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ABSTRACT
Predicting wastewater in�ow at municipal wastewater treatment
plants is a multivariate time series forecasting task involving both
long- and short-term time and seasonal dynamics, which are pre-
dominantly related to weather conditions and human activity. Gated
Recurrent Neural Networks, including the Gated Recurrent Unit
(GRU), have recently been shown to be e�ective in capturing long-
and short-term dependencies. However, how to best represent
and incorporate di�erent recurring seasonal pa�erns with various
timescales in a GRU model is a li�le explored challenge. �is study
proposes the seasonal GRU + residual GRU (sGRU+rGRU) model
that leverages the strengths of GRU, seasonality extraction, and
residual learning. Experimental results show that the sGRU+rGRU
outperforms other models that only use parts of the techniques
employed by the sGRU+rGRU. �e study further shows that a GRU
model is much be�er suited for multivariate time series forecast-
ing than a Multilayer Perceptron (MLP) model. It is also shown
that combining seasonality extraction with residual learning signif-
icantly improves the performance of both MLP and GRU.

1 INTRODUCTION
�e amount of in�ow at municipal wastewater treatment plants
(WWTPs) over time is characterized by clear seasonal pa�erns
as the main sources of sewage water are household waste and
rainfall [24][25][26]. �e volume of water that is being processed
inside the plant at any point in time naturally �uctuates as a con-
sequence. Compared to summer months, in�ow is higher during
winter months due to an, on average, higher amount of rainfall.
Further, following the rhythm of human activity, there generally is
a greater amount of in�ow during daytime, as opposed to nigh�ime.
In the weekend, the daytime peak is later on during the day, as peo-
ple become active later on during the day compared to workweek
days.

Equalizing the volume that is being processed over time would
increase a plant’s e�ciency [10]. �is could be achieved by using
bu�er basins at the start of the treatment process, but requires
continuous evaluation of whether, and how much, water needs to
bu�ered. As such, the in�ow to be expected over the following
hours needs to be predicted accurately on a continuous basis. A
model that is able to e�ectively represent and incorporate the sea-
sonal time pa�erns of in�ow is expected to be best suited for this
task. Following this, this research focuses on how the seasonal
pa�erns present in the in�ow data, which are weather- as well
as human-related, can best be represented and incorporated in a
model for multivariate time series forecasting.

A time series is a sequence of measurements over time. Due to
the temporal ordering of the data, consecutive measurements are

related to one another. �is makes time series analysis distinct from
cross-sectional data analysis, which involves data that does not de-
pend on time. Multivariate time series forecasting has been studied
extensively with traditional time series models such as Vector Au-
toregression (VAR) [2]. Two major limitations of this model are
that it assumes linear dependence over time and is not well-suited
to learning both short- and long-term dependencies [2][12][29][31].
In recent years, Recurrent Neural Networks (RNNs), in particular
Long-Short Term Memory (LSTM) [15] and Gated Recurrent Unit
(GRU) [6], have proven e�ective in capturing short- and long-term
dependencies of multivariate input [1][14][19][27]. �erefore, a
GRU model is used in this study to forecast wastewater in�ow for
Dutch WWTPs Losser and Oldenzaal on an hourly basis.

�e characteristic of time series containing seasonal trends is
that they exhibit periodically recurring behaviour. How to best in-
corporate recurring seasonal pa�erns in a GRU model is a challenge
that has not been studied extensively. It has been observed that
forecasting using neural networks can be signi�cantly improved by
deseasonalizing the data prior to feeding it into the network [33].
Based on this �nding, this study evaluates the e�ect on GRU model
performance of extracting the seasonal component from the in�ow
data by a separate model.

�e seasonal component of the in�ow is allowed to bypass the
network, a method that is inspired by residual learning. Resid-
ual learning encompasses learning an identity mapping instead of
the direct mapping input x → output H (x). As such, the herein
proposed residual networks only need to learn the deviation from
the seasonal component rather than the direct mapping of total
predicted in�ow for each of the prediction time steps.

While using a GRU model for this speci�c forecasting task rep-
resents a relatively unexplored approach in itself, the main contri-
bution of this research lies in combining GRU with a seasonality
extraction and residual learning approach. �is approach is also
used in combination with a Multilayer Perceptron (MLP) for com-
parison. �e performance of a GRU model on multivariate time
series forecasting is also compared to a MLP model. A further con-
tribution lies in evaluating the e�ectiveness of a GRU in learning
the seasonal pa�erns of the in�ow data. Additionally, the impact
of continuing updating a model as new data becomes available is
assessed.

�e paper is structured as following. First, relevant previous
studies are discussed (Section 2). �is is followed by a description
of the evaluated models (Section 3). �en, the evaluation of the
experiments is covered (Section 4). Finally, conclusions are drawn
based on the �ndings (Section 5).



