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Chapter 1

Introduction

This dissertation is about games, walks and grammars. That’s what the title says,
and it’s completely correct. The second part of the title is ‘problems I’ve worked
on’, and that too is correct. However, those of you that are expecting deep and
interesting connections between these subjects, I have to give warning: you are
going to be disappointed. I worked on these problems as separate problems in
separate fields, and quite frankly, it seems almost hypocritical to try to establish
a connection at this point. If you wish, you may see it as a demonstration that
the techniques and the manner of thinking used in different fields of mathematics
are not all that different.
The first part, titled ‘Blackwell Games’, is an extension of the thesis I wrote as
a graduate student in 1995. It is about the problem of determinacy of Blackwell
games, a class of infinite games of imperfect information, where both players
simultaneously select moves from a finite set, infinitely many rounds are played,
and payoff is determined by a Borel measurable function f on the set of possible
resulting sequences of moves. In the original thesis I gave elementary proofs of
determinacy for Blackwell games whose payoff function is an indicator function
of a Borel set up to complexity Gδσ. D.A. Martin later found a reduction of the
problem for general Borel payoff functions to the known result of determinacy of
Borel perfect information games[16]. Both results are presented here, reworked
to fit into a single framework (yielding some new proofs for auxiliary results).
We also consider the Axiom of Blackwell Determinacy, an analogue for Blackwell
games of the Axiom of Determinacy, and give some new results regarding the
consequences of this axiom.
In the second part, titled ‘Random Walks’, we consider recurrence in reinforced
random walks, where edges in a graph are traversed with probabilities that may
be different (reinforced) at second, third etc. traversals. We focus on the case
where the probability for any edge only changes once, after its first traversal.
Thomas Sellke showed that in the case of the once-reinforced random walk on the
infinite ladder, the walk is almost surely recurrent if reinforcement is small[31].

1



2 Chapter 1. Introduction

Here, we present some general tools which allow us to obtain the same result as
a special case. After considering some other interesting cases, we combine these
tools with an application of nonstandard analysis to graph theory, and show that
the walk on the infinite ladder is also recurrent if reinforcement is sufficiently large.
For readers who are not familiar with nonstandard analysis, a brief overview is
provided.
The third part, titled ‘The EMILE Grammar Inducer’, is about the EMILE pro-
gram, a program that I wrote for Pieter Adriaans this past year, and that I am
still working on. The program reads in a text, and without prior knowledge at-
tempts to determine the grammatical structure of the language, outputting the
results in various ways. One purpose of the program is to verify whether natural
languages satisfy a condition known as shallowness : if this is the case, the EMILE
program should work well on natural languages. Here, we first look at the basic
concepts and algorithms underlying the program. Then we consider the results
of this approach, both in theory and in practice. In a separate appendix, explicit
pseudo-code for each of the sub-algorithms of EMILE is given.



Part I

Blackwell Games
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Overview

In this part of the dissertation we consider Blackwell games. Blackwell games are
infinite games of imperfect information, where both players simultaneously make
their moves, infinitely many rounds are played, and payoff is determined by a
Borel measurable function f on the set of possible resulting sequences of moves.
In particular, we consider the problem of determinacy for Blackwell games, and
give elementary proofs of determinacy for Blackwell games whose payoff function
is an indicator function of a Borel set up to complexity Gδσ. For general Borel
payoff functions, we give a reduction, found by T. Martin[16], to the determinacy
of Borel perfect information games.
In Chapter 2, we informally introduce the concepts behind Blackwell games, for
those that are unfamiliar with Blackwell games or game theory in general.
In Chapter 3, we formally define Blackwell games and other concepts, and prove
several basic results that are used in the other chapters.
In Chapter 4, we look at proofs of determinacy for Blackwell games with payoff
functions of varying complexity.
In the last chapter of this part, Chapter 5, we consider Blackwell games whose
payoff function is not Borel measurable, formulate an analogue of the Axiom of
Determinacy for these games, and compare some of the consequences of this ‘Ax-
iom of Blackwell Determinacy’ with those of the original Axiom of Determinacy.

