Solutions To Exercises

Chapter 3

Solution.
1. \(a = TC(a, 0) \subseteq TC(a) \).
2. If \(x \in y \subseteq TC(a) \), then, for some \(n \in \omega \), \(y \subseteq TC(a, n) \). Thus, \(x \notin \bigcup TC(a, n) = TC(a, S(n)) \subseteq TC(a) \).
3. Suppose \(b \supseteq a \) is transitive. Then \(a = TC(a, 0) \subseteq b \), and if for some \(n \), \(TC(a, n) \subseteq b \), then \(TC(a, Sn) = \bigcup TC(a, n) \subseteq b \subseteq b \). Thus, by induction on \(n \), \(TC(a, n) \subseteq b \) for all \(n \), and therefore \(TC(a) \subseteq b \).
4. \(\supseteq \): First, \(a \subseteq TC(a) \). Next, if \(b \subseteq a \), then \(b \subseteq TC(a) \) (since \(a \subseteq TC(a) \)) and \(TC(b) \subseteq TC(a) \) (by property 3).
\(\subseteq \): By property 3, it suffices to show that \(a \cup \bigcup_{b \in a} TC(b) \) is a transitive superset of \(a \). Transitivity: if \(x \in y \in a \cup \bigcup_{b \in a} TC(b) \), then \(y \in a \), or \(b \in a \) exists such that \(y \in TC(b) \). In the first case, \(x \in TC(y) \subseteq a \cup \bigcup_{b \in a} TC(b) \). In the second, \(x \in TC(b) \subseteq a \cup \bigcup_{b \in a} TC(b) \).

39 Show that \(x \in TC(a) \Leftrightarrow x \in a \).

Solution 1.
Define \(Rx y \equiv \text{def} x \in y \) and \(R' = \text{def} x \in TC(y) \). Now \(R \) and \(R' \) satisfy parts 1-3 of Lemma 3.21:
1. if \(a \subseteq b \), then \(a \subseteq TC(b) \), since \(b \subseteq TC(b) \).
2. if \(a \subseteq TC(b) \) and \(b \subseteq TC(c) \), then by transitivity of \(TC(c) \) we have that \(b \subseteq TC(c) \) and \(TC(b) \subseteq TC(c) \), and therefore \(a \subseteq TC(c) \).
3. Assume \(R \subseteq S \) and \(S \) is transitive. It suffices to show that for any \(b \), \(\{ x \mid xR' b \} \subseteq \{ x \mid xS b \} \). This follows from \(\{ x \mid xR' b \} = TC(b) \) and the observation that \(\{ x \mid xS b \} \) is a transitive set (since for all \(x, y \), if \(yS b \) and \(x \in y \), then \(xSy \) and \(xS b \)).
It follows that \(R' = R^* \).

Solution 2.
Define \(R_n \) by
\[
\text{def} \quad aR_n b \equiv \exists f \{ \text{Dom}(f) = n + 2 \land f(0) = a \land f(n + 1) = b \land \forall i < n + 1 (f(i)Rf(i + 1)) \}
\]
It can easily be seen that \(R_0 = R \), that for all \(a, b \) and \(n \), \(aR_{n+1} b \iff \exists c[aRc \land cR_n b] \), and that for all \(a \) and \(b \), \(aR^* b \iff \exists n \in \omega : aR_n b \). Now we can show by induction on \(n \) that for all \(n \), if and only if \(x \in TC(a, n) \).

If we assume that for a given \(n \) and \(a \) and for all \(y \), \(y \subseteq a \Leftrightarrow y \subseteq TC(a, n) \), then for all \(x \),
\[
\begin{align*}
0 \in a & \iff x \in a \iff x \in TC(a, 0) \\
\forall n (a \subseteq a) & \iff \exists y \{ x \in y \in a \} \iff \exists y \{ x \in y \in TC(a, n) \} \iff x \in \bigcup TC(a, n) = TC(a, n + 1)
\end{align*}
\]

Therefore \(x \in a \iff \exists x \in a \iff \exists x \in TC(a, n) \iff x \in TC(a) \).

43 \(\mathbb{Z} \) is the set of integers. Define \(H : \wp(\mathbb{Z}) \to \wp(\mathbb{Z}) \) by \(H(X) = \text{def} \{0\} \cup \{ S(x) \mid x \in X \} \). Identify the fixed points of \(H \).
Solution.

H is a finite operator, so $H| = \mathbb{N}$ is the least fixed point of H. For any fixed point K of H, by induction on n, $-1 \in K$ iff for all $n \in \omega$, $-(1+n) \in K$. It follows that the only other fixed point of H is \mathbb{Z}.

44 Prove Theorem 3.27.

Solution.

1. We prove the equivalent statement that for all n, m, $H[n] \subset H[(n+m)]$, by induction w.r.t. n:
 - Basis $n = 0$: $H[n] = \emptyset \subset H[(n+m)]$ is obvious.
 - Induction step: if $H[n] \subset H[(n+m)]$, then $H[(n+1)] = H(H[n]) \subset H(H[(n+m)]) = H[(n+1+m)]$.