2 RELATEDWORK
�is section describes previous research done on forecasting wastew-
ater in�ow (2.1), Recurrent Neural Networks (2.2), seasonality ex-
traction (2.3), and residual learning (2.4).

2.1 Forecasting Wastewater In�ow
Wei et al. (2013) [28] found that a MLP performed well for fore-
casting wastewater in�ow up to 150 minutes ahead, compared to
a random forest, boosted tree, and support vector machine (SVM).
One of the limitations of MLPs, however, are that they approach
the task as a static problem, taking a �xed length vector as input
without the possibility of looking at previous inputs. As such, each
input vector needs to include shi� variables of previous time steps,
aside from the variables of the current time step. Since gated RNNs
do have the ability to look back at previous inputs through their
internal memory, they are much be�er equipped to taking temporal
dynamics into account. �us, it is expected that a gated RNN will
outperform a MLP, especially for predictions further ahead in time.
For forecasting in�ow just one hour ahead, it was shown that a
LSTM outperformed MLP and Support Vector Regression (SVR)
[30].

Speci�cally for WWTPs Losser and Oldenzaal, Jordens (2018)
[16] compared a Boosted Regression Tree, MLP, K-Nearest Neigh-
bour and SVR for forecasting the in�ow one hour (t+1), two hours
(t+2), and three hours (t+3) ahead of time. �e study concluded
that a MLP model performed best for WWTP Losser, whereas the
results for WWTP Oldenzaal were inconclusive. A gated RNN was
not included in the study, nor was there a speci�c focus on how
the seasonality could best be extracted from the in�ow data. As
such, this study expands on the earlier research. It also focuses on
making predictions further ahead of time (t+6, t+12, and t+24). To
be able to compare the results of this study with the earlier research,
a MLP will be used as one of the baseline models.

2.2 Recurrent Neural Networks
RNNs were speci�cally developed to process sequential data as they
take into account not only the input at the current time step, but
also their output of the previous time step [11]. A well-researched
problem of traditional recurrent neural networks, though, is that
back-propagation over many stages can cause gradients to either
vanish or explode, making it di�cult to learn long-term dependen-
cies [11][15]. Gated RNNs, including the successful LSTM [15] and
GRU [6], were developed to solve this problem by carefully con-
trolling what information to keep and what information to update
at each time step [11]. Apart from incorporating time dynamics,
gated RNNs are able to learn di�erent timescales [4][18]. However,
training of such networks is not a trivial task [9][23]. �e long-term
dependencies still need to be transmi�ed over each time step.

Various research has been done to make learning of multiple
timescales more explicit. Lui et al. (2015) proposed the Multi-
Timescale LSTM, which divides LSTM units in di�erent groups
operating at di�erent time periods [21]. �e Fast-Slow RNN has a
hierarchical structure, whereby the higher hierarchical layer up-
dates slower than lower layers [22]. In this study, a stacked GRU
architecture is used to allow the network to implicitly learn dif-
ferent hierarchical time scales. However, for incorporating the

longer seasonal time scales (monthly, weekly and daily) this study
proposes the seasonality extraction and residual learning approach.

2.3 Seasonality Extraction
Much research has been done on how to best extract seasonality
from seasonal time series [3][33]. A classical approach is to de-
compose seasonal time series into trend, seasonal, cyclical, and
residual components by a smoothing technique such as moving
average. A popular model for univariate time series that involves
removing the seasonality from the input data is the seasonal Au-
toregressive Integrated Moving Average (ARIMA) model [3]. It
was shown that a combined model of ARIMA and MLP obtained
be�er results than either model could on its own [32]. Previous
research also showed that a MLP performed be�er when the input
data was deseasonalized compared to a MLP that predicted based
on the non-deseasonalized data [33].

In this study, an ARIMA model for extracting the seasonality
from the in�ow data was judged unsuitable. �is was due to the fact
that an unequal amount of data was available on the hourly season-
ality in contrast to the monthly, weekly, and weekday seasonality.
�erefore, one approach used in this study was to extract the sea-
sonality based on lookup tables containing average seasonal values
for months, weeks, weekdays, and hours. �e other approach of
this study was to employ a GRU for seasonality extraction.

2.4 Residual Learning
Residual learning was introduced as a way to train deep neural
networks. By allowing some parts of the Residual Net (ResNet)
to skip connections and pass their output on to some lower layer,
the intermediate layers are forced to learn the residual between
their input and output [13]. �us, H (x) = F (x) + x , whereby F (x)
is the residual. �is architecture with skip connections has allowed
ResNet to outperform earlier models on various tasks, such as image
recognition and object detection [5][13]. It was noted that, while
F (x) can take various forms, a skip connection needs to pass at
least two layers for the improvement in performance to occur [13].
Based on this last observation, the architecture of the residual GRUs
of this study comprises stacked GRU cells.

