
Emile 4.1.7
User Guide

Marco Vervoort

email: vervoort@wins.uva.nl

Universiteit van Amsterdam

Faculteit der Wiskunde en Informatica,

Natuurkunde en Sterrenkunde

Plantage Muidergracht 24

1018 TV Amsterdam

Last update: March 18, 2004

Contents

1 The Basics of EMILE 7
1.1 Introduction . 7
1.2 Definitions . 8

2 The Workings of EMILE 11
2.1 1-dimensional clustering . 11
2.2 2-dimensional clustering . 12
2.3 Allowing for imperfect data . 14
2.4 Characteristic, characteristic∗ and secondary expressions and con-

texts . 15
2.5 Finding rules . 17
2.6 Negative Samples . 18
2.7 Future Developments . 19

3 Using EMILE 21
3.1 Emile’s command line interpreter 21
3.2 Startup command line options . 22
3.3 Executing Emile commands from a script 23
3.4 Example of usage . 23
3.5 Common Files used with EMILE 26

A Installing EMILE 29

B Emile commands 31
B.1 Overview of commands . 31
B.2 The clear command . 32
B.3 The compile command . 32
B.4 The exit command . 33
B.5 The generate command . 33
B.6 The help command . 34
B.7 The learn command . 35
B.8 The learn-phrase command . 35
B.9 The load command . 36
B.10 The parse command . 36

3

B.11 The parse-phrase command . 36
B.12 The parse-type command . 37
B.13 The quiet command . 37
B.14 The save command . 38
B.15 The script command . 38
B.16 The set command . 38
B.17 The shell command . 39
B.18 The show command . 39
B.19 The unlearn command . 42
B.20 The unlearn-phrase command 42
B.21 The verbose command . 42
B.22 The version command . 43

C The Algorithms of EMILE 45
C.1 Gathering context/expression pairs. 45
C.2 Extracting the grammatical types from the matrix 47
C.3 Eliminating superfluous types . 50
C.4 Identifying characteristic, secondary and negative contexts and

expressions . 51
C.5 Deriving grammatical rules . 54
C.6 Short-circuiting superfluous types 57
C.7 Parsing a sentence . 58

D The Settings of EMILE 61
D.1 Overview of settings . 61
D.2 The allow multi line sentences setting 63
D.3 The context support percentage setting 63
D.4 The database filename setting 64
D.5 The end of sentence markers setting 64
D.6 The end of sentence regular expression setting 65
D.7 The expression support percentage setting 66
D.8 The ignore abbreviation periods setting 67
D.9 The maximum primary context length setting 67
D.10 The maximum primary expression length setting 68
D.11 The maximum sentence length setting 68
D.12 The minimum contexts per type setting 69
D.13 The minimum expressions per type setting 70
D.14 The negative entry support multiplier setting 70
D.15 The parser tolerance setting 71
D.16 The random seed setting . 71
D.17 The rsp for no characteristics setting 72
D.18 The rule support percentage setting 72
D.19 The ruleset increase disallowed setting 73
D.20 The save in ascii format setting 74
D.21 The scsp for no characteristics setting 74
D.22 The secondary context support percentage setting 75

D.23 The secondary expression support percentage setting 76
D.24 The sesp for no characteristics percentage setting 77
D.25 The support setting . 77
D.26 The total support percentage setting 78
D.27 The type usefulness required setting 79
D.28 The use multiplicities setting 79
D.29 The verbosity level setting . 80
D.30 The word regular expression setting 81

E Table of Symbols 83

Bibliography 85

The EMILE Manual 7

Chapter 1

The Basics of EMILE

1.1 Introduction

Human being are remarkably good in working with natural languages. Even if
someone has no knowledge of the formal structure of a language, he or she will
be able to tell when ‘something’ is like ‘something else’. For instance, Lewis
Caroll’s famous poem ‘Jabberwocky’ starts with

’Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
All mimsy were the borogoves
and the mome raths outgrabe.

Even without Humpty Dumpty’s annotations, it is immediately obvious what
the syntactic structure of the first sentence is: ‘brillig’ and ‘slithy’ are adjectives,
‘toves’ is a noun, ‘gyre’ and ‘gimble’ are verbs, etcetera.
So how do we know such things? The short answer is ‘from context’. When
a sentence starts with ‘ ’Twas’, we are not surprised if the next word is an
adjective. Similarly, if a sentence has the pattern ‘the (.) did (.) and (.) in the
(.)’, we expect the missing phrases to be a noun-phrase, two verb-phrases and
another noun-phrase, respectively.
The notion of grammatical type has many possible definitions. For instance, if
we had a context-free grammar of a language, we can view each non-terminal
symbol as a grammatical type. In general, one of the properties of a grammatical
type is, that wherever some expression is used as an expression of that type,
other expressions of that type can be substituted without making the sentence
ungrammatical. This gives rise to a notion of a grammatical type as a set of
expressions together with a set of contexts. For instance, the type ‘noun-phrase’
could be represented by the set of all noun-phrases, together with the set of all
contexts in which a noun-phrase can appear. Combining any of the expressions
of a type with any of the contexts will yield a grammatical sentence. Many of
these combinations of contexts and expressions, and especially the short ones
(in terms of number of words), are likely to appear in actual texts.

8 The Basics of EMILE

In this terminology, we can describe the above phenomenon, as the existence of
contexts which are characteristic for a type, meaning that whenever something
appears in that context, we assume it also belongs to that type. Some types
may also have characteristic expressions, with the analogous property. It has
been conjectured that for any grammatical type in a natural language, the type
will have both characteristic contexts and expressions, and furthermore some of
these will be relatively short.
EMILE1 4.1 is a program based on the above concepts. It attempts to learn the
grammatical structure of a language from sentences of that language, without
being given any prior knowledge of the grammar. For any type in any valid
grammar for the language, we can expect context/expression combinations to
show up in a sufficiently large sample of sentences of the language. EMILE
searches for such clusters of expressions and contexts in the sample, initially
confining itself to expressions and contexts that are relatively short. and inter-
prets them as grammatical types. It then tries to find characteristic contexts
and expressions, and uses them to extend the types to include longer expressions
and contexts. Finally, it formulates derivation rules based on the types found,
in the manner of the rules of a context-free grammar. The program can present
the grammatical structure found in several ways, as well as use it to parse other
sentences or generate new ones.
The theoretical concepts used in EMILE 4.1 are elaborated on in P. Adriaans’
articles on EMILE 1.0/2.0 [1] and EMILE 3.0 [2]. in these chapters we will
focus on the practical aspects. Note that although EMILE 4.1 is based on the
same theoretical concepts as EMILE 3.0, it is not based on the same algorithm.
More information on the precursors of EMILE 4.1 may be found in the above
articles, as well as in the E. Dörnenburg’s Master’s Thesis[4].

1.2 Definitions

The three most basic concepts in EMILE are contexts, expressions and con-
text/expression pairs.

Definition 1.2.1 A context/expression pair is a sentence split into three parts,
for instance

John (makes) tea

Here, ‘makes’ is called an expression, and ‘John (.) tea’ is called a context (with
left-hand side ‘John’ and right-hand side ‘tea’).

Definition 1.2.2 We say that an expression e appears with a context c, or that
the context/expression pair (c, e) has been encountered, if cl̂êcr appears as
a sentence in a text, where cl and cr are the left-hand side and the right-hand
side of c, respectively, and âb denotes the concatenation of a and b.

1EMILE 4.1 is a successor to EMILE 3.0, written by P. Adriaans. The original acronym
stands for Entity Modeling Intelligent Learning Engine. It refers to earlier versions of EMILE
that also had semantic capacities. The name EMILE is also motivated by the book on edu-
cation by J.-J. Rousseau.

The EMILE Manual 9

Remark 1.2.3 Context/expression pairs are not always sensible, as for in-
stance in the sentence

John (drinks coffee, and Mary drinks) tea

where the expression ‘drinks coffee, and Mary drinks’ appears in the context
‘John (.) tea’. EMILE will find such context/expression pairs and attempt to
use them in the grammar induction process, But such pairs are usually isolated,
i.e. they are not part of any significant clusters. So EMILE will fail to make
use of them, and they will be effectively ignored.

As stated before, we view grammatical types in terms of the expressions that
belong to that type, and the contexts in which they can appear (as expressions
of that type). As such, we define grammatical types as follows:

Definition 1.2.4 In the context of this paper, a grammatical type T is defined
as a pair (TC , TE), where TC is a set of contexts, and TE is a set of expressions.
Elements of TC and TE are called primary contexts and expressions for T .

The intended meaning of this definition is, that all expressions of a type can
appear with all of its the contexts.
In natural languages, the type of an expression is not always unambiguous. For
instance, the word ‘walk’ can be both a noun and a verb. Hence ‘walk’ will not
only appear in contexts for noun-phrases, but also in contexts for verb-phrases.
The same does not hold for the phrase ‘thing’: ‘thing’ only appears in contexts
for noun-phrases, and in any such context, any noun can be substituted for
‘thing’ without making the sentence ungrammatical. We say that ‘thing’ is
characteristic for the type ‘noun’. Formally,

Definition 1.2.5 An expression of a type T is characteristic for T if it only
appears with contexts of type T . Similarly, a context of a type T is characteristic
for T if it only appears with expressions of type T .2

Note that a context may have more than one type, so a context appearing
with a expression characteristic for a type T may be of other types in addition
to being of type T . For instance, ‘a thing’ is a characteristic expression for
the grammatical type of noun-with-particle-phrases, but it can occur in the
context ‘This is (.)’, which is a context for both noun-with-particle-phrases and
adjectives.
In these chapters, we will also use characteristic∗ and secondary expressions and
contexts. However, as these definitions are rather dependent on the algorithms,
they will be delayed until section 2.4. That section also has several examples of
characteristic expressions and contexts.

Notation For any type T , TE , T ch
E , T ∗

E and T se
C denote the sets of primary,

characteristic, characteristic∗ and secondary expressions of T , and TC , T ch
C , T ∗

C

and T se
C denote the corresponding sets of contexts.

2EMILE changes this definition slightly in implementation, in that contexts and expres-
sions which have been assigned no type at all are completely ignored, i.e. an expression is
characteristic if all contexts with which it appears are of type T , or untyped.

10 The Basics of EMILE

The EMILE program also attempts to transform the collection of grammatical
types found into a context-free grammar consisting of derivation rules. Such
rules generally are of the form

[T]⇒ s0[T1]s1[T2] . . . [Tk]sk

where T, T1, T2, . . . , Tk are grammatical types, and s0, s1, . . . , sk are (possibly
empty) sequences of words. Given a rule with left-hand side [T], and a sequence
of word-sequences and grammatical types containing [T], that appearance of [T]
can be replaced by the right-hand side of the rule, (concatenating adjacent word-
sequences as necessary). Any sequence which can be obtained from another
sequence by such rule applications, is said to be derivable from that sequence.
The language of a context-free grammar consists of those word-sequences e such
that [0]⇒ e is derivable, where [0] denotes the type of whole sentences.

The EMILE Manual 11

Chapter 2

The Workings of EMILE

This chapter attempts to give some insight into the reasoning underlying the
algorithms of EMILE. We will start with a very simple version of the basic
algorithm, and in several steps change it to the full algorithm, at each step
elaborating on the motivations for the change.

2.1 1-dimensional clustering

Given a sample of sentences, we want to obtain sets of expressions and con-
texts that correspond to grammatical types. A simple clustering technique is
to extract all possible context/expression combinations from a given sample of
sentences, and group together expressions that appear with the same context.

Example 2.1.1 If we take the sample sentences ‘John makes tea’ and ‘John
likes tea’, we get the following context/expression matrix :

(.) John John (.) John (.) (,) John
makes (.) makes tea (.) likes likes
tea tea (.) tea (.)

John x x
makes x
tea x x
John makes x
makes tea x
John makes tea x
likes x
John likes x
likes tea x
John likes tea x

12 The Workings of EMILE

from which we can obtain the clusters

[‘John (.) tea’, {‘makes’, ‘likes’}]
[‘(.) tea’, {‘John makes’, ‘John likes’}]
[‘John (.)’, {‘makes tea’, ‘likes tea’}]

[‘(.)’, {‘John makes tea’, ‘John likes tea’}]

Next, we can group contexts together if they appear with exactly the same
expressions.

Example 2.1.2 If we add the sentences ‘John makes coffee’, ‘John likes coffee’
to the previous sample, the relevant part of the context/expression matrix looks
like

John John John John
(.) (.) makes likes
tea coffee (.) (.)

makes x x
likes x x
tea x x
coffee x x

which yields the clusters

[{‘John (.) tea’, ‘John (.) coffee’}, {‘makes’, ‘likes’}]
[{‘John makes (.)’, ‘John likes (.)’}, {‘tea’, ‘coffee’}]

As stated before, a grammatical type can be characterized by the expressions
that are of that type, and the contexts in which expressions of that type appear.
Hence the clusters we find here can be interpreted as grammatical types. For
instance, the clusters in the above example could be said to correspond to the
grammatical types of ‘verbs’ and ‘nouns’, respectively.

