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Chapter 1

Overview

This chapter presents the main definitions and results of this book and their
significance, with the help of a few basic examples. It is written so as to be
readable independently of the others. Definitions are sometimes given infor-
mally, with simplified notation, and most proofs are omitted. All definitions
will be repeated with the necessary technical details in the subsequent chapters.

In Section 1.1, we present the notion of equational set of an algebra by
using as examples a context-free language, the set of cographs and the set of
series-parallel graphs. We also introduce our algebraic definition of derivation
trees.

In Section 1.2, we introduce the notion of recognizability in a concrete way,
in terms of properties that can be proved or refuted, for every element of the
considered algebra, by an induction on any term that defines this element. We
formulate a concrete version of the Filtering Theorem saying that the intersec-
tion of an equational set and a recognizable one is equational. It follows that
one can decide if a property belonging to a finite inductive set of properties is
valid for every element of a given equational set. We explain the relationship
between recognizability and finite automata on terms.

In Section 1.3, we show with several key examples how monadic second-order
sentences can express graph properties. We recall the fundamental equivalence
of monadic second-order sentences and finite automata for words and terms.

In Section 1.4, we introduce two graph algebras. They are called the VR and
the HR algebra because their equational sets are those that are generated by the
context-free Vertex Replacement and Hyperedge Replacement graph grammars
respectively. The cographs and the series-parallel graphs are respectively our
current examples of a VR- and an HR-equational set. We state (a weak version
of) the Recognizability Theorem which says, in short, that monadic second-
order definability implies recognizability. From it we obtain a logical version
of the Filtering Theorem where the recognizable sets are defined by monadic
second-order sentences.

In Section 1.5, we review the basic definitions of Fixed-Parameter Tractabil-
ity and we state the algorithmic consequences of the (weak) Recognizability
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Theorem. This theorem has actually two versions, relative to the two graph
algebras defined in Section 1.4, and yields two Fixed-Parameter Tractability
Theorems.

In Section 1.6, we describe the consequences of the Recognizability and Fil-
tering Theorems for the problem of deciding whether a given monadic second-
order sentence is satisfied by some graph of tree-width at most a given k or,
more generally, by some graph of an equational set.

In Section 1.7, we introduce the notion of a monadic second-order trans-
duction by means of examples that have some graph theoretic content, and we
state the Equationality Theorem for the VR algebra. It gives a characterization
of the VR-equational sets, and in particular of the sets of graphs of bounded
clique-width, that is formulated in purely logical terms.

In Section 1.8, we consider monadic second-order formulas interpreted in
incidence graphs (as opposed to in graphs “directly”). These formulas can use
edge set quantifications. We compare the corresponding four types of monadic
second-order transduction and we state the Equationality Theorem for the HR
algebra: it is based on monadic second-order transductions that transform in-
cidence graphs.

In Section 1.9, we define relational structures and we extend to them (eas-
ily) some results relative to graphs represented by their incidence graphs. We
introduce betweenness and cyclic ordering as examples of combinatorial notions
that are based on linear orderings but are defined in a natural way as ternary
relations.

1.1 Context-free grammars

By starting from the standard notion of a context-free grammar, we introduce
the notion of an equational set and we define two equational sets of graphs. We
define the equational sets of a (one-sorted) algebra and the corresponding sets
of derivation trees.

1.1.1 Context-free word grammars

By using context-free grammars, one can specify certain formal languages, namely
the context-free languages, in a finitary way. Context-free grammars are usually
defined as rewriting systems satisfying particular properties, conveyed by the
term “context-free” and axiomatized in [Cou87]. However, the Least Fixed-Point
Characterization of context-free languages due to Ginsburg and Rice [GinRic]
and to Chomsky and Schützenberger [ChoSch] is formulated in terms of systems
of recursive equations written with the operations of union and concatenation
over languages. This algebraic view has been developed by Mezei and Wright
[MezWri] and has many advantages. First, it is more synthetic in that it deals
with languages rather than with words produced individually by derivation se-
quences. Second, it puts the study of context-free languages in the more general
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framework of recursive definitions handled as least solutions of systems of equa-
tions, and last but not least, it is applicable to any algebra. This latter aspect
is especially important for the extension to graphs.

We recall how context-free languages can be characterized as the components
of the least solutions of certain systems of equations in languages. A context-
free grammar G is a finite set of rewriting rules defined with two alphabets,
a terminal alphabet A and a nonterminal alphabet N . For every S in N , the
context-free language over A generated by G from S is denoted by L(G,S).

Example 1.1 We consider for example the context-free grammar G with ter-
minal alphabet A = {a, b, c}, nonterminal alphabet N = {S, T} and rules named
respectively p, q, . . . , w (where ε denotes the empty word):

p : S → aST
q : S → SS
r : S → a
s : T → bTST
u : T → a
v : T → c
w : T → ε

It defines two languages L(G,S) and L(G,T ) over A, i.e., sets of words in A∗.
These languages satisfy the equations of the following system ΣG:

ΣG

{
K = aKL ∪KK ∪ {a}
L = bLKL ∪ {a, c, ε}

with K = L(G,S) and L = L(G,T ). The pair (L(G,S), L(G,T )) is thus a so-
lution of ΣG. However, it is not the only one. The pair of languages (A∗, bA∗ ∪
{a, c, ε}) is another solution as one checks easily1. The Least Fixed-Point Char-
acterization of context-free languages establishes that the pair (L(G,S), L(G,T ))
is the least solution of ΣG for component-wise inclusion.

1.1.2 Cographs

We give two examples of similar definitions of sets of graphs. We first consider
as ground set the set Gu of undirected simple graphs2. Two isomorphic graphs
are considered as the same object. We will use ⊕ to denote the disjoint union
of two graphs G and H. This means that G⊕H is the union of G and of a copy
of H disjoint with G (hence G ⊕ G 6= G). We will also use the complete join,
G⊗H, defined as G⊕H augmented with undirected edges linking every vertex

1Since L(G,S) ⊆ A+ = AA∗, the pair (A∗, bA∗ ∪ {a, c, ε}) is a solution of ΣG that differs
from (L(G,S), L(G,T )).

2In this book, all graphs are finite. A graph is simple if it has no two parallel edges, i.e., no
two edges with the same ends, and the same directions in the case of directed graphs. Parallel
edges are also called multiple edges. An edge with equal ends is a loop. The superscript “u”
in Gu refers to undirected graphs.
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Figure 1.1: A cograph.

of G and every vertex of H. We let 1 denote any graph with one vertex and no
edges. Note that both ⊕ and ⊗ are commutative and associative operations.

The set of cographs C can be defined as the least set of graphs satisfying the
equation

C = (C ⊕ C) ∪ (C ⊗ C) ∪ {1}. (1.1)

This set (it is a proper subset of Gu) has actually alternative characterizations
(see Section 1.3.1 below). From this equation, one can derive definitions of cer-
tain subsets of C. Consider for example the following system of two equations:{

C0 = (C0 ⊕ C0) ∪ (C1 ⊕ C1) ∪ (C0 ⊗ C0) ∪ (C1 ⊗ C1)

C1 = (C0 ⊕ C1) ∪ (C0 ⊗ C1) ∪ {1}.
(1.2)

Its least solution in P(Gu)× P(Gu) is the pair of sets (C0, C1) where C0 (resp.
C1) is the set of cographs having an even (resp. an odd) number of vertices.3 We
will give general and effective methods for deriving from an equation or a system
of equations that defines a set L, an equation or a system of equations defining
{x ∈ L | P (x)} where P is a property of the objects under consideration. This is
possible if P has an appropriate “inductive behaviour” relative to the operations
with which the given equation or system of equations is written.

From the definition of cographs as elements of the least subset C of Gu

satisfying (1.1), it follows that each of them is denoted by a term, more formally,
is the value of a term in an algebra of graphs. Examples of terms denoting
cographs are

1, 1⊕ 1, (1⊕ 1)⊗ 1, (1⊕ 1)⊗ (1⊕ 1).

The cograph of Figure 1.1 is the value of the term t = (1⊗1⊗1)⊗(1⊕(1⊗1)).
Since ⊗ is associative, we have written t by omitting some parentheses as
usual, for readability. These terms belong to the set T ({⊕,⊗,1}) of all terms
written with the constant 1 and the two binary operations ⊕ and ⊗. Equa-
tion (1.1) can also be solved with ground set T ({⊕,⊗,1}). For this interpreta-
tion of (1.1) the unknown C denotes subsets of T ({⊕,⊗,1}). Clearly, the set

3We denote by P(X) the powerset of a set X, i.e., its set of subsets.
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of terms T ({⊕,⊗,1}) itself is the least (in fact, the only) solution of (1.1) in
P(T ({⊕,⊗,1})).

A similar fact holds for System (1.2). Its least solution in P(T ({⊕,⊗,1}))×
P(T ({⊕,⊗,1})) is a pair of sets (T0, T1) where T0, T1 ⊆ T ({⊕,⊗,1}) and for
each i = 0, 1, the set Ci is the set of cographs which are the values of the terms
in Ti.

This example shows that a grammar, i.e., a system of equations like (1.2),
specifies not only a tuple of sets of objects, here graphs, but also denotations by
terms of the specified objects. These objects can be words, terms, trees, graphs,
as we will see. Each term is a formalization of the structure of the object it
denotes, as specified by the grammar; it provides a hierarchical decomposition of
that object. In many cases, an object can be denoted by several terms that are
correct with respect to the grammar. In such a case, we say that the grammar
is ambiguous. The grammars (1.1) and (1.2) are ambiguous: since ⊕ and ⊗
are commutative and associative, most cographs are denoted by more than one
term.

As an example of structure, consider again the term (1⊗1⊗1)⊗(1⊕(1⊗1))
that denotes the cograph of Figure 1.1. It provides a decomposition of that
cograph, because the subterm 1 ⊗ 1 ⊗ 1 denotes the triangle at the left of
Figure 1.1, whereas the subterm 1 ⊕ (1 ⊗ 1) denotes the three vertices at the
right of Figure 1.1 together with the edge between two of them.

1.1.3 Series-parallel graphs

The ground set of graphs is here the set J d
2 of directed graphs G equipped with

two distinct distinguished vertices marked 1 and 2 called its sources, denoted
respectively by srcG(1) and srcG(2). These graphs may have multiple edges4.
Let e be a constant denoting the graph with two vertices and only one edge from
source 1 to source 2. The operations are the parallel-composition, denoted by �,
and the series-composition, denoted by •. For G and H in J d

2 , the graph G�H is
the union of G and an isomorphic copy H ′ of H such that srcG(1) = srcH′(1),
srcG(2) = srcH′(2), and G and H ′ have nothing else in common. We define
srcG�H(1) := srcG(1) and srcG�H(2) := srcG(2). Note that G �G has twice as
many edges as G, hence G 6= G �G in general.

Series-composition is defined similarly. For G,H ∈ J d
2 , we let G • H be

the union of G and an isomorphic copy H ′ of H such that srcG(2) = srcH′(1)
and G and H ′ have nothing else in common. We let srcG•H(1) := srcG(1) and
srcG•H(2) := srcH′(2). These operations are illustrated in Figure 1.2.

4The letter “J” in the notations J d
2 and, below, in Jd2 , JS and the related notions refers

to graphs that can have multiple edges. By contrast, the letter “G” used in the notations Gu

and, below, Gu, GP etc. refers to simple graphs. The subscript “2” refers to the two sources,
and the superscript “d” to directed graphs.
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Figure 1.2: Series- and parallel-compositions.

The set of series-parallel graphs5 is defined by the equation:

S = (S � S) ∪ (S • S) ∪ {e} (1.3)

where by “defined” we mean that S is the least subset of J d
2 satisfying (1.3). As

for cographs, this definition gives a notation of series-parallel graphs by terms.
The set of terms is here T ({�, •, e}). Examples of terms are:

e, e � e, (e � e) • (e � e), ((e � e) • e) � (e • e).

The graph denoted by the last of these terms is shown in Figure 1.3. Note that
the subterm (e � e) • e denotes the three edges at the left of Figure 1.3, with
their three incident vertices, whereas the subterm e • e denotes the two edges at
the right, with their three incident vertices.

1.1.4 The general setting

Let F be a (functional) signature, that is, a set of function symbols such that
each symbol f is given with a nonnegative integer intended to be the number of
arguments of the corresponding function. This number is called its arity and is
denoted by ρ(f). A function symbol of arity 0 is also called a constant symbol.

An F -algebra M is a set M equipped with total functions fM : Mρ(f) → M
for all f in F . We write it M = 〈M, (fM)f∈F 〉. We call M the domain and fM
an operation of M; if f has arity 0, then fM is also called a constant of M. The
F -algebra M is finite if M is finite.

Let X = {x1, . . . , xn} be a set of unknowns (or variables), intended to denote
subsets of M . A polynomial is an expression of the form p = m1 ∪ · · · ∪ mk

5The term “series-parallel” is also used for partial orders ([*Möhr]) and, in a wider sense
for undirected graphs without K4 as a minor ([*Die]). Our series-parallel graphs are called
two-terminal series-parallel digraphs in [*Möhr].
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Figure 1.3: A series-parallel graph.
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where each mi is a monomial, i.e., a term written with the symbols of F ∪ X
and well formed with respect to arities (the unknowns are of arity 0).

For each n-tuple (L1, . . . , Ln) of subsets of M and each monomial m, the set
m(L1, . . . , Ln) is a subset of M . This subset is defined by taking xi = Li and
by interpreting each function symbol f as fM, where, for all A1, . . . , Aρ(f) ⊆M :

fM(A1, . . . , Aρ(f)) := {fM(a1, . . . , aρ(f)) | ai ∈ Ai}.

Hence fM also denotes the extension to sets of the function fM : Mρ(f) → M .
For a polynomial p = m1 ∪ · · · ∪mk we define:

p(L1, . . . , Ln) := m1(L1, . . . , Ln) ∪ · · · ∪mk(L1, . . . , Ln).

A system of polynomial equations (an equation system for short) is a system
of the form:

S = 〈x1 = p1, . . . , xn = pn〉 (1.4)

where p1, . . . , pn are polynomials.

Example 1.2 In the particular case of the grammar G considered in Exam-
ple 1.1, we let F = {·, ε, a, b, c} and M = 〈A∗, ·, ε, a, b, c〉, where A = {a, b, c}
and · denotes concatenation; the equation system ΣG can be written formally
as follows: {

x1 = a · (x1 · x2) ∪ x1 · x1 ∪ a
x2 = b · ((x2 · x1) · x2) ∪ a ∪ c ∪ ε,

where the associativity of concatenation is not taken for granted any more. Note
that for the constant symbol a of F we have aM = a and also, according to the
above extension, aM = {a}; similarly, the constant symbol ε denotes both the
empty word ε and the language {ε}. �

Going back to the general case, a solution of a system S as in (1.4) is an
n-tuple (L1, . . . , Ln) in P(M)n that satisfies the equations of S, which means
that Li = pi(L1, . . . , Ln) for every i = 1, . . . , n. Solutions are compared by
component-wise inclusion and every system has a least solution. The compo-
nents of the least solutions of such systems are called the equational sets of the
F -algebra M. We will denote by Equat(M) the family of equational sets of M.

For a signature F , we denote by T (F ) the set of terms written with the
symbols of F and well formed with respect to arities. The usual notation for
terms is with the function symbols in leftmost position, their arguments are
between parentheses and separated by commas. In this notation, the term
denoting the graph of Figure 1.3 is written �(•(�(e, e), e), •(e, e)).6 As is well
known, terms can be represented by certain labelled, directed and rooted trees.

6For associative binary operations the more readable infix notation will be used, although
it is ambiguous as already observed. The infix notation of this term is ((e � e) • e) � (e • e).
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This representation is the reason that terms are usually called trees in Formal
Language Theory.

The set T (F ) is turned into an F -algebra, denoted by T(F ), by defining the
operation fT(F ) by

fT(F )(t1, . . . , tρ(f)) := f(t1, . . . , tρ(f)).

This operation performs no computation; it combines its arguments which are
terms into a larger term.

For every F -algebraM, a term t ∈ T (F ) has a value tM in M that is formally
defined as follows:

tM := fM if t = f and f has arity 0 (it is a constant symbol),

tM := fM(t1M, . . . , tρ(f)M) if t = f(t1, . . . , tρ(f)).

Since every term can be written in a unique way as f or f(t1, . . . , tρ(f)) for
terms t1, . . . , tρ(f), the value tM of t is well defined. The mapping t 7→ tM, also
denoted by valM, is the unique F -algebra homomorphism from T(F ) into M.7

An F -algebra M is generated by F if every element of M is the value of some
term in T (F ).

An equation system S of the form (1.4) has a least solution in P(T (F ))n that
is an n-tuple (T1, . . . , Tn) of subsets of T (F ). The least solution (L1, . . . , Ln) of
S in P(M)n is also characterized by Li = {tM | t ∈ Ti}, for each i = 1, . . . , n.
This is an immediate consequence of a result of [MezWri] saying that the least
fixed-point operator commutes with homomorphisms. A term t in Ti represents
the structure of the element tM of Li as specified by the system S.

It follows in particular that for each i, Li = ∅ if and only if Ti = ∅. Hence the
least solutions of a system S in all algebras have the same empty components.
The emptiness of each set Ti can be decided by the algorithm that decides the
emptiness of a context-free language. Each set Ti is actually a context-free
language over the alphabet consisting of F , parentheses and comma.

We will use these definitions for algebras of graphs M in the following way:
M will be a class of graphs like Gu or J d

2 in the examples of cographs and series-
parallel graphs, F will be a set of total functions fM : Mρ(f) →M that will be
used to construct graphs. These functions, called the operations ofM, generalize
the concatenation of words. The constants will be basic graphs. For each such
graph algebra M, the class of equational sets Equat(M) generalizes the class
of context-free languages since they are characterized as the components of the
least solutions of equation systems as recalled in Section 1.1.1. There is thus
no unique notion of a context-free set of graphs because this notion depends on
the considered algebra.

However, even in the case of languages, several algebras can be considered,
because one can enrich the monoid structure of A∗ by new operations. This

7In general, a homomorphism from N to M, where N = 〈N, (fN)f∈F 〉 is another F -algebra,
is a mapping h : N → M such that for every f ∈ F and all n1, . . . , nρ(f) ∈ N , we have
h(fN(n1, . . . , nρ(f))) = fM(h(n1), . . . , h(nρ(f))).
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increases the class of equational sets, hence defines richer notions of context-free
languages, if we take this term in the algebraic sense. The squaring function
that associates with a word u the word uu, can be such an operation. Another
one is the shift that associates with a word au the word ua, where a is a letter.
The corresponding classes of equational sets have not received specific attention.

In the case of graphs, we will show that there are only two robust classes of
equational sets, where robust means that they are closed under certain graph
transformations definable by formulas of monadic second-order logic. These
transformations, called monadic second-order transductions, play the role of
rational transductions in the theory of formal languages.

Each of the two classes of context-free sets of graphs is the class of images
of the set of finite binary trees under monadic second-order transductions of
appropriate forms. Somewhat similarly, the class of context-free languages is
the class of images of the language defined by the equation L = aLbLc ∪ {d},
under all rational transductions. This language encodes binary trees. Hence
trees play a major role in all three cases.

1.1.5 Derivation trees

Context-free grammars specify languages. However the real importance of the
notion of a context-free grammar is that, when a word is recognized as well-
formed, the grammar specifies one or several parse trees for this word. These
trees are obtained as results of the syntactic analysis (or parsing) of the con-
sidered word. They represent the syntactical structures of the considered word
as generated by the grammar. In compiling applications, grammars are con-
structed so as to be unambiguous, and each recognized word has a unique parse
tree. This tree is the support of further computation, in particular type checking
and translation into intermediate code.