�e recently proposed Long- and Short-term Time-series net-
work (LSTNet) was shown to outperform various variations of the
VAR model in time series forecasting [20]. Its architecture includes
recurrent skip connections that take the same inputs as the recur-
rent part of the network. �rough this setup, LSTNet is thought to
be be�er equipped to pass on relatively long-term dependencies. It
further involves another bypass connection that, via an Autoregres-
sive (AR) model, processes the linear component of the data. �is
study also allows long-term dependencies, in this case the daily,
weekly, and monthly seasonality, to bypass the network in order to
improve model performance.

3 MODELS
�is section describes the details of the evaluated baseline (3.1) and
residual models (3.2).
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3.1 Baseline Models
3.1.1 Weighted Seasonal Component (WSC). �is model is used

to extract the monthly, weekly and daily seasonality from the in�ow
data. �is is done by taking a weighted sum of the seasonal features.
�e seasonal features are based on lookup tables that contain the
mean hourly in�ow at each hour of the day, the di�erence for each
month from the mean hourly in�ow over all months, the di�erence
for each week from the mean hourly in�ow over all weeks, and
the di�erence for each weekday from the mean hourly in�ow over
all weekdays. �e weighting factors for the seasonal features are
found by zero-initializing them and using the Adam algorithm for
optimization [17]. �e equation for the WSC at prediction time
step i is de�ned as following:

WSCi =Whh̄i +Wmmi +Wwwi +Wddi (1)

whereby Wh is the weighting factor for h̄i , which is the mean
hourly in�ow at prediction step i, Wm is the weighting factor
formi , which is the di�erence in hourly in�ow for the concerned
month from the mean hourly in�ow over all months, Ww is the
weighting factor forwi , which is the di�erence in hourly in�ow for
the concerned week from the mean hourly in�ow over all weeks,
and Wd is the weighting factor for di , which is the di�erence in
hourly in�ow for the concerned weekday from the mean hourly
in�ow over all weekdays.

�e prediction for all 6 prediction steps is then according to
Equation 2:

Ŷ =WSC(xms ) (2)
whereby Ŷ denotes a vector containing the predicted in�ow

values for all 6 prediction steps,WSC(xms ) denotes a vector con-
taining the WSC values for all 6 prediction steps, and xms denotes
the seasonal features for all 6 prediction steps.

3.1.2 Multilayer Perceptron (MLP). �e MLP model consists of
four hidden layers of 512, 256, 128, and 75 units. �e number of
hidden layers and units for each layer, except the last one, are found
via grid search. �e number of units of the last hidden layer is set
to the same number of units as the last GRU cell in the GRU model.
All hidden layers have Exponential Linear Unit (ELU) as activation
function, which is de�ned as following [8]:

f (x) =
{
x , if x > 0
exp(x) − 1, if x ≤ 0

(3)

�e fully-connected output layer consists of 6 units with no
activation function for regression output (predicted in�ow at t+1,
t+2, t+3, t+6, t+12, and t+24). �us, the prediction is according to
Equation 4:

Ŷ = H (xt ) (4)
whereby xt denotes the input vector at time step t , containing

both seasonal and residual features.

3.1.3 Gated Recurrent Unit (GRU). For the gated RNN model, a
GRU cell was used as it has been shown that GRU yields similar
results compared to LSTM, while converging faster [7]. �e model
consists of two stacked GRU cells, each of 75 units. �e number of
stacked cells, units for each cell, and time steps to process before

prediction are found via grid search. At each time step t , the �rst
GRU cell takes as input the explanatory variables at time step t
and the previous hidden state ht−1 to produce the hidden state ht .
Determining ht is done according to Equations 5-8:

rt = σ (Wxrxt +Whrht−1 + br ) (5)

ut = σ (Wxuxt +Whuht−1 + bu ) (6)

ct = tanh(Wxcxt + rt � (Whcht−1) + bc ) (7)

ht = (1 − ut ) � ht−1 + ut � ct (8)
whereby rt denotes the reset gate, W are weight matrices, b

are bias terms, σ denotes the logistic sigmoid activation function,
ut denotes the update gate, tanh denotes the tangent hyperbolic
activation function, ct denotes the candidate hidden state, and �
denotes element-wise multiplication.

�e second GRU cell takes the hidden state of the �rst GRU cell
and its own previous hidden state as input. Producing hidden state
ht is then done according to Equations 5-8.

�e model is enabled to process 72 time steps before making
a prediction. A�er the 72 time steps, the last hidden state of the
second GRU cell is put through a fully-connected output layer of 6
units with no activation function to produce the predicted in�ow
for all 6 prediction steps. As such, the prediction is according to
Equation 4.