2.2 2-dimensional clustering

One of the flaws in this technique is that it doesn’t properly handle contexts
whose type is ambiguous.

Example 2.2.1 If we add the sentences ‘John likes eating’ and ‘John is eating’
to the previous example, the relevant part of the context/expression matrix will
look like this:

John John John John John John
(.) (.) (.) makes likes is
tea coffee eating (.) (.) (.)

makes x x
likes x x x
is x
tea x x
coffee x x
eating x x

The EMILE Manual 13

Here we can intuitively identify four grammatical types: noun-phrases, verb-
phrases, ‘ing’-phrases, and ‘verbs-that-appear-with-ing-phrases’-phrases. The
context ‘John likes (.)’ is ambiguous, in the sense that it appears with both
noun-phrases and ‘ing’-phrases. If we proceed as before, we get the following
clusters

[{‘John (.) tea’, ‘John (.) coffee’}, {‘makes’, ‘likes’}]
[{‘John (.) eating’}, {‘likes’, ‘is’}]

[{‘John makes (.)’}, {‘tea’, ‘coffee’}]
[{‘John likes (.)’}, {‘tea’, ‘coffee’, ‘eating’}]

[{‘John is (.)’}, {‘eating’}]

i.e. the context ‘John likes (.)’ is assigned a separate type.

Assigning ambiguous contexts a separate type not only results in a less natural
representation, in a later step it will prevent us from correctly identifying the
characteristic expressions of a type (as will be demonstrated in Example 2.4.4).
A more natural representation would be to allow ambiguous contexts and expres-
sions to belong to multiple types. For this, we need to use a different clustering
method. The clustering method EMILE uses is to search for maximum-sized
blocks in the matrix. This could be termed 2-dimensional clustering.

Example 2.2.2 The following picture shows the matrix of the previous exam-
ple, with the maximum-sized blocks indicated by rectangles.1

John John John John John John
(.) (.) (.) makes likes is
tea coffee eating (.) (.) (.)

makes x x
likes x x x
is x
eating x x

tea x x
coffee x x

These blocks correspond to the clusters

[{‘John (.) tea’, ‘John (.) coffee’}, {‘makes’, ‘likes’}]
[{‘John (.) eating’}, {‘likes’, ‘is’}]

[{‘John makes (.)’, ‘John likes (.)’}, {‘tea’, ‘coffee’}]
[{‘John is (.)’, ‘John likes (.)’}, {‘eating’}]

[{‘John (.) tea’, ‘John (.) coffee’, ‘John (.) eating’}, {‘likes’}]
[{‘John likes (.)’}, {‘eating’, ‘tea’, ‘coffee’}]

The last two clusters correspond to sets of context/expression pairs which are
already ‘covered’ by the other blocks. In a sense these blocks are superfluous.

1Please note that the expressions and contexts have been arranged to allow the blocks to
be easily indicated: in general, blocks will not consist of adjacent context/expression pairs.

14 The Workings of EMILE

The algorithm to find these blocks is very simple: starting from a single con-
text/expression pair, EMILE randomly adds contexts and expressions while
ensuring that the resulting block is still contained in the matrix, and keeps
adding contexts and expressions until the block can no longer be enlarged. This
is done for each context/expression pair that is not already contained in some
block. Once all context/expression pairs have been ‘covered’, the superfluous
blocks (those completely covered by other blocks) are discarded.

2.3 Allowing for imperfect data

In the previous section, the requirement for a block was that it was entirely
contained within the matrix, i.e. the clustering algorithm did not find a type
unless every possible combination of contexts and expressions of that type had
actually been encountered and stored in the matrix. This only works if a perfect
sample has been provided. In practical use, we need to allow for imperfect
samples. There are many context/expression combinations, such as for instance
‘John likes evaporating’, which are grammatical but nevertheless will appear
infrequently, if ever.
To allow EMILE to be used with imperfect samples, two enhancements have
been made to the algorithm. First, the requirement that the block is com-
pletely contained in the matrix, is weakened to a requirement that the block is
mostly contained in the matrix. Specifically, a certain percentage of the con-
text/expression pairs of the block as a whole should be contained in the matrix,
as well as a certain percentage of the context/expression pairs in each individual
row or column. We can express this as

#(M ∩ (TC×TE)) ≥ #(TC × TE) · total support%

∀c ∈ TC : #(M ∩ ({c}×TE)) ≥ #TE · context support%

∀e ∈ TE : #(M ∩ (TC×{e})) ≥ #TC · expression support%

where M is the set of all encountered context/expression pairs, and the values
XXX support% are constants that can be set by the user.

Example 2.3.1 Suppose that the matrix of context/expression pairs EMILE
has encountered has the following sub-matrix:

John John John John
makes likes drinks buys
(.) (.) (.) (.)

tea x x x x
coffee x x x x
lemonade x x x
soup x x x x
apples x

If the settings context support% and expression support% have been set to
75%, and total support% has been set to 80%, then the type represented by

The EMILE Manual 15

the cluster

[
{‘John makes (.)’, ‘John likes (.)’, ‘John drinks (.)’, ‘John buys (.)’},

{‘tea’, ‘coffee’, ‘lemonade’, ‘soup’}

]

will be identified, in spite of the fact that one of the context/expression pair of
the block, (‘John buys (.)’, ‘lemonade’), does not appear in the matrix. However,
the expression ‘apples’ will not be added to the above type, since it appears with
less than expression support% of the contexts.

Secondly, note that of the different expressions and contexts belonging to a
grammatical type, it can be expected that the short and medium-length ones
(in terms of number of words) will be encountered more often than the long
ones. In other words, if we restrict the sample to short and medium-length
contexts and expressions, it will be closer to a perfect sample. Implementing
this notion, EMILE initially uses only short and medium-length contexts and
expressions when searching for grammatical types.

Definition 2.3.2 The contexts and expressions EMILE finds for a type T in
the initial clustering algorithm are called the primary contexts and expressions
of T .

2.4 Characteristic, characteristic∗ and secondary

expressions and contexts

To search for longer expressions and contexts associated with types, EMILE uses
characteristic expressions and contexts. We repeat the definition from chapter
1:

Definition 2.4.1 [1.2.5] An expression of a type T is characteristic for T if
it only appears with contexts of type T . Similarly, a context of a type T is
characteristic for T if it only appears with expressions of type T .2

Occasionally, a type has no characteristic expressions (due to imperfections in
the sample or the inherent ambiguity of the type): in such cases, the primary
expressions of the type are used in place of the characteristic expressions. We
call these the characteristic* expressions of T , i.e.

Definition 2.4.2 An expression of a type T is characteristic* for T if it is a
characteristic expression for T , or if it is a primary expression for T and T has
no characteristic expressions.

2Since the types involved usually have not been fully identified yet, EMILE changes this
definition slightly in implementation, in that contexts and expressions which have been as-
signed no type at all are completely ignored, i.e. an expression is characteristic if all contexts
with which it appears are of type T , or untyped.

16 The Workings of EMILE

the characteristic* expressions of T are defined as the characteristic expressions
of T if there are any, and as the primary expressions of T otherwise.
The definitions of characteristic and characteristic∗ contexts of a type T are
analogous.
Any untyped context appearing with an characteristic expression of a type T is
likely to belong to T as well. Contexts which appear with (a certain percentage
of the) characteristic∗ expressions of T are called secondary contexts of T , as
opposed to the primary contexts found by the clustering algorithm. Analogous
for secondary expressions. Note that the constraint on the length of primary
contexts and expressions does not apply to secondary contexts and expressions,
and hence this allows for long contexts and expressions to be associated with
types.

Example 2.4.3 In the previous example, for the type represented by the cluster

[{‘John likes (.)’}, {‘eating’, ‘tea’, ‘coffee’}]

‘John likes (.)’ only appears with ‘eating’, ‘tea’ and ‘coffee’, so it is a characteris-
tic (and hence characteristic∗) context for this type. The expression ‘eating’ also
appears with the context ‘John is (.)’, so it is not a characteristic expression. A
similar condition obtains for ‘tea’ and ‘coffee’, so the type has no characteristic
expressions at all. Consequentially, its primary expressions ‘eating’, ‘tea’ and
‘coffee’ are also its characteristic∗ expressions.
For the type represented by the cluster

[{‘John makes (.)’, ‘John likes (.)’}, {‘tea’, ‘coffee’}]

all its expressions and contexts are characteristic.

Example 2.4.4 In Example 2.2.1, we used 1-dimensional clustering to obtain
the cluster

[{‘John makes (.)’}, {‘tea’, ‘coffee’}]

Here, ‘tea’ and ‘coffee’ are not characteristic expressions, since they appear with
the context ‘John likes (.)’, which here is not a context belonging to the type.
So the type has no characteristic expressions. It is easy to see that when using
1-dimensional clustering, whenever a context is ambiguous3, all types involved
will lack characteristic expressions.

Example 2.4.5 Assume that primary expressions are constrained to be at most
5 words long. If we add the sentence ‘John makes really really really really strong
coffee’ to the sample of the previous example, then the expression ‘really really
really really strong coffee’ will not be added as a primary expression to the type
represented by the cluster

[{‘John makes (.)’, ‘John likes (.)’}, {‘tea’, ‘coffee’}]

3‘Ambiguous’ in the sense that the set of expressions it appears with is the union of several
smaller sets associated with other contexts

The EMILE Manual 17

However, since ‘John makes (.)’ is a characteristic expression of this type, the
expression ‘really really really really strong coffee’ will be associated with the
type as a secondary expression.

2.5 Finding rules

The EMILE program also transforms the grammatical types found into deriva-
tion rules. For reasons of simplicity, EMILE constructs a context-free grammar
rather than a context-sensitive grammar. For this construction, only the sets of
expressions associated with the types are needed: the sets of contexts associated
with the types are not used in creating the derivation rules.

First, EMILE searches for rules that are supported. Obviously, if an expression
e belongs to a type T (as a secondary expression), the rule

[T]⇒ e

is supported. EMILE finds more complex rules, by searching for characteristic∗

expressions of one type that appear in the secondary expressions of another (or
the same) type. For example, if the characteristic∗ expressions of a type T are

{dog, cat, gerbil}

and the type [0] contains the secondary expressions

{I feed my dog, I feed my cat, I feed my gerbil}

then EMILE will find the rule

[0]⇒ I feed my [T]

This process of abstraction is repeated to obtain more abstract rules. Formally,
a rule R is considered to be supported if it is of the form [T]⇒ e (with e being
a secondary expression of T), or if it is of the form [T] ⇒ s0[T1]s1[T2] . . . sk,
k ≥ 1, and for some i ∈ {1, . . . , k},

#{e∈T ∗
E | R with [Ti] replaced by e is supported} ≥ #T ∗

E · rule support%

(2.1)

In certain cases, using characteristic∗ and secondary expressions in this manner
allows EMILE to find recursive rules. For instance, a characteristic∗ expression
of the type of sentences S might be

Mary drinks tea

If the maximum length for primary expressions is set to 4 or 5, the sentence

John observes that Mary drinks tea

18 The Workings of EMILE

will be a secondary expression of S, but not a primary or characteristic one. So
if there are no other expressions involved, EMILE would derive the rules

[S] ⇒ Mary drinks tea
[S] ⇒ John observes that [S]

which would allow the resulting grammar to generate, for instance,

John observes that John observes that John observes that Mary drinks tea

EMILE creates a set of supported rules capable of generating all sentences in
the original sample. To reduce the size of this grammar, the program discards
from the final output rules which are superfluous, such as rules which are in-
stantiations of other rules4, and rules for types which aren’t referred to in other
rules.
Experiments showed that often, EMILE finds several types which where only
slight variations of one another. If all these types are referred to in the rules, this
results in a much larger ruleset than is necessary. The most recent incarnation
of EMILE tries to prevent this by being actively conservative in the number of
types used: a set of used types is maintained, and only rules using those types
are considered for inclusion. This set initially contains only the whole-sentence
type [0], and types are added only if this would result in a decrease in the size
of the total ruleset.5

2.6 Negative Samples

Although EMILE can work with imperfect samples by reducing the support
required for grammatical types, there are limits to what can be achieved in this
fashion. If we lower the required support too much, EMILE will ‘overgeneralize’,
attempt to interpolate patterns which do not exist. On the other hand, if the
required support is too high, the sample required to achieve satisfactory results
will be rather large, in relation to the underlying grammar of the language.
One way of improving this is by extending the algorithm to allow it to handle
negative samples, i.e. samples of sentences which are known to be not grammat-
ical. If we could explicitly tell EMILE that the overgeneralizations it finds are
not grammatically correct, then we could safely use EMILE with low required
support settings.
The current implementation of EMILE contains some basic functionality for
this. Sentences can be learned as part of a ’negative sample’, and the resulting
context/expression-pairs contribute negatively to the support of any grammati-
cal type containing them. This will cause EMILE to try to find types which do
not contain these context/expression pairs.