Similarly, an equation system specifies a set of objects and, as we have seen,
it additionally specifies terms that denote those objects and represent their
structure. Let S be an equation system and M = 〈M, (fM)f∈F 〉 an algebra, and
consider an algorithm that, for each element m of M , computes a term t that
denotes m as specified by S (if such a term exists). Due to the similarity with
context-free grammars, we will say that this is a parsing algorithm for S.

However, if we view a context-free grammar G such as the one of Example 1.1
as an equation system S = ΣG over the signature F = {·, ε, a, b, c}, as indicated
in Example 1.2, then the terms in T (F ) specified by the system ΣG are not
the parse trees of G (because they do not show which rules of G are applied).
Nevertheless, it is possible to view G as an equation system S′ in a different
way, such that the terms of S′ do correspond to the parse trees of G, or rather
a variant of parse trees called derivation trees. Let us illustrate this for the
context-free grammar G of Example 1.1.

Example 1.3 We consider again the grammar G of Example 1.1. Its rules
are named by symbols p, q, . . . , w, that we will consider as function symbols
with arities defined by ρ such that ρ(s) = 3, ρ(p) = ρ(q) = 2, ρ(r) = ρ(u) =
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Figure 1.4: The parse tree of D and the term d.

ρ(v) = ρ(w) = 0; they form a signature P . The arity of a rule is the number of
occurrences of nonterminals in the righthand side of the rule.

Consider for example the word baaac generated from nonterminal T by the
derivation sequence D:

T ⇒ bTST ⇒ bTaSTT ⇒ baaSTT ⇒ baaaTT ⇒ baaaT ⇒ baaac

where the rules s, p, u, r, w, v are successively applied. (The arrow ⇒ denotes
the one-step derivation relation of G). Assuming that rule w is applied to the
leftmost T in baaaTT , we associate with D the term d = s(u, p(r, w), v) of T (P ).
This term contains more information than the sequence (s, p, u, r, w, v); from it
one can find all derivation sequences of the word baaac that are equivalent to
D by permutations of steps. In particular the leftmost derivation sequence uses
successively rules s, u, p, r, w, v, and the rightmost one uses rules s, v, p, w, r, u.
Figure 1.4 shows the parse tree of D and the corresponding term d.

Terms like d will be called derivation trees. We keep the name parse tree
for the trees like the one of Figure 1.4 (left part) that are used in the theory of
parsing. (Good text books exposing this theory are the “Dragon Book” by Aho
et al. [*AhoLSU] and the book by Crespi-Reghizzi [*Cre]).

The equation system ΣG of Example 1.1 can be rewritten into the following
system:

Σ′G

{
K = p(K,L) ∪ q(K,K) ∪ r
L = s(L,K,L) ∪ u ∪ v ∪ w.

Instead of solving this system for the F -algebra M = 〈{a, b, c}∗, ·, ε, a, b, c〉
(which is the algebra for ΣG in Example 1.2), we solve it for the P -algebra
M′ with the same domain {a, b, c}∗ but with the following interpretation of the
symbols of P . If we interpret the symbols p, q, s by the following operations on
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A∗ = {a, b, c}∗ (where x, y, z denote words in A∗):

p(x, y) := axy,

q(x, y) := xy,

s(x, y, z) := bxyz,

and the constant symbols r, u, v, w by the following words:

r := a,

u := a,

v := c,

w := ε,

then Σ′G is just an alternative writing of ΣG, and its least solution for the algebra
M′ is also (L(G,S), L(G,T )). But the system Σ′G has also a least solution
(K ′, L′) in P(T (P )) × P(T (P )), and the derivation tree d is an element of L′.
More generally we define the sets of derivation trees of G respectively associated
with S and T as the sets of terms K ′ and L′. For the above interpretation
of the symbols of P , we can evaluate every term t of T (P ) into a word tM′

in A∗. In particular dM′ = baaac. Clearly, L(G,S) = {tM′ | t ∈ K ′} and
L(G,T ) = {tM′ | t ∈ L′}. Thus, since a parsing algorithm for Σ′G produces
derivation trees of G, it corresponds to a classical parsing algorithm of the
context-free grammar G.

The system Σ′G and the derivation trees of G represent the abstract syntax
of the grammar G whereas the P -algebra M′ represents its concrete syntax. It
should be clear that the construction of Σ′G and M′ can be realized for every
context-free grammar G. It should be noted, however, that the signature P and
the algebra M′ both depend on G.

A term that is associated with the word baaac according to the equation
system ΣG in Example 1.2, is b · ((a · (a · (a · ε))) · c). That term can be obtained
from derivation tree d by (re)interpreting the symbols p, q, s as the following
operations on terms in T ({·, ε, a, b, c}): p(x, y) := a · (x · y), q(x, y) := x · y,
and s(x, y, z) := b · ((x · y) · z). Thus, a parsing algorithm for Σ′G (producing
derivation trees) can easily be transformed into one for ΣG (producing terms).

�

In fact, derivation trees can be defined for the elements of general equational
sets. The transformation of ΣG into Σ′G can be generalized into the transforma-
tion of an arbitrary equation system S = 〈x1 = p1, . . . , xn = pn〉 into a system
S′ = 〈x1 = p′1, . . . , xn = p′n〉 such that each polynomial p′i is a union of monomi-
als of the form r(xi1 , . . . , xiρ(r)) corresponding one-to-one to the monomials of pi,
where r belongs to a signature P associated with S. If m ∈ T (F ∪{x1, . . . , xn})
is the monomial of pi to which r(xi1 , . . . , xiρ(r)) corresponds, then xi1 , . . . , xiρ(r)
is the sequence of unknowns that occur in m. Furthermore, we impose that each
r has a unique occurrence in S′. The least solution of S′ in P(T (P ))n defines
the n-tuple of sets of derivation trees of S.



1.1. CONTEXT-FREE GRAMMARS 29

Let F be the signature over which S is written, and M the F -algebra for
which S is to be solved. The function Mρ(r) → M that interprets a symbol r
in P is the one defined8 (in the usual sense) by the unique term tr in T (F ∪
{y1, . . . , yρ(r)}) such that (i) the variables y1, . . . , yρ(r) occur in tr in that order
and no variable yj occurs more than once, and (ii) the monomial of S to which
the monomial r(xi1 , . . . , xiρ(r)) of S′ corresponds is obtained by substituting xij
for yj in the term tr, for every j = 1, . . . , ρ(r).

We obtain thus a P -algebraM′ (with the same domain asM) and the system
S′ interpreted in M′ is the same as the system S interpreted in M.

The value mapping t 7→ tM′ maps each set of derivation trees Di (the i-th
component of the least solution of S′ in P(T (P ))n) to the component Li of the
least solution of S in P(M)n. Taking M = T(F ), Di is mapped to the set of
terms Ti: the i-th component of the least solution of S in P(T (F ))n. Thus,
a parsing algorithm for S′ can easily be transformed into one for S. Since a
parsing algorithm for S′ produces derivation trees that represent the syntactical
structure of the elements of M as specified by the system S, it will also be
called a parsing algorithm for S; thus, from now on, parsing algorithms produce
derivation trees and/or terms.

Here is an example of the construction of S′ from S.

Example 1.4 We let S be the system:{
x1 = x2 ∪ a ∪ f(x1, x2, x1)

x2 = h(g(x1, x1), a) ∪ f(x1, x2, x1).

Then S′ is: {
x1 = r1,1(x2) ∪ r1,2 ∪ r1,3(x1, x2, x1)

x2 = r2,1(x1, x1) ∪ r2,2(x1, x2, x1)

and the functions that interpret ri,j are defined by the following terms:

tr1,1 := y1,

tr1,2 := a,

tr1,3 := f(y1, y2, y3),

tr2,1 := h(g(y1, y2), a),

tr2,2 := f(y1, y2, y3).

Note that r1,1 is interpreted as the identity function and that r1,3 and r2,2

are interpreted as the same function. The construction of S′ from S does not
depend on any F -algebra for which S is to be solved, and hence neither do the
derivation trees of S.

8A function Mk →M defined by a term in T (F ∪{y1, . . . , yk}) is a k-ary derived operation
of M.
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1.2 Inductive sets of properties and recogniz-
ability

This section is a mild introduction to the algebraic notion of recognizability.
This notion can be defined in several equivalent ways and we begin with its
most concrete characterization, based on finite sets of properties that can be
checked inductively.

1.2.1 Properties of the words of a context-free language

Let us consider the problem of proving an assertion of the form ∀w ∈ L.P (w)
where L is a context-free language, an equational set of graphs, or more gen-
erally, an equational set in an F -algebra with domain M , and where P is a
property of the elements of M . Such an assertion expresses that P is univer-
sally valid on L.

Example 1.5 Let X := {f, x, y} and L ⊆ X∗ be the language defined as
the least solution (it is actually the unique solution) of the equation L =
fLL ∪ {x, y}. This language is the set of Polish prefix notations of the terms
in T ({f, x, y}) where ρ(f) = 2 and ρ(x) = ρ(y) = 0. It satisfies the assertion
∀w ∈ L.P (w) where property P (w) is defined by:

2|w|f = |w| − 1 ∧ ∀u ∈ X∗(u < w ⇒ 2|u|f ≥ |u|).

Here |w| denotes the length of a word w, |w|f the number of occurrences of f
in w and < the strict prefix order on words. Establishing the following facts is
a routine exercise:

(i) P (w) holds if w = x or w = y;

(ii) P (w) holds if w = fw1w2 and P (w1) and P (w2) both hold.

Then the proof that ∀w ∈ L.P (w) holds can be done by induction on the length
of a derivation sequence of a word w in L, relative to the context-free grammar
with rules A→ fAA, A→ x and A→ y.

However this proof can also be formulated in terms of equation systems. By
the Least Fixed-Point Theorem (Theorem 3.7), the least solution in P(M)n of a
system S of the form (1.4) is also the least solution of the corresponding system
of inclusions: 

L1 ⊇ p1(L1, . . . , Ln)

...
...

Ln ⊇ pn(L1, . . . , Ln)

(1.5)

where Li ⊆ M . In the above example, Facts (i) and (ii) can be restated as the
inclusion:

KP ⊇ fKPKP ∪ {x, y} (1.6)



1.2. INDUCTIVE SETS OF PROPERTIES AND RECOGNIZABILITY 31

where KP := {w ∈ X∗ | P (w)}. Since the language L, defined by L = fLL ∪
{x, y}, is also the least solution of (1.6), we have L ⊆ KP which yields the
validity of ∀w ∈ L.P (w).

We will say that an assertion of the form ∀w ∈ L.P (w) is provable by fixed-
point induction in order to express that this method applies, i.e., that property
P satisfies Facts (i) and (ii). A property Q may be universally valid on the
language L without this being provable by fixed-point induction. For example
consider the property Q(w) defined for w ∈ X∗ by |w| = 1 or w 6= w̃ (where
w̃ denotes the mirror image of w) and KQ := {w ∈ X∗ | Q(w)}. It is not true
that fKQKQ ⊆ KQ (since x and f belong to KQ and fxf /∈ KQ). However
L ⊆ KQ. Hence the valid assertion ∀w ∈ L.Q(w) is not provable by fixed-point
induction.

In order to establish that Q is universally valid on L it suffices to find a
property R such that:

(1) ∀w ∈ X∗(R(w)⇒ Q(w)) is true, and

(2) ∀w ∈ L.R(w) is provable by fixed-point induction.

We can take R(w) :⇐⇒ w ∈ {x, y}∪fX∗{x, y}. We prove in this way a stronger
assertion than ∀w ∈ L.Q(w) which was the initial goal.

Finding such R is always possible in a trivial way, by taking R(w) to mean
that w belongs to L, which does not yield any proof since (1) is just what is to
be proved and (2) holds in a trivial way. Hence this observation is interesting
if R can be found such that (1) and (2) are “easily provable”, which is not a
rigorous notion. A proof method can be defined by requiring that R is expressed
in a particular language and/or that the proofs of (1) and (2) can be done in
a particular proof system. We will give below an example of such a situation
(Proposition 1.6). �

We generalize the notion of an assertion provable by fixed-point induction
to systems of equations. Let S be an equation system of the general form (1.4)
and let (L1, . . . , Ln) be its least solution in P(M)n for some F -algebra M. Let
(Pi)1≤i≤n be an n-tuple of properties of elements of M , such that the assertion

∀i ∈ [n],∀d ∈ Li. Pi(d) (1.7)

is true. We say that this assertion is provable by fixed-point induction if:

KPi ⊇ pi(KP1 , . . . ,KPn) (1.8)

for each i = 1, . . . , n, where KPi denotes {d ∈ M | Pi(d)}. It follows from
the Least Fixed-Point Theorem that the validity of (1.8) for all i implies that
Li ⊆ KPi for all i, hence that the considered assertion (1.7) is true. The proof
method consisting in proving (1.8) to establish (1.7) is thus sound.

Let us go back to context-free languages. Let the context-free language
L1 ⊆ A∗ be defined as the first component of the least solution (L1, . . . , Ln) of
an equation system S = 〈x1 = p1, . . . , xn = pn〉.
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Proposition 1.6 For every regular language K such that L1 ⊆ K, there exists
an n-tuple of regular languages (K1, . . . ,Kn) such that K1 ⊆ K and such that
the assertion:

∀i ∈ [n],∀d ∈ Li. d ∈ Ki

is provable by fixed-point induction.

Proof sketch: We have K = h−1(N) where h is a homomorphism of A∗

into a finite monoid9 Q = 〈Q, ·Q, 1Q〉 and N ⊆ Q ([*Eil, *Sak]). We define
Ki := h−1(h(Li)) =

⋃
{h−1(q) | q ∈ Q, h−1(q) ∩ Li 6= ∅}. Note that this

definition does not depend on N .

We first prove that K1 ⊆ K. We consider a word v in K1. For some word
v′ in L1, we have h(v) = h(v′). Since L1 ⊆ K, we have v′ ∈ K. Hence v ∈ K
since h(v′) ∈ N and K = h−1(N). This achieves the first goal.

In order to prove that for each i we have pi(K1, . . . ,Kn) ⊆ Ki, we need only
consider a monomial α of pi (i.e., the righthand side of a rule xi → α of the
context-free grammar S) and prove that:

w0Ki1w1 · · ·Kikwk ⊆ Ki, (1.9)

where α = w0xi1w1xi2 · · ·xikwk with w0, . . . , wk ∈ A∗. Let vj ∈ Kij for j =
1, . . . , k. There exist v′1, . . . , v

′
k such that h(v′j) = h(vj) and v′j ∈ Lij for each j.

Hence the word v′ = w0v
′
1w1 · · · v′kwk belongs to Li, because (L1, . . . , Ln) is a

solution of S. Letting v = w0v1w1 · · · vkwk we have h(v) = h(v′) hence v ∈ Ki.
This proves inclusion (1.9) and completes the proof of the proposition.

This result shows that assertions of the form L ⊆ K where L is a context-
free language and K is a regular one can be proved by fixed-point induction.
The proofs that a “guessed” n-tuple (K ′1, . . . ,K

′
n) satisfies K ′1 ⊆ K and the

inclusions K ′i ⊇ pi(K ′1, . . . ,K ′n) establish that L1 ⊆ K and use only algorithms
on finite automata: Boolean operations, concatenation and emptiness test.

1.2.2 Some properties of series-parallel graphs

We now show that fixed-point induction can also be used for proving universal
properties of equational sets of graphs. We use the example of the set of series-
parallel graphs defined by Equation (1.3) considered in Section 1.1.3:

S = (S � S) ∪ (S • S) ∪ {e}

9Q = 〈Q, ·Q, 1Q〉 is a monoid if the binary operation ·Q is associative with 1Q as unit
element.
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where S ⊆ J d
2 . We will prove the assertions ∀G ∈ S. Pi(G), where the properties

Pi are defined as follows:

P1(G) :⇐⇒ G is connected,

P2(G) :⇐⇒ G is bipolar,

P3(G) :⇐⇒ G is planar,

P4(G) :⇐⇒ G has no directed cycle.

A directed graph G with two sources denoted by srcG(1) and srcG(2) (cf. Sec-
tion 1.1.3) is bipolar if it has no directed cycle and every vertex belongs to a
directed path from srcG(1) to srcG(2).

Following the same method as for the language L of Example 1.5, we need
only prove that Pi(e) holds and that, for all graphs G,H in J d

2 : Pi(G) ∧ Pi(H)
implies Pi(G �H) ∧ Pi(G •H).

These facts are clearly true for properties P1 and P2. The assertions that
every graph in S satisfies P1 on the one hand and P2 on the other are thus
provable by fixed-point induction, hence P1 and P2 are universally valid on S.

Property P3 is not provable in this way because it is not true that, for all
graphs G,H in J d

2 , P3(G) ∧ P3(H) implies P3(G�H). For a counterexample,
take H to be an edge, G to be K5 minus one edge (K5 is a complete simple
undirected graph with 5 vertices) and equipped with sources in such a way that
G �H is isomorphic to K5, which is non-planar. However, G and H are both
planar, hence satisfy P3.

For proving that every series-parallel graph is planar, we can use the property
Q saying that a graph has a planar drawing with its two sources on the external
face. (The books [*Die] and [*MohaTho] give formal definitions about graphs
on surfaces.) This property is provable by fixed-point induction (with respect
to the equation defining S), hence it is true for all graphs in S. Since Q(G)
implies P3(G) for all graphs G in J d

2 , we obtain the announced result.
The case of property P4 (the absence of directed cycles) is similar. The asser-

tion that every graph in S satisfies P4 is not provable by fixed-point induction,
however it is true. For proving it, one takes the stronger property P2 considered
above.

This proof technique can be applied to systems of equations (and not only
to single equations) and to graph properties expressed in monadic second-order
logic (see Section 1.3). More precisely, for every such graph property P and
every equational set of graphs L:

(1) we can decide whether or not P is universally valid on L,

(2) if P is, then we can build a set of auxiliary properties, like the sets
K1, . . . ,Kn in Proposition 1.6, that yields a proof by fixed-point induction
of the universal validity of P on L.

These constructions and the verification of conditions like (1.8) can be done by
algorithms.
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1.2.3 Inductive sets of properties

We now consider properties that are not necessarily universally valid on the
considered sets of graphs, so that they raise decision problems. We will consider
a graph property as a function from graphs to {True,False}.

Example 1.7 Cographs.
The property E(G) that a cograph G (cographs are defined in Section 1.1.2)

has an even number of vertices is not universally valid. However, it satisfies the
following rules:

E(1) = False,

E(G⊕H) = (E(G)⇔ E(H)),

E(G⊗H) = (E(G)⇔ E(H)).

For Boolean values p and q, p⇔ q is defined as usual as ((p∧ q)∨ (¬p∧¬q)). It
follows that if a cograph G is the value of a term t in T ({⊕,⊗,1}) (we denote
this by G = val(t)), then the validity of E(G) can be determined by computing
E(val(t′)) for all subterms t′ of t, by starting from the smallest ones. This
type of computation can be done by automata on terms that we will present in
Section 1.2.4.

The property F (G) defined as “G has an even number of edges”, can be
checked in a similar way by computing simultaneously E(val(t′)) and F (val(t′))
for every subterm t′ of t. This computation uses the following rules:

F (1) = True,

F (G⊕H) = (F (G)⇔ F (H)),

F (G⊗H) =
((
F (G)⇔ F (H)

)
∧
(
E(G) ∨ E(H)

))
∨((

F (G)⇔ ¬F (H)
)
∧
(
¬E(G) ∧ ¬E(H)

))
.