3.1.4 Seasonal GRU (sGRU). �is model uses a GRU to extract
the seasonal component from the in�ow data. �e model consists
of a GRU cell of 18 units. �e number of layers and units of the GRU
cell are found via grid search. Rather than taking average seasonal
values, this model takes the numerical values corresponding to the
relevant month, week, weekday, and hour as input. �us, at time
step t , the sGRU takes as input the corresponding hour, weekday,
week, and month for all 6 prediction steps at time step t and the
previous hidden state ht−1 to produce ht following equations 5-8.
Equal to the GRU model, this model is enabled to process 72 time
steps before producing the prediction. A�er the 72 time steps, the
last hidden state is put through a fully-connected output layer of 6
units with no activation function to output the seasonal component
for all 6 prediction steps. �us, the prediction for all 6 time steps is
according to the following equation:

Ŷ = S(xs ) (9)
whereby S(xs ) denotes a vector consisting of the seasonal com-

ponents of the 6 prediction steps, and xs denotes an input vector
consisting of the numerical seasonal features for all 6 prediction
steps.

3.2 Residual Learning
3.2.1 Weighted Seasonal Component + residualMLP (WSC+rMLP).

�is model is a combination of the WSC and MLP model, whereby
the architecture of the rMLP is equivalent to that of the MLP model.
�e di�erence being that, rather than using a MLP to directly map
xt → Ŷ , a MLP is now used to map xr → F (xr ), whereby F (xr )
denotes the deviation from the WSC for all prediction steps and xr
the input vector consisting of residual features concerning time step
t . Combining this with the WSC for each corresponding prediction
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step, calculated according to Equation 1, results in the predicted
in�ow for all 6 prediction steps, following Equation 10:

Ŷ =WSC(xms ) + F (xr ). (10)

3.2.2 Weighted Seasonal Component + residual GRU (WSC+rGRU).
�is model is similar to WSC+rMLP, but, instead of using a MLP,
a GRU is used to determine the deviation from the WSC for all 6
prediction steps. �e architecture of the rGRU is the same as that of
the GRU model. Combining the WSC and the output of the rGRU
results in the predicted in�ow for all 6 steps, according to Equation
10.

3.2.3 Seasonal GRU + residual GRU (sGRU+rGRU). �is model
combines the sGRU model and the rGRU from the WSC+rGRU
model. �e sGRU of this model has the same architectural setup
as the sGRU model, while the setup of the rGRU is equal to the
rGRU in the WSC+rGRU model. Combining the output of the sGRU
and rGRU results in the predicted in�ow for all 6 steps, following
Equation 11:

Ŷ = S(xs ) + F (xr ). (11)

4 EVALUATION
�is section covers the details on the data used in the study (4.1), the
implementation details of training the models (4.2), the model per-
formance metrics used for evaluation (4.3), the seasonality present
in the data (4.4), and the results obtained in the di�erent experi-
ments (4.5).

4.1 Data
�e following three datasets were the basis for this research:

(1) Sensor data from WWTPs Losser and Oldenzaal provided
by Dutch Water Authority Vechtstromen;
• Daily wastewater in�ow data covering the period 1

January 2010 up to 25 February 2018;
• Half-hourly in�ow data covering the period 03:00 02-

10-2016 up to 08:00 17-04-2018;
(2) Weather data from weather station Twente made publically

available by the Royal Netherlands Meteorological Institute
(KNMI);
• Hourly data covering the period 01:00 1 January 2010

up to 08:00 17-04-2018;
(3) Drink water usage in the area of Oldenzaal-Losser and

Oldenzaal-De Lu�e provided by water company Vitens;
• Hourly data covering the period 01:00 1 January 2010

up to 08:00 17-04-2018.
From these datasets the following variables were extracted; wastew-

ater in�ow, drink water usage, temperature, sunshine duration, pre-
cipitation duration, precipitation sum, and whether it had snowed
or not. Jordens (2018) [16] was the underlying basis for extracting
these variables. �e variables of which hour it was and whether
it was a holiday, or not, were further included. Based on the daily
wastewater in�ow data over 2010-2018, three additional features
were established for each target variable (t+1, t+2, t+3, t+6, t+12,
t+24): the di�erence for the concerned month from the mean hourly
in�ow over all months (m), the di�erence for the concerned week

from the mean hourly in�ow over all weeks (w), and the di�erence
for the concerned weekday from the mean hourly in�ow over all
weekdays (d). In addition, the mean hourly in�ow for the concerned
hour of the day was included for each target variable. �is resulted
in 35 explanatory variables (of which 11 concerned the current hour,
and 24 were seasonal) for the data used in the WSC+GRU model.

In the case of the sGRU+rGRU model, the seasonal features were
not based on lookup tables. Numerical values corresponding to
the concerned hour, weekday, week, and month were used instead.
�us, there were also 35 explanatory variables (11 concerning the
current hour, and 24 seasonal) for this model.

As for the GRU model, m and w were only included for t+1, and
d was only included for t+1 and t+24. �is was done to not have
the number of input variables for the GRU model triple, while, in
most cases, these variables are not any di�erent from each other for
the 6 prediction time steps of one time step vector. In addition, the
GRU model is able to look back at 72 previous inputs via its internal
memory. �us, it indirectly does have access tom, w , and d of the
other prediction steps. As such, there were 21 explanatory variables
(11 concerning the current hour, and 10 seasonal variables) for the
GRU model.