4I.e. which can be obtained from other rules by replacing a type reference by a secondary
expression of that type

5EMILE can also be set to allow a small increase: this often results in a more meaningful
grammar at the expense of a slightly larger ruleset.

The EMILE Manual 19

Samples of non-grammatical sentences usually have to be generated on purpose.
Since they are mostly used to mark sentences ungrammatical which otherwise
would have been considered grammatical, samples of arbitrary non-grammatical
sentences, on average, contain less useful information. Because of this, the cur-
rent implementation of EMILE is able to list sentences whose ‘assumed’ gram-
maticality is the most tenuous, corresponding to context/expression pairs for
types with very tentative support. This allows for a more ‘directed’ generation
of negative samples, by an external program or ‘oracle’.

2.7 Future Developments

There is still a lot of room for improvement. At the moment, the immediate
efforts concentrate on experimenting with the various control parameters of
EMILE, gauging their effect and their interactions. Of course, to accurately
compare different parameter settings, an objective measurement of the results
is necessary. Currently, we measure results by running EMILE on a sample text
for which we have an annotated parsing available, and comparing that parsing
to EMILE’s parsing using the EVALB bracket scoring program.
EMILE has some basic interactive facilities: it can generate a list of sentences
which it assumes to be grammatical but is not sure about, which could be
inspected by a human operator or some other ‘oracle’ and fed back to EMILE
as a positive or negative sample to learn. This functionality could be improved.
For instance, at this moment EMILE can make temporary type assignments ‘on
the fly’ when parsing sentences with unknown words: creating an interactive
interface for this would allow for a very natural way of ‘teaching’ EMILE a
better grammar.
A possible extension of EMILE is to the algorithm constructing the derivation-
rule grammars. Currently EMILE constructs a context-free grammar. It may
be possible to adapt EMILE to produce a more sensible context-sensitive gram-
mars, using the sets of contexts produced by the clustering algorithm.
The EMILE program has some superficial similarities to another grammar-
analyzing program called ABL6 written by Menno van Zaanen[6, 7, 8, 9]. The
latter uses a completely different algorithm to achieve its results, however. Pos-
sibly, the two algorithms could be merged, each complementing the other.

6Alignment-Based Learning

20 The Workings of EMILE

The EMILE Manual 21

Chapter 3

Using EMILE

There are three ways to use Emile: by using the interactive command line
interpreter, by starting the program with command line arguments, or by giving
it commands in a script. All three are described below.

3.1 Emile’s command line interpreter

The easiest way to use the Emile program is to start the program without
any command line arguments, wait until the prompt > appears, and then type
in EMILE commands from the terminal. Emile’s interactive command line
interpreter has the following features:

• A command can be spread over multiple lines. All lines except the last
should end with a backslash (\) to indicate that the command continues
on the next line, and Emile should not execute the command(s) yet.

• A line may contain multiple commands, separated by semicolons (;).

• Output may be redirected to a file by appending ‘> filename’ or ‘>>
filename’ to a command (the second form appends the output to a file
rather than overwriting it). Appending ‘| programname’ to a command
will redirect the output to an external program. For instance, you may
wish to append ‘| more:’ to a command to redirect output to the ‘more’
program and thus allow you to page through it.

• Spaces normally separate command arguments. However, command argu-
ments may contain spaces, semicolons, or other special symbols by either
putting backslashes before all special symbols, or by enclosing the com-
mand argument in single (’) or double (”) quotes.

• If the Gnu Readline library is installed on your system, you may use
the Tab-key for command completion, i.e. if you press the TAB key, the
EMILE program will attempt to complete the current command name,

22 Using EMILE

variable name or filename argument, and display a list of possible contin-
uations (if appropriate).

• If the Gnu Readline library is installed on your system, all commands
are stored in a history buffer, and you may call up previous commands by
pressing the Arrow-up and Arrow-down keys.

• The Emile command line interpreter uses fuzzy patterns to allow it to
recognize abbreviations of command names and options.

3.2 Startup command line options

Emile can be started with the following command line options:

-d file

--database file

start with the specified file for storing and retrieving grammar data. If
this option is not specified, EMILE uses the file grammar.dat as the the
default file for storing and retrieving its grammar data.

-v [n]

--verbose [n]

start at verbosity level n (default: 2). Higher verbosity levels give more
information about intermediate stages of computation.

-q

--quiet

start at verbosity level 0, which disables most command logging.

-h

--help

print a help screen and exit

-V

--version

print the version of the program and exit

The long versions of the options are only available if the Gnu Getopt library is
installed on your system.
If there are any other startup command line arguments, Emile will interpret
them as Emile commands and execute them (instead of starting the interactive
command line interpreter). So for instance, by typing

emile parse mysentences.txt

The EMILE Manual 23

at the shell prompt, you cause Emile to parse your sentences without having to
enter an interactive session with Emile. This can be useful in shell scripts and
the like.

3.3 Executing Emile commands from a script

Although it is possible to have Emile execute an entire series of commands as
command line arguments to the program invocation, this is not really conve-
nient. A much better way is to put the commands in a script, and execute it
by giving the ‘script’ command, either as a startup command line argument:

emile script mycommands.txt

or from within the interactive interpreter. The syntax for command lines in a
script is the same as the syntax for command lines in the interactive interpreter.

3.4 Example of usage

Suppose that the file testdata.txt contains the following sentences:

the fox jumped. the dog jumped.

the quick brown fox jumped.

the lazy dog jumped.

the fox jumped over the dog.

the dog jumped over the fox.

the quick brown fox jumped over the dog.

the lazy dog jumped over the fox.

the fox jumped over the lazy dog.

the dog jumped over the quick brown fox.

the lazy dog jumped over the quick brown fox.

We start the Emile program in the normal fashion. For instance, if we are
working on a Unix system, we could type

user@host.com 1)emile

Emile version 4.1.7:

Error opening database grammar.dat

Awaiting commands:

>

(underlined text denotes text typed by the user). Now Emile is ready to start
processing. We want Emile to read in the sentences of the sample, compile the
grammar, and display the grammatical rules.

> learn testdata.txt

Done learning phrases from file testdata.txt

> compile

24 Using EMILE

Updating grammar

Extending existing types

Creating new types

Eliminating superfluous types

Finding characteristic and secondary expressions and

contexts

Updating auxiliary secondary matrices

Compiling rules

Starting with whole-sentence and previously used types

Trying for new types

Optimizing rulesets for each used type

Eliminating types that are unused or can be shortcircuited

Updating parsing table and auxiliary rules matrices

Done updating grammar

> show rules

Rules relevant to type [0]:

[0] --> [18] dog jumped .

[0] --> the [4] jumped .

[0] --> [18] dog jumped over the [4] .

[0] --> the [4] jumped over [18] dog .

[4] --> fox

[4] --> quick brown [4]

[18] --> the

[18] --> the lazy

>

Now, there is one sentence which logically is missing from the sample. We can
look at the ruleset above and see if the grammar Emile has found accepts the
missing sentence, but we can also let Emile do all the work:

> parse-phrase the quick brown fox jumped over the lazy

dog .

Parsing "the quick brown fox jumped over the lazy dog ."

Result: (the (quick brown (fox)[4])[4] jumped over (the

lazy)[18] dog .)[0]

>

or, to see in general how the grammar found by Emile generalizes the sample,

> generate 5 new

Generating 5 new sentences with depth between 0 and 999

(100 tries)

the quick brown fox jumped over the lazy dog .

the dog jumped over the quick brown quick brown fox .

the lazy dog jumped over the quick brown quick brown

The EMILE Manual 25

quick brown fox .

the lazy dog jumped over the quick brown quick brown

fox .

the quick brown quick brown quick brown fox jumped .

>

If we find that this overgeneralizes the sample, we can try again with higher
required support settings:

> set support 70

Setting expression support percentage to 70

Setting context support percentage to 70

Setting secondary expression support percentage to 70

Setting secondary context support percentage to 70

Setting rule support percentage to 70

Setting sesp for no characteristics to 70

Setting scsp for no characteristics to 70

Setting rsp for no characteristics to 70

Setting total support percentage to 91

> show rules

Updating grammar

Extending existing types

Creating new types

Eliminating superfluous types

Finding characteristic and secondary expressions and

contexts

Updating auxiliary secondary matrices

Compiling rules

Starting with whole-sentence and previously used types

Trying for new types

Optimizing rulesets for each used type

Eliminating types that are unused or can be shortcircuited

Updating parsing table and auxiliary rules matrices

Done updating grammar

Rules relevant to type [0]:

[0] --> the fox jumped over the lazy dog .

[0] --> [65] jumped .

[0] --> [65] jumped over the dog .

[0] --> the [64]

[0] --> the lazy [64]

[64] --> dog jumped .

[64] --> dog jumped over [65] .

[65] --> the fox

[65] --> the quick brown fox

> generate 5 new

26 Using EMILE

Generating 5 new sentences with depth between 0 and 999

(100 tries)

No new phrases found within 100 tries

>

Note that Emile gave an implicit compile command at the moment the show

rules command needed an up-to-date grammar. Actually, we could have done
the same the first time, instead of giving an explicit compile command.
If, on the other hand, we want to generalize a bit more, we lower the support
settings. This time, we also tell Emile to skip the log messages.

> quiet

> set support 25

> show rules

Rules relevant to type [0]:

[0] --> the [66] jumped .

[0] --> the [66] jumped over the [66] .

[66] --> fox

[66] --> dog

[66] --> quick brown [66]

[66] --> lazy [66]

> generate 5 new

the quick brown lazy lazy lazy dog jumped over the dog .

the quick brown lazy lazy dog jumped .

the dog jumped over the dog .

the quick brown lazy quick brown dog jumped over the

lazy dog .

the lazy lazy fox jumped over the lazy quick brown fox .

>

If we are happy with this, we can quit the program. Emile will automatically
save the grammar. To verify this, we enable the logging messages again.

> verbose

Command logging reactivated

> quit

Done parsing commands from standard input

Writing data to file (Emile 4.1.7 binary format)

Database grammar.dat saved

user@host 2)

3.5 Common Files used with EMILE

EMILE uses the following types of files:

The EMILE Manual 27

grammar files , which EMILE uses to store and retrieve its grammar data.

These files can be stored in either binary format or ASCII format, depend-
ing on the value of the save in ascii format setting. Saving it in ASCII
format will make it easier to manipulate the file externally (by hand or
with other programs): however, saving it in binary format (the default)
will reduce filesize and improve save/load speed by a factor 2.

By default, EMILE uses a file named grammar.dat to store and retrieve
its grammar data. However, this can be easily changed by starting EMILE
with the --database option, or using the load and save commands and
specifying a filename.

sample texts , which EMILE uses with the learn, unlearn and parse to learn gram-
mars or create parsings commands. These files should be plain (ASCII)
text files.

script files , which EMILE uses with the script command, as described in the pre-
vious section.

output files , created by EMILE when redirecting the output of a command, by ap-
pending ‘> filename’ or ‘>> filename’ to the command in EMILE’s com-
mand line interpreter.

The EMILE Manual 29

Appendix A

Installing EMILE

The EMILE program should be able to run on almost any machine that has
a C++ compiler installed with the SGI Standard Library. However, at the
time of this writing, it has only been tested on the Linux and Solaris Unix
platforms, using the Gnu g++ compiler (version egcs-2.91.66, egcs 1.2.2 release,
and version g++-2.92.107). We have no specific information about the compile
status of Emile with other configurations: presumably most people manage to
get it working. If you feel you have a tip to contribute about installing Emile
with a specific other configuration, you can send it to the maintainer of the
program, at vervoort@wins.uva.nl.
To install the program, you first need to obtain a license and download the source
code. At the time of this writing, although you do not need to pay to use the
EMILE program, it is not distributed freely: the Universiteit van Amsterdam
provides designated users with a temporary license for EMILE 4.1 in the context
of a well defined research project. To obtain a license and download instructions,
you currently have to contact Pieter Adriaans directly. More information can
be found on the EMILE webpage, at

http://turing.wins.uva.nl/ pietera/Emile/

You will be given the URL for a zipped archive containing the source code for
the program. After downloading and unzip the archive, first you must generate
and configure the Makefile by typing

./configure

Then you use make to compile the EMILE program, by typing

make emile

EMILE can be compiled in Morpheme (Word) Analysis mode, which is a variant
of EMILE optimized for analyzing words consisting of letters (as opposed to
analyzing sentences consisting of words). To create this variant of EMILE, type

make morpheme

30 Installing EMILE

The compilation includes the Gnu GetOptLong and Readline libraries if avail-
able: due to incompatible licenses, these libraries cannot be shipped with the
program. If these libraries are not available, EMILE will be compiled with-
out the history buffer, tab completion or long option handling facilities. The
Readline library is available at

http://cnswww.cns.cwru.edu/php/chet/readline/rltop.html

and the GetOptLong library can be found in most distributions of the Gnu GCC
compiler.
If you have problems compiling the program, the compilation process can be
modified by adding options such as --disable-optimize when invoking the
./configure script. More information can be found in the INSTALL file included
with the program.