5





Chapter 2

An Introduction to Game Theory

2.1 Games of Perfect Information

Imagine two players playing a game of blind chess. The only board they have is
in their minds, and they make their moves merely by announcing them. Someone
who doesn’t know the rules would find a game like this difficult to follow. If that
someone was of a literal bend, he might describe it like this:

“There were two players, playing against each other. The first player
said something, and I was told it was her move, and that she had
made the move by saying it. The other player thought for a while,
and then announced his own move. Then the first player made a
move again, then the second player, and so forth. The moves always
sounded similar, something like ‘pawn from ee-four to ee-five’. So I
think they couldn’t just say anything, but had to select their moves
from only a few possible options. And suddenly they stopped, and
shook hands, and I was told that the first player had won, apparently
because of the moves she and her opponent had played.”

If no one gave the poor fellow a copy of the rules of chess, the way a sequence of
moves determines which player wins would probably seem quite arbitrary. And
our hypothetical observer might be quite impressed that apparently chess-players
are able to memorize this long list of what the result is of each possible sequence
of moves.
Of course, the game of chess is not really that arbitrary, and those of us who play
chess only need to know a few simple rules to figure out which player has won.
But we can use this concept of a game to construct a quite general mathematical
game Γp.i.(f).

Let there be given two finite setsX and Y , an integer n, and a function
f assigning to each sequence w of length n of pairs (xi, yi) ∈ X × Y ,

7



8 Chapter 2. An Introduction to Game Theory

a payoff f(w) ∈ IR. Two players are playing against each other.
First, player I makes a move by selecting an element x1 ∈ X, and
announcing his or her selection. Then player II makes a move by
selecting an element y1 ∈ Y and announcing his or her selection. Then
they each in turn make a second move in this fashion, and a third
move, and continue making moves until n rounds have been played.
This generates a sequence w of length n of pairs (xi, yi) ∈ X × Y .
Then they stop, and player II pays player I the amount f(w).

With the right choices for X, Y , n and f , the game Γp.i.(f) can ‘emulate’ the
game of chess. For if we let X and Y be the set of all possible chess moves, and
n = 63501 then a sequence w corresponds to a finished game of chess. We now
set f(w) = 1, f(w) = 0, or f(w) = 1

2
, depending on whether the corresponding

game is a win for White, a win for Black, or a draw.3 And voilá, we have our
chess emulator.
But chess is not the only game that can be ‘emulated’ in this manner. The
same can be done with Noughts-and-Crosses, Connect-Four, Go and Checkers.
In general, the games Γp.i.(f) can emulate any game G that has the following
properties:

• There are two players.

• There is no element of chance

• Moves are essentially made by selecting them and announcing them.

• There is no hidden information: a player knows all the moves made so
far when making his or her current move, and there is nothing going on
simultaneously either (Perfect Information).

• If one player loses (a certain amount) the other player wins (that same
amount) (Zero-Sum).

• The game can last no more than a certain number of rounds (Finite Dura-
tion).

1There exists a rule in chess (the fifty-move rule) stating that if no piece has been captured
and no pawn has been moved for fifty turns, the game is a draw. Since there are only 30 pieces
that can be captured, and each of the 16 pawns can make at most 6 moves, it is easy to show
that no game can last longer than (30 + 16 · 6) · 50 + 50 = 6350 moves2.

2With a little more effort, this upper bound can be improved to 5950 by observing that
pawns in the same column cannot pass one another without one of them making a capture.
A game of length 5950 can be constructed, so this is also the maximum length of a game.
Optionally the arbiter may allow for greater intervals between captures and/or pawn moves in
certain endgames which are known to require this; the maximum length of games under this
optional rule may be different.

3If w does not correspond to a legal chess game, we count it as a win for White if the first
illegal move is made by Black, and vice versa.
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• There is a maximum number of alternatives each player can select from
(Finite Choice-of-Moves).

These games are called games of perfect information, and any results for the
games Γp.i.(f) apply to all the games with these properties.

2.2 Strategies and Values

D. Blackwell described the concept of a strategy as [4]:

Imagine that you are to play the white pieces in a single game of chess,
and that you discover you are unable to be present for the occasion.
There is available a deputy, who will represent you on the occasion,
and who will carry out your instructions exactly, but who is absolutely
unable to make any decisions of his own volition. Thus, in order to
guarantee that your deputy will be able to conduct the white pieces
throughout the game, your instructions to him must envisage every
possible circumstance in which he may be required to move, and must
specify, for each such circumstance, what his choice is to be. Any such
complete set of instructions constitutes what we shall call a strategy.