�e data used in the MLP models included shi� variables (t-1,
t-2, t-6, t-12, t-18, t-21, t-22 and t-23) based on the variables that
concerned the current hour, but excluding the current hour variable,
and whether it was a holiday or not. Care was taken to, for each
target variable, include shi� variables regarding the situation on
the day before on that exact hour. �us, the data for the MLP
and WSC+rMLP consisted of 99 explanatory variables (of which 11
concerned the current hour, 64 concerned previous hours, and 24
were seasonal).

4.2 Implementation Details
�e train dataset covered the period 03:00 02-10-2016 up until 01:00
30-09-2017, which consisted of 8711 observations. Data over the
period 01:00 30-09-2017 up to 23:00 31-01-2018, consisting of 2975
observations, was used as validation set during training. All models
were evaluated based on a test dataset covering the period 00:00
01-02-2018 up to 08:00 17-04-2018, which consisted of 1808 obser-
vations.

For training MLP and WSC+rMLP, dropout on the second hidden
layer of the MLP was set to 0.7 and dropout on the last hidden
layer was set to 0.3. For training GRU, WSC+rGRU and sGRU+GRU,
dropout was set to 0.3 on each GRU cell in the network. For training
the WSC+rGRU model, the previously trained WSC was loaded in
and frozen at �rst. When no further improvement was obtained
in training with this setup, the WSC was allowed to be trained
together with the rGRU. �e same was true for the sGRU+rGRU
model, whereby now the sGRU part was frozen at �rst.

Grid search {50, 75, 100} was performed to �nd the optimal
amount of units for the GRU cells in the GRU and WSC+rGRU
models. For the sGRU+GRU, a grid search {1, 2} and {18, 30, 50}
was done to �nd, respectively, the optimal amount of layers, and
the number of units for the GRU cell of the sGRU. For the MLP
model, a grid search {265, 512, 1024} was performed to �nd the
optimal amount of units for the �rst hidden layer. Each consecutive
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hidden layer, except the last hidden layer, was set to be half that of
the preceding hidden layer.

For all models, the Adam algorithm was used for optimization
[17]. Initially, the learning rate was set to 0.01. It was decreased by
a factor 10 when, a�er 40 epochs, no increase in performance was
observed. Finally, models were deemed trained when no increase in
performance was observed with further decreasing the learning rate,
or in case the learning rate was dropping below the set threshold
value of 0.00001.

4.3 Model Performance Metrics
�ree metrics were used to evaluate the performance of the mod-
els; root mean squared error (RMSE), mean absolute error (MAE),
and mean absolute percentage error (MAPE). �ese metrics are
computed as following:

RMSE =

√∑n
i=1(ŷi − yi )2

n
(12)

MAE =

∑n
i=1 |ŷi − yi |

n
(13)

MAPE =
100%
n

n∑
i=1

����ŷi − yiyi

���� (14)

whereby ŷi is the predicted value, yi is the actual value, and n is
the total number of observations.

For all three metrics a lower value means be�er performance.
Dutch Water Authority Vechtstromen has indicated that a model
with an average MAPE value below 10% is usable in practice.

4.4 Seasonality of the Data
First, the seasonality present in the data of WWTPs Oldenzaal and
Losser was visually explored. Figure 1 shows the monthly sea-
sonality. When analyzed in respect to the average hourly rainfall
duration per month (see Figure 2) and average hourly amount of
rainfall per month (see Figure 3), it is clear that there is a strong cor-
relation. �e peaks in in�ow in January and February are explained
by peaks in the average hourly rainfall duration. �e increase in
in�ow in August is explained by the combination of an increase in
average hourly rainfall duration and an increase in average hourly
amount of rainfall, compared to the month before. �e same is true
for November and December, when compared to October.

Figure 4 shows the weekly seasonality. �is follows a similar
pa�ern as the monthly seasonality, albeit more erratic. �e increase
in in�ow in weeks 5, 17, 19, 34, and 45 are explained by an increase
in both the average rainfall duration (see Figure 5) and amount of
rainfall for these weeks (see Figure 6), compared to all respective
previous weeks. �e higher amount of in�ow over week 22, com-
pared to week 21, seems to be mainly due to an increase in the
average amount of rainfall in this week.

Figure 7 shows the hourly seasonality for workweek and week-
end days. When compared to the average drink water usage per
hour (see Figure 8), the shi� in the daytime peak of in�ow on week-
end days, compared to working days, is clearly correlated to the
shi� in the daytime peak in drink water usage. Also, the higher
amount of in�ow during evening hours on workweek days can be

Figure 1: Average hourly in�ow per month at WWTPs
Oldenzaal and Losser (based on daily data over 1 January
2010 - 25 February 2018).