Hence, F (G) can be checked with the help of E(G) as additional information.
�

We now generalize this computation method. We introduce a definition
relative to an arbitrary F -algebra M. Let P be a set of properties, i.e., of
mappings: M → {True,False}. We say that P is F-inductive if for every P ∈ P,
for every f ∈ F of arity n > 0, and for every m1, . . . ,mn in M , the Boolean value
P (fM(m1, . . . ,mn)) can be computed by a fixed Boolean expression depending
on P and f , in terms of finitely many Boolean values Q(mi) with Q in P and
i = 1, . . . , n.

In the previous example, the set of properties {E,F} is {⊕,⊗}-inductive for
the algebra of cographs, but the set {F} is not. The computation of F (G⊗H)
can be expressed by:

F (G⊗H) = B(E(G), F (G), E(H), F (H))
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where B(p1, p2, p3, p4) is the Boolean expression:(
(p2 ⇔ p4) ∧ (p1 ∨ p3)

)
∨
(

(p2 ⇔ ¬p4) ∧ (¬p1 ∧ ¬p3)
)
.

In order to have a uniform notation, if P is finite and is enumerated as
{P1, . . . , Pk}, we write:

Pi(fM(m1, . . . ,mn)) =

Bi,f

(
P1(m1), . . . , Pk(m1), P1(m2), . . . , Pk(m2), . . . , P1(mn), . . . , Pk(mn)

)
to formalize the way Pi(fM(m1, . . . ,mn)) can be computed from the Boolean
values Pi(mj). In this writing, each Bi,f is a Boolean expression in the propo-
sitional variables ph,j , 1 ≤ h ≤ k, 1 ≤ j ≤ n, and Ph(mj) is substituted in Bi,f
for ph,j .

An important theorem is the following one:

Theorem 1.8 (Filtering Theorem, concrete version)
Let M be an F -algebra and P be a finite F -inductive set of properties. For
every equational set L of M, for every P in P, the set LP := {x ∈ L | P (x)} is
equational. If the Boolean expressions involved in the definition of the induc-
tivity of P are given, then the construction of a system of equations defining
LP from one defining L is effective, i.e., can be done by an algorithm. �

The classical result saying that the intersection of a context-free language
and a regular one is context-free is a special case of this theorem. Let us consider
the language L of Example 1.5 defined by the equation L = fLL∪{x, y}. From
this language we want to keep only the words whose length is a multiple of 3.
For i ∈ {0, 1, 2}, we let Li := {w ∈ L | mod3(|w|) = i}. The triple (L0, L1, L2)
is the least solution (and actually also the unique one) of the system:

L0 = fL0L2 ∪ fL1L1 ∪ fL2L0,

L1 = fL0L0 ∪ fL1L2 ∪ fL2L1 ∪ {x, y},
L2 = fL0L1 ∪ fL1L0 ∪ fL2L2.

It follows that the language L0 is context-free. A similar example for cographs
is System (1.2) in Section 1.1.2 (cf. the discussion after (1.2)).

Corollary 1.9 Let M and P be as in Theorem 1.8. For every equational set L
of M, one can decide whether or not a property P in P is universally valid on
L, and whether or not it is satisfied by some element of L.

Proof sketch: We assume that L is given by a system of equations S. By
using Theorem 1.8 we can construct a system S′ that defines LP . As noted in
Section 1.1.4, we can test the emptiness of the components of the least solution
of S′, hence in particular of LP . We can thus decide if P is satisfied by some
element of L.

Since P is inductive, so is P∪{¬P}. We can apply the previous result to ¬P .
Then P is universally valid on L if and only if L¬P = ∅, which is decidable.
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Example 1.10 We again let L be the language of Example 1.5 defined by the
equation L = fLL ∪ {x, y}. We know from this example that every word of L
has odd length (because |w| = 2|w|f + 1 for every w ∈ L), but we will see how
the algorithm of Corollary 1.9 “discovers” this fact. Let K0 and K1 be the sets
of words in L of even and odd length respectively. These languages are defined
by the two equations:{

K0 = fK0K1 ∪ fK1K0

K1 = fK0K0 ∪ fK1K1 ∪ {x, y}.

It is easy to see that K0 is empty (just look at the corresponding context-free
grammar). Hence K1 = L and every word of L has odd length. �

It is useful to have a proof by fixed-point induction that a property is univer-
sally valid on an equational set although an algorithm can also give the answer,
because a proof is more informative than the yes or no answer of an algorithm:
it shows the properties of all components of the solution of the equation system
that “contribute” to the validity of the proved property. This is clear in the
case of Proposition 1.6.

We now consider one more example about graphs.

Example 1.11 The 2-colorability of series-parallel graphs.

We illustrate Theorem 1.8 with the 2-colorability of series-parallel graphs. A
proper vertex k-coloring of a graph assigns to each vertex a color, i.e., an element
of {1, . . . , k} such that two adjacent vertices have different colors. A graph is
k-colorable if it has a proper vertex k-coloring. We consider three properties of
a series-parallel graph G defined as follows:

γ2(G) :⇐⇒ G is 2-colorable,

σ(G) :⇐⇒ G is 2-colorable with the two sources of the same color,

δ(G) :⇐⇒ G is 2-colorable with the two sources of different colors.

The set of series-parallel graphs is defined by Equation (1.3)

S = (S � S) ∪ (S • S) ∪ {e}

in the algebra 〈J d
2 ,�, •, e〉.

Property γ2 is not universally valid on S because γ2(e�(e•e)) = False.10 The
set {γ2} is not inductive because γ2(e) = True, γ2(e•e) = True, γ2(e�e) = True
and γ2(e � (e • e)) = False. It follows that the validity of γ2(G �H) cannot be
deduced from those of γ2(G) and γ2(H). Hence, as in the case of property F
for cographs in Example 1.7, we need additional properties. They will be σ and

10One can prove by fixed-point induction that every series-parallel graph is 3-colorable in
such a way that its two sources have different colors.
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δ. The set {σ, δ} is inductive; this is clear from the following facts:

σ(G •H) = (σ(G) ∧ σ(H)) ∨ (δ(G) ∧ δ(H)),

δ(G •H) = (δ(G) ∧ σ(H)) ∨ (σ(G) ∧ δ(H)),

σ(G �H) = σ(G) ∧ σ(H),

δ(G �H) = δ(G) ∧ δ(H).

(1.10)

One can thus compute for every term t in T ({�, •, e}) the pair of Boolean values
(σ(val(t)), δ(val(t))) by induction on the structure of t (where val(t) is the graph
in J d

2 defined by a term t). From the pair of Boolean values associated with a
term t such that val(t) = G, one can decide whether γ2(G) holds or not, since
for every graph G in J d

2 , γ2(G) is equivalent to σ(G)∨ δ(G). This computation
can be formalized as the run of a finite deterministic automaton on t because
the considered inductive set of properties, here {σ, δ}, is finite. The finiteness of
a set of inductive properties is the essence of the notion of recognizability that
we now introduce informally.

1.2.4 Recognizability

In Formal Language Theory, the recognizability (or regularity) of a set of finite
or infinite words or terms means frequently that this set is defined by a finite
automaton of some kind. Recognizable sets of finite words and terms are defined
by finite deterministic automata and this fact yields algebraic characterizations
of recognizability in terms of homomorphisms into finite algebras. In particular,
a language L ⊆ A∗ is recognizable if and only if L = h−1(N) where h : A∗ → Q
is a monoid homomorphism, Q is a finite monoid and N ⊆ Q. (We have used
this fact in the proof of Proposition 1.6).

This characterization has the advantage of being extendable in a meaningful
way to any algebra, whereas the notion of automaton has no immediate gener-
alization to arbitrary algebras. Furthermore, it fits very well with the notion
of an equational set. The Filtering Theorem shows this, as we will explain in
Section 1.2.5.

Following Mezei and Wright [MezWri], we say that a subset L of an F -algebra
M (where F is finite) is recognizable if L = h−1(N) for some homomorphism
of F -algebras h : M → Q where Q is a finite F -algebra and N ⊆ Q. We will
denote by Rec(M) the family of recognizable subsets of M.

The above definition of recognizability of L is equivalent to saying that
the property PL of the elements of M such that PL(x) is True if and only
if x ∈ L, belongs to a finite F -inductive set of properties. In fact, assume
that L is recognizable and let Q = {q1, . . . , qk}. Define for each i ∈ [k]
the property Pi by: Pi(m) :⇐⇒ h(m) = qi. Since h(fM(m1, . . . ,mn)) =
fQ(h(m1), . . . , h(mn)), the Boolean value Pi(fM(m1, . . . ,mn)) can be computed
from the Boolean values Ph(mj), by a Boolean expression. Thus, {P1, . . . , Pk}
is F -inductive in M. Hence, also the set {PL, P1, . . . , Pk} is inductive, because
PL(m) =

∨
qi∈N Pi(m). The other direction of the equivalence is discussed in

Section 1.2.5.
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Proposition 1.6 also holds in general for recognizable sets instead of regular
languages (with exactly the same proof, replacing A∗ by M). Thus, inclusions
L ⊆ K with L ∈ Equat(M) and K ∈ Rec(M) are provable by fixed-point induc-
tion, using auxiliary properties that correspond to recognizable subsets of M .
Together with Corollary 1.9, this shows that the analogues of statements (1)
and (2) at the end of Section 1.2.2 hold for properties that correspond to rec-
ognizable sets, in arbitrary algebras.

We now recall the link between recognizability for subsets of T (F ) and finite
automata on terms (i.e., bottom-up finite tree automata). Let us consider a set
L ∈ Rec(T(F )) defined as L = h−1(N) where h is the unique homomorphism:
T(F ) → Q, Q is a finite F -algebra and N ⊆ Q. (Note that h(t) = tQ). The
pair (Q, N) corresponds to a finite deterministic and complete F -automaton
A (Q, N) (the general definitions can be found in the book [*Com+] and in the
book chapter [*GecSte], Section 3.3) with set of states Q, set of accepting states
N and transitions consisting of the tuples (a1, . . . , aρ(f), f, a) such that f ∈ F ,
a1, . . . , aρ(f), a ∈ Q and a = fQ(a1, . . . , aρ(f)).

On each term t in T (F ), the automaton A = A (Q, N) has a unique
(“bottom-up”) run, defined as a mapping runA ,t : Pos(t) → Q such that
runA ,t(u) = h(t/u) for every position11 u of t. Hence t is accepted by A if
and only if h(t) = runA ,t(root t) ∈ N .

Conversely, if L is the set of terms in T (F ) accepted by a finite, possibly not
deterministic, automaton B, then it is also accepted by a finite deterministic
and complete automaton A (that one can construct from B) and there is a
unique pair (Q, N) such that A (Q, N) = A . Hence, L is recognizable in T(F ).

By a recognizable set of graphs, we will mean a subset of a graph algebra that
is recognizable with respect to that algebra. No notion of “graph automaton”
arises from this definition. However, we obtain finite automata accepting the
sets of terms that denote the graphs of recognizable sets (this is true because
the signature is finite). We will give a more precise statement in Theorem 1.12
below.

1.2.5 From inductive sets to automata

Let P = {P1, . . . , Pk} be a finite inductive set of properties on an F -algebra
M where F is finite. We associate with P a finite deterministic and complete
F -automaton A = A (Q, N) as follows. Its set of states is Q = {True,False}k;
its transitions, i.e., the operations of Q, are defined in such a way that for every
f in F of arity n, we have: fQ(q1, . . . , qn) = q if and only if qi = (a1,i, . . . , ak,i),
q = (b1, . . . , bk) belong to {True,False}k and (we use the notation introduced
in Section 1.2.3):

bi = Bi,f (a1,1, . . . , ak,1, a1,2, . . . , ak,2, . . . , a1,n, . . . , ak,n).

It follows that for every t ∈ T (F ), tQ = (P1(tM), . . . , Pk(tM)) ∈ {True,False}k.

11The set Pos(t) of positions of t is the set of occurrences of the symbols of F . We denote
by t/u the subterm of t issued from u and by roott the first position of t. Formal definitions
are in Chapter 2.
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Hence if we want to specify by an automaton the set of objects m ∈M that
satisfy P3(m) (to take an example), we take as set N of accepting states the
set of Boolean vectors (b1, . . . , bk) such that b3 = True. More precisely, a term
t ∈ T (F ) is accepted by A if and only if tM has property P3.

This proves the implication (2)⇒ (3) in the next result. The other direction
also holds, provided M is generated by F (as defined in Section 1.1.4).

Theorem 1.12 Let M be an F -algebra generated by F , where F is finite, and
let L ⊆M . The following are equivalent:

(1) L is recognizable in M,

(2) L = {m ∈ M | P (m)} where P belongs to a finite F -inductive set of
properties,

(3) the set of terms t in T (F ) such that tM belongs to L is recognizable in
T(F ), equivalently, is the set accepted by a finite F -automaton. �

The equivalence of (1) and (2) gives a concrete meaning to the algebraic
notion of recognizability (and does not need M being generated by F ). The im-
plication (1)⇒ (2) was shown in Section 1.2.4. The other direction follows from
the above discussion. If h : M → Q is defined by h(m) := (P1(m), . . . , Pk(m)),
then h is a homomorphism from M to the finite F -algebra Q, because P is
inductive. And, e.g., h−1(N) = {m ∈M | P3(m)}.

Let L be an equational set of M, defined by an equation system S = 〈x1 =
p1, . . . , xn = pn〉, and assume that L ⊆ {m ∈ M | P3(m)}. The equivalence
of (1) and (2) implies that such an inclusion is provable by fixed-point induction,
using auxiliary properties R1, . . . , Rn that belong to a finite inductive set of
properties. In fact, considering the proof of Proposition 1.6, with the above
definition of Q, N and h, it can be seen that every Ri is a Boolean combination
of P1, . . . , Pk and hence P ∪ {R1, . . . , Rn} is an inductive set of properties.

The equivalence of (1) and (3) implies that the membership in a recognizable
set of an element of M , given as tM, for some term t in T (F ), or the validity of
P (tM) where P belongs to a finite inductive set of properties, can be checked in
time O(|t|), i.e., in time linear in the size of t.

Let us go back to Example 1.11 about the 2-colorability of series-parallel
graphs. For the inductive set P = {σ, δ} we obtain the set of states

Q = {True,False} × {True,False} = {(σ, δ), (σ, δ), (σ, δ), (σ, δ)},

where, for readability, we use σ and δ to denote True and σ and δ to denote
False. For every state q ∈ Q we let Sq be the set of series-parallel graphs G
such that (σ(G), δ(G)) = q, i.e., Sq = h−1(q) ∩ S with h(G) = (σ(G), δ(G)) (cf.
the proof of Proposition 1.6). Thus, Sσ,δ is the set of series-parallel graphs that
satisfy σ and δ, Sσ,δ the set of those that satisfy σ and not δ, Sσ,δ the set of
those that satisfy δ and not σ, and Sσ,δ the set of those that satisfy neither σ
nor δ. From Properties (1.10) we obtain the operations �Q, •Q and the constant
eQ, which determine the transitions of the automaton A . For example, since
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the graph defined by e satisfies δ and not σ, we have eQ = (σ, δ). As another
example, if G = H •K and both H and K satisfy δ and not σ, then G satisfies
σ and not δ; hence •Q((σ, δ), (σ, δ)) = (σ, δ).

From the defining equation S = (S � S) ∪ (S • S) ∪ e and the transitions of
A we obtain the following system of equations that define the sets Sσ,δ, Sσ,δ,
Sσ,δ and Sσ,δ (we omit parentheses around terms like Sσ,δ � Sσ,δ for better
readability):

(a) Sσ,δ = Sσ,δ � Sσ,δ ∪
Sσ,δ • Sσ,δ ∪ Sσ,δ • Sσ,δ ∪ Sσ,δ • Sσ,δ ∪
Sσ,δ • Sσ,δ ∪ Sσ,δ • Sσ,δ

(b) Sσ,δ = e ∪ Sσ,δ � Sσ,δ ∪ Sσ,δ � Sσ,δ ∪ Sσ,δ � Sσ,δ ∪
Sσ,δ • Sσ,δ ∪ Sσ,δ • Sσ,δ

(c) Sσ,δ = Sσ,δ � Sσ,δ ∪ Sσ,δ � Sσ,δ ∪ Sσ,δ � Sσ,δ ∪
Sσ,δ • Sσ,δ ∪ Sσ,δ • Sσ,δ

(d) Sσ,δ = Sσ,δ � Sσ,δ ∪ Sσ,δ � Sσ,δ ∪ Sσ,δ � Sσ,δ ∪ Sσ,δ � Sσ,δ ∪
Sσ,δ � Sσ,δ ∪ Sσ,δ � Sσ,δ ∪ Sσ,δ � Sσ,δ ∪ Sσ,δ � Sσ,δ ∪
Sσ,δ � Sσ,δ ∪ Sσ,δ • Sσ,δ ∪ Sσ,δ • Sσ,δ ∪ Sσ,δ • Sσ,δ ∪
Sσ,δ • Sσ,δ ∪ Sσ,δ • Sσ,δ ∪ Sσ,δ • Sσ,δ ∪ Sσ,δ • Sσ,δ

These equations are constructed as follows. Since eQ = (σ, δ), the constant
symbol e is put in the righthand side of the equation that defines Sσ,δ and
nowhere else. Moreover, for f ∈ {�, •}, if fQ(q1, q2) = q, then we put the
monomial f(Sq1 , Sq2) in the righthand side of the equation that defines Sq.
Thus, Sσ,δ • Sσ,δ is in the righthand side of Equation (c).

Since we have e in the righthand side of Equation (b), we have Sσ,δ 6= ∅.
Using this fact and since we have the term Sσ,δ • Sσ,δ in the righthand side of
Equation (c), we have Sσ,δ 6= ∅. And by these facts and since we have Sσ,δ�Sσ,δ
in the righthand side of Equation (d), we have Sσ,δ 6= ∅. Since every term in the
righthand side of Equation (a) contains Sσ,δ, we have Sσ,δ = ∅. This proves that
no series-parallel graph has one coloring of type σ and another one of type δ.
Moreover, according to the proof of Proposition 1.6, this property is provable
by fixed-point induction, as the reader can easily check. Using this and the
commutativity of �, we can simplify the system into the following one:

(b′) Sσ,δ = e ∪ Sσ,δ � Sσ,δ ∪ Sσ,δ • Sσ,δ ∪ Sσ,δ • Sσ,δ

(c′) Sσ,δ = Sσ,δ � Sσ,δ ∪ Sσ,δ • Sσ,δ ∪ Sσ,δ • Sσ,δ

(d′) Sσ,δ = Sσ,δ � Sσ,δ ∪ Sσ,δ � Sσ,δ ∪ Sσ,δ � Sσ,δ ∪ Sσ,δ � Sσ,δ ∪
Sσ,δ • Sσ,δ ∪ Sσ,δ • Sσ,δ ∪ Sσ,δ • Sσ,δ ∪
Sσ,δ • Sσ,δ ∪ Sσ,δ • Sσ,δ
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Thus, this construction proves that every series-parallel graph either has no 2-
coloring (it is then generated by Sσ,δ) or has one of type σ and none of type δ
(it is generated by Sσ,δ) or has one of type δ and none of type σ (it is generated
by Sσ,δ). Let us for clarity replace Sσ,δ by Tσ and Sσ,δ by Tδ. Then the set T
of 2-colorable series-parallel graphs is defined by the equation system:

T = Tσ ∪ Tδ
Tσ = Tσ � Tσ ∪ Tσ • Tσ ∪ Tδ • Tδ
Tδ = e ∪ Tδ � Tδ ∪ Tσ • Tδ ∪ Tδ • Tσ

The construction of this system is based on Properties (1.10). A similar con-
struction can be done for every equation system and every finite inductive set
of properties, which proves the Filtering Theorem (Theorem 1.8).