The EMILE Manual 31

Appendix B

Emile commands

B.1 Overview of commands

clear clear grammar/data/settings/rules/all

compile explicitly recompile the grammar

exit exit the program or the current script

generate generate sentences or phrases

help show help screens

learn learn sentences from files or terminal input

learn-phrase learn a specified sentence

load load the database

parse parse sentences from files or terminal input

parse-phrase parse a specified sentence

parse-type parse a phrase of the specified or an arbitrary type

quiet turn off logging messages

save save the database [to a specific file]

script execute commands from a file (or from terminal input)

set set the value of a settings variable

shell execute a shell command, or enter a subshell

show display various data

unlearn unlearn sentences from input [or from file]

unlearn-phrase unlearn 1 sentence from input [or as given]

verbose turn on comments [or set verbosity level]

version this displays the version number of the program.

32 Emile commands

B.2 The clear command

Syntax

clear [g|d|s|r|a]

new [g|d|s|r|a]

Synopsis

clear grammar/data/settings/rules/all

This command clears parts or all of the database. The command arguments
have the following meaning:

r[ules]

Clear the derivation rules found by the program without clearing the gram-
matical types. This is used mainly to negate the preference for reusing
previously used types when searching for new rules.

g[rammar]

Clear the grammar, i.e. the rules and all the grammatical types.

d[ata]

Clear the sentences read in, as well as the grammar.

s[ettings]

Clear all settings

a[ll]

Clear all (i.e. settings, sentences, grammar and rules), resetting the pro-
gram to a virgin state

B.3 The compile command

Syntax

compile

Synopsis

explicitly recompile the grammar

This command (re-)compiles the grammar and regenerates the ruleset based
on the set of sentences read in so far. This is normally done automatically
when a command is given that uses the grammar and the grammar is not up-
to-date, either because new sentences have been read in or because relevant
settings have been changed since the last time the grammar was compiled. The
compile command explicitly requests a compilation, for instance because you

The EMILE Manual 33

want the grammar compiled without using it immediately, or because you want
to study the logging output.
The behavior of this command is influenced by many settings. For details, please
see the individual settings and algorithm descriptions..
The compile command is called implicitly when necessary if one of the following
commands is used: generate, parse, parse-phrase, parse-type, show all,
show context(s), show dict, show expression(s), show rule(s), show

type(s). Whether an update would be necessary can be checked by issuing the
show statistics command and checking the value of the grammar updated

entry.

B.4 The exit command

Syntax

exit [nosave]

quit [nosave]

return [nosave]

x [nosave]

q [nosave]

Synopsis

exit the program or the current script

This command exits the program or the current script. If the program is ended,
the grammar and sentences are automatically saved if they have changed since
the last save, unless the optional ’nosave’ argument was used.

B.5 The generate command

Syntax

generate [n] [new] [t] [m] [M] [r]

g [n] [new] [t] [m] [M] [r]

Synopsis

generate sentences or phrases

This command uses the current grammar of derivation rules to generate sen-
tences or phrases. The command takes the following optional arguments:

n

the number of phrases to generate (default: 1)

34 Emile commands

new

indicates that Emile should exclude phrases which are already known (for
that type)

t

the type for which new phrases are to be generated. Default is type 0,
which generates new sentences

m

the minimum depth of the parse tree of the generated phrase (default: 0)

M

the maximum depth of the parse tree of the generated phrase (default:
999)

r

the maximum number of retries before giving up when attempting to gen-
erate new phrases.

B.6 The help command

Syntax

help [shortcuts|show|version]

? [shortcuts|show|version]

Synopsis

show help screens

This command displays one of several help screens:

(default)

a short overview of the available commands.

shortcuts

an overview of the available shortcuts, abbreviations and alternative com-
mand names

show

an overview of the different arguments for the show command.

version

the version number of the program. This is an alias for the version

command.

The EMILE Manual 35

B.7 The learn command

Syntax

learn [filename]...

l [filename]...

Synopsis

learn sentences from files or terminal input

This command learns a (positive) sample of sentences from one or more files (i.e.
adds the sentences to the set of sentences-read-in). If no filenames are given,
input is taken from the terminal (terminated by an end-of-file symbol, usually
obtained by pressing Control-D).
If a sentences is reread, the multiplicity of the sentence is increased by 1. This
can, for instance, compensate for occurrences of the same sentence in negative
samples. To decrease the multiplicity of sentences or read a negative sample of
sentences, use the unlearn command.
A file is normally parsed into sentences at each period, question mark, excla-
mation mark, or semicolon, ignoring periods directly following one-letter words
(these are considered to be abbreviation points). Sentences are normally di-
vided into words using space(s) as delimiters, but each non-alphanumeric symbol
forms its own word. Both behaviors can be altered using settings. See also the
descriptions of the end of sentence markers, allow multi line sentences,
ignore abbreviation periods, end of sentence regular expression and
word regular expression settings.

B.8 The learn-phrase command

Syntax

learn-phrase [phrase]

lp [phrase]

Synopsis

learn a specified sentence

This command learns one sentence (i.e. adds it to the set of sentences-read-in).
If the sentence is not given as (a sequence of) command argument, input is
taken from the terminal. If the sentence is given as a (sequence of) command
arguments, the normal settings for designating sentence delimiters are ignored,
but the setting word regular expression is still used.
If a sentence is reread, the multiplicity of the sentence is increased by 1. This
can, for instance, compensate for occurrences of the same sentence in negative
samples. To decrease the multiplicity of sentences or read a negative sample of
sentences, use the unlearn-phrase command.

36 Emile commands

B.9 The load command

Syntax

load [filename]

Synopsis

load the database

This command loads sentences, settings, grammatical types and rules from the
specified database file, or from the current file if no filename is given. This will
undo all changes made since the last time the database was saved.
This command is executed automatically when the Emile program starts, to
load the ’grammar.dat’ file (or the file specified with the --database command
line option).

B.10 The parse command

Syntax

parse [filename]...

p [filename]...

Synopsis

parse sentences from files or terminal input

This command attempts to parse sentences from one or more files, using the
rules found for the current grammar. If no filenames are given, input is taken
from the terminal (terminated by an end-of-file symbol, usually obtained by
pressing Control-D). For the manner in which a file is split into sentences, see
the learn command.
To find a parsing, the parser may assume that up to parser tolerance words
are not-yet-known expressions of already known types. It attempts to find a
parsing which uses as few of these instances as possible. For each sentence,
either a single parsing is displayed, or a message that no parsing was found.

B.11 The parse-phrase command

Syntax

parse-phrase [phrase]

pp [phrase]

Synopsis

parse a specified sentence

The EMILE Manual 37

This attempts to parse a single sentence. If the sentence is not given as (a se-
quence of) command argument, input is taken from the terminal. If the sentence
is given as a (sequence of) command arguments, the normal settings for designat-
ing sentence delimiters are ignored, but the setting word regular expression

is still used.
To find a parsing, the parser may assume that up to parser tolerance words
are not-yet-known expressions of already known types. It attempts to find a
parsing which uses as few of these instances as possible. For each sentence,
either a single parsing is displayed, or a message that no parsing was found.

B.12 The parse-type command

Syntax

parse-type t|* [phrase]

pt t|* [phrase]

Synopsis

parse a phrase of the specified or an arbitrary type

This attempts to parse a single phrase of the specified type. If the phrase
is not given as (a sequence of) command argument, input is taken from the
terminal. If the phrase is given as a (sequence of) command arguments, the
normal settings for designating sentence delimiters are ignored, but the setting
word regular expression is still used.
To find a parsing, the parser may assume that up to parser tolerance words
are not-yet-known expressions of already known types. It attempts to find a
parsing which uses as few of these instances as possible. For each sentence,
either a single parsing is displayed, or a message that no parsing was found.
A type should be specified as a number, without any enclosing brackets. I.e. to
parse a phrase of the base sentence-type ’

0

’, you use the command parse-type 0 phrase. If the type is specified as *,
Emile attempts to find the best parsing for any type.

B.13 The quiet command

Syntax

quiet

Synopsis

turn off logging messages

This sets verbosity level to 0, disabling all non-error logging messages.

38 Emile commands

B.14 The save command

Syntax

save [filename]

Synopsis

save the database [to a specific file]

This command saves sentences, settings, grammatical types and rules in the
specified database file, or in the current file if no filename is given. This will
store all changes made since the last time the database was saved.
This command is executed automatically when the Emile program exits, to save
the current database file.

B.15 The script command

Syntax

script [filename]...

batch [filename]...

. [filename]...

Synopsis

execute commands from a file (or from terminal input)

This command executes commands from one or more files (i.e. adds the sen-
tences to the set of sentences-read-in). Commands are executed as if they were
typed on the interactive command line, until an exit command or an end-of-file
symbol is encountered. The script command may be inside a script itself: after
the called script finishes, execution continues with the command following the
script command. If no filenames are given, input is taken from the terminal,
which may be useful from inside a script.

B.16 The set command

Syntax

set [setting [=] [value]]

Synopsis

set the value of a settings variable

This command sets the value of a settings variable. The name of the variable
may be separated from the value by spaces, an ’=’ symbol, or both. For boolean
variables, a ‘true’ value may be specified as ’1’, ’true’ or ’yes’: all other values

The EMILE Manual 39

are interpreted as ‘false’. If the value is omitted, the variable is reset to its
default value (for non-boolean variables), or toggled (for boolean variables).
If the Gnu Readline library is installed on your system, you may use Tab com-
pletion to complete variable names.
There are three special invocations of the set command:

set

Without any arguments, the set command displays the current values of
all the settings.

set support [=] value This sets all support-related values to values derived
from the specified value.

set random seed [=] value

This sets the seed for the random number generator to a specific value.
The current seed can be displayed by using the show random seed com-
mand. This can be used to repeat experiments.

B.17 The shell command

Syntax

shell [shellcommand]

! [shellcommand]

Synopsis

execute a shell command, or enter a subshell

This command allows you to run shell commands and external programs. For
instance, if you are working on a unix system, typing

!ls

from the Emile command line lists the files in the current work directory.
If you do not give an argument, the Emile program will attempt to start a
subshell from which you can run shell commands and external programs.

B.18 The show command

Syntax

show arg

display arg

print arg

p arg

40 Emile commands

Synopsis

display various data

This command displays various data, such as types found, grammatical rules,
statistics, etcetera. Output is commonly piped to an external pager, as in

show rules | more

The show command takes one or more arguments to specify the data to be
shown, as follows:

all

show all data from the show contexts, show expressions and show

types commands.

assumptions [n]

show n sentences, not present in the sample of sentences-read-in, that
Emile deduces to be grammatical.

context context

for the specified context, show the expressions and types connected to that
context

context[s]

for each context, show the expressions and types connected to that context

dict t [t]...

for the specified type(s), show the one-word expressions connected to that
type Types should be specified as numbers with no enclosing brackets, i.e.
specify ‘0’ for the whole-sentence type.

dict

for each type, show the one-word expressions connected to that type

expression expr

for the specified expression, show the contexts and types connected to that
context

expression[s]

for all expressions, show the contexts and types connected to that context

grammar argument

alias for the show types command

help argument

alias for the help command

The EMILE Manual 41

mem

show estimated memory usage

mem detailed

show estimated memory usage in detail

random seed

show current value of randomizer seed

rule t [t]...

for the specified grammatical type(s), show the derivation rules for that
type Types should be specified as numbers with no enclosing brackets, i.e.
specify ‘0’ for the whole-sentence type.

rules

for each grammatical type that with the current ruleset is relevant to the
derivation of sentences, show the derivation rules for that type

rules all

for each grammatical types, show the derivation rules for that type

rules complex

for each grammatical type, show all rules with two or more type references

sentences

show all sentences currently read-in

settings

show the current values of the variables

statistics

show statistics for the database

[type] t [t]...

for the specified grammatical type(s), show all contexts, expressions and
rules. Types should be specified as numbers with no enclosing brackets,
i.e. specify ‘0’ for the whole-sentence type.

type[s]

for each grammatical type(s), show all contexts, expressions and rules.

types by-compression for each grammatical type(s) (in order of descending
compression factor), show all contexts, expressions and rules.

version

show the version number of the program (this is an alias for the version
command).