Figure 2: Average hourly rainfall duration per month in the
region of Oldenzaal and Losser (based on hourly data over 1
January 2010 - 25 February 2018).

Figure 3: Average hourly amount of rainfall per month in
the region of Oldenzaal and Losser (based on hourly data
over 1 January 2010 - 25 February 2018).

explained by the higher usage of drink water during those hours
on those days.

�ese observations show the strong correlation between the
amount of in�ow at municipal WWTPs, rainfall and human us-
age of drink water. �ey empirically support previously stated
assumptions on the seasonal time pa�erns of in�ow data, and the
strong seasonal component present in this time series data. �ese
observations, thus, justify the rationale behind including monthly,
weekly, weekday, and hourly seasonal features to extract the sea-
sonal component from the total in�ow.

4.5 Results
4.5.1 Experiment 1: Evaluating MLP model performance. In the

�rst experiment the results obtained with the MLP model are com-
pared to the results obtained in Jordens (2018) [16] with a MLP
model . �is is done to evaluate whether results obtained in this
study can be compared to the results of the previous study. �e
results in Tables 1 and 2 show that for t+1 comparable results are
obtained. MLP [16] seems to perform slightly be�er for t+1 in
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Figure 4: Average hourly in�ow per week at WWTPs Oldenzaal and Losser (based on daily data over 1 January 2010 - 25
February 2018).

Figure 5: Average hourly rainfall duration per week in the region of Oldenzaal and Losser (based on hourly data over 1 January
2010 - 25 February 2018).

Figure 6: Average hourly amount of rainfall per week in the region of Oldenzaal and Losser (based on hourly data over 1
January 2010 - 25 February 2018).

the case of WWTP Losser. �is small discrepancy could be due
to the fact that the MLP model in this study is trained to output
6 prediction steps simultaneously. It could be that optimizing a
speci�c MLP for each prediction step will result in a slight increase
in performance. However, due to a limited computation budget,
this approach was not feasible for this study.

Surprisingly, signi�cant improvements were obtained in this
study in predicting t+2 and t+3 with MLP for both WWTPs. �e
explanation appears to be a limitation of the previous study, which
is that shi� variables were included for only one of the explanatory
variables [16].

It can be concluded that the results obtained in this study can be
compared to the results of the earlier study. In line with Wei et al.
(2013) [28], the results further show that a MLP is not well-suited
to predict wastewater in�ow for more than a few hours ahead.

4.5.2 Experiment 2: Evaluating a prediction model purely based
on seasonality. �e results in Tables 1 and 2 clearly show that a
prediction model purely based on seasonality produces poor results.
Both WSC and sGRU perform poorly compared to the other models.
�e fact that the WSC outperforms the sGRU could be due to the

fact that only relatively li�le data was available for training the
sGRU. �ere are, for instance, months for which the sGRU only
gets to see the situation of one year. �us, the monthly seasonality
is, for some months, purely based on one year. �e same is true
for certain weeks. As such, it could very well be that this model,
therefore, does not generalize well to the test data, which concerned
the following year.

Interestingly, the performance of the WSC and sGRU models
on predicting t+12 and t+24 is only moderately worse than the
performance by the MLP on those time steps (see Tables 1 and 2). In
the case of predicting t+12 for WWTP Oldenzaal, the WSC model
even performs be�er than the MLP (see Tables 1 and 2). �us, it
seems the MLP model is not able to learn much more from the data
for these prediction steps than the average seasonal pa�ern.

4.5.3 Experiment 3: Evaluating the performance of a GRU model
to a MLP model. �e results of the GRU model compared to those
of the MLP model, shown in Tables 1 and 2, evidently show that a
GRU is much be�er suited for multivariate time series forecasting.
It shows that the MLP model was not able to learn the time related
pa�ern of the data well. �e results of the GRU model support
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Figure 7: Average in�ow per hour at WWTP Oldenzaal (based on hourly in�ow over 2 October 2016 - 17 April 2018).

Figure 8: Average drink water usage per hour in the region Oldenzaal-Losser and Oldenzaal-De Lutte (based on hourly drink
water usage over 2 October 2016 - 17 April 2018).

Table 1: Results for all models on predicting the in�ow at WWTP Oldenzaal for the 6 prediction time steps. �e best result is
shown in bold. Model with * indicates it was trained with additional training data for evaluating continuous learning.