1.3 Monadic second-order logic

We now introduce monadic second-order logic, a logical language with which
we will specify finite inductive sets of properties. It is actually a favorite lan-
guage among logicians because it is decidable for many sets of (finite or infinite)
structures. Furthermore, it is suitable for expressing numerous graph properties.

1.3.1 Monadic second-order graph properties

We first explain how a graph can be made into a logical structure, hence can be
a model of a sentence. For every graph G, we let bGc be the relational struc-
ture12,13 〈VG, edgG〉 with domain VG, the set of vertices. Its second component
is the binary relation edgG ⊆ VG × VG, such that (x, y) ∈ edgG if and only if
there exists an edge from x to y if G is directed, and an edge between x and y
if G is undirected.

The classical undirected graphs Kn and Kn,m are represented by the follow-
ing relational structures14:

bKnc := 〈[n], edgn〉,
edgn(x, y) :⇐⇒ x, y ∈ [n] and x 6= y,

bKn,mc := 〈[n+m], edgn,m〉
edgn,m(x, y) :⇐⇒ 1 ≤ x ≤ n and n+ 1 ≤ y ≤ n+m, or

1 ≤ y ≤ n and n+ 1 ≤ x ≤ n+m.

Properties of a graph G can be expressed by sentences15 of relevant logical
languages, that are interpreted in bGc. For example, if G is a directed graph,

12In some cases, we will write G instead of bGc.
13Relational structures are first-order logical structures without functions of positive arity.

See Section 1.9 and Chapter 5 for detailed definitions.
14[n] denotes {1, . . . , n}.
15A sentence is a formula without free variables. The notation S |= ϕ means that a sentence

ϕ is true in the relational structure S; in that case S is said to be a model of ϕ.



42 CHAPTER 1. OVERVIEW

then

bGc |= ∀x∃y, z(edg(y, x) ∧ edg(x, z))

if and only if every vertex of G has at least one incoming edge and at least one
outgoing edge (we may have y = z = x). If G is a simple undirected graph,
then we have:

bGc |= ∀x
(
¬edg(x, x)

)
∧ ¬∃w, x, y, z

(
edg(w, x) ∧ edg(x, y) ∧ edg(y, z)

∧ ¬edg(w, y) ∧ ¬edg(w, z) ∧ ¬edg(x, z)
)

if and only if G has no loop and no induced subgraph isomorphic to P4 (P4 is the
graph •−•−•−•). If G is assumed finite and nonempty, this property expresses
that it is a cograph. This is an alternative characterization of cographs that has
no immediate relation with the grammatical definition given in Section 1.1.2.

A simple graph G is completely defined by the relational structure bGc: we
will say that the representation of G by bGc is faithful. This representation
is not faithful for graphs with multiple edges: the graphs e and e � e (we use
here the notation of Section 1.1.3) are not the same but the structures bec and
be�ec are. The graph properties expressed by logical formulas via the structures
bGc are necessarily independent of the multiplicity of edges. We will present
in Section 1.8 a representation of a graph G by a relational structure denoted
dGe that is faithful, where each edge of G is also an element of the domain
of dGe. The incidence between edges and vertices is represented by two binary
relations in dGe if G is directed and by only one if G is undirected. By using this
alternative representation, we will be able to express properties that distinguish
multiple edges.

The above two examples use first-order formulas whose variables denote ver-
tices. Monadic second-order formulas have a richer syntax and wider expressive
power. They also use variables denoting sets of vertices. Uppercase variables
will denote sets of vertices, and lowercase variables will denote individual ver-
tices. The property:

bGc |= ∃X
(
∃x. x ∈ X ∧ ∃y. y /∈ X ∧ ∀x, y(edg(x, y)⇒ (x ∈ X ⇔ y ∈ X))

)
holds if and only if G is not connected. (We consider the empty graph as
connected.) In this sentence, X is a set variable. Let γ3 be the sentence:

∃X,Y, Z
(

Part(X,Y, Z) ∧

∀x, y
(

edg(x, y) ∧ x 6= y ⇒ ¬
(
x ∈ X ∧ y ∈ X) ∧

¬
(
x ∈ Y ∧ y ∈ Y

)
∧ ¬

(
x ∈ Z ∧ y ∈ Z

)))
where Part(X,Y, Z) expresses that (X,Y, Z) is a partition16 of the domain. The

16A partition may have empty components.
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formula Part(X,Y, Z) is written as follows:

∀x
((
x ∈ X ∨ x ∈ Y ∨ x ∈ Z

)
∧
(
¬(x ∈ X ∧ x ∈ Y ) ∧

¬(x ∈ Y ∧ x ∈ Z) ∧ ¬(x ∈ X ∧ x ∈ Z)
))
.

Then bGc |= γ3 if and only if G is 3-colorable. That the ends of an edge are in
different sets X,Y, Z means that they have different colors.

For each integer k, one can construct a similar sentence γk such that, for
every graph G, we have bGc |= γk if and only if G is k-colorable.

Many graph constructions can be expressed in terms of basic ones like choos-
ing subsets and computing transitive closures of binary relations. The example
of 3-colorability illustrates the first of these basic constructions. We have given a
sentence expressing non-connectivity. Its negation expresses connectivity, hence,
a property of the transitive closure of the relation edgG ∪ edg−1

G . We now give
an explicit construction of the transitive closure of an arbitrary binary relation.

Let R be a binary relation that is either a relation of the considered relational
structure (bGc or a more general one) or is defined by a formula R(u, v) with free
variables u and v. We say that a set X is R-closed if it satisfies the condition
∀u, v

(
u ∈ X ∧R(u, v)⇒ v ∈ X

)
. The formula ϕ(x, y), defined as

∀X(x ∈ X ∧ “X is R-closed”⇒ y ∈ X)

(where “X is R-closed” is to be replaced by the formula expressing this condi-
tion), expresses that (x, y) belongs to R∗, the reflexive and transitive closure of
R, i.e., that there exists a finite sequence z1, . . . , zn, such that x = z1, y = zn
and (zi, zi+1) ∈ R for all i = 1, . . . , n − 1. We sketch the proof of this claim.
If x = z1, y = zn with (zi, zi+1) ∈ R for all i, then for every R-closed set X
such that x belongs to X, we have zi ∈ X for all i = 1, . . . , n, hence y ∈ X and
ϕ(x, y) holds. Conversely, if ϕ(x, y) holds then one takes X = {z | (x, z) ∈ R∗}.
It is R-closed, hence y ∈ X and (x, y) belongs to R∗.

In order to have a uniform notation, we denote by TC[R;x, y] this for-
mula ϕ(x, y). We can use it to build a formula with free variable Y expressing
that G[Y ], the induced subgraph of G with set of vertices Y , is connected. We
let CONN(Y ) be the formula

∀x, y
(
x ∈ Y ∧ y ∈ Y ⇒ TC[R;x, y]

)
where R is the relation defined by the formula ϕR with free variables u, v and Y :

u ∈ Y ∧ v ∈ Y ∧
(
edg(u, v) ∨ edg(v, u)

)
.

The variable Y is free in ϕR, hence it is also free in the monadic second-order
formula TC[R;x, y]. It is clear that the formula CONN(Y ) expresses the desired
property. This formula can be used for expressing further properties. The
following sentence expresses that an undirected graph G has a cycle with at
least 3 vertices:

∃x, y, z
(
x 6= y ∧ y 6= z ∧ x 6= z ∧ edg(x, z) ∧ edg(z, y) ∧

∃Y
(
z /∈ Y ∧ x ∈ Y ∧ y ∈ Y ∧ CONN(Y )

))
.



44 CHAPTER 1. OVERVIEW

Together with the expressibility of connectivity, we can thus express that a
simple undirected graph is a tree17.

Aiming at the expression of planarity, we examine the monadic second-order
expressibility of minor inclusion. We consider undirected graphs. We say that H
is a minor of G, denoted by H�G if and only if H is obtained from a subgraph
G′ of G by edge contractions. A graph G is planar if and only if it has no minor
isomorphic to K5 or to K3,3. (This is a variant due to Wagner of a well-known
result by Kuratowski; it is proved in the books [*Die] and [*MohaTho]).

Lemma 1.13 Let H be a simple, loop-free, undirected graph with set of ver-
tices [n]. A graph G contains a minor isomorphic to H if and only if there are
in G pairwise disjoint nonempty sets of vertices Y1, . . . , Yn such that each graph
G[Yi] is connected and for every edge of H between i and j, there exists an edge
in G between u and v such that u ∈ Yi and v ∈ Yj . �

Corollary 1.14 For every graph H as in Lemma 1.13, there exists a monadic
second-order sentence MINORH such that, for every undirected graph G, we
have bGc |= MINORH if and only if G has a minor isomorphic to H.

Proof: The construction follows from Lemma 1.13. One takes for MINORH

the sentence:

∃Y1, . . . , Yn

(∧
1≤i≤n

(
(∃y. y ∈ Yi) ∧ CONN(Yi)

)
∧∧

1≤i<j≤n ¬∃y
(
y ∈ Yi ∧ y ∈ Yj

)
∧∧

(i,j)∈edgH
∃u, v

(
u ∈ Yi ∧ v ∈ Yj ∧ edg(u, v)

))
.

Corollary 1.15 An undirected graph is planar if and only if it satisfies the
sentence ¬MINORK5

∧ ¬MINORK3,3
. �

With this collection of examples, the reader should have a good idea of how
one can express graph properties in monadic second-order logic. However, not all
graph properties can be expressed in this language. Here are some properties
of a graph G and of subsets X,Y of its vertex set VG that are not monadic
second-order expressible.

P1 : The cardinality |X| of the set X is even,

P2 : |X| is a prime number,

P3 : |X| = |Y |,

P4 : G has a non-trivial automorphism,

17A tree is a nonempty connected undirected graph without cycles. This last condition
implies that a tree has no loops and no multiple edges. The absence of loops is expressed
by the sentence ∀x(¬edg(x, x)), but the absence of multiple edges cannot be expressed by a
sentence interpreted in bGc.



1.3. MONADIC SECOND-ORDER LOGIC 45

P5 : G has a Hamiltonian cycle.

There are however some differences between these properties, and we have
remedies in some cases. For Property P1, the remedy consists in extending the
language by adding a set predicate, Even(X), expressing that the set X has
even cardinality. All results that we will prove for monadic second-order logic
hold for the extended language called counting modulo 2 monadic second-order
logic. The notation C2MS will refer to it (and MS will refer to formulas written
without cardinality predicates).

Property P5 is actually expressible by a sentence of monadic second-order
logic that additionally uses quantifications on sets of edges, and the incidence
relations between edges and vertices. This language is based on the represen-
tation of a graph G by the richer relational structure than bGc that we will
define in Section 1.8 and denote by dGe. It can be viewed as another extension
of monadic second-order logic that we will denote by MS2 where the index 2
recalls that there are two types of elements in the domain of dGe, vertices and
edges. There are some significant differences between the languages MS and
MS2 but our main results presented in the next sections and their applications
to the construction of fixed-parameter tractable algorithms have formulations
that apply to MS2 as well as to MS.

Concerning the other three properties, there is nothing to do. Adding new
set predicates, say CardPrime(X) expressing that |X| is a prime number, or
EqCard(X,Y ) expressing that |X| = |Y |, or Auto(X) expressing that G[X] has
a non-trivial automorphism, yields extensions of monadic second-order logic for
which the results to be presented in Sections 1.4, 1.5 and 1.6 fail.18

1.3.2 Monadic second-order logic and recognizability

Logical sentences express properties of relational structures of the appropriate
type. They can also be viewed as finite specifications of sets of structures,
namely, their sets of models. We first make precise the corresponding termi-
nology. For a logical language L (such as MS, C2MS, or MS2), we say that
a property of relational structures over a fixed finite set of relation symbols
is L-expressible if it can be expressed by a sentence of L. A set L of such
structures is L-definable if the membership of a structure in L is L-expressible.
These definitions are applicable to graphs represented by relational structures.
Hence, with respect to a fixed representation, we will say that a graph property
is L-expressible. Examples have been given above. Let C be a set of graphs; an
element of C will be called a C-graph. We will say that a set of graphs L ⊆ C
is an L-definable subset of C (or, an L-definable set of C-graphs) if the mem-
bership of a graph in L is L-expressible and the considered representation is
faithful for C-graphs. Hence, the connectedness of a graph G is MS-expressible
with respect to its representation by bGc, but the set of connected graphs is
not an MS-definable set of graphs, because this representation is not faithful

18We have actually no proof of this failure for CardPrime(X). We will give the proof for
another numerical predicate (see the end of Section 7.5).
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for graphs with multiple edges. On the other hand, the set of connected simple
graphs is an MS-definable set of simple graphs. In the first case C is the set of
all graphs, and in the second case it is the set of all simple graphs.

Let F be a finite signature. There is a bijection between T (F ) and a set of
labelled trees that are simple graphs. It follows that every term t in T (F ) can be
faithfully represented by a relational structure btc over a finite set of relations
(the binary edge relation of the tree, and a unary relation for each label). We
say that a set L ⊆ T (F ) is MS-definable if there exists an MS sentence ϕ such
that L = {t ∈ T (F ) | btc |= ϕ}. Since the property that a finite relational
structure is isomorphic to btc for some term t in T (F ) is itself MS-expressible,
the set L ⊆ T (F ) is MS-definable19 if and only if the set of relational structures
that are isomorphic to some structure btc for t in L is MS-definable.

The following fundamental theorem is due to Doner [Don] and to Thatcher
and Wright [ThaWri] (see Section 1.10 for related references). We will prove it
in Chapters 5 and 6.

Theorem 1.16 A set of terms over a finite signature is MS-definable if and
only if it is recognizable, i.e., accepted by a finite automaton. �

For the two graph algebras Gu := 〈Gu,⊕,⊗,1〉 and Jd
2 := 〈J d

2 ,�, •, e〉 whose
operations are defined respectively in Sections 1.1.2 and 1.1.3, we have the
following results:

Proposition 1.17 Every MS-definable subset of Gu is recognizable in Gu. Ev-
ery MS2-definable subset of J d

2 is recognizable in Jd
2 . �

This proposition is a corollary of the Recognizability Theorem (stated below
in Section 1.4.3) that applies to algebras that extend Gu and Jd

2 .

1.4 Two graph algebras

Up to now, we have only given two examples of graph algebras, the algebra Gu in
which we have defined the cographs and the algebra Jd

2 in which we defined the
series-parallel graphs. These algebras are subalgebras of two larger algebras that
we now define. They will differ by the way in which graphs will be composed:
the first algebra has operations that “bridge” two disjoint graphs by creating
edges between them (vertex labels determine how these edges are created) and
the second one has operations that “glue” two disjoint graphs by fusing certain
vertices specified by labels. The operations from which cographs and series-
parallel graphs are defined illustrate these two types of graph composition.

19Using MS2 or C2MS sentences for defining sets of terms would not yield a wider class of
definable sets.
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1.4.1 The algebra of simple graphs with ports

Our first graph algebra, called the VR algebra20, generalizes the algebra Gu.
In order to define more powerful edge creating operations than ⊗, we will use
vertex-labelled graphs. We let A be a countable set of labels. In this overview
chapter, we take it equal toN , the set of nonnegative integers. This will simplify
some statements; in Chapter 2 we will assume that N ⊆ A. We let G be the
set of (abstract) simple directed graphs21. This set contains Gu because for
simple graphs we consider an undirected edge as a pair of directed opposite
edges. This is coherent with the representation of a graph G by bGc defined in
Section 1.3.1. We let GP be the set of (abstract) graphs with ports, or p-graphs
in short, defined as pairs G = 〈G◦, portG〉 where G◦ ∈ G and portG is a mapping
VG◦ → A. If portG(u) = a ∈ A we say that u is an a-port of G and that a is
its port label. Every graph in G will be considered as the p-graph, all vertices
of which are 1-ports; hence G ⊆ GP. The operations on GP are the following
ones. First, the disjoint union22:

G⊕H := 〈G◦ ⊕H◦, portG ∪ portH〉.

Then we define unary operations that manipulate port labels. For a, b ∈ A
and G = 〈G◦, portG〉 we let:

relaba→b(G) := 〈G◦, port〉 where

port(u) := if portG(u) = a then b else portG(u).

The next unary operations add directed edges.23 For a 6= b, we define

−−→
adda,b(G) as 〈G′, portG〉 where VG′ = VG and

edgG′ is edgG◦ ∪ {(u, v) | (portG(u), portG(v)) = (a, b)}.

This operation adds an edge linking u to v whenever u is an a-port and v is a
b-port, unless there already exists one (we only consider simple graphs). It does
not add loops.

We let 1 be a constant symbol denoting a single vertex that is a 1-port and
we let 1` denote the same graph with a loop. The only way to define loops is
by means of these constant symbols. Moreover, we let ∅ be a constant symbol
denoting the empty graph, that we denote also by ∅. We denote empty sets24

by the different symbol ∅.
20We call it in this way because its equational sets, the VR-equational sets of graphs, are the

sets of graphs generated by certain context-free graph grammars whose rewritings are based
on Vertex Replacement. See [*EngRoz] or [*Eng97] for comprehensive surveys.

21“Abstract” means that two isomorphic graphs are considered as equal. This notion will
be formalized in Chapter 2.

22We assume G and H disjoint. If they are not, for instance if H = G, we replace H by
an isomorphic copy disjoint from G. It follows that ⊕ is a well-defined binary function on
isomorphism classes of graphs, i.e., on abstract graphs.

23To add undirected edges, we use
−−→
addb,a(

−−→
adda,b(G)). We will denote by adda,b the unary

operation that transforms G into
−−→
addb,a(

−−→
adda,b(G)).

24We consider that an empty set of numbers is not equal to an empty set of words.
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We obtain the algebra GP of (abstract) p-graphs, also called the VR al-
gebra. Its domain is GP and its signature, denoted by FVR, is the countable
set of operations introduced above. For every term t ∈ T (FVR), we denote by
tGP its value, which is a p-graph, computed according to the definitions of the
operations of FVR. The equational sets of GP are called the VR-equational sets.

The complete join G⊗H can be defined in terms of the operations of FVR

as follows:

G⊗H := relab2→1(
−−→
add2,1(

−−→
add1,2(G⊕ relab1→2(H)))),

hence by the term relab2→1(
−−→
add2,1(

−−→
add1,2(x1 ⊕ relab1→2(x2)))). Such an op-

eration, defined by a term with variables, is called a derived operation of the
relevant algebra, here GP.25 Note that although this operation uses the port
label 2, it transforms two graphs G,H in G (G is the set of graphs, all vertices
of which are 1-ports) into a graph in the same set.

Systems of equations (that define VR-equational sets) can frequently be
written more clearly with the help of derived operations. For example, Equa-
tion (1.1) in Section 1.1.2 can be written as the following equation:

C = (C ⊕ C) ∪ relab2→1(
−−→
add2,1(

−−→
add1,2(C ⊕ relab1→2(C)))) ∪ 1,

where C defines a subset of GP, but it is more readable as in (1.1).
For each k ∈ N we denote by FVR

[k] the finite subsignature of FVR consisting

of the operations written with port labels in [k].26 Hence,

FVR
[k] := {⊕, relaba→b,

−−−→
adda,b,1,1

`,∅ | 1 ≤ a, b ≤ k}.

It is not hard to see that every p-graph with n vertices and port labels
in [n] is the value of a term t in FVR

[n] . However, in many cases, much fewer
labels suffice, and for algorithmic applications it is useful to use as few labels as
possible.