42 Emile commands

B.19 The unlearn command

Syntax

unlearn [filename]...

ul [filename]...

Synopsis

unlearn sentences from input [or from file]

This command unlearns a (negative) sample of sentences from one or more files
(i.e. adds the sentences to the set of negative-sentences-read-in). If no filenames
are given, input is taken from the terminal (terminated by an end-of-file symbol,
usually obtained by pressing Control-D). For the manner in which a file is split
into sentences, see the learn command.
If a sentences is reread, the negative multiplicity of the sentence is increased by
1. This can, for instance, compensate for occurrences of the same sentence in
positive samples. To decrease the negative multiplicity of sentences or read a
positive sample of sentences, use the learn command.

B.20 The unlearn-phrase command

Syntax

unlearn-phrase [phrase]

ulp [phrase]

Synopsis

unlearn 1 sentence from input [or as given]

This command learns one sentence (i.e. adds it to the set of negative-sentences-
read-in). If the sentence is not given as (a sequence of) command argument,
input is taken from the terminal. If the sentence is given as a (sequence of)
command arguments, the normal settings for designating sentence delimiters
are ignored, but the word regular expression setting is still used.
If a sentences is reread, the negative multiplicity of the sentence is increased
by 1. This can compensate for occurrences of the same sentence in positive
samples, i.e. you can effectively ‘undo’ learning a file by unlearning it, and vice
versa.
To decrease the negative multiplicity of sentences or read a positive sample of
sentences, use the learn command.

B.21 The verbose command

Syntax

verbose [n]

The EMILE Manual 43

Synopsis

turn on comments [or set verbosity level]

This increases verbosity level by 1 or sets it to the specified value. The higher
the value, the more detailed the logging messages. Setting verbosity level to
values higher than 2 is not recommended except for debugging purposes.

B.22 The version command

Syntax

version

Synopsis

this displays the version number of the program.

The EMILE Manual 45

Appendix C

The Algorithms of EMILE

At this moment of writing, the EMILE program consists of about 7800 lines
of C++-code. However, most of that is code for data type representation,
user interface, utility functions, various optimizations, etcetera: the algorithms
themselves are fairly simple. Each of the sections of this chapter focuses on a
different algorithm used in EMILE. For each algorithm, a synopsis is given, as
well as explicit pseudo-code, and a summary of the constants controlling the
algorithm that can be set by the user.
In many of the pseudo-code algorithms, the phrase for each occurs to indicate
iterating over elements of a collection. The order in which the algorithm iter-
ates over these elements should be considered to be nondeterministic. EMILE
uses various optimization considerations and a random number generator to
determine the actual order.

C.1 Gathering context/expression pairs.

Synopsis

As described in section one-dimensional-clustering-section, EMILE main-
tains a matrix M of the context/expression pairs it has encountered in
positive and negative samples. This routine updates this matrix, given
text from some input I.

Algorithm

sub learn sentences(I)
while (there is input to be read) do

read the input I up to the next end-of-sentence marker;
set s := the sentence read, converted to a sequence of words;
if (length(s) ≤ maximum sentence length) then

for each triple (cl, e, cr) with cl ê̂ cr = s do

increment M(cl “̂(.)”̂ cr, e)

46 The Algorithms of EMILE

end for

end if

end while

set M+ := {(c, e) | M(c, e) > 0};
set M− := {(c, e) | M(c, e) < 0};

end sub

sub unlearn sentences(I)
while (there is input to be read) do

read the input I up to the next end-of-sentence marker;
set s := the sentence read, converted to a sequence of words;
if (length(s) ≤ maximum sentence length) then

for each triple (cl, e, cr) with cl ê̂ cr = s do

decrement M(cl “̂(.)”̂ cr, e)
end for

end if

end while

set M+ := {(c, e) | M(c, e) > 0};
set M− := {(c, e) | M(c, e) < 0};

end sub

Relevant user settings

maximum sentence length

sentences longer than this are ignored.

end of sentence markers

a set of characters that mark the end of a sentence.

allow multi line sentences

a boolean variable, indicating whether sentences are allowed to span
multiple lines.

ignore abbreviation periods

a boolean variable, indicating whether to consider periods following
a single letter to be abbreviation periods or end-of-sentence markers.

end of sentence regular expression

a regular expression that can be used to specify end-of-sentence mark-
ers.

word regular expression

a regular expression that can be used to specify the words a sentence
should be split in.

Notes

If a sentence occurs in both a positive and a negative sample, the two
instances cancel one another out. Hence, a sentence counts as positive if

The EMILE Manual 47

it occurs more often in positive samples, and as negative if it occurs more
often in negative samples.

For reasons of efficiency, contexts and expressions are not directly used as
elements of the matrix. Instead, the actual contexts and expressions are
stored in a table, and references to the entries in the table are used in the
matrix.

There is a compilation option to put Emile in ‘Morpheme Analysis’ mode
(see chapter A). In this mode, each word (using whitespace as a delimiter)
is treated as a separate element of S, and is split into single characters for
analysis. The settings related to end-of-sentence marking are ignored.

A sentence is converted into a sequence of words before it is searched
for context/expression pairs. Characters not contained in a match for
word regular expression function as word separators where necessary
and are otherwise ignored.

An end-of-sentence marker is considered to be part of the sentence it is
ending.

C.2 Extracting the grammatical types from the
matrix

Synopsis

The program maintains a set G of grammatical types with sufficient sup-
port and size, covering the matrix M+ of positively encountered con-
text/expression pairs (wherever coverable). This routine updates G for
any changes in the settings or M+.

Details

As described in section 2.3, a type T = (TC , TE) is specified by sets TC and
TE of primary contexts and expressions. It is considered to have sufficient
support if a certain percentage (given by the total support percentage

setting) of the context/expression pairs of the block TC×TE as a whole
is contained in the matrix of positively encountered context/expression
pairs M+. Furthermore, the same should hold for each individual row
or column (with percentages given by the context support percentage

and expression support percentage settings). Finally, as described in
section 2.6, any negatively encountered context/expression pairs within
TC×TE actively detract from this support. Formally, T should satisfy the
following three conditions:

#(M+∩(TC×TE))− neg entry supp mult ·#(M− ∩ (TC×TE))

≥ #(TC×TE) · total support percentage/100(C.1)

∀c ∈ TC : #(M+∩({c}×TE))− neg entry supp mult ·#(M− ∩ ({c}×TE))

≥ #TE · context support percentage/100 (C.2)

48 The Algorithms of EMILE

∀e ∈ TE : #(M+∩(TC×{e}))− neg entry supp mult ·#(M− ∩ (TC×{e}))

≥ #TC · expression support percentage/100(C.3)

If the use multiplicities setting has a value of true, these conditions
are modified to take into account that TE , TC and M+ are multisets. As
the modified conditions are rather complex and not very insightful, we
will omit them.

The program maintains a set G of grammatical types with sufficient sup-
port, with contexts of length at most maximum primary context length,
and expressions of length at most maximum primary expression length

All these types are of maximal size (under the constraint of having suffi-
cient support), and all are at or above a certain minimum size (as indicated
by minimum contexts per type and minimum expressions per type).

An element (c, e) ∈ M+ is considered covered by a type T if (c, e) ∈
TC × TE . This routine updates and enlarges G so that every element
(c, e) ∈ M+ (that can be covered by a type of minimum size) is covered
by a type in G.

Algorithm

sub expand grammar(G)
for each T ∈ G do

call enlarge grammatical type(T);
if ((#TC < minimum contexts per type)

or (#TE < minimum expressions per type)) then
remove T from G;

end if

end for

for each (c, e) ∈M+ do

if (¬∃T ∈ G : (c, e) ∈ TC × TE) then
set T := ({c}, {e});
call enlarge grammatical type(T);
if ((#TC ≥ minimum contexts per type)

or (#TE ≥ minimum expressions per type)) then
insert T into G;

end if

end if

end for

end sub

sub enlarge grammatical type(T)
repeat

set X := {c′ a context | (TC ∪ {c
′}, TE) has sufficient support,

length(c) ≤ maximum primary context length},
∪{e′ an expression | (TC , TE ∪ {e

′}) has sufficient support,

The EMILE Manual 49

length(e) ≤ maximum primary expression length};
if (X 6= ∅) then

nondeterministically select x from X;
if (x is a context) then

insert x into TC ;
else

insert x into TE ;
end if

end if

until (X = ∅);
end sub

Relevant user settings

maximum primary context length

maximum primary expression length

maximum length of potential primary contexts and expressions.

total support percentage

context support percentage

expression support percentage

the support required from the matrix for the submatrix of the type
as a whole, and for individual contexts and expressions of each type.

negative entry support multiplier

the relative importance of negative samples.

minimum contexts per type

minimum expressions per type

types with fewer contexts or expressions than indicated by these set-
tings are discarded.

use multiplicities

whether or not to make more use of multiplicities, by treating all
sets as multisets and modifying the conditions types should satisfy
(computationally expensive).

Notes

The selection of x from X is not nondeterministic, but based on the
amount of support that would be added to the grammatical type.

Due to the discarding of types of very small size, some elements (c, e) ∈
M+ nay be uncoverable.

The type [0] is always set to the type of whole sentences, with ‘((),())’ as
a secondary context and all positively encountered sentences as secondary
expressions.

The lower the settings for required support, the larger the types will tend
to be. Usually this will decrease the number of types found.

50 The Algorithms of EMILE

Complexity

The enlarge grammatical type routine maintains a significant amount
of auxiliary data to avoid having to repeat calculations to collect the set
X. Initialization of the auxiliary data has an execution time of order
O(#{(c, e) ∈ M+ | c ∈ TC ∨ e ∈ TE}), while each iteration of the
repeat..until loop has an average-case execution time of order O(#(TC∪
TE)) and a worst-case execution time of order O(#{(c, e) ∈ M+ | c ∈
TC ∨ e ∈ TE}).

C.3 Eliminating superfluous types

Synopsis

It is possible that the contribution of some type to the coverage of G is
made (nearly) superfluous by types found later, i.e. most or all of the
context/expression pairs that are covered by that type, are also covered
by other types of G. This routine eliminates such types.

Algorithm

sub eliminate superfluous types(G)
set cover(*) = 0;
for each T ∈ G do

for each (c, e) ∈M+ ∩ (TC × TE) do
increment cover(c,e);

end for

end for

for each T ∈ G do

if (#{(c, e) ∈ M+ ∩ (TC × TE) | cover(c, e) = 1}
< type usefulness required) then

remove T from G;
for each (c, e) ∈M+ ∩ (TC × TE) do

decrement cover(c,e);
end for

end if

end for

end sub

Relevant user settings

type usefulness required

this variable determines how useful a type has to be (in terms of
contributions to the coverage of G) in order to not be discarded.

The EMILE Manual 51

Notes

The types are checked in order of increasing absolute total support. This
means that if the matrix can be covered by either a lot of small types or
a single big one, probability favors the latter result.

C.4 Identifying characteristic, secondary and

negative contexts and expressions

Synopsis

As described in section 2.4, Emile uses the short expressions and contexts
it found for each type in the previous algorithms to find, first, charac-
teristic expressions and contexts, and then (possibly long) ‘negative’ and
‘secondary’ ones.