2. Suppose that $H(X) \subset X$. By induction on n, it follows that $H[n] \subset X$:
 - Basis $n = 0$: $H[0] = \emptyset \subset X$ is obvious.
 - Induction step: if $H[n] \subset X$, then $H[(n+1)] = H(H[n]) \subset H(X) \subset X$.

3. If $Y \subset H[\omega] = \bigcup_n H[n]$ is finite, then n exists s.t. $Y \subset H[n]$: induction w.r.t. n of elements of Y.
 - Basis, $Y = \emptyset$. Then $Y \subset H[0]$.
 - Induction step. IH: for n-element Y, the statement holds. Now let $Y \subset \bigcup_n H[n]$ have $n+1$ elements. For instance, $Y = Y' \cup \{y\}$, where Y' has n elements. By IH, n_1 exists s.t. $Y \subset H[n_1]$. Furthermore, n_2 exists s.t. $y \in H[n_2]$. Let $m = \max(n_1, n_2)$. Then clearly (by 1), $Y \subset H[m]$.

4. $H(H[\omega]) \subset H[\omega]$:
 - Assume that $a \in H(H[\omega])$. By finiteness, a finite $Y \subset H[\omega]$ exists s.t. $a \in H(Y)$. By 3 we can assume that for some n, $Y \subset H[n]$. Then $a \in H(Y) \subset H(H[n]) = H[n] + 1 \subset H[\omega]$.

45 Let $A = \omega \cup \{\omega\}$ and define $H : \wp(A) \to \wp(A)$ by $H(X) = \{0\} \cup \{S(x) \mid x \in X\} \cap A$ if $\omega \not\subset X$, and $H(X) = A$ otherwise. Show: H is monotone, H is not finite, $H[A] = A$, $\forall n \in \omega \ H[n] = n$. Thus, $H[A] \neq \bigcup_n H[n]$.

Solution.

H is monotone: Let $X \subset Y \subset A$. If $\omega \subset Y$, then $H(X) \subset A = H(Y)$. Otherwise, $\omega \not\subset X, Y$, so $H(X) = \{0\} \cup \{S(x) \mid x \in X\} \subset \{0\} \cup \{S(x) \mid x \in X\} = H(Y)$.

H is not finite: Since $\omega \in H(\omega)$, and for all finite sets $X \subset \omega$, $\omega \not\subset H(X)$, we see that H is not finite.

For all n, $H[n] = n$, by induction on n: For $n = 0$, $H[0] = \emptyset = 0$. If $H[n] = n$, then $H[n+1] = H(H[n]) = H(n) = \{0\} \cup \{S(x) \mid x \in n\} = n+1$.

$H[A] = A$: Studying the proof of Theorem 3.24 it is apparent that $\bigcup_n H[n]$ is inductive even if H is not finite. So $\omega = \bigcup_n H[n] \subset H[\omega]$. Therefore $A = H(\omega) \subset H(H[\omega]) = H[\omega]$. We conclude that $H[A] = A$.

51 (Simultaneous inductive definitions.) Suppose that $\Pi, \Delta : \wp(A) \times \wp(A) \to \wp(A)$ are monotone operators in the sense that if $X, Y_1, X_2, Y_2 \subset A$ are such that $X_1 \subset X_2$ and $Y_1 \subset Y_2$, then $\Pi(X_1, Y_1) \subset \Pi(X_2, Y_2)$ (and similarly for Δ). Show that K, L exist such that

1. $\Pi(K, L) \subset K, \Delta(K, L) \subset L$; in fact, $\Pi(K, L) = K, \Delta(K, L) = L$.

2. if $\Pi(X, Y) \subset X$ and $\Delta(X, Y) \subset Y$, then $K \subset X$ and $L \subset Y$.

Show that, similarly, greatest (post-) fixed points exist. Generalize to more operators.

Solution.

Consider the operator $H : \wp(A \times A) \to \wp(A \times A)$ defined by $H(Z) = \Pi(\pi_1[Z], \pi_2[Z]) \times \Delta(\pi_1[Z], \pi_2[Z])$ (where, as usual, π_1 and π_2 denote the projection onto the first and second coordinates).

H is monotone: assume that $Z \subset Z' \subset (A \times A)$. Then $\pi_1[Z] \subset \pi_1[Z']$ and $\pi_2[Z] \subset \pi_2[Z']$. So by our assumption for Π, $\Pi(\pi_1[Z], \pi_2[Z]) \subset \Pi(\pi_1[Z'], \pi_2[Z'])$, and analogously for Δ. It follows that $H(Z) \subset H(Z')$.

Since H is monotone, it has a least fixed point $H[\|]$. Setting $K = \pi_1[H[\|]], L = \pi_2[H[\|]]$, we have that $H[\|] = H(H[\|]) = \Pi(K, L) \times \Delta(K, L)$, so $K = \pi_1[H[\|]] = \Pi(K, L)$ and $L = \pi_2[H[\|]] = \Delta(K, L)$ (and $H[\|] = K \times L$).

For the second part, assume that for $X, Y \subset A$, $\Pi(X, Y) \subset X$ and $\Delta(X, Y) \subset Y$. Then $H(X \times Y) = \Pi(X, Y) \times \Delta(X, Y) \subset X \times Y$, and hence $K \times L = H[\|] \subset X \times Y$. Therefore $K \subset X$ and $L \subset Y$.
