M
year
2006 1 NaN
2007 1 NaN
2008 1 NaN
2009 1 NaN
2010 1 NaN

Lastly, it’s now easy to make a plot of the breakdown by sex over time (Figure 2-10):

In [425]: table.plot(style={'M': 'k-', 'F': 'k--'})

Figure 2-10. Proportion of male/female Lesley-like names over time

Conclusions and The Path Ahead
The examples in this chapter are rather simple, but they’re here to give you a bit of a
flavor of what sorts of things you can expect in the upcoming chapters. The focus of
this book is on tools as opposed to presenting more sophisticated analytical methods.
Mastering the techniques in this book will enable you to implement your own analyses
(assuming you know what you want to do!) in short order.

Conclusions and The Path Ahead | 43

www.it-ebooks.info

www.it-ebooks.info