Details

For each type T , this routine finds

the set T ch
E of characteristic expressions of T

those expressions which only appear with contexts of no type or of
type T .

the set T ch
C of characteristic contexts of T

those contexts which only appear with expressions of no type or of
type T .

the sets T ∗
E of characteristic∗ expressions of T

the characteristic expressions of T if there are any, otherwise default-
ing to the primary expressions of T .

the sets T ∗
C of characteristic∗ contexts of T

the characteristic contexts of T if there are any, otherwise defaulting
to the primary contexts of T .

the set T se
E of secondary expressions of T

the primary expressions of T , and those expressions e that occur with
its characteristic∗ contexts often enough, i.e. that satisfy

#(M+∩(T ∗
C×{e}))− neg entry supp mult ·#(M− ∩ (T ∗

C×{e}))

≥ #T ∗
C · sec context support percentage/100 (C.4)

the set T se
C of secondary contexts of T

the primary contexts of T , and those contexts c that occur with its
characteristic∗ expressions often enough, i.e. that satisfy

#(M+∩({c}× T ∗
E))− neg entry supp mult ·#(M− ∩ ({c}× T ∗

E))

≥ #T ∗
E · sec expression support percentage/100 (C.5)

52 The Algorithms of EMILE

the set T−
E of negative expressions of T

those expressions e that occur negatively with its characteristic∗ con-
texts often enough, i.e. that satisfy

#(M+∩(T ∗
C×{e}))− neg entry supp mult ·#(M− ∩ (T ∗

C×{e}))

< 0 (C.6)

the set T−
C of negative contexts of T

those contexts c that occur negatively with its characteristic∗ expres-
sions often enough, i.e. that satisfy

#(M+∩({c}× T ∗
E))− neg entry supp mult ·#(M− ∩ ({c}× T ∗

E))

< 0 (C.7)

Algorithm

sub identify characteristic and secondary aspects(G)
for each T ∈ G do

set T ch
C := ∅

for each context c ∈ TC do

if ∀e : [(c, e) ∈ M+ → (e ∈ TE ∨ ¬∃U ∈G : e∈UE)] then
insert c into T ch

C ;
end if

end for

set T ch
E := ∅

for each expression e ∈ TE do

if ∀c : [(c, e) ∈M+ → (u ∈ TC ∨ ¬∃U ∈G : c∈UC)] then
insert e into T ch

E ;
end if

end for

if (T ch
C 6= ∅) then

set T ∗
C := T ch

C ;
else

set T ∗
C := TC ;

end if

if (T ch
E 6= ∅) then

set T ∗
E := T ch

E ;
else

set T ∗
E := TE ;

end if

set T se
C := TC ;

set T−
C := ∅

for each context c do

set n := #(M+ ∩ ({c}× T ∗
E))

−neg entry supp mult ·#(M− ∩ ({c}× T ∗
E));

The EMILE Manual 53

if (n ≥ #T ∗
E · sec context support percentage/100) then

insert c into T se
C ;

else if (n < 0) then
insert c into T−

C ;
end if

end for

set T se
E := TE ;

set T−
E := ∅

for each expression e do

set n := #(M+ ∩ (T ∗
C×{e}))

−neg entry supp mult ·#(M− ∩ (T ∗
C×{e}));

if (n ≥ #T ∗
C · sec expression support percentage/100) then

insert e into T se
E ;

else if (n < 0) then
insert e into T−

E ;
end if

end for

end for

end sub

Relevant user settings

secondary context support percentage

secondary expression support percentage

the support required for the secondary contexts of each type.

scsp for no characteristics

sesp for no characteristics percentage

settings to be used instead of the normal secondary support settings
whenever a type has no characteristic expressions or contexts.

negative entry support multiplier

this variable indicates the relative importance of negative samples.

Notes

If a type has no characteristic expressions, the characteristic∗ expressions
default to the primary expressions. If required support percentages are
low, this can result in a single expression being taken as indicative of sev-
eral types, which could cause an unwieldy total number of secondary con-
texts to be found. To prevent this, EMILE will never consider a single non-
characteristic expression to suffice as indicator of the usability of a type.
Furthermore, the setting scsp for no characteristics, is provided, to
be used instead of the setting
secondary context support percentage when a type has no character-
istic expressions. Similarly, when a type has no characteristic contexts,

54 The Algorithms of EMILE

EMILE will not consider a single non-characteristic context to suffice as in-
dicator of the usability of a type, and the setting sesp for no characteristics percentage

is used instead of
secondary expression support percentage to find secondary expres-
sions.

C.5 Deriving grammatical rules

Synopsis

As described in section 2.5, Emile uses the grammatical types it finds to
infer grammatical derivation rules of the form:

r : [T]⇒ s0[T1]s1[T2] . . . sk

EMILE tries to find a set of rules which are supported, are capable of
generating the original sample, and cannot easily be reduced in number.

Details

All rules of the form r : [T] ⇒ s0 with s0 a secondary expression of
T are automatically considered supported. Otherwise, for k ≥ 1, a rule
r : [T] ⇒ s0[T1]s1[T2] . . . sk is considered to be supported if substituting
characteristic expressions for one of its type references results in an already
supported rule often enough, or formally, if for some i ≤ k,

#{e∈(Ti)
∗
E | r with e replacing [Ti] has support}

≥ #(Ti)
∗
E · rule support percentage (C.8)

Furthermore, a rule should not directly generate (too many) negative ex-
pressions for the type, or formally,

#{(e1,. . .,ek) ∈ Πk
i=1(Ti)

∗
E | s0 ê1 ŝ1̂ . . . ŝk ∈ T se

E }

−neg ent supp mult ·#{(e1,. . .,ek) ∈ Πk
i=1(Ti)

∗
E | s0 ê1̂ . . . ŝk ∈ T−

E }

≥ Πk
i=1#((Ti)

∗
E) (C.9)

An instantiation of a rule r : [T] ⇒ s0[T1]s1 . . . sk, k ≥ 0, is an ex-
pression e ∈ T se

E which can be obtained by replacing the type references
[T1], . . . , [Tk] in r by expressions e′1 ∈ (T1)

se
e , . . . , e′k ∈ (Tk)

se
e . A rule r for

some type [T] is considered to be covered by other rules for [T] if all of its
instantiations are also instantiations of one or more of the other rules.

EMILE tries to find a set of supported rules which contains no rules cov-
ered by other rules, is capable of generating the original sample, and can-
not easily be reduced in size. To do this, the program maintains a set
of used types Vused, which initially contains only the whole-sentence type
[0]. Whenever a type is added to Vused, the program gathers all supported
rules for all types of Vused which only use types from Vused (note that for

The EMILE Manual 55

this purpose, rules for a type are considered to be using that type). Then
rules which are covered by other rules are eliminated, until a set of rules
R is obtained in which every rule has at least one instantiation which is
not shared with any other rule. The program adds types to Vused as long
as this will not result in a large increase in the size size(R) of the resulting
ruleset (measured in number of words and type references used).

Algorithm

sub derive rules(G,R)
for each T ∈ G do

set Rsup
T := {[T]⇒ e | e ∈ T se

E };
set Rsup

T := Rsup
T ∪ {r | r is supported by Rsup

T . r uses [T] and only [T]};
set RT := Rsup

T ;
for each r ∈ RT do

if (∃r′ ∈ RT : r′ 6= r ∧ r′ covers r) then
remove r from RT ;

end if

end for

end for

set Vused := ∅;
set R := ∅;
set Rsup := ∅;
set Tadd := [0];
repeat

insert Tadd in Vused;
set Rsup := Rsup ∪Rsup

(Tadd);

set R := R(Tadd);
for each T ∈ G do

if (T 6∈ Vused) then

set Radd
T :=



 r

r is supported by Rsup ∪Rsup
T ,

r uses both [T] and [Tadd],
r uses no types outside Vused ∪ {T}



;

set Rsup
T := Rsup

T ∪Radd
T ;

set RT := R ∪ (RT ∩Rsup
T) ∪Radd

T ;
for each r ∈ RT do

if (∃r′ ∈ RT : r′ 6= r ∧ r′ covers r) then
remove r from RT ;

end if

end for

end if

end for

if (∃T : size(RT) < size(R) + ruleset increase disallowed) then
select Tadd from G such that Tadd 6∈ Vused and size(RT) is minimal

end if

until (¬∃T : size(RT) < size(R) + ruleset increase disallowed);

56 The Algorithms of EMILE

for each r ∈ R do

if (R−{r} covers r) then
remove r from R;

end if

end for

end sub

Relevant user settings

rule support percentage

the support required for a rule before it is considered for inclusion in
the grammar.

rsp for no characteristics

setting to be used instead of the normal rule support setting whenever
a type has no characteristic expressions.

ruleset increase disallowed

one more than the maximum number of words and symbols that
using a type may add to the ruleset

negative entry support multiplier

the relative importance of negative samples.

Notes

The sets RT are actually stored as changes to be applied to R.

For reasons of efficiency this routine only checks whether rules are covered
by single other rules, everywhere except at the very end. This decreases
computation time, and also allows for some other optimizations.

Covered rules are eliminated in order of increasing complexity. This means
that the final result will not contain any rule of which an abstraction exists
that uses only types in Vused and is supported.

Rules of the form [T]⇒ [U] are only allowed if #T se
E > #Use

E , to prevent
loops.

For types T 6∈ Vused, the rules in RT for [T] are calculated during rule
generation, because otherwise it cannot be checked how adding T to Vused

would affect the size of the ruleset R. These rules can be displayed with
the show rules all command.

If a type has no characteristic expressions, the characteristic∗ expressions
default to the primary expressions. If required support percentages are
low, this can result in a single expression being taken as indicative of
several types. To prevent this, EMILE will never consider a single non-
characteristic expression to suffice as indicator of the usability of a type.
Furthermore, the setting rsp for no characteristics, is provided, to be

The EMILE Manual 57

used instead of the setting
rule support percentage when a type has no characteristic expressions.
The default value for this setting is 51.

C.6 Short-circuiting superfluous types

Synopsis

If a type T ∈ G has only a single rule in R, or if there is only one reference
to [T], then we can decrease the size of the ruleset, and remove T from
the set of used types, by substituting the rules of [T] for all references to
[T].

Algorithm

sub short-circuit types(G,R)
for each [T] ∈ Vused do

if (R contains only one rule for [T]) then
let r ∈ R be the unique rule for [T];
for each rule r′ ∈ R referring to [T] do

remove r′ from R;
substitute r for [T] in r′;
insert r′ into R;

end for

remove [T] from Vused;
end if

if (R contains only one reference to [T]) then
if (shortcircuiting would decrease size(R) by at least ruleset increase disallowed then

let r′ ∈ R be the unique rule referring to [T];
remove r′ from R;
for each rule r ∈ R for [T] do

substitute r for [T] in r′;
insert r′ into R;

end for

remove [T] from Vused;
end if

end if

end for

end sub

Relevant user settings

ruleset increase disallowed

One more than the maximum number of words and symbols that us-
ing a type may add to the ruleset (or discarding a type must subtract
from the ruleset)

58 The Algorithms of EMILE

Notes

Using this algorithm results in a smaller ruleset. However, it also loses
some information which could be useful in parsing, for finding the structure
of parsed sentences.

C.7 Parsing a sentence

Synopsis

Given a set of rules, we will sometimes want to see whether a given sentence
is parseable with those rules. Furthermore, we will want to see what
types unknown words must be assigned in order to make the sentence
parseable. EMILE can check for parseability while allowing up to a user-
settable number of words to be assigned arbitrary types, using a recursive
algorithm.

Algorithm

function parse phrase(R,s,[T])
if (([T]⇒ s) ∈ R) then

return 0;
else if (length(s) = 1) then

return 1;
else

set n := ∞;
for each rule ([T]⇒ s0[T0]s1 . . . sk) ∈ R do

for each sequence (s′1, . . . , s
′
k) with s0 ŝ′1 ŝ1̂ . . . ŝ′k ŝk = s do

set n = min(n,
∑k

i=1 parse phrase(R, s′i, Ti));
end for

end for

return n;
end if

end function

function parse sentence(R,s)
if (parse phrase(R, s, [0]) ≤ parser tolerance) then

return true;
else

return false;
end if

end function

Relevant user settings

The EMILE Manual 59

parser tolerance

This setting is the maximum number of words to which Emile will
assign or reassign a type ‘on the fly’ in order to make parsing of a
sentence possible.

Notes

Emile can assign types ‘on the fly’ to single words (not to larger expres-
sions), in order to parse sentences with unknown words. The program
keeps track of the number of ‘on the fly’ type-assignments used in the
search: if a particular search cannot possibly result in a better parsing
than the best one found up to now, the search is aborted.

The EMILE Manual 61

Appendix D

The Settings of EMILE

D.1 Overview of settings

EMILE’s behavior is controlled by some 30 different settings parameters. This is
a lot, but little effort has been made to decrease this, since little is known about
the effect and relative importance of different parameters and combinations
thereof. Indeed, one of the purposes of the program is to experiment with the
effect of combinations of different settings, in order to find out which ones are
important.

However, in order to make it easier to start experimenting, we have marked
the settings which we assume to be most significant with an asterisk (∗) in the
overview below. The reader can experiment with these settings first, and then
fine-tune with the other settings if desired.

∗ allow multi line sentences whether sentences in an input
sample can span multiple lines

context support percentage support required for the individ-
ual primary contexts of a gram-
matical type

database filename name of the current database file
end of sentence markers set of characters which can mark

the end of a sentence
end of sentence regular expression regular expression defining possi-

ble end-of-sentence markers
expression support percentage support required for the indi-

vidual primary expressions of a
grammatical type

ignore abbreviation periods whether end-of-sentence markers
should exclude abbreviation peri-
ods

∗ maximum primary context length the maximum size of the primary
contexts of a grammatical type

62 The Settings of EMILE

∗ maximum primary expression length the maximum size of the primary
expressions of a grammatical type

maximum sentence length the maximum size of sentences
read from the input sample

∗ minimum contexts per type minimum number of primary con-
texts of a grammatical type

∗ minimum expressions per type minimum number of primary ex-
pressions of a grammatical type

negative entry support multiplier relative importance of negative
samples in calculating support

parser tolerance maximum number of words of un-
known or altered type when pars-
ing

random seed current seed value for the random
number generator

rsp for no characteristics support required for a rule before
it is considered for inclusion in the
grammar, for types with no char-
acteristic expressions.

rule support percentage support required for a rule before
it is considered for inclusion in the
grammar, for types with charac-
teristic expressions.