In this perspective, we define the clique-width of a graph G, either directed or
undirected, as the minimum k such thatG is the value of a term in T (FVR

[k] ). This

number is denoted by cwd(G). Trees have clique-width at most 3. Cographs
have clique-width at most 2: this is clear because the above equation that defines
cographs uses only two port labels.

Proposition 1.18 Every VR-equational set of graphs has bounded clique-width.
For each k, the set of graphs of clique-width at most k is VR-equational.

Proof sketch: Let L be a VR-equational set of graphs. It is defined by an
equation system written with port labels in some set [k]. It follows that all p-
graphs belonging to the components of its least solution are the values of terms
in FVR

[k] . In particular, the graphs in L have clique-width at most k.

25The unary operation adda,b is also a derived operation of GP, defined by the term
−−→
addb,a(

−−→
adda,b(x1)). The operations r of the P -algebra M′ in Section 1.1.5 are derived op-

erations of the F -algebra M, defined by terms tr.
26Recall that [k] = {1, . . . , k} for k ∈ N with [k] = ∅.
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Conversely consider the sets of p-graphs S and T defined by the equation
system: {

S = (S ⊕ S) ∪
⋃
f(S) ∪ 1 ∪ 1` ∪∅

T = relab2→1(· · · (relabk→1(S) · · · ))
(1.11)

where the union extends to all unary operations f belonging to FVR
[k] . In the

equation that defines T , all port labels are transformed into 1. The set S con-
sists of all p-graphs defined by terms in T (FVR

[k] ) and the set T consists of those
whose vertices are all 1-ports, hence of all graphs of clique-width at most k.

At the cost of some technicalities that we want to avoid here, the notion of
clique-width and Proposition 1.18 can be extended to graphs with ports. How-
ever, port labels are just a tool to construct graphs. Hence Proposition 1.18
states the main facts about the relationship between VR-equational sets of
graphs and clique-width.

The Clique-Width Checking problem consists in deciding whether or not
cwd(G) ≤ k for given (G, k). It is NP-complete ([FelRRS]). It is not known
whether this problem is polynomial for fixed k, when k ≥ 4, but it is when k ≤ 3
([CorHLRR]).

1.4.2 The algebra of graphs with sources

We now define an algebra of graphs with multiple edges, called the HR algebra27,
that extends the algebra Jd

2 = 〈J d
2 ,�, •, e〉 considered in Section 1.1.3.

We consider (abstract) directed or undirected graphs, possibly with multiple
edges. They form the set J . For a graph in J , EG denotes its set of edges (and
VG its set of vertices). We let A be a countable set of labels (as in Section 1.4.1
we take it equal to N ) that will be used to distinguish particular vertices. These
distinguished vertices will be called sources, and A is the set of source labels.
(This notion of source is unrelated with edge directions).

A graph with sources, or s-graph in short, is a pair G = 〈G◦, srcG〉 where
G◦ ∈ J and srcG is a bijection from a finite subset τ(G) of A to a subset of
VG◦ . We call τ(G) the type of G and srcG(τ(G)) the set of its sources. The
vertex srcG(a) is called the a-source of G; its source label, also called its source
name, is a.

We let JS denote the set of s-graphs; J is thus the set of s-graphs having
an empty type. Clearly, J d

2 ⊆ JS and the elements of J d
2 are s-graphs of type

{1, 2}. We define operations on JS: first a binary operation called the parallel-
composition, a particular case of which has been defined in Section 1.1.3. For
G,H ∈ JS we let

G �H := 〈G ∪H ′, srcG ∪ srcH′〉
27We call it in this way because its equational sets, the HR-equational sets of graphs, are the

sets of graphs generated by certain context-free graph grammars whose rewritings are based
on Hyperedge Replacement. We will define them in Chapter 4, Section 4.1.5. For a thorough
study, see [*DreKH] or [*Hab].
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where H ′ is isomorphic to H28 and is such that

EH′ ∩ EG = ∅,
srcG(a) = srcH′(a) if a ∈ τ(G) ∩ τ(H ′),

VG ∩ VH′ = {srcG(a) | a ∈ τ(G) ∩ τ(H ′)}.

This operation “glues” G and a disjoint copy of H by fusing their sources having
the same names. The s-graph G�H is well defined up to isomorphism. Its type
is τ(G) ∪ τ(H).

We define unary operations that manipulate source labels. LetG = 〈G◦, srcG〉
be an s-graph. For a ∈ A, we let fga(G) := 〈G◦, src′〉 where src′(b) is srcG(b) if
b ∈ τ(G)−{a} and is undefined otherwise. We say that fga forgets the a-source:
if G has an a-source, then this vertex is no longer distinguished as a source in
fga(G) and is turned into an “ordinary”, we will say internal, vertex. Hence
τ(fga(G)) = τ(G)− {a}.

The next operation modifies source names; it is called a renaming. For
a, b ∈ A, a 6= b, we let

rena↔b(G) := 〈G◦, src′〉 where

src′(a) := srcG(b) if b ∈ τ(G),

src′(b) := srcG(a) if a ∈ τ(G),

src′(c) := srcG(c) if c ∈ τ(G)− {a, b},

and src′ is undefined otherwise. Hence

τ(rena↔b(G)) =


τ(G) if a, b ∈ τ(G) or τ(G) ∩ {a, b} = ∅,
(τ(G)− {a}) ∪ {b} if a ∈ τ(G), b /∈ τ(G),

(τ(G)− {b}) ∪ {a} if b ∈ τ(G), a /∈ τ(G).

We can write this more succinctly as τ(rena↔b(G)) = τ(G)[b/a, a/b] where, for
every set C, we denote by C[c/a, d/b] the result of the simultaneous replacement
in C of a by c and of b by d.

We also define constant symbols: ab,
−→
ab, a, a`, ∅ to denote respectively

an undirected edge linking an a-source and a b-source, a directed edge from an
a-source to a b-source, a single vertex that is an a-source, an a-source with a
loop, and the empty graph. (Since we can change source names, it would suffice

to use the constant symbols 12,
−→
12, 1, 1`, ∅. However, using many renaming

operations would make terms denoting graphs unreadable.)
We obtain a countable signature denoted by FHR and an FHR-algebra of

graphs denoted by JS and called the HR algebra. It has domain JS. As for
GP, for every term t ∈ T (FHR), we denote by tJS the s-graph that is its value.
The equational sets of JS are called the HR-equational sets.

As for VR-equational sets, the equations that define HR-equational sets can
be shortened if they are written with derived operations. For example, the

28H′ isomorphic to H implies that τ(H′) = τ(H).



1.4. TWO GRAPH ALGEBRAS 51

series-composition of graphs of type {1, 2} is a derived operation that can be
expressed by:

G •H := fg3(ren2↔3(G) � ren1↔3(H)).

We denote by FHR
[k] the finite subsignature of FHR consisting of the operations

�, fga, rena↔b, for a, b ∈ [k] and of the constant symbols denoting graphs with
source names in [k].

Each s-graph G with n vertices and source names in [n] is the value of a term
in T (FHR

[n] ). The least integer k such that a graph G (without sources) is the

value of a term in T (FHR
[k+1]) is a well-known graph complexity measure called

the tree-width of G and denoted by twd(G). It has been defined previously in
a combinatorial way by Robertson and Seymour and by other authors using
a different terminology. In the combinatorial definition, twd(G) is the least
integer k such that G has a so-called tree-decomposition of width k. A tree-
decomposition of G is a decomposition of G into a tree of subgraphs, where
each node of the tree corresponds to a subgraph of G; its width is the maximal
number of vertices of those subgraphs, minus 1. The notion of tree-width is
important for the construction of graph algorithms and for the study of graph
minors: see the books [*Die], [*DowFel] and [*FluGro], and the survey articles
[*Bod93] and [*Bod98]. We will study this combinatorial notion in Chapter 2
and prove the following result which is an algebraic characterization of it:

Proposition 1.19 A graph has tree-width at most k if and only if it is the
value of a term in T (FHR

[k+1]). �

By contrast clique-width, defined in terms of graph operations, has yet no
alternative combinatorial definition. Using Proposition 1.19 the following result
can be proved in the same way as Proposition 1.18.

Proposition 1.20 Every HR-equational set of graphs has bounded tree-width.
For each k, the set of graphs of tree-width at most k is HR-equational. �

1.4.3 A weak Recognizability Theorem

The VR algebra GP has a countable signature FVR that generates it: this means
that each element is the value of some term. For each k in N , we let GPgen[k]
be the subalgebra of GP that is generated by the finite subsignature FVR

[k] of

FVR. Its domain GPgen[k] consists of the graphs with ports that are values
of terms in T (FVR

[k] ). We define similarly JSgen[k] as the subalgebra of the HR

algebra JS that is generated by the finite subsignature FHR
[k] of FHR. Its domain

is JSgen[k]. Proposition 1.17 extends into the following theorem:

Theorem 1.21 (Weak Recognizability Theorem)

(1) Let L be a CMS-definable set of simple graphs. For every k ∈ N , the set
L ∩ GPgen[k] is recognizable in the algebra GPgen[k].
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(2) Let L be an CMS2-definable set of graphs. For every k ∈ N , the set
L ∩ JSgen[k] is recognizable in the algebra JSgen[k]. �

In this statement, CMS refers to Counting Monadic Second-order logic, i.e.,
to the use in monadic second-order formulas of set predicates Cardp(X) ex-
pressing that |X| is a multiple of p (Even(X) is thus Card2(X)). Note that
L ∩ GPgen[k] is the set of graphs in L that have clique-width at most k, and
similarly for L ∩ JSgen[k] and tree-width at most k − 1.

This theorem is a consequence of the (more powerful) Recognizability Theo-
rem to be stated and proved in Chapter 5. The latter theorem is more powerful
in several respects. First it yields recognizability with respect to the algebras GP
and JS that have infinite signatures and not only with respect to their finitely
generated subalgebras GPgen[k] and JSgen[k]. We postpone to Chapters 3 and 4
the detailed definitions. Second, the Recognizability Theorem can be stated
and proved for an algebra of relational structures denoted by STR, as a unique
statement that entails the cases of GP and JS.

However, Theorem 1.21 has already interesting consequences. We first state
the logical version of the Filtering Theorem and its applications to decidability
results for monadic second-order sentences. Applications to fixed-parameter
tractability will be considered in the next section. We will discuss decidability
results in more detail in Section 1.6.

Theorem 1.22 (Filtering Theorem, logical version)

(1) For every VR-equational set of graphs L and every CMS-expressible graph
property P , the set LP consisting of the graphs of L that satisfy P is
VR-equational.

(2) The analogous result holds for HR-equational sets and CMS2-expressible
properties. �

This result is a direct consequence of Theorems 1.8, 1.12 and 1.21; note
that each VR-equational set is equational in some algebra GPgen[k], cf. the
proof of Proposition 1.18. All constructions are effective: an equation system
defining LP can be constructed from one defining L and a sentence expressing P .
Now consider Corollary 1.9 and its proof. Since the emptiness of an equational
set is decidable, one can decide if LP is nonempty, i.e., if P is satisfied by
some graph in L: the CMS-satisfiability problem (resp. the CMS2-satisfiability
problem) is decidable for VR-equational sets (resp. for HR-equational sets) and,
in particular, for the sets CWD(≤ k) of graphs of clique-width at most k (resp.
for the sets TWD(≤ k) of graphs of tree-width at most k).

We now come back to statements (1) and (2) at the end of Section 1.2.2. The
set L¬P (we use the notation of Theorem 1.22) is also VR-equational (respec-
tively, HR-equational in the second case). Its emptiness can be tested. That
L¬P is empty means that P is universally valid on L. From the equation system
defining L¬P , one can also obtain a proof of this fact by fixed-point induction,
according to the generalization of Proposition 1.6 to recognizable sets. As ob-
served in Section 1.2.5, if P belongs to a finite inductive set P of properties,
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then the auxiliary properties used in that proof are Boolean combinations of the
properties in P. In Chapter 5, the proof of Theorem 1.21 shows that, more pre-
cisely, every CMS-expressible property P belongs to a finite inductive set P of
CMS-expressible properties in the algebra GPgen[k] (and similarly for CMS2 and
JSgen[k]). Hence, the auxiliary properties in the proof by fixed-point induction
are CMS-expressible (respectively CMS2-expressible).

1.5 Fixed-parameter tractability

In this section, we describe some algorithmic applications of the Weak Rec-
ognizability Theorem. We first recall the basic definition of fixed-parameter
tractability. This notion has been introduced in order to describe in an abstract
setting the frequently met situation where the computation time of an algo-
rithm is bounded by an expression of the form f(p(d)) · |d|c, where the set of
inputs is equipped with two computable integer valued functions, a size func-
tion d 7→ |d| (d is the generic input) and a parameter function d 7→ p(d), such
that 0 ≤ p(d) ≤ |d|, and where f is a fixed computable function of nonnegative
integers and c is a fixed positive integer. If these conditions are satisfied, the
considered algorithm is fixed-parameter tractable with respect to the parameter
p. If c = 1, 2 or 3, we say that it is fixed-parameter linear, quadratic or cubic
respectively.

As size of an input graph G, we will use either the number of its vertices and
edges, denoted by ‖G‖, or, in particular if G is simple, its number of vertices.
Parameters can be the degree of G, its tree-width or its clique-width. Our
results will use these last two values; other examples can be found in the books
[*DowFel] and [*FluGro] which present in detail the theory of fixed-parameter
tractability.

The size |t| of a term t or the size |ϕ| of a formula ϕ is, roughly speaking,
the number of symbols with which t or ϕ is written, i.e., the length of the
corresponding word.29

Example 1.23 The subgraph isomorphism problem consists in deciding for a
pair of simple graphs (G,H) whether H is isomorphic to a subgraph of G. It
is NP-complete (Problem GT48 in [*GarJoh]). For each fixed graph H, this
problem can be solved in time O(nm) where n = |VG| and m = |VH |. However
it is fixed-parameter linear with respect to Deg(G), the degree of G. This follows
from a result by Seese [See96] (another proof is given in [DurGra]) saying that
for every first-order sentence ϕ, one can decide in time bounded by f(|ϕ| +
Deg(G)) · |VG| whether bGc satisfies ϕ, for some fixed computable function f .
The property that G has a subgraph isomorphic to a fixed graph H is expressible
by a first-order sentence ϕH to be interpreted in bGc. Hence the subgraph
isomorphism problem can be solved in time at most f(|ϕH |+ Deg(G)) · |VG|. �

29Formal definitions of |t| and |ϕ| will be given in Chapters 2 and 5, respectively.
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Fixed-parameter tractable algorithms that check monadic second-order graph
properties can be derived from Theorems 1.16 and 1.21. The model-checking
problem for a logical language L and a class of structures C consists in deciding
whether S |= ϕ, for a given structure S ∈ C and a given sentence ϕ ∈ L.

Theorem 1.24 For every finite signature F , every monadic second-order sen-
tence ϕ and every term t in T (F ), one can decide in time at most f(F,ϕ) · |t|
whether btc |= ϕ, where f is a fixed computable function.

Proof: The proof of Theorem 1.16 being effective, it yields an algorithm that
constructs from F and ϕ a finite deterministic F -automaton A accepting the
set of terms s in T (F ) such that bsc |= ϕ. By running A on a given term t,
one gets the answer in time proportional to |t|. The total computation time is
thus f1(F,ϕ) + f2(F,ϕ) · |t| where f1(F,ϕ) is the time taken to compute A and
f2(F,ϕ) is the maximum time taken by A to perform one transition.

In other words, the model-checking problem for monadic second-order sen-
tences and the class of terms is fixed-parameter linear with respect to ‖F‖+ |ϕ|,
where ‖F‖ is the sum of arities of the symbols in F plus the number of constant
symbols in F . This follows from Theorem 1.24 because, up to the names of the
symbols in F and of the variables in ϕ, there are finitely many pairs (F,ϕ) such
that ‖F‖ + |ϕ| ≤ p, so that f(F,ϕ) can be bounded by g(‖F‖ + |ϕ|) for some
computable function g.

We now consider the model-checking problem for monadic second-order sen-
tences on graphs and its two possible parametrizations by tree-width and clique-
width. For a graph G given by a term t in T (FHR

[k] ) or in T (FVR
[k] ), one gets a

fixed-parameter linear algorithm as in Theorem 1.24 because, by Theorems 1.21
and 1.12, one can construct from k and ϕ a finite deterministic FHR

[k] -automaton
Aϕ,k that accepts the set of terms t such that tJS satisfies ϕ, and similarly
with FVR

[k] . This situation happens in particular if G belongs to an HR- or VR-
equational set of graphs and is given by a corresponding term or derivation tree
(cf. Section 1.1.5). However, if such a term or derivation tree is not given, it
must be computed from the input graph by a parsing algorithm.

Theorem 1.25

(1) The model-checking problem for CMS sentences and the class of simple
graphs is fixed-parameter cubic with respect to cwd(G) + |ϕ|. The input
sentence is ϕ and the size of the input graph G is its number of vertices.

(2) The model-checking problem for CMS2 sentences and the class of graphs
is fixed-parameter linear with respect to twd(G)+ |ϕ|. The input sentence
is ϕ and the size of the input graph G is its number ‖G‖ of vertices and
edges.30

30In many cases, ϕ is fixed because one is interested in a particular graph property, and
then the parameters are just tree-width and clique-width.
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Proof: We first consider the parametrization by tree-width. We let n be the
number of vertices and edges of the input graph G, i.e., n := ‖G‖. There exists
an algorithm (by Bodlaender [Bod96], see also [*DowFel]) that, for every graph
G and integer k, decides if twd(G) ≤ k in time at most g(k) · |VG| (for some fixed
computable function g), and that constructs if possible a tree-decomposition of
width k of G; this tree-decomposition can be converted in linear time (in n)
into a term t in T (FHR

[k+1]) that evaluates to G, cf. Proposition 1.19.

Step 1 : For given G and by repeating this algorithm for k = 1, 2, . . . at
most twd(G) times one obtains an optimal tree-decomposition of G. This com-
putation takes time at most twd(G) · g′(twd(G)) · n for some fixed computable
function g′ and builds a term in T (F ) where F := FHR

[twd(G)+1], that evaluates

to G. (The function g′ takes into account the time needed to transform a tree-
decomposition into a term.)

Step 2 : By using Theorems 1.21 and 1.12, one constructs a finite determin-
istic F -automaton Aϕ,k where k = twd(G) + 1 that accepts the set of terms
t ∈ T (F ) that evaluate to a graph satisfying ϕ.

Step 3 : By running this automaton on t, one obtains the answer.

We now consider the parametrization by clique-width. The main difference
concerns Step 1. There exists an algorithm (that combines algorithms from
[HliOum] and [OumSey], see Section 6.2.3 for details) that, for every simple
graph G and every integer k, either reports (correctly) that cwd(G) > k or
constructs a term in T (FVR

[h(k)]) that evaluates to G (and hence G has clique-

width at most h(k)) where h(k) = 2k+1−1. This algorithm takes time g′′(k) ·n3

for some fixed computable function g′′, where n = |VG|. Note that it does not
determine the exact clique-width of G.

Step 1 of the case of tree-width is replaced by the following: for given G and
by repeating this algorithm for k = 1, 2, . . . at most cwd(G) times, one obtains
a term t in T (FVR

[m] ) that evaluates to G for some m ≤ h(cwd(G)). This compu-

tation takes time at most cwd(G) · f(cwd(G)) · n3, where f(k) is the maximum
of g′′(i) for i = 1, . . . , k. The computation continues then by constructing a
finite FVR

[m] -automaton (by Theorems 1.21 and 1.12) and running it on t like in
Steps 2 and 3 above.