MLP [16] WSC MLP WSC+rMLP GRU WSC+rGRU sGRU sGRU+rGRU sGRU+rGRU*

t+1 RMSE 232.58 451.61 229.98 203.64 120.24 93.80 477.12 93.70 93.71
MAE 105.29 206.42 130.60 108.07 66.27 36.69 237.09 34.38 34.38

MAPE 15.08% 25.94% 17.73% 14.34% 9.34% 4.36% 32.06% 4.11% 4.11%

t+2 RMSE 411.94 451.61 257.87 248.84 124.91 106.72 476.97 105.33 105.33
MAE 163.66 206.42 134.86 122.53 62.60 48.16 236.97 46.73 45.72

MAPE 20.90% 25.94% 17.23% 15.59% 8.11% 5.91% 32.09% 5.65% 5.64%

t+3 RMSE 431.20 451.61 296.48 287.30 142.96 112.36 477.07 106.45 106.44
MAE 185.99 206.43 155.53 136.02 60.51 45.88 236.87 39.33 39.32

MAPE 24.13% 25.95% 20.02% 16.89% 7.38% 5.70% 32.04% 4.52% 4.52%

t+6 RMSE - 451.61 391.66 377.03 123.41 85.08 477.07 85.96 85.96
MAE - 254.74 206.40 159.79 63.32 28.40 236.90 22.94 22.94

MAPE - 25.94% 26.88% 19.38% 8.51% 3.17% 32.05% 2.36% 2.36%

t+12 RMSE - 452.80 446.63 421.84 83.40 66.10 476.87 58.35 58.35
MAE - 207.32 230.97 178.46 44.53 25.23 236.56 19.15 19.12

MAPE - 25.97% 30.56% 21.50% 6.68% 2.93% 32.03% 2.55% 2.54%

t+24 RMSE - 452.22 426.73 411.35 77.78 48.74 474.67 47.57 47.57
MAE - 206.55 203.10 176.38 46.42 22.52 234.39 16.08 16.02

MAPE - 26.12% 27.50% 21.61% 7.24% 2.91% 32.17% 2.03% 2.03%

previous research that, even for small time steps ahead forecasting,
a gated RNN signi�cantly outperforms a MLP [30]. �e results
further show that the GRU model was able to learn both the short-

and long-term dependencies, as even for t+6, t+12, and t+24 accurate
predictions are made (see Tables 1 and 2).

Surprisingly, it even outperforms for t+6, t+12, and t+24 for
WWTP Oldenzaal compared to t+1, t+2, and t+3 (see Tables 1 and
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Table 2: Results for all models on predicting the in�ow at WWTP Losser for the 6 prediction time steps. �e best result is
shown in bold. Model with * indicates it was trained with additional training data for evaluating continuous learning.

MLP [16] WSC MLP WSC+rMLP GRU WSC+rGRU sGRU sGRU+rGRU sGRU+rGRU*

t+1 RMSE 119.10 235.62 119.88 107.95 44.76 24.38 243.98 14.55 12.84
MAE 54.10 111.15 59.30 54.05 33.41 14.43 111.01 6.31 5.70

MAPE 15.08% 36.32% 21.19% 19.48% 14.50% 5.59 38.09% 2.23% 2.12%

t+2 RMSE 167.19 235.62 127.20 124.84 47.16 28.42 243.99 14.36 13.80
MAE 78.53 111.14 61.54 60.16 20.94 15.17 111.03 5.54 6.18

MAPE 20.90% 36.33% 21.28% 20.49% 7.41% 5.86 38.14% 2.07% 2.30%

t+3 RMSE 191.29 235.61 138.21 140.40 40.96 26.02 244.10 16.30 15.38
MAE 91.23 111.12 68.59 65.09 28.67 14.95 110.44 5.65 6.52

MAPE 24.13% 36.33% 24.51% 21.53% 11.53% 5.75% 37.75% 1.79% 2.18%

t+6 RMSE - 235.60 184.51 192.39 37.66 28.16 244.28 21.21 19.37
MAE - 111.08 91.60 84.43 32.00 15.84 109.36 11.50 10.14

MAPE - 36.32% 33.62% 26.40% 14.33% 6.18% 37.03% 4.50% 3.78%

t+12 RMSE - 235.55 206.38 204.50 24.66 23.59 244.10 13.80 12.19
MAE - 110.96 104.71 92.32 16.62 14.29 109.35 5.84 6.24

MAPE - 36.33% 39.98% 30.39% 7.44% 5.43% 37.18% 2.02% 2.42%

t+24 RMSE - 229.50 199.94 197.79 39.15 21.81 236.61 11.06 11.22
MAE - 107.74 93.91 89.49 28.94 13.17 105.78 5.62 6.43

MAPE - 36.21% 35.28% 30.41% 11.86% 5.18% 37.18% 2.29% 2.59

2). �is seems an indication that the model was not able to get
passed a certain local optimum. An observation during training
was that the GRU model was highly prone to get stuck in bad local
optima. Care needed to be taken to not have the performance for
predicting t+1, t+2, and t+3 get to far ahead of the other 3 prediction
steps during training, as the model always got stuck in a bad local
optimum in such a case. �us, if a speci�c GRU model were to be
trained for each prediction step, it is expected that the performance
for all time steps will be more equal to each other. Further research
is needed to determine whether this is indeed the explanation for
this surprising result.