∗ ruleset increase disallowed one more than the maximum
number of words and symbols
that using a type may add to the
ruleset

save in ascii format whether the save-file will be in
ASCII format

scsp for no characteristics support required for the seconda-
ry contexts of a grammatical type
with no characteristic expressions

secondary context support percen-

tage

support required for the seconda-
ry contexts of a grammatical type
with characteristic expressions

secondary expression support per-

centage

support required for the seconda-
ry expressions of a grammatical
type with characteristic contexts

sesp for no characteristics per-

centage

support required for the seconda-
ry expressions of a grammatical
type with no characteristic con-
texts

∗ support pseudo-setting for all required-
support-related settings

total support percentage support required from the matrix
for a type as a whole

The EMILE Manual 63

type usefulness required contribution to coverage required
of types

use multiplicities whether to make more use of mul-
tiplicities

verbosity level verbosity of logging messages
word regular expression regular expression defining words

D.2 The allow multi line sentences setting

Name

allow multi line sentences

Synopsis

whether sentences in an input sample can span multiple lines

Type

boolean

Default value

true

Used in

Gathering context/expression pairs (C.1)

If this variable is set to true, a sentence can span multiple lines in an input
sample. Otherwise, the end of an input line is considered to indicate the end of
the current sentence. In either case, the end of sentence markers also indicate
the end of the sentence, as does an empty line (i.e. two end-of-lines separated
by nothing but whitespace).

D.3 The context support percentage setting

Name

context support percentage

Synopsis

support required for the individual primary contexts of a grammatical
type

Type

numeric

Default value

75

64 The Settings of EMILE

Used in

Extracting the grammatical types from the matrix (C.2)

This variable control the support required from the matrix (as a percentage) for
the individual contexts of each type, i.e. how many of the expressions of a type
a context of that type should occur with, as described in section 2.3. Formally,
types are required to satisfy

∀c ∈ TC : #(M+ ∩ ({c}×TE))−neg entry supp mult ·#(M− ∩ ({c}×TE))

≥ #TE · context support pct/100 (D.1)

The lower this value, the larger the size of the types found, and (probably) the
lower the number of types found. This setting should be used in conjunction with
the expression support percentage and total support percentage settings.
Lowering only one of these settings will usually have only little effect.

D.4 The database filename setting

Name

database filename

Synopsis

name of the current database file

Type

text

Default value

“grammar.dat”, or as given by the ‘-d’ option at startup

Used in

the load and save commands

This variable contains the name of the current database file. Whenever a load

or save command is given without specifying a database file, this value is used.
Conversely, whenever a load or save command specifies a database file, this
variable is set.

D.5 The end of sentence markers setting

Name

end of sentence markers

Synopsis

set of characters which can mark the end of a sentence

The EMILE Manual 65

Type

text

Default value

“.?!;”

Used in

Gathering context/expression pairs (C.1)

A set of characters that EMILE interprets as marking the end of a sentence in an
input sample. The use of periods as end-of-sentence-markers may be modified
by the ignore abbreviation periods setting.
Note that an end-of-sentence marker is considered to be part of the sentence it
is ending.

D.6 The end of sentence regular expression set-

ting

Name

end of sentence regular expression

Synopsis

regular expression defining possible end-of-sentence markers

Type

text

Default value

“”

Used in

Gathering context/expression pairs (C.1)

With this setting you can specify the end-of-sentence markers for input sam-
ples as a regular expression, instead of using the allow multi line sentences,
end of sentence markers and ignore abbreviation periods settings.
The latter settings are only active if end of sentence regular expression is
empty (the default value).
Although this setting provides a very comprehensive mechanism for indicating
end-of-sentence markers, using the other settings is often much more intelligible:
for instance, the default settings correspond to to the regular expression

[!;?]|\n[Ã\r\n\t]*\n|\r[Ã\r\n\t]*\r|^\.|[^a-zA-Z]\.|[^Ã\r\n\t].\.

66 The Settings of EMILE

When using regular expressions to mark the end of sentences, newlines have to
be explicitly included in the regular expression in order to be taken into account.
Note that on non-Unix systems, the ‘\n’ symbol refers to the end-of-line marker
customary on that system. The carriage return symbol ’\r’ can be used if there
is a need to explicitly take into account line endings of non-Unix files when
working on a Unix system.
The syntax used for regular expressions is the Extended Regular Expressions
syntax as defined in the regex(5) Unix man page. Additionally, the stan-
dard C escape sequences are recognized, i.e. ‘\n’ for newline, ‘\t’ for tab
etcetera. When setting regular expression variables, the Emile command in-
terpreter passes through backslashes in the original input, so you can type

set end of sentence regular expression = ’\n’

instead of

set end of sentence regular expression = ’\\n’

Note that an end-of-sentence marker is considered to be part of the sentence it
is ending.

D.7 The expression support percentage setting

Name

expression support percentage

Synopsis

support required for the individual primary expressions of a grammatical
type

Type

numeric

Default value

75

Used in

Extracting the grammatical types from the matrix (C.2)

This variable control the support required from the matrix (as a percentage)
for the individual expressions of each type, i.e. how many of the contexts of a
type an expression of that type should occur with, as described in section 2.3.
Formally, types are required to satisfy

∀e ∈ TE : #(M+ ∩ (TC×{e}))−neg entry supp mult ·#(M− ∩ (TC×{e}))

≥ #TC · expression support pct/100(D.2)

The EMILE Manual 67

The lower this value, the larger the size of the types found, and (probably)
the lower the number of types found. This setting should be used in conjunc-
tion with the context support percentage and total support percentage

settings. Lowering only one of these settings will usually have only little effect.

D.8 The ignore abbreviation periods setting

Name

ignore abbreviation periods

Synopsis

whether end-of-sentence markers should exclude abbreviation periods

Type

boolean

Default value

true

Used in

Gathering context/expression pairs (C.1)

If this setting is true, and the period symbol ‘.’ is used as an end-of-sentence-
marker, then periods following a single letter in input samples are considered to
be abbreviation periods instead of end-of-sentence markers.

D.9 The maximum primary context length setting

Name

maximum primary context length

Synopsis

the maximum size of the primary contexts of a grammatical type

Type

numeric

Default value

6

Used in

Extracting the grammatical types from the matrix (C.2)

68 The Settings of EMILE

In order to ensure that the set of types found will converge if sufficiently many
sentences are read, the search space is limited to primary contexts of bounded
size. This setting controls the maximum size (in words) of the contexts which
Emile will consider for primary contexts of a type.
Lowering this setting will usually dramatically increase Emile’s speed: however,
it also decreases Emile’s potential to find composite types and complex rules.
The value of this setting should be at least as large as the size (in words) of the
smallest context of any type you want Emile to find. Useful values are usually
4-7.

D.10 The maximum primary expression length set-
ting

Name

maximum primary expression length

Synopsis

the maximum size of the primary expressions of a grammatical type

Type

numeric

Default value

6

Used in

Extracting the grammatical types from the matrix (C.2)

In order to ensure that the set of types found will converge if sufficiently many
sentences are read, the search space can be limited to primary expressions of
bounded size. This setting controls the maximum size (in words) of the expres-
sions which Emile will consider for primary expressions of a type.
Lowering this setting will usually dramatically increase Emile’s speed: however,
it also decreases Emile’s potential to find composite types and complex rules.
The value of this setting should be at least as large as the size (in words) of
the smallest expression of any type you want Emile to find. Useful values are
usually 4-7.

D.11 The maximum sentence length setting

Name

maximum sentence length

The EMILE Manual 69

Synopsis

the maximum size of sentences read from the input sample

Type

numeric

Default value

999

Used in

Gathering context/expression pairs (C.1)

Sentences longer than this are ignored when reading input samples. Very long
sentences usually do not contribute much to the rules of a grammar. This
setting should have a value at least 3 times as large as the values of the
maximum primary expression/context length settings, as otherwise Emile
will likely miss a few subcontexts it could have used to create rules.

D.12 The minimum contexts per type setting

Name

minimum contexts per type

Synopsis

minimum number of primary contexts of a grammatical type

Type

numeric

Default value

1

Used in

Extracting the grammatical types from the matrix (C.2)

For purposes of constructing a grammar, types of extremely small size usually
are not very interesting. Types with fewer primary contexts than indicated by
this setting are discarded. Note that this may cause some elements from the
matrix to be uncoverable. Increasing this setting will decrease the number of
types found, as well as the time Emile needs to generate the ruleset.

70 The Settings of EMILE

D.13 The minimum expressions per type setting

Name

minimum expressions per type

Synopsis

minimum number of primary expressions of a grammatical type

Type

numeric

Default value

2

Used in

Extracting the grammatical types from the matrix (C.2)

For purposes of constructing a grammar, types of extremely small size usually
are not very interesting. Types with fewer primary expressions than indicated
by this setting are discarded. Note that this may cause some elements from the
matrix to be uncoverable. Increasing this setting will decrease the number of
types found, as well as the time Emile needs to generate the ruleset.

D.14 The negative entry support multiplier set-

ting

Name

negative entry support multiplier

Synopsis

relative importance of negative samples in calculating support

Type

numeric

Default value

1

Used in

Extracting the grammatical types from the matrix (C.2)

Identifying characteristic, secondary and negative contexts and expres-
sions (C.4)

Deriving grammatical rules (C.5)

The EMILE Manual 71

This variable indicates the relative importance of negative samples. In essence,
every negative context/expression pair counters exactly this number of other
positive context/expression pairs, rendering both them and itself nonexistent
as far as support for a type or rule is concerned. The higher this value, the
more Emile will try to avoid creating types or rules with context/expression
combinations which occur in negative samples.
Note that this does not affect the manner in which positive and negative samples
containing the same sentence counter one another. Such samples are canceled
out on a one-to-one basis.

D.15 The parser tolerance setting

Name

parser tolerance

Synopsis

maximum number of words of unknown or altered type when parsing

Type

numeric

Default value

0

Used in

Parsing a sentence (C.7)

Emile can assign types ‘on the fly’ to single words (not to larger expressions),
in order to parse sentences with unknown words. This setting is the maximum
number of words to which Emile will assign or reassign a type in this fashion in
order to make parsing of a sentence possible.

D.16 The random seed setting

Name

random seed

Synopsis

current seed value for the random number generator

Type

numeric

Default value

machine-dependent

72 The Settings of EMILE

Used in

wherever the program makes a nondeterministic choice or iterates over the
elements of a set in a nondeterministic order, i.e. in all algorithms except
‘Gathering context/expression pairs’,

Not truly a setting, this variable is the current seed value for the random number
generator. It changes after every use of the random number generator (i.e. when
parsing, generating sentences, or creating the grammar and ruleset). It can be
used to recreate conditions exactly, so as to allow repetitions of experiments.

D.17 The rsp for no characteristics setting

Name

rsp for no characteristics

Synopsis

support required for a rule before it is considered for inclusion in the
grammar, for types with no characteristic expressions.

Type

numeric

Default value

51

Used in

Deriving grammatical rules (C.5)

This variable controls the support required for a rule (as a percentage) before
it is considered for inclusion in the grammar, for types with no characteristic
expressions. It is a counterpart to the rule support percentage setting.
If a type has no characteristic expressions, the characteristic∗ expressions de-
fault to the primary expressions. If required support percentages are low, this
can result in a single expression being taken as indicative of several types,
which could cause an unwieldy number of supported rules to be found. To
prevent this, EMILE will never consider a single non-characteristic expression
to suffice as indicator of the usability of a type. Furthermore, the setting
rsp for no characteristics is provided, to be used instead of the rule support percentage

setting when a type has no characteristic expressions.

D.18 The rule support percentage setting

Name

rule support percentage

The EMILE Manual 73

Synopsis

support required for a rule before it is considered for inclusion in the
grammar, for types with characteristic expressions.

Type

numeric

Default value

50

Used in

Deriving grammatical rules (C.5)

This variable controls the support required for a rule (as a percentage) before it
is considered for inclusion in the grammar, i.e. how many of the characteristic∗

expressions of a type can be substituted for one of the type references in the
rule, while resulting in an already supported rule, as described in section C.5.
Formally, a supported rule r : [T]⇒ s0[T1]s1[T2] . . . sk with k > 1 has to satisfy,
for some i ≤ k,

#{e∈(Ti)
∗
E | r with e replacing [Ti] has support} ≥ #(Ti)

∗
E ·rule support pct

(D.3)
The lower this value, the more rules will be found.
This setting is used for types with characteristic contexts. For types with-
out characteristic contexts, the rsp for no characteristics setting is used
instead.