The algorithms of Theorem 1.25 are actually not directly implementable be-
cause of the sizes of the automata to be constructed. Specifically, the automata
Aϕ,k in the two cases of Theorem 1.25 have a number of states that is not
bounded by a function of the form exp ◦ exp ◦ · · · ◦ exp(|ϕ|) with a fixed number
of iterated exponentiations (exp(n) = 2n for every n). (This is also the case
for the automaton constructed in the proof of Theorem 1.24). This fact is not
a weakness of the construction, but a consequence of the fact that complicated
properties can be expressed by short formulas. This phenomenon occurs for
first-order as well as for monadic second-order logic, as proved in [FriGro04].
Concrete constructions of FVR

[k] -automata for small values of k and simple graph
properties will be presented in Section 6.3.



56 CHAPTER 1. OVERVIEW

A second reason that makes these algorithms difficult, if not impossible, to
implement so as to run for arbitrary graphs is the time needed for parsing the
input graphs, i.e., for building terms in T (FHR

[k] ) or in T (FVR
[k] ) for given values

of k that evaluate to them. The linear algorithm by Bodlaender [Bod96] used

in the proof of Theorem 1.25 takes time 232k3 · n. We will review other more
efficient, even if not linear, algorithms in Chapter 6. The cubic algorithm of
[HliOum] is not implementable either.

1.6 Decidability of monadic second-order logic

Apart from model-checking discussed in the previous section, another major
problem in Logic consists in deciding whether a given sentence holds in some
relational structure (or in a graph represented by a relational structure) of a
fixed set L. In this case, the input of the problem is an arbitrary sentence from
a logical language L. This problem is called the L-satisfiability problem for the
set L. A related problem consists in deciding if a given sentence of L belongs to
the L-theory of L, that is, to the set of sentences of L that hold for all graphs (or
structures) in L. We say that the L-theory of L is decidable if this problem is
decidable. As logical languages L, we will consider fragments and extensions of
monadic second-order logic that are closed under negation. For such languages,
the L-satisfiability problem for a set L is decidable if and only if the L-theory
of L is decidable.

The main motivation for the fundamental Theorem 1.16 was to prove the
decidability of the MS-theory of the set of terms T (F ) (more precisely, the set
of structures {btc | t ∈ T (F )}), for every finite signature F . From Theorem 1.22
we obtain a similar result for graphs, as observed at the end of Section 1.4.3.

Theorem 1.26 The CMS-theory of the set CWD(≤ k) of simple graphs of
clique-width at most k, or of a VR-equational set of graphs is decidable. So is
the CMS2-theory of the set TWD(≤ k) of graphs of tree-width at most k, or of
an HR-equational set of graphs. �

One obtains results which are quite powerful in that they apply to many
different sets of graphs. One might hope to use them in order to obtain auto-
matic proofs of conjectures or of difficult theorems in graph theory. However the
situation is not so favorable. Let us take the example of the 4-Color Theorem,
stating that every planar graph is 4-colorable. In Section 1.3.1 we have shown
the existence of two MS sentences, π and γ4, expressing respectively that a graph
is planar (Corollary 1.15) and that it is 4-colorable. The 4-Color Theorem31 can
thus be stated in the following logical form:

Theorem 1.27 We have bGc |= π ⇒ γ4 for every graph G in G. �

31Its proof by Robertson et al. ([RobSanST]) has been checked by computer by Gonthier
[Gon] with the software Coq based on Type Theory.
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This means that the MS sentence π ∧ ¬γ4 is not satisfiable in G.
Certain conjectures can be formulated in a similar way. For example, a con-

jecture by Hadwiger states that for every integer k, if a graph is not k-colorable,
then it has a minor isomorphic to Kk+1. For each k, the corresponding instance
of this conjecture is equivalent by Corollary 1.14 to the statement:

Conjecture 1.28 We have bGc |= ¬γk ⇒ MINORKk+1
for every graph G in G.

�

Robertson et al. have proved it in [RobST] for k = 5. It is known to hold for
smaller values and is otherwise open.

Could one prove the 4-Color Theorem or this Conjecture for some
fixed k ≥ 6 by an algorithm able to check the satisfiability of a
monadic second-order sentence?

This is not possible without some further analysis that would limit the size, or
the tree-width, or the clique-width of a minimal graph G that could contradict
the considered properties32. The reason is that the MS-satisfiability problem for
the set G of finite (simple directed) graphs is undecidable: there is no algorithm
that would take as input an arbitrary monadic second-order sentence and tell
whether this sentence is valid in the logical structure bGc for some graph G in G.
This undecidability result actually holds for first-order logic (see Theorem 5.5
in Section 5.1.6 or the books [*EbbFlu] and [*Lib04]).

From Theorem 1.26, it follows that the particular cases of these theorems
or conjectures obtained by restricting to the sets of graphs of clique-width at
most k for fixed values of k can, at least in principle, be proved by machine.
However, since we observed that the algorithms underlying Theorem 1.26 are
not implementable, this possibility is presently purely theoretical. Furthermore,
the difficult open questions of graph theory concern usually all graphs rather
than graphs of bounded tree-width or clique-width. There are however some
exceptions. Whether the oriented chromatic number of an oriented graph33

is equal to k is expressible by a formula of monadic second-order logic (one
formula for each k). Several articles, in particular by Sopena [Sop] and Fertin
et al. [FerRR], determine the maximal value of the oriented chromatic number
of outerplanar graphs, of 3-trees, and of the so-called “fat trees” and “fat fat
trees”. Since these four sets of graphs are HR-equational, the maximal values
of the oriented chromatic numbers of their graphs can also be determined, in
principle, by algorithms based on Theorem 1.26.

Seese raised in [See91] the question of understanding which conditions on
a set of graphs L are necessary for its MS-satisfiability problem to be decid-

32For Conjecture 1.28, Kawarabayashi [Kaw] has found such bounds for all k. It follows
that each level of the conjecture is decidable, but by an intractable algorithm.

33An oriented graph G (i.e., a graph without loops and pairs of opposite directed edges)
has oriented chromatic number at most k if there exists a tournament (a complete oriented
graph) H with k vertices and a homomorphism h : G→ H that maps VG into VH and every
directed edge u→ v of G to a directed edge h(u)→ h(v) of H.
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able. The two main results regarding this question are collected in the following
theorem34.

Theorem 1.29 Let L be a set of finite, simple, undirected graphs.

(1) If L has a decidable MS2-satisfiability problem, then it has bounded tree-
width.

(2) If L has a decidable C2MS-satisfiability problem, then it has bounded
clique-width. �

Assertion (1) is proved by Seese in [See91]. He asks in this article whether
every set L having a decidable MS-satisfiability problem (which is weaker than
having a decidable C2MS-satisfiability problem) is “tree-like”, which is actu-
ally equivalent (by the Equationality Theorem for the VR algebra presented
below in Section 1.7.3) to having bounded clique-width. Assertion (2) proved
in [CouOum] is thus a partial answer to Seese’s question.

1.7 Graph transductions

The theory of formal languages studies finite descriptions of languages (sets
of words or terms) by grammars and automata, and also finite descriptions of
transformations of these objects. Motivations come from the theories of coding,
of compilation, of computational linguistics, just to cite a few. The finite devices
that specify these transformations are called transducers and the corresponding
transformations of words and terms are called transductions. Typical questions
are the following:

Is a given class of transductions closed under composition? under inverse?
Does it preserve a given family of languages?
Is this family the set of images of a particular language (called a generator)

under the transductions of the class?
Is the equality of the transductions defined by two transducers of a certain

type decidable?
In the study of sets of words, rational transductions play a prominent role

originating from the work by Nivat [Niv]. The inverse of a rational transduction
and the composition of two rational transductions are rational transductions.
The families of regular and of context-free languages are preserved under rational
transductions, and there exist context-free languages (like the one defined by
the equation L = f(L,L) ∪ a where L ⊆ A∗ and A consists of a, f , parentheses
and comma), whose images under all rational transductions are all context-
free languages. Transductions of words are studied in the books [*Ber] and
[*Sak]. Transductions of terms, usually called tree transductions, are studied in
[*Com+] and [*GecSte].

34We recall (from Section 1.3.1) that the acronym C2MS refers to MS logic extended by the
even cardinality set predicate.
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Transducers are usually based on finite automata or on more complicated
devices like macros (see, e.g, the macro tree transducers in [EngMan99]). Can
one define similar notions for graphs? Since graphs can be denoted by terms,
one can use transductions of terms to specify transductions of graphs (as, e.g.,
in [*Eng94, DreEng]). However, doing this requires for processing the input a
parsing step that is algorithmically difficult (cf. Sections 1.5 and 6.2). For build-
ing the output, each term produced by such a transduction must be evaluated
into a graph. The main drawback of the detour through terms over (necessarily)
finite signatures is that it limits the input and output graphs of transductions
to have bounded tree-width or clique-width. It is natural to try to avoid such a
detour and to define transducers that work “directly” on graphs, by traversing
them according to some rules and by starting from some specified vertex. How-
ever no notion of finite graph automaton has been defined that would generalize
conveniently finite automata on words and terms. Monadic second-order logic
offers a powerful alternative. In this section, we define monadic second-order
transductions by means of examples more than formally. These transductions
have good interactions with the HR- and VR-equational sets (our “context-free
sets of graphs”) that follow from the Equationality Theorem presented below in
Section 1.7.3. It will be shown in Chapter 8 that every (functional) monadic
second-order transduction of graphs of bounded tree-width or clique-width can
be realized by a macro tree transducer on the level of terms.

1.7.1 Examples of monadic second-order transductions

Monadic second-order transductions are transformations of graphs specified by
monadic second-order formulas. The basic notion is that of a monadic second-
order transduction of relational structures over a fixed set of relation symbols.
It applies to graphs faithfully represented by relational structures.

All examples and results presented in this section (Section 1.7) will concern
simple graphs, for which G 7→ bGc is a faithful representation. Hence, we will
consider mappings f from simple graphs to simple graphs such that, for every
G, the structure bf(G)c representing its image under f is defined from bGc by
monadic second-order formulas.

The simplest case is when:

bf(G)c := 〈Vf(G), edgf(G)〉,
Vf(G) := {u ∈ VG | bGc |= δ(u)},
edgf(G) := {(u, v) ∈ VG × VG | bGc |= δ(u) ∧ δ(v) ∧ θ(u, v)},

where δ and θ are monadic second-order formulas with free variables u, and
u and v respectively. The formula δ defines the set of vertices of f(G) as a
subset of VG and the formula θ defines the edge relation of f(G) in terms of
that of G. The mapping f is thus specified by a pair 〈δ, θ〉 of monadic second-
order formulas. We will say that f is a monadic second-order transduction and
that 〈δ, θ〉 is its definition scheme. If δ and θ are first-order formulas, we will
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say that f is a first-order transduction. The general definition is actually more
complicated. We introduce it step by step by giving several examples.

Example 1.30 (Edge-complement)
The edge-complement associates with a simple, undirected and loop-free

graph G, the simple, undirected and loop-free graph G such that VG = VG
and u−v is an edge of G if and only if u 6= v and u−v is not an edge of G. This
transformation is a first-order transduction with definition scheme 〈δ, θ〉 where:

δ(x) is the Boolean constant True,

θ(x, y) is the formula x 6= y ∧ ¬edg(x, y).

Example 1.31 (Elimination of loops and isolated vertices)
The transformation that eliminates loops and then, isolated vertices is a

first-order transduction with definition scheme 〈δ, θ〉 where:

δ(x) is the formula ∃y
((

edg(x, y) ∨ edg(y, x)
)
∧ x 6= y

)
,

θ(x, y) is the formula edg(x, y) ∧ x 6= y.

Example 1.32 (Transitive closure of a directed graph)
For every directed graph G, we let G+ be its transitive closure, the simple

graph defined by:

VG+ := VG,

edgG+ := edg+
G

:= {(u, v) | there is in G a nonempty directed path35 from u to v}.

Note that u has a loop in G+ if it belongs to a directed cycle in G. The mapping
G 7→ G+ is defined by the definition scheme 〈δ, θ〉 where:

δ(x) is the formula True,

θ(x, y) is the formula36 edg(x, y) ∨ ∃ z(edg(x, z) ∧ TC[edg ; z, y]).

We use here the definition of the reflexive and transitive closure of a binary
relation by a monadic second-order formula presented in Section 1.3.1.

Example 1.33 (Transitive reduction of a directed acyclic graph)
A directed acyclic graph (a DAG) is a simple directed graph without directed

cycles. Every such finite graph G has a unique minimal subgraph H such that
H+ = G+. It is called the transitive reduction of G and is denoted by Red(G).
(The Hasse diagram of a partial order 〈D,≤〉 is a graphical representation of

35i.e., a sequence of pairwise distinct vertices w1, w2, . . . , wn such that u = w1, v = wn and
wi → wi+1 in G for each i = 1, . . . , n − 1. A directed cycle is a sequence of this form with
w1 = wn, n ≥ 2, wi 6= wj for 1 ≤ i ≤ j ≤ n− 1.

36The atomic formula edg(x, y) in θ(x, y) can be omitted, but putting it in makes the formula
more clear.
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the transitive reduction of the directed acyclic graph 〈D,<〉.) The edge relation
of Red(G) is characterized by:

edgRed(G)(x, y) :⇐⇒ edg(x, y) ∧ ¬∃z(edgG+(x, z) ∧ edgG+(z, y)),

hence is defined in G by a monadic second-order formula θ′ built with the for-
mula θ of the previous example. It follows that the mapping Red from directed
graphs to directed graphs is a partial function that is a monadic second-order
transduction specified by a sentence χ and two formulas δ, θ′ such that:

bGc |= χ if and only if it is acyclic (hence
if and only if Red(G) is well defined),

bGc |= δ(u) for every u in VG (so that VRed(G) = VG),

bGc |= θ′(u, v) if and only if Red(G) has an edge u→ v.

�

It is frequently necessary to consider functions f that assign a graph to the
pair of a graph G and a set of vertices X. In this case, the definition scheme
consists of formulas χ, δ and θ with a free set variable X called a parameter. The
formula χ expresses the conditions to be verified by G and X so that f(G,X)
be defined. Here is an example.

Example 1.34 (The largest connected subgraph of G containing X)
The partial function f such that f(G,X) is the largest connected induced

subgraph of G containing a nonempty subset X of VG is a monadic second-order
transduction with parameter X. Its definition scheme is 〈χ, δ, θ〉 where:

χ(X) is the formula (∃x. x ∈ X) ∧ ∃Y
(
X ⊆ Y ∧ CONN(Y )

)
,37

δ(X,x) is the formula ∃Y
(
X ⊆ Y ∧ x ∈ Y ∧ CONN(Y )

)
,

θ(X,x, y) is ∃Y
(
X ⊆ Y ∧ x ∈ Y ∧ y ∈ Y ∧ edg(x, y) ∧ CONN(Y )

)
. �

In the previous example, a parameter X is necessary because the function f
to be defined does not depend only on G but also on a set of vertices. However,
in some cases, parameters may be necessary even if the output graphs depend
only, up to isomorphism, on the input graphs (and not on the values of the
parameters). Here is an example of such a case.

Example 1.35 (The DAG of strongly connected components of a di-
rected graph)

Let G be a directed graph. Let ≈ be the equivalence relation on VG defined
by:

u ≈ v if and only if u = v or there exists a directed
path from u to v and a directed path from v to u.

37The formula CONN(Y ) is defined in Section 1.3.1. We use X ⊆ Y as a shorthand for
∀x(x ∈ X ⇒ x ∈ Y ).
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An induced subgraph G[X] where X is an equivalence class of this relation
is called a strongly connected component. The DAG of strongly connected com-
ponents of G is the quotient graph G/≈ defined as follows: its vertices are the
strongly connected components; there is in G/≈ an edge X → Y if and only
if X 6= Y and u → v in G for some u ∈ X and v ∈ Y . Our objective is to
prove that there exists a monadic second-order transduction associating with
every graph G a graph H isomorphic to G/≈. Its definition uses a parameter X
for denoting sets U ⊆ VG required to contain one and only one vertex of each
strongly connected component. Such sets are used as sets of vertices of H and
its edges are defined accordingly. We use the following formulas:

Eq(x, y) is the auxiliary formula TC[edg ;x, y] ∧ TC[edg ; y, x],

χ(X) is defined as:

∀x, y
((
x ∈ X ∧ y ∈ X ∧ Eq(x, y)

)
⇒ x = y

)
∧ ∀x∃y

(
Eq(x, y) ∧ y ∈ X

)
,

δ(X,x) is defined as: x ∈ X,

θ(X,x, y) is defined as:

x ∈ X ∧ y ∈ X ∧ ¬Eq(x, y) ∧ ∃z, z′
(

edg(z, z′) ∧ Eq(x, z) ∧ Eq(y, z′)
)
.

The definition scheme 〈χ, δ, θ〉 specifies a monadic second-order transduction
that associates with a directed graph G and a “well-chosen” subset U of VG a
graph f(G,U) with vertex set U that is isomorphic to G/≈ (u ∈ U corresponds
to an equivalence class, hence to a vertex of G/≈). It is clear that for every
graph G there exists a set U satisfying χ, and that, for any two sets U and U ′

satisfying χ, the graphs f(G,U) and f(G,U ′) are isomorphic (the corresponding
bijection h : U → U ′ is defined by h(u) = v if and only if u ∈ U , v ∈ U ′ and
u ≈ v).

This construction extends actually to every equivalence relation definable
by a monadic second-order formula in place of ≈ and proves that the mapping
that associates with a graph G its quotient G/≈ by a monadic second-order
definable equivalence relation ≈ is a monadic second-order transduction. �

In all the above examples, the set of vertices of the output graph is a subset
of the set of vertices of the input graph. The general definition of a monadic
second-order transduction includes the possibility of enlarging the input graph,
by “copying it” a fixed number of times.

A k-copying monadic second-order transduction associates with a graph G
a graph H such that:

VH := (V1 × {1}) ∪ · · · ∪ (Vk × {k})
edgH := {((u, i), (v, j)) | 1 ≤ i, j ≤ k, (u, v) ∈ Ei,j}

where the sets V1, . . . , Vk ⊆ VG and the relations Ei,j ⊆ VG × VG are defined
in G by monadic second-order formulas, respectively δ1, . . . , δk and θi,j for 1 ≤
i, j ≤ k and possibly written with parameters. Let us give an example.
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Example 1.36 (Graph duplication)
For every simple directed graph G, its duplication is the simple graph H =

dup(G) defined as follows:

VH := VG × {1, 2},
the edges of H are the edges of each copy of G, together with the edges
(u, 1)→ (u, 2) for all u ∈ VG.

The mapping dup has the definition scheme 〈δ1, δ2, θ1,1, θ1,2, θ2,1, θ2,2〉 where:

δ1(x) and δ2(x) are both the Boolean constant True,

θ1,1(x, y) and θ2,2(x, y) are both edg(x, y),

θ1,2(x, y) is x = y,

θ2,1(x, y) is the Boolean constant False.