With MAPE scores of below 10% for all predictions steps, the
GRU model is usable in practice.

4.5.4 Experiment 4: Evaluating seasonality extraction based on
lookup tables and residual learning using a MLP. Results in Tables 1
and 2 show that seasonality extraction in combination with residual
learning increases the performance of a MLP model for the fore-
casting task. �ese results show that a combination of seasonality
extraction and residual learning helps optimization of the MLP for
this task. While the performance of the WSC+rMLP is improved
compared to the MLP model, it is still not usable in practice as the
MAPE value is above the 10% threshold for all prediction steps.

4.5.5 Experiment 5: Evaluating seasonality extraction based on
lookup tables and residual learning using a GRU. �e results in Tables
1 and 2 show that the WSC+rGRU is able to signi�cantly outperform
the GRU model. �e relatively large increase in performance (see
Tables 1 and 2) seems to be explainable by the seasonal extraction
and residual learning approach strengthening each other. It shows
that this approach aids the optimization of the GRU. It was observed

during training that the WSC+rGRU was much less prone to get
stuck in bad local optima, compared to the GRU model.

4.5.6 Experiment 6: Evaluating using a GRU for seasonality ex-
traction in combination with residual learning using another GRU.
From the results in Tables 1 and 2 it is clear that the sGRU+rGRU
outperforms all other models. �us, it is shown that using a GRU
to extract the seasonality in combination with a GRU for residual
learning most e�ectively leverages the strengths of using GRU,
seasonality extraction, and residual learning for this forecasting
task. Comparing these results with the results obtained by the
sGRU alone and the WSC+rGRU (see Tables 1 and 2), it seems
the sGRU+rGRU is be�er able to extract the seasonality from the
data. In case the sGRU was fully optimized, the performance of
the sGRU+rGRU would not surpass that of the WSC+rGRU model.
However, by allowing the sGRU of the sGRU+rGRU model to train
further, the sGRU+rGRU was able to optimize beyond that of the
WSC+rGRU model. �e MAPE score is far below 10% for all predic-
tion steps, and, thus, the model is usable in practice.

4.5.7 Experiment 7: Continuing learning. As a �nal step, the
best performing model was used to evaluate the e�ect of allowing
a model to continue learning as new data becomes available. To
this end, the validation set covering the period 01:00 30-09-2017 up
to 23:00 31-01-2018 was used as additional training data to update
the best performing model. �e dataset covering the period 03:00
02-10-2016 up until 01:00 30-09-2017 that was previously used for
training now functioned as validation set during training.

As the best performing model was the sGRU+rGRU model (see
results in Tables 1 and 2), this model was used for evaluating con-
tinuous learning. In the case of WWTP Oldenzaal, the performance
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appears to have marginally improved. Overall, the performance for
WWTP Losser also appears to have improved slightly (see Tables 1
and 2). Although, for some time steps the performance went down
slightly (see Tables 1 and 2).

�ese results are inconclusive on the e�ect of continuous learn-
ing. �e changes in performance are too small to conclusively state
that they are signi�cant. One explanation for this result could be
that the additional training dataset was relatively small. A larger
set may be needed to obtain further signi�cant improvements in
performance.

5 CONCLUSION
In this study, a model is proposed (sGRU+rGRU) that combines
the strengths of using GRU, seasonality extraction, and residual
learning for multivariate time series forecasting. It shows that it
is this combination of approaches that results in the best perfor-
mance. Using a GRU model with seasonal and residual features as
input (GRU), or a model with seasonality extraction that only uses
a GRU for residual learning (WSC+GRU) are not able to reach the
performance of the sGRU+rGRU. It also shows that a MLP model is
not well-equipped for the task. Seasonality extraction in combina-
tion with residual learning using a MLP (WSC+rMLP) does lead to
increased performance compared to a MLP model.

No conclusive result is obtained on the e�ect of updating a model
as new data becomes available. Further research would need to be
done to reach a more conclusive answer on the in�uence of contin-
uous learning on model performance. Another interesting direction
for further research would be to investigate the performance e�ect
of using online learning.

One limitation of this study is that each model was trained to pre-
dict all 6 prediction steps simultaneously. Further improvements in
performance may be obtained when di�erent models are optimized
separately for each time step. �is could also clear up the surprising
result that some models were able to obtain be�er performance
for later prediction steps. Another limitation is the relatively small
dataset that was used for this study. �e e�ectiveness of using a
GRU to extract the seasonality from the in�ow data may be larger
if the GRU is able to learn from data spanning a longer time period,
involving di�erent consecutive years.

In addition, the strong correlation between wastewater in�ow
at municipal WWTPs, rainfall and human drink water usage is
made evident in this study. It shows that wastewater in�ow can be
accurately forecast based on recent weather conditions, drink water
usage, and preceding volumes of in�ow. Taking into account the
time dynamics and seasonality pa�erns of these sources is thereby
of great importance.
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