D.19 The ruleset increase disallowed setting

Name

ruleset increase disallowed

Synopsis

one more than maximum number of words and symbols that using a type
may add to the ruleset

Type

numeric

Default value

1

Used in

Deriving grammatical rules (C.5)

74 The Settings of EMILE

When creating a ruleset, EMILE starts by using only references to the whole-
sentence type, and adds types to the set of used types Vused as long as this
will not result in a large increase in the size of the resulting ruleset (measured
in number of words and type references used). This variable determines how
wasteful a type is allowed to be (in terms of the resulting increase in the number
of words and type references used in the rules) in order to be used when creating
the ruleset.

Setting this to 0 means that only types that actively reduces the size of the
ruleset are included, setting this to 1 will include types as long as they don’t
actually increase the size of the ruleset. Higher values will allow more types
to be included (allowing for more structures to be identified when displaying
the ruleset or parsing sentences), at the expense of increasing the size of the
resulting ruleset.

D.20 The save in ascii format setting

Name

save in ascii format

Synopsis

whether the save-file will be in ASCII format

Type

boolean

Default value

false

Used in

the save and load commands.

This variable controls whether Emile saves its database in ASCII format or
binary format. Saving it in ASCII format will make it easier to manipulate the
file externally (by hand or with other programs): however, saving it in binary
format (the default) will reduce filesize and improve save/load speed by a factor
2. If you are not going to examine or manipulate the save-file externally, you
can leave this setting on false.

D.21 The scsp for no characteristics setting

Name

scsp for no characteristics

The EMILE Manual 75

Synopsis

support required for the secondary contexts of a grammatical type with
no characteristic expressions

Type

numeric

Default value

51

Used in

Identifying characteristic, secondary and negative contexts and expres-
sions (C.4)

This setting controls the support required (as a percentage) for the secondary
contexts of a grammatical type with no characteristic expressions. It is a coun-
terpart to the secondary context support percentage setting,

If a type has no characteristic expressions, the characteristic∗ expressions default
to the primary expressions. If required support percentages are low, this can
result in a single expression being taken as indicative of several types, which
could cause an unwieldy total number of secondary contexts to be found.

To prevent this, EMILE will never consider a single non-characteristic ex-
pression to suffice as indicator of the usability of a type. Furthermore, the
setting scsp for no characteristics is provided, to be used instead of the
secondary context support percentage setting when a type has no charac-
teristic expressions.

D.22 The secondary context support percentage

setting

Name

secondary context support percentage

Synopsis

support required for the secondary contexts of a grammatical type with
characteristic expressions

Type

numeric

Default value

50

76 The Settings of EMILE

Used in

Identifying characteristic, secondary and negative contexts and expres-
sions (C.4)

This setting controls the support required (as a percentage) for the secondary
contexts of each type, i.e. the number of characteristic∗ expressions that context
should occur with, as described in section C.4. Formally, secondary contexts
should satisfy

#(M+ ∩ ({c}× T ∗
E))−neg entry supp mult ·#(M− ∩ ({c}× T ∗

E))

≥ #T ∗
E · sec expression support pct/100 (D.4)

Lower values for this setting will increase the number of secondary contexts
found. Note that the effects of this setting are independent of the value of
secondary expression support percentage. (unlike with the settings for pri-
mary contexts and expressions).
This setting is used for types with characteristic expressions. For types without
characteristic expressions, the scsp for no characteristics setting is used
instead.

D.23The secondary expression support percentage

setting

Name

secondary expression support percentage

Synopsis

support required for the secondary expressions of a grammatical type with
characteristic contexts

Type

numeric

Default value

50

Used in

Identifying characteristic, secondary and negative contexts and expres-
sions (C.4)

This setting controls the support required (as a percentage) for the secondary
expressions of each type, i.e. the number of characteristic∗ contexts that ex-
pression should occur with, as described in section C.4. Formally, secondary
expressions should satisfy

#(M+ ∩ (T ∗
C×{e}))−neg entry supp mult ·#(M− ∩ (T ∗

C×{e}))

≥ #T ∗
C · sec context support pct/100 (D.5)

The EMILE Manual 77

Lower values for this setting will increase the number of secondary or expres-
sions found. Note that the effects of this setting are independent the value
of secondary context support percentage. (unlike with the settings for pri-
mary contexts and expressions).
This setting is used for types with characteristic contexts. For types without
characteristic contexts, the sesp for no characteristics setting is used in-
stead.

D.24 The sesp for no characteristics percentage

setting

Name

sesp for no characteristics percentage

Synopsis

support required for the secondary expressions of a grammatical type with
no characteristic contexts

Type

numeric

Default value

51

Used in

Identifying characteristic, secondary and negative contexts and expres-
sions (C.4)

This setting controls the support required (as a percentage) for the secondary
contexts of a grammatical type with no characteristic expressions. It is a coun-
terpart to the secondary expression support percentage setting.
If a type has no characteristic contexts, the characteristic∗ contexts default
to the primary contexts. If required support percentages are low, this can
result in a single context being taken as indicative of several types, which
could cause an unwieldy total number of secondary expressions to be found.
To prevent this, EMILE will never consider a single non-characteristic con-
text to suffice as indicator of the usability of a type. Furthermore, the setting
sesp for no characteristics is provided, to be used instead of the secondary expression support percentage

setting when a type has no characteristic contexts.

D.25 The support setting

Name

support

78 The Settings of EMILE

Synopsis

pseudo-setting for all required-support-related settings

Type

numeric

Default value

50

Used in

the set support command

Not truly a setting, this pseudo-variable is used in the ‘set support’ command
to set all support percentage settings with a single command. If this ‘variable’
is assigned a value n, the following settings are set to n:

expression support percentage

context support percentage

secondary expression support percentage

secondary context support percentage

rule support percentage

sesp for no characteristics

scsp for no characteristics

rsp for no characteristics

Additionally, total support percentage is set to 100− (100− n)2/100.

D.26 The total support percentage setting

Name

total support percentage

Synopsis

support required from the matrix for a type as a whole

Type

numeric

Default value

50

Used in

Extracting the grammatical types from the matrix (C.2)

The EMILE Manual 79

This variable controls the support required from the matrix (as a percentage)
for a type as a whole, i.e. how many of the context/expression pairs of a type
should occur in the matrix of positively encountered context/expression pairs,
as described in section 2.3. Formally, types are required to satisfy

#(M+ ∩ (TC×TE))−neg entry supp mult ·#(M− ∩ (TC×TE))

≥ #(TC×TE) · total support pct/100 (D.6)

The lower this value, the larger the size of the types found, and (probably) the
lower the number of types found. This setting should be used in conjunction
with the context support percentage and expression support percentage

settings. Lowering only one of these settings will usually have only little effect.

D.27 The type usefulness required setting

Name

type usefulness required

Synopsis

contribution to coverage required of types

Type

numeric

Default value

1

Used in

Eliminating superfluous types (C.3)

This variable determines how useful a type has to be (in terms of contributions
to the coverage of G) in order to not be discarded, as described in section
C.3. Setting this to 0 will prevent types from being discarded, setting this to 1
eliminates only types which do not contribute anything. Setting this to a high
value will eliminate all but a few types of large size, which may decrease the
time Emile needs to generate the ruleset.

D.28 The use multiplicities setting

Name

use multiplicities

Synopsis

whether to make more use of multiplicities

80 The Settings of EMILE

Type

boolean

Default value

false

Used in

Extracting the grammatical types from the matrix (C.2)

Eliminating superfluous types (C.3)

If this boolean variable is set to true, Emile will try to make more use of
multiplicities of sentences in the matrix, by treating all sets as multisets. In
practice this has turned out to be computationally expensive without changing
the result much, so by default this option is turned off. Note that this option is
only used when computing grammatical types, not when searching for derivation
rules.

D.29 The verbosity level setting

Name

verbosity level

Synopsis

verbosity of logging messages

Type

numeric

Default value

1

Used in

all algorithms and commands

This variable controls the verbosity of Emile’s logging messages. The higher
the value, the more detailed the logging messages. The quiet command will
set verbosity level to 0, which disables all non-error logging messages. The
verbose command will increase this setting or set it to the specified value.

The default value of this variable is 1. Setting verbosity level to values higher
than 2 is not recommended except for debugging purposes.

The EMILE Manual 81

D.30 The word regular expression setting

Name

word regular expression

Synopsis

regular expression defining words

Type

text

Default value

“”

Used in

Gathering context/expression pairs (C.1)

A regular expression defining words. A sentence is converted into a sequence
of words before it is searched for context/expression pairs. Characters not con-
tained in a match for word regular expression function as word separators
where necessary and are otherwise ignored. If this variable is empty, a word
is taken to be a nonempty sequence of alphanumeric characters, or a single
non-alphanumeric, non-whitespace symbol. This corresponds to the regular ex-
pression

[a-zA-Z0-9_\’]+|[^a-zA-Z0-9_\’Ã\r\n\t-]

The syntax used for regular expressions is the Extended Regular Expressions
syntax as defined in the regex(5) Unix man page. Additionally, the stan-
dard C escape sequences are recognized, i.e. ‘\n’ for newline, ‘\t’ for tab
etcetera. When setting regular expression variables, the Emile command in-
terpreter passes through backslashes in the original input, so you can type

set word regular expression = ’[\̂t\n]*’

instead of

set word regular expression = ’[\̂\t\\n]*’

The EMILE Manual 83

Appendix E

Table of Symbols

c - a context

e - an expression

(c, e) - a context/expression pair

s - a sentence

S - a collection of sentences

M - the matrix counting the number of occurrences of context/expression pairs

M+ - the set of context/expression pairs that have been positively encountered.

M− - the set of context/expression pairs that have been negatively encountered.

T - a grammatical type

[T] - a reference to type T inside a grammatical rule

[0] - a reference to the grammatical type of whole sentences

G - the current grammar of grammatical types

TC - the set of primary contexts of the grammatical type T

TE - the set of primary expressions of the grammatical type T

T ch
C - the set of characteristic contexts of the grammatical type T

T ch
E - the set of characteristic expressions of the grammatical type T

T ∗
C - the set of characteristic∗ contexts of the grammatical type T

T ∗
E - the set of characteristic∗ expressions of the grammatical type T

T se
C - the set of secondary contexts of the grammatical type T

84 Table of Symbols

T se
E - the set of secondary expressions of the grammatical type T

T−
C - the set of negative contexts of the grammatical type T

T−
E - the set of negative expressions of the grammatical type T

r - a grammatical rule of the form [T]⇒ s0[T1]s1[T2] . . . sk

Rsup - the current set of supported grammatical rules

R - the current set of supported, not-superseded grammatical rules

Vused - the set of types used by the current set of grammatical rules

Rsup
T - the set of supported grammatical rules that would result from adding T

to Vused

RT - the set of supported, not-superseded grammatical rules that would result
from adding T to Vused

The EMILE Manual 85

Bibliography

[1] P. Adriaans, Language Learning from a Categorial Perspective, PhD the-
sis, University of Amsterdam, the Netherlands, 1992.

[2] P. Adriaans, Learning Shallow Context-Free Languages under Simple Dis-
tributions, ILLC Research Report PP-1999-13, Institute for Logic, Lan-
guage and Computation, Amsterdam, the Netherlands, 1999.

[3] P. Adriaans, M. Trautwein, M. Vervoort, The Emile Approach to
Grammar Induction put into Practice, in preparation.

[4] E. Dörnenburg, Extension of the EMILE algorithm for inductive learning
of context-free grammars for natural languages, Master’s Thesis, University
of Dortmund, United Kingdom, 1997.

[5] M. Vervoort, Games, Walks and Grammars: Problems I’ve Worked On,
PhD Thesis, University of Amsterdam, the Netherlands, 2000.

[6] M. van Zaanen, ABL: Alignment-Based Learning, in: Proceedings of the
18th International Conference on Computational Linguistics (COLING)
(page 961-967), Saarbrücken, Germany, 2000.

[7] M. van Zaanen, Bootstrapping Syntax and Recursion using Alignment-
Based Learning, in: P. Langley (editor), Proceedings of the Seventeenth
International Conference on Machine Learning (page 1063-1070), Stanford
University, United States, 2000.

[8] M. van Zaanen, Bootstrapping Structure into Language: Alignment-
Based Learning, PhD thesis, University of Leeds, United Kingdom, sub-
mitted.

[9] M. van Zaanen, P. Adriaans Alignment-Based Learning versus EMILE:
A Comparison, in Proceedings of the Belgian-Dutch Conference on Artificial
Intelligence (BNAIC), Amsterdam, the Netherlands, 2001.