The formulas δ1 and δ2 define V1 and V2 as VG; the formulas θi,j define E1,1 :=
E2,2 := edgG, E1,2 := {(u, u) | u ∈ VG}, and E2,1 := ∅. Informally H consists
of two disjoint copies of G (i.e, G ⊕ G) together with an edge from any vertex
of the first copy to the corresponding vertex of the second copy. �

The general definition of a monadic second-order transduction combines the
above presented features. To summarize, a monadic second-order transduc-
tion associates with a relational structure S and subsets U1, . . . , Um of its do-
main DS that must satisfy a monadic second-order formula χ(X1, . . . , Xm),
a relational structure T = f(S,U1, . . . , Um) defined as follows. Its domain is
DT := (D1 × {1}) ∪ · · · ∪ (Dk × {k}) where each set Di is defined as {d ∈ DS |
S |= δi(U1, . . . , Um, d)} for some monadic second-order formula δi. If R is an
n-ary symbol of the relational signature of T , the corresponding n-ary relation
on DT is defined as⋃

i1,...,in∈[k]

{((d1, i1), . . . , (dn, in)) | d1 ∈ Di1 , . . . , dn ∈ Din ,

S |= θR,i1,...,in(U1, . . . , Um, d1, . . . , dn)},

where each θR,i1,...,in is a monadic second-order formula.
Such a transduction f is specified by a tuple of formulas called a defini-

tion scheme of the form 〈χ, δ1, . . . , δk, (θw)w∈W 〉 where W consists of all tuples
(R, i1, . . . , iρ(R)) such that R is a relation symbol of T and i1, . . . , iρ(R) ∈ [k].
The following fact is clear from the definitions:

Fact 1.37 For every monadic second-order transduction f there exists an in-
teger k such that, if f transforms a relational structure S into a relational
structure T , then |DT | ≤ k · |DS |. �

We have k = 1 in the first six examples and k = 2 in the last one. We now
give another example, with k = 1 and without parameters.
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Example 1.38 (The cograph denoted by a term)
As a final example we consider the mapping that evaluates a term t in

T ({⊕,⊗,1}) into the cograph val(t) (cf. Section 1.1.2 and Example 1.7). First
of all we must explain how t is represented by a relational structure. We let
btc = 〈Nt, sont, lab⊕t, lab⊗t, lab1t〉 be the relational structure such that:

• Nt is Pos(t), the set of positions of t, i.e., of occurrences of symbols from
{⊕,⊗,1}; we will consider Nt as the set of nodes of a rooted labelled tree
representing t and also denoted by t;

• sont is the binary relation such that sont(u, v) holds if and only if v is a
son of u in the tree38 t;

• lab⊕t, lab⊗t and lab1t are the unary relations such that lab⊕t(u) holds if
and only if u is an occurrence of ⊕ in t (i.e., is labelled by ⊕ as a node of
the tree t) and similarly for lab⊗t and lab1t.

Since the operations ⊕ and ⊗ are commutative, we need not express, when
v is a son of u, whether it is the left or the right son. Hence we can use a simpler
representation than the general one to be defined in Section 5.1.1. Here is an
example. We let:

s :=
((

11 ⊗2 13

)
⊕4 15

)
⊗6

(
17 ⊕8 19

)
where we number from left to right the nine occurrences of 1, ⊕, ⊗ (this
numbering is indicated by subscripts). The corresponding labelled tree is shown
in Figure 1.5. Then

bsc = 〈[9], son, lab⊕, lab⊗, lab1〉 with

son = {(6, 4), (6, 8), (4, 2), (4, 5), (2, 1), (2, 3), (8, 7), (8, 9)},
lab⊕ = {4, 8},
lab⊗ = {2, 6},
lab1 = {1, 3, 5, 7, 9}.

In the general case, the cograph G = val(t) that is the value of a term t in
T ({⊕,⊗,1}) can be defined from btc as follows:

VG is the set of elements of Nt that are labelled by 1 (i.e, that are
the leaves of the tree t); for distinct vertices u and v of G, there is
an edge between u and v if and only if the least common ancestor
of u and v in t is labelled by ⊗.

In the above example of s, the vertices of the cograph val(s) are 1, 3, 5, 7, 9.
There is an edge between 3 and 9 because their least common ancestor in s is
6 which is labelled by ⊗. There is no edge between 1 and 5 because their least
common ancestor is 4, labelled by ⊕.

38We describe the relations between occurrences of symbols in t with the terminology of
trees. Chapter 2 will detail the terminology about terms and the trees that represent them.
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Figure 1.5: The term s as a labelled tree.

The monadic second-order transduction that associates with btc, for any
term t in T ({⊕,⊗,1}), the relational structure bval(t)c is specified by the defi-
nition scheme 〈True, δ, θ〉 where:

δ(x) is the formula lab1(x),

θ(x, y) is the formula x 6= y ∧ ∃z(LCA(x, y, z) ∧ lab⊗(z)).

In this writing, LCA(x, y, z) stands for the following formula expressing that z
is the least common ancestor of x and y:

TC[son; z, x] ∧ TC[son; z, y] ∧
∀w
(
(TC[son;w, x] ∧ TC[son;w, y])⇒ TC[son;w, z]

)
.

This formula is a straightforward translation of the definition of the least com-
mon ancestor. Note that if x is an ancestor of y or if x = y, then LCA(x, y, x)
is valid. Furthermore LCA(x, y, z) defines z in a unique way from x and y.

1.7.2 The main properties of monadic second-order trans-
ductions

A monadic second-order transduction is a subset f of S × T where S and T
are classes of graphs or, more generally, of relational structures, that is speci-
fied as explained in the examples by monadic second-order formulas. If L ⊆ S
and f ⊆ S × T , we let f(L) := {T | (S, T ) ∈ f, S ∈ L} be the image of L

under f . Hence, f can also be seen as the multivalued mapping f̂ : S → P(T )
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such that f̂(G) := f({G}). In Examples 1.30, 1.31 and 1.32, f̂(G) consists of
a unique graph. In Example 1.33 it consists of at most one graph and in Ex-
ample 1.34 of several graphs (the connected components). However, a monadic
second-order transduction is always based on a (single-valued) partial function
that transforms parametrized relational structures into relational structures. A
parametrized relational structure is a tuple (S,A1, . . . , An) consisting of a rela-
tional structure S and an n-tuple of subsets of its domain DS . From a partial
function f that transforms (S,A1, . . . , An) into f(S,A1, . . . , An) in T for S
in S and for certain subsets A1, . . . , An of DS , we define f as the transduction
{(S, f(S,A1, . . . , An)) | A1, . . . , An ⊆ DS and f(S,A1, . . . , An) is defined}). We

also say that f and f̂ are monadic second-order transductions.

The composition of two monadic second-order transductions is the compo-
sition of the corresponding binary relations: if f ⊆ S × T and g ⊆ T × U , then
f · g := {(S,U) | (S, T ) ∈ f and (T,U) ∈ g for some T ∈ T }. If f and g are
functional, we will also use the notation g ◦ f for f · g.

Theorem 1.39 The composition of two monadic second-order transductions is
a monadic second-order transduction. �

A more precise statement showing how parameters are handled in the com-
position of monadic second-order transductions will be given in Chapter 7 (The-
orem 7.14).

Theorem 1.40 (Backwards Translation Theorem)
If the set L ⊆ T is MS-definable and f ⊆ S × T is a monadic second-order
transduction, then the set f−1(L) := {S ∈ S | f̂(S) ∩ L 6= ∅} is MS-definable.
�

Theorem 1.40 is formally a consequence of Theorem 1.39 but it is actually
used for proving Theorem 1.39 (see Chapter 7). We call Theorem 1.40 the Back-
wards Translation Theorem because its proof yields an algorithm that trans-
forms a formula defining L into one defining f−1(L). We now give the idea of its
proof. Let us go back to the edge-complement transformation (Example 1.30). It
is a first-order transduction that transforms G into G. If P is a first-order graph
property, then the property Q defined by Q(G) if and only if P (G) is also first-
order. The edge relation of G is defined by edgG(u, v) :⇐⇒ u 6= v∧¬edgG(u, v).
Hence one obtains a first-order sentence expressing Q by replacing in the given
first-order sentence expressing P each atomic formula of the form edg(x, y) by
(x 6= y ∧¬edg(x, y)). Here is an example. We let P be defined by the sentence:

∃x, y, z
(
x 6= y ∧ y 6= z ∧ x 6= z ∧

edg(x, y) ∧ edg(y, z) ∧ ¬edg(x, z)
)

expressing that an undirected graph G has an induced path P3 (of the form
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• − • − •). The sentence defining Q is then:

∃x, y, z
(
x 6= y ∧ y 6= z ∧ x 6= z ∧

(
x 6= y ∧ ¬edg(x, y)

)
∧(

y 6= z ∧ ¬edg(y, z)
)
∧ ¬
(
x 6= z ∧ ¬edg(x, z)

))
.

It can actually be simplified into:

∃x, y, z
(
x 6= y ∧ y 6= z ∧ x 6= z ∧ ¬edg(x, y) ∧

¬edg(y, z) ∧ edg(x, z)
)

expressing thatG has an induced subgraph of the form •−• •. This construction
extends easily to monadic second-order transductions without parameters, like
those of Examples 1.31, 1.32 and 1.33.

Let us now assume that f is defined by a definition scheme of the form
〈χ(X),True, θ(X,x, y)〉 with one parameter X. Here χ(X) is a formula that
imposes some conditions on the parameter X. In Example 1.34, the condition
“X denotes a singleton” might be imposed on X: the corresponding transduc-
tion associates with each vertex its connected component.

Let β be a sentence and let L be the set of graphs such that bGc |= β. Let
then β# be the formula with free variable X obtained by replacing in β every
atomic formula edg(x, y) by θ(X,x, y) (by using appropriate substitutions, and,
if necessary, renamings of bound variables in θ(X,x, y)). For A ⊆ VG, the
graph f(G,A) is well defined if and only if bGc |= χ(A), and then, f(G,A) |= β
if and only if bGc |= β#(A). It follows that f−1(L) is defined by the sentence
∃X
(
χ(X) ∧ β#(X)

)
.

1.7.3 The Equationality Theorem

The Equationality Theorems for the VR and the HR algebras (and for an algebra
of relational structures that generalizes the VR algebra) are among the main
results established in this book.

As an introduction to the Equationality Theorem for the VR algebra, we
recall that the mapping that associates the cograph val(t) with a term t in
T ({⊕,⊗,1}) is a monadic second-order transduction (Example 1.38). More
generally:

Theorem 1.41 For every k, the mapping that associates with a term t in
T (FVR

[k] ) the p-graph tGP is a monadic second-order transduction. �

This implies that the set of graphs of clique-width at most k, which is a VR-
equational set, is the image of the set of terms (over some finite signature) under
a monadic second-order transduction. The following result includes a converse
of this result and is very important for the theories of graph structuring and of
graph grammars.
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Theorem 1.42 (Equationality Theorem for the VR algebra)
A set of simple graphs is VR-equational if and only if it is the image of the set
of binary rooted trees under a monadic second-order transduction. �

As an immediate consequence and by using Theorem 1.39, we obtain that
the image of a VR-equational set under a monadic second-order transduction is
again VR-equational. Note that this implies, as a special case, the logical version
of the Filtering Theorem (Theorem 1.22): for a sentence χ, the transduction
fχ = {(G,G) | bGc |= χ} is a monadic second-order transduction with definition
scheme 〈χ,True, edg(x, y)〉, and fχ(L) = {G ∈ L | bGc |= χ} for every set
of graphs L. Another immediate consequence, using Proposition 1.18, is the
following.

Corollary 1.43 A set of simple graphs has bounded clique-width if and only
if it is included in the image of the set of binary rooted trees under a monadic
second-order transduction. �

Thus, again using Theorem 1.39, the image of a set of graphs of bounded
clique-width under a monadic second-order transduction from graphs to graphs
has bounded clique-width.

In Theorem 1.42 and Corollary 1.43, one can replace “the set of binary rooted
trees”39 by “the set of trees” or by “T (F ) where F is any finite signature with
at least one constant symbol and at least one symbol of arity at least 2”.

1.8 Monadic second-order logic with edge set
quantifications

If a graph G is represented by a relational structure whose domain also contains
the edges, instead of by bGc, then the expressive power of monadic second-
order logic is increased, even for expressing properties of simple graphs. We will
also compare the four types of monadic second-order transductions obtained by
representing input and output graphs G either by bGc or by the alternative
structure denoted by dGe.

1.8.1 Expressing graph properties with edge set quantifi-
cations

For every undirected graph G, we let dGe be the pair 〈VG ∪ EG, inG〉 where40

inG = {(e, u) | e ∈ EG, u ∈ VG, u is an end vertex of e}. If G has several edges
(called multiple edges) between two vertices, these edges are distinct elements
of the domain of dGe. The structure dGe can be seen as bInc(G)c where Inc(G)

39A rooted tree is directed in such a way that the root is the unique node of indegree 0
and every node is accessible from the root by a directed path. It is binary if each node has
outdegree 0 or 2. The associated (undirected) tree has degree at most 3.

40Recall that VG is the set of vertices and EG is the set of edges.
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is a bipartite directed graph called the incidence graph of G, whose edge re-
lation is denoted by the binary relation symbol in. In a relational structure
S = 〈DS , inS〉 isomorphic to dGe for some graph G, the elements of DS cor-
responding to edges are those, say u, such that (u, v) ∈ inS for some v. The
element u corresponds to a loop if and only if there is a single such v. It follows
that G can be reconstructed from S in a unique way. Thus, the representation
of G by dGe is faithful for all undirected graphs.

For directed graphs, we will use dGe := 〈VG ∪EG, in1G, in2G〉 where (e, u) ∈
in1G (resp. (e, u) ∈ in2G) if and only if u is the tail41 (resp. the head) of e.
Hence dGe can be seen as a directed bipartite graph, also denoted by Inc(G),
with edges labelled either by 1 or by 2. Loops in G are multiple edges (with
different labels) in Inc(G).

In this setting, edges are considered, like vertices, as objects that form a
graph and not as the pairs of some binary relation over vertices. In particular,
we do not consider an undirected edge as a pair of opposite directed edges.

Graph properties can be expressed logically, either via the representation of
a graph G by dGe, or via the initially defined representation bGc := 〈VG, edgG〉.
The representation bGc only allows quantification on vertices and on sets of
vertices in monadic second-order formulas, whereas the representation dGe also
allows quantification on edges and sets of edges. A graph property is MS2-
expressible if it is expressible by a monadic second-order formula interpreted in
dGe. The index 2 refers to the possibility of “two types of quantification”, on
sets of vertices and sets of edges. A property is MS1-expressible if it is by a
monadic second-order formula interpreted in bGc. Unless for emphasizing the
contrast with MS2, we will write MS instead of MS1.42

Let us stress that we do not modify the logical language, but only the rep-
resentation of graphs by relational structures. Since an incidence graph is a
graph, we still deal with a single language that we use to express formally graph
properties. We now compare the power of these two ways of expressing graph
properties. It is clear that a property of a graph G like “for every two vertices
u, v, there are no more than 3 edges from u to v” cannot be expressed by any
sentence interpreted in bGc because this relational structure cannot identify the
existence of multiple edges, and thus no sentence can take into account their
multiplicity. However, even for expressing properties of simple graphs, monadic
second-order sentences with edge set quantifications are more powerful. The
property that a loop-free undirected graph G has a perfect matching is equiva-
lent to dGe |= ∃X.ψ where ψ is a formula with free variable X expressing that
X is a set of edges and that for every vertex u there exists a unique e ∈ X such
that (e, u) ∈ inG. The formula ψ is easy to write with first-order quantifica-
tions only. However, there is no monadic second-order sentence ϕ expressing
this property by bGc |= ϕ. The formal proof of this assertion (to be done in

41If e is an edge directed from u to v, then we say that u is its tail and that v is its head.
42By an MS2 formula, we mean a monadic second-order formula written with the binary

relation symbols in, in1, in2, intended to be interpreted in logical structures of the form
dGe. An MS1 formula is written with the binary relation symbol edg and is to be interpreted
in bGc.
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Chapter 5) is based on the observation that the complete bipartite graph Kn,m

has a perfect matching if and only if n = m, and on the theorem saying that no
monadic second-order formula can express that two sets have the same cardinal-
ity. It is easy to express that a given set of edges, say X, is a perfect matching,
and this is what formula ψ does. But one cannot replace “there exists a set
of edges satisfying ψ” by an MS formula without edge set quantification. The
property “G has a Hamiltonian cycle” can be expressed similarly by an MS for-
mula interpreted in dGe. The graphs Kn,m can be used as counter-examples, as
above for perfect matchings, to prove that this is not possible by an MS formula
over bGc.

It is clear that every MS1-expressible graph property is MS2-expressible.
Although some properties of simple graphs are MS2-expressible but not MS1-
expressible, MS2 formulas are in many cases no more expressive than MS1 for-
mulas.

Theorem 1.44 (Sparseness Theorem)
Let L be a set of simple graphs that are all, either planar, or of degree at most
k, or of tree-width at most k for some fixed k. Every MS2 sentence ϕ can be
translated into an MS1 sentence ψ such that for every graph G in L:

dGe |= ϕ if and only if bGc |= ψ.

�

This result actually extends to sets of uniformly sparse graphs, as we will
prove in Section 9.4.

1.8.2 Monadic second-order transductions over incidence
graphs

For expressing properties of graphs G, we can choose between the two represent-
ing relational structures bGc and dGe. For defining monadic second-order graph
transductions, we get thus four possibilities arising from two possible represen-
tations for the input as well as for the output. All examples of Section 1.7.1 use
the first representation for the input and the output. We give below examples
using dGe. We first fix some notation.

A graph transduction f is an MS i,j-transduction where i, j ∈ {1, 2}, if there
exists a monadic second-order transduction g such that (G,H) ∈ f if and only
if (S, T ) ∈ g where S is bGc if i = 1 and dGe if i = 2, and similarly, T is bHc if
j = 1 and dHe if j = 2. Hence the indices i and j indicate which representations
are used, respectively for the input and the output graphs.

It is clear that every MS1,j-transduction is also an MS2,j-transduction, be-
cause every MS1 formula can be rewritten into an equivalent MS2 formula.
Hence changing in this way 1 into 2 makes “easier” the task of writing formu-
las to specify a transduction. For the “output” side we get that every MSi,2-
transduction is an MSi,1-transduction, and not vice-versa as one might think,
because in the former case the transduction must define the edges (and not only
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the vertices) from elements of the input structure, either bGc or dGe. We have
the following inclusions of classes of monadic second-order transductions:

MS1,2 ⊆ MS1,1 ⊆ MS2,1

MS1,2 ⊆ MS2,2 ⊆ MS2,1.

We will give examples proving that these inclusions are proper, that MS1,1 and
MS2,2 are incomparable, that MS1,1 ∪MS2,2 is a proper subclass of MS2,1 and
that MS1,2 is a proper subclass of MS1,1 ∩MS2,2.

Example 1.45 (The line graph transduction)
The line graph Line(G) of an undirected graph G is the loop-free undirected

graph H such that VH = EG and e, f are adjacent vertices of H if and only if
they have at least one common vertex as edges of G. The mapping dGe → bHc
is an MS2,1-transduction with definition scheme 〈χ, δ, θedg〉 such that:

χ :⇐⇒ True,

δ(x) :⇐⇒ ∃z. in(x, z),

θedg(x, y) :⇐⇒ x 6= y ∧ ∃z(in(x, z) ∧ in(y, z)).

Could one use bGc instead of dGe for the input? The answer is no by
Fact 1.37 because for arbitrary graphs G, if H = Line(G) then we do not have
|DbHc| = O(|DbGc|) since DbHc = VH = EG and DbGc = VG.

Could one use dHe instead of bHc for the output? Again the answer is
no by a similar argument: if G = K1,n, then |DdGe| = 2n + 1, |VH | = n,
|EH | = n(n− 1)/2, hence |DdHe| = n(n+ 1)/2 and is not O(|DdGe|).

Hence the line graph transduction is neither in MS1,1 nor in MS2,2.

Example 1.46 (Transitive closure)
We have seen in Example 1.32 that the transitive closure : G 7→ G+ on

directed graphs is an MS1,1-transduction. It is not an MS2,2-transduction: con-
sider Qn, the directed path with n vertices. We have |DdQne| = 2n − 1 and
|DdQ+

n e| = n(n + 1)/2, hence we do not have |DdQ+
n e| = O(|DdQne|). Conse-

quently the transitive closure of directed graphs is not an MS2,2-transduction.

Example 1.47 (Edge subdivision)
For G simple, directed and loop-free, we let Sub(G) be the graph of the same

type such that:

VSub(G) := VG ∪ EG,
ESub(G) := {(u, e), (e, v) | (e, u) ∈ in1G, (e, v) ∈ in2G}.

This transformation, called edge subdivision consists in replacing directed edges
by directed paths of length 2. We have |VSub(G)| = |VG|+ |EG| and |ESub(G)| =
2|EG|. Edge subdivision is an MS2,2-transduction because the transformation of
dGe into dSub(G)e is a 3-copying monadic second-order transduction: a vertex
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v of G is made into a vertex (v, 1) of Sub(G), and an edge e linking u to v
is made into a vertex (e, 1) and into edges (e, 2) and (e, 3) of Sub(G) that link
respectively (u, 1) to (e, 1) and (e, 1) to (v, 1). Its definition scheme will be given
in Chapter 7 (Example 7.44). Since |VSub(G)| is not O(|VG|), edge subdivision
is not an MS1,1-transduction.

Example 1.48 (Identity)
The identity mapping is trivially an MS1,1- and an MS2,2-transduction, and

hence also an MS2,1-transduction. It is not an MS1,2-transduction, as a clear
consequence of Fact 1.37. However we have the following theorem which entails
Theorem 1.44 with the help of Theorem 1.40.

Theorem 1.49 On each set of simple graphs that are planar, or of degree at
most k, or of tree-width at most k for some fixed k, the identity is an MS1,2-
transduction. �

We conclude this discussion with a diagram (Table 1.1) relating the different
types of MS-transductions, where lines indicate strict inclusions from bottom-
up. All inclusions are clear from the definitions and the above observations.
That they are strict and that MS1,1 and MS2,2 are incomparable is proved by
Examples 1.45, 1.46, 1.47 and 1.48.

MS2,1

—

MS1,1 ∪MS2,2

— —
MS1,1 MS2,2

— —
MS1,1 ∩MS2,2

—

MS1,2

Table 1.1: The different classes of monadic second-order transductions.

The results in Section 1.7.3 are stated for MS1,1-transductions and the VR
algebra. There are analogous statements for MS2,2-transductions and the HR
algebra. We first observe a technical point: since the identity on trees or terms
is an MS1,2-transduction and since the composition of two MS-transductions is
an MS-transduction, a transduction from trees or terms to graphs is an MS1,j-
transduction if and only if it is an MS2,j-transduction. There are thus only two
types of transductions taking trees or terms as input to consider and we get the
following fully similar results:

Theorem 1.50 For every k, the mapping that associates with a term t in
T (FHR

[k] ) the s-graph tJS is an MS1,2-transduction. �
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Theorem 1.51 (Equationality Theorem for the HR algebra)
A set of graphs is HR-equational if and only if it is the image of the set of binary
rooted trees under an MS1,2-transduction. �

As in Section 1.7.3, this implies, using the closure of monadic second-order
transductions under composition (Theorem 1.39), that the image of an HR-
equational set under an MS2,2-transduction is again HR-equational (general-
izing the logical version of the Filtering Theorem for HR). Moreover, using
the Equationality Theorems for both the VR and the HR algebra, we obtain
that the image of an HR-equational set under an MS2,1-transduction is VR-
equational, and the image of a VR-equational set under an MS1,2-transduction
is HR-equational. Note that if f is an MSi,j-transduction and g is an MSj,k-
transduction (i, j, k = 1, 2), then their composition f ·g is an MSi,k-transduction.

Using Proposition 1.20, Theorem 1.51 implies the following corollary.

Corollary 1.52 A set of graphs has bounded tree-width if and only if it is in-
cluded in the image of the set of binary rooted trees under an MS1,2-transduction.
�

As for Theorem 1.42 and its corollary, both Theorem 1.51 and Corollary 1.52
hold with “the set of binary rooted trees” replaced by “the set of trees” or by
“T (F ) where F is any finite signature with at least one constant symbol and at
least one symbol of arity at least 2”. In these results, graphs are without ports
or sources in order to have simpler statements. Slightly more general results
will be stated in Chapter 7.

From Corollaries 1.52 and 1.43 we get the following corollary from which
quick proofs that certain sets of graphs have bounded or unbounded tree-width
or clique-width can be obtained.

Corollary 1.53

(1) The image of a set of graphs of bounded tree-width under an MS2,2-
transduction (resp. under an MS2,1-transduction) has bounded tree-width
(resp. bounded clique-width).

(2) The image of a set of graphs of bounded clique-width under an MS1,1-
transduction (resp. under an MS1,2-transduction) has bounded clique-
width (resp. bounded tree-width).

(3) A set of simple planar graphs or of simple graphs of bounded degree has
bounded tree-width if and only if it has bounded clique-width. �

Statements (1) and (2) follow from Corollaries 1.52 and 1.43, by Theorem 1.39.
Since all proofs are effective, the new bound can be computed from the given
bound and the definition scheme of the MS-transduction. Using again Theo-
rem 1.39, statement (3) follows from Theorem 1.49 and the fact that the identity
is an MS2,1-transduction (Example 1.48). We will give in Section 2.5.5 a proof
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of statement (3) that does not use transductions and gives a good estimate of
the bound on tree-width.

To conclude this section, let us stress the nice parallelism between two groups
of definitions:

(1) the VR algebra, clique-width and MS formulas, and

(2) the HR algebra, tree-width and MS2 formulas.

The Recognizability Theorem and the Equationality Theorem have fully anal-
ogous statements for both groups. Furthermore, the same graph theoretic con-
ditions, those of Theorem 1.44 (and more general ones), ensure the equivalence
of clique-width and tree-width, and simultaneously of MS and MS2 formulas.
The MS1,2- and MS2,1-transductions define “bridges” between the “world of
bounded clique-width” and that of “bounded tree-width”. The facts show how
intimate are the relationships between logical and combinatorial notions.

1.9 Relational structures

Terms, graphs, labelled graphs, hypergraphs of different types are, or rather can
be conveniently represented by relational structures. We have only seen up to
now relational structures with unary and binary relations, that correspond to
vertex- and edge-labelled graphs. However, many of our results can be proved
without any difficulty for general relational structures.

In order to illustrate the usefulness of relational structures in Discrete Math-
ematics, we will present the examples of betweenness relations and cyclic order-
ings, two combinatorial notions defined in a natural way as ternary relations.
Furthermore, in a different domain, the theory of relational databases is based
on the concept of relational structure (see the book by Abiteboul, Hull and
Vianu [*AbiHV]). However, our theory will not bring much to this field for
reasons that we will discuss briefly.

1.9.1 Relational signatures and structures

A relational signature (to be contrasted with the notion of a functional signature
defined in Section 1.1.4) is a finite set R of relation symbols where each symbol
R of R has an associated arity ρ(R) in N+ := N −{0}. A relational structure of
type R, called simply an R-structure, is a tuple S = 〈DS , (RS)R∈R〉 consisting
of a finite (possibly empty) domain DS and of a ρ(R)-ary relation43 RS for
each R ∈ R. The set of R-structures is denoted by STR(R). We let ρ(R) :=
max{ρ(R) | R ∈ R}. A signatureR (resp. anR-structure) is binary if ρ(R) ≤ 2.

Since every k-ary function can be considered as a (k+ 1)-ary relation, there
is no loss of generality in considering relational structures as opposed to more

43A k-ary relation can be defined as a subset of DkS or, equivalently, as a total function:

DkS → {True,False}.
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general logical structures containing also functions. Although a constant, i.e.,
a 0-ary function can be replaced by a (singleton) unary relation, it will be con-
venient (for instance for representing the sources of graphs) to allow constants.
However, in this introductory section, we will only consider relational structures
without constants.

Formulas are written with atomic formulas of the two forms x1 = x2 and
R(x1, . . . , xρ(R)) where x1, . . . , xρ(R) are individual variables. The notion of an
MS-expressible property of R-structures follows immediately. A subset L of
STR(R), the set of all R-structures, is MS-definable if it is the set of finite
models of a monadic second-order sentence ϕ, formally, if L = {S ∈ STR(R) |
S |= ϕ}.

For expressing graph properties by monadic second-order formulas, we have
defined two relational structures associated with a graph G, denoted by bGc
and dGe. We have observed that certain graph properties are monadic second-
order expressible via the “rich” representation dGe, but not via the “natural”
one bGc. The former properties are called MS2-expressible. A similar extension
of monadic second-order logic can be defined for relational structures. We let
RInc := R ∪ {ini | 1 ≤ i ≤ ρ(R)} with ρ(R) = 1 for R ∈ R and ρ(ini) = 2
for i = 1, . . . , ρ(R). The incidence structure of S = 〈DS , (RS)R∈R〉 is the
RInc-structure Inc(S) defined as

〈DS ∪ TS , (RInc(S))R∈R, in1 Inc(S), . . . , ink Inc(S)〉

where k := ρ(R) and:

TS := {(R, d1, . . . , dρ(R)) | R ∈ R, (d1, . . . , dρ(R)) ∈ RS},

RInc(S)(d) :⇐⇒ d = (R, d1, . . . , dρ(R)) ∈ TS for some d1, . . . , dρ(R) ∈ DS ,

ini Inc(S)(d, d
′) :⇐⇒ d ∈ TS , d′ ∈ DS and d = (R, d1, . . . , dρ(R)) for some

R ∈ R and d1, . . . , dρ(R) such that d′ = di.

It is clear that two R-structures S and S′ are isomorphic if and only if Inc(S)
and Inc(S′) are isomorphic. The incidence structure Inc(S) of S is actually a
vertex- and edge-labelled bipartite directed graph. Furthermore, each relation
ini Inc(S) is functional. A set of R-structures is MS2-definable if it is {S ∈
STR(R) | Inc(S) |= ϕ} for a monadic second-order sentence ϕ over the signature
RInc . As for graphs, we obtain the notion of an MS2-expressible property of
R-structures by replacing S by Inc(S).

Since the incidence structure of a relational structure is a labelled graph,
the results concerning MS2 formulas and labelled graphs of bounded tree-width
transfer easily to relational structures. It is not difficult to see that the identity
on incidence structures (of R-structures) is an MS1,2-transduction, which im-
plies that Inc(S) has the same MS2-expressible and MS1-expressible properties
(cf. Theorems 1.49 and 1.44).

We define twd Inc(S) := twd(Inc(S)) to be used as parameter. For each k,
we define STRk(R) as the class {S ∈ STR(R) | twd Inc(S) ≤ k} and we get the
following result.
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Theorem 1.54 Let R be a relational signature.

(1) The model-checking problem for CMS2 sentences and the class of R-
structures is fixed-parameter linear with respect to twd Inc(S) + |ϕ| where
S is the input structure and ϕ is the input sentence.

(2) For each k ∈ N , the CMS2-satisfiability problem for the class STRk(R)
is decidable.

(3) If a subset of STR(R) has a decidable MS2-satisfiability problem, then it
is contained in STRm(R) for some m. �

This theorem generalizes to R-structures the parts of Theorems 1.25, 1.26
and 1.29 that concern tree-width and CMS2-expressible graph properties. Es-
tablishing analogous results for CMS properties (as opposed to CMS2 proper-
ties) raises difficult open problems.

1.9.2 Betweenness and cyclic ordering

We now present the two combinatorial notions of betweenness and cyclic order-
ing that are naturally defined as ternary relations. They raise open questions
relative to monadic second-order expressibility. All results stated below will be
proved in Section 9.1.

With a finite linear order 〈D,≤〉 such that |D| ≥ 3 we associate the following
ternary relation, called its betweenness relation:

B(x, y, z) :⇐⇒ (x < y < z) ∨ (z < y < x)

(where x < y means “x ≤ y and x 6= y”). We denote it by B(≤). This relation
satisfies the following properties, for all x, y, z, t ∈ D:

(B1) B(x, y, z)⇒ x 6= y ∧ x 6= z ∧ y 6= z,

(B2) B(x, y, z)⇒ B(z, y, x),

(B3) B(x, y, z)⇒ ¬B(y, z, x),

(B4) B(x, y, z) ∧B(y, z, t)⇒ B(x, y, t) ∧B(x, z, t),

(B5) B(x, y, z) ∧B(y, t, z)⇒ B(x, y, t) ∧B(x, t, z),

(B6) x 6= y ∧ x 6= z ∧ y 6= z ⇒ B(x, y, z) ∨B(y, z, x) ∨B(z, x, y).

Conversely, if B is a ternary relation satisfying these properties, it is B(≤)
for some linear order on D, hence is a betweenness relation. A set X ⊆ D3

is consistent for betweenness if X ⊆ B for some betweenness relation B on D.
The problem Betweenness consisting in deciding whether a given set X ⊆ D3

is consistent for betweenness is NP-complete ([*GarJoh]).
If X is consistent for betweenness, we define

X̂ :=
⋂
{B | X ⊆ B, B is a betweenness relation}.
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The set X̂ satisfies properties (B1)-(B5). We say that X is a partial betweenness

relation on D if X̂ = X. These definitions raise the following open questions,
where a ternary relation X ⊆ D3 is identified with the R-structure 〈D,X〉 (for
some fixed singleton R):

Questions 1.55
(1) Is the set of relational structures {〈D,X〉 | X is consistent for betweenness}
MS-definable?
(2) Is the set of partial betweenness relations MS-definable?

For MS2 the answers to these questions are positive.

Proposition 1.56 The set of partial betweenness relations and the set of ternary
relations that are consistent for betweenness are MS2-definable. �

For X ⊆ D3, we define the size of 〈D,X〉 as |D| + |X| and twd Inc(X) as
the tree-width of the labelled graph Inc(〈D,X〉). From Proposition 1.56 and
Theorem 1.54(1) we immediately obtain the next result.

Corollary 1.57 The problem Betweenness is fixed-parameter linear with re-
spect to twd Inc . �

We now consider the similar notion of cyclic ordering. With a finite linear
order 〈D,≤〉 such that |D| ≥ 3, we associate the ternary relation:

C(x, y, z) :⇐⇒ (x < y < z) ∨ (y < z < x) ∨ (z < x < y).

Let D := {d1, . . . , dn} with d1 < d2 < · · · < dn where d1, . . . , dn are points
on a circle such that, according to some orientation of the plane, di+1 follows
di and d1 follows dn. Then C(x, y, z) expresses that, if one traverses the circle
according to this orientation by starting at x, one meets y before z. We denote
by C(≤) the ternary relation associated with ≤ in this way. A relation of this
form is a cyclic ordering. A cyclic ordering C satisfies the following properties,
for every x, y, z, t of its domain D:

(C1) C(x, y, z)⇒ x 6= y ∧ x 6= z ∧ y 6= z,

(C2) C(x, y, z)⇒ C(y, z, x),

(C3) C(x, y, z)⇒ ¬C(x, z, y),

(C4) C(x, y, z) ∧ C(y, t, z)⇒ C(x, y, t) ∧ C(x, t, z),

(C5) x 6= y ∧ y 6= z ∧ x 6= z ⇒ C(x, y, z) ∨ C(x, z, y).

Every ternary relation satisfying (C1)-(C5) is a cyclic ordering. A subset X of
D3 is consistent for cyclic ordering if X ⊆ C for some cyclic ordering on D.
The problem Cyclic Ordering that consists in deciding if a set X ⊆ D3 is
consistent for cyclic ordering is NP-complete ([GalMeg]).
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As for betweenness, for X ⊆ D3, we let X̂ be the intersection of all cyclic
orderings C on D such that X ⊆ C (and X̂ is undefined if X = ∅ or if there is
no cyclic ordering containing X). A partial cyclic ordering on a set D is defined

as a subset of D3 such that X̂ = X. For cyclic ordering, we have the same
results and open questions as for betweenness.

1.9.3 Relational databases

The theory of relational databases (exposed in the book [*AbiHV]) is based on
relational structures. In this theory, a relational signature R is called a database
schema, its elements are called relation schemas, and an R-structure is called a
database instance. A query is a syntactic or algorithmic description of a relation
with specified arity written in some query language and defined in terms of the
relations stored in the considered database instance. One concern is to compare
the expressive powers of several such languages. Another one is to construct
efficient algorithms for evaluating these relations, that is, to list their tuples or
sometimes, only to count them.

Theorem 1.54 yields linear-time algorithms for such computations (and for
fixed queries) in cases where the input structures are constrained to belong to
STRk(R) for some fixed k, or to satisfy some similar condition (e.g., for bi-
nary structures, to have bounded clique-width), and formulas are required to
be monadic second-order. In the case of databases, there is usually no reason
to assume that the relational structure modelling the database instance satisfies
such constraints. Constraints are rather put on the formulas expressing queries
in order to ensure the existence of efficient algorithms. These constraints are
formulated in terms of tree-width and hypertree-width of certain graphs associ-
ated with formulas: we refer the reader to the comprehensive article by Gottlob
et al. [GotLS]. Hence, the basic concepts of relational structures and logical
formulas are the same as in the algorithms of Section 1.5, but the methods for
constructing fixed-parameter tractable algorithms are not.

1.10 References

The collective book [*Com+] by Comon et al., readable online, is a thorough
study of finite automata on terms. Another reference is the book chapter
[*GecSte].

Graph grammars defined in terms of graph rewritings are surveyed in two
chapters ([*EngRoz, *DreKH]) of the first volume of the handbook of graph
grammars and graph transformations [*Roz] edited by Rozenberg. Another
similar survey is the book chapter [*Eng97]. Most of the material referred to in
Sections 1.1-1.8 is surveyed in [*Cou97], another chapter of [*Roz].

The books by Diestel [*Die] and by Mohar and Thomassen [*MohaTho]
are our main references for general graph theory and for graphs embedded on
surfaces respectively.
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The books by Downey and Fellows [*DowFel] and by Flum and Grohe
[*FluGro] present in detail the theory of fixed-parameter tractability and contain
important sections on tree-decompositions and their algorithmic applications.
The surveys by Grohe [*Gro] and by Kreutzer [*Kre] focus on algorithms for
problems expressed by first-order and monadic second-order sentences relative
to graphs that are structured in various ways.

One of our objectives is to extend to finite graphs the algebraic view of
Formal Language Theory initiated by Mezei and Wright [MezWri]. The least
fixed-point characterization of context-free languages due to Ginsburg and Rice
[GinRic] and to Chomsky and Schützenberger [ChoSch] has inspired the notion
of equational sets, defined in [MezWri]. This article extends to general algebras
the notion of recognizability studied for monoids by Eilenberg, Schützenberger
and many others: see the books by Eilenberg [*Eil] and Sakarovitch [*Sak].

Monadic second-order logic on words, terms and trees, either finite or infinite,
and its relationships with automata is a vast domain presented in the two book
chapters by Thomas [*Tho90] and [*Tho97a]. From this theory, we will only
use Theorem 1.16 by Doner [Don] and Thatcher and Wright [ThaWri] that
generalizes to terms the corresponding basic result established for words by
Büchi [Büc], Elgot [Elg] and Trakhtenbrot [Tra].

We will not study countable graphs and structures. For this rich topic we
refer the reader to the book chapters by Thomas [*Tho90] and [*Tho97a], and
to the books [*GräTW] and [*FluGräW].