Thus, a strategy for a given player in a given game consists of a specification, for
each position in which he or she is required to make a move, of the particular move
to make in that position. In turn, a position can be specified by the moves made
to get to that position. If we apply this to the game Γp.i.(f), a strategy becomes
a function from the set of sequences of length < n of pairs (xi, yi) ∈ X × Y
(followed by single elements xj ∈ X in case of a strategy for player II), to the set
of possible selections X or Y .
Given strategies for each of the players, the outcome of the game is fixed: each
move follows from the current position and the strategy of the player whose turn
it is to move, and determines the next position. So, the totality of all the decisions
to be made can be described by a single decision - the choice of a strategy. This
is the normal form of a game: the two players independently make a single move,
which consists of selecting a strategy, and then payoff is calculated and made.
Of course, there are good strategies and bad strategies. The value of a strategy for
a given player is the result of that strategy against the best counter-strategy. The
value of a game for a given player is the best result that that player can guarantee,
i.e. the value of that player’s best strategy. A game is called determined if its
value is the same for both players. That value is the result that will occur if both
players are playing perfectly.4

4In more general cases, we allow ε-approximation, i.e. a game is determined if and only if
there exists a value v such that for any ε > 0, the two players have strategies guaranteeing them
a payoff of at least v − ε or at most v + ε, respectively.
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V. Allis [1] recently demonstrated that in a game of Connect-Four, the first player
can win, i.e. has a strategy that wins against any counter-strategy. And countless
persons throughout the ages have independently discovered that in the game of
Noughts-and-Crosses, both players can force a draw. These are both examples of
determinacy. It can be shown (using induction) that any game Γ(f) as defined
above is determined, and hence any game with all of the properties mentioned
above is determined. In the case of Go, chess, and checkers, this means that
either one of the players has a winning strategy, or both players have a drawing
strategy.

2.3 Games of Imperfect Information

Now consider the game of Scissors-Paper-Stone. In this game, the two players
simultaneously ‘throw’ one of three symbols: ‘stone’ (hand balled in a fist), ‘pa-
per’ (hand flat with the palm down) or ‘scissors’ (middle and forefinger spread,
pointing forwards). If both players throw the same symbols, the result is a draw;
otherwise, ‘paper’ beats ‘stone’, ‘stone’ beats ‘scissors’, and ‘scissors’ beats ‘pa-
per’ (the mnemonic being “paper wraps stone, stone blunts scissors, and scissors
cut paper”). In this game, the players do not make moves in turn, but simul-
taneously. In other words, both players make moves, and neither player knows
what move the other is making. This is an example of a game of imperfect infor-
mation. In general, games of imperfect information have all the properties that
games of perfect information have, except that players make moves at the same
time instead of one after the other.
For games of imperfect information, we need to redefine the concept of strategy.
If we keep to the existing definition, then the only possible strategies in (for
example) the game of Scissors-Paper-Stone, are strategies of the type ‘throw this’.
However, any such strategy, for either player, is a losing strategy: for instance,
the strategy ‘throw stone’ loses against the counter-strategy ‘throw paper’. So in
terms of the concept of strategy described above, this game is not determined.
On the other hand, consider the ‘strategy’ ‘throw scissors 1/3 of the time, throw
paper 1/3 of the time, and throw stone the remaining 1/3 of the time’. Against
any other strategy, this strategy loses, draws and wins 1/3 of the time each, for
an ‘average result’ of a draw. This strategy does not fit in the concept of strategy
given above, but it is clearly worth considering.
Strategies of this new type are called mixed strategies, as opposed to the old type
of strategies, the pure strategies. A mixed strategy for a given player in a given
game consists of a specification, for each position in which he or she is required
to make a move, of the probability distribution to be used to determine what
move to make in that position.5 Given mixed strategies for each of the players,

5Standard game theory defines a mixed strategy as a probability distribution on pure strate-
gies, but the above definition can be shown to be equivalent to that one.
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the outcome of the game is not determined, but we can calculate the probability
of each outcome. If we assign values to winning and losing (‘the loser pays the
winner one dollar’), then we can calculate the average profit/loss one player can
expect to make from the other, playing those strategies.

The value of a mixed strategy is therefore the expected average result against the
best counter-strategy. And a game is called determined if, for some value v, one of
the players has a strategy with which she can always expect to make (on average)
at least v, no matter what the other plays, while the other player has a strategy
with which he can always expect to lose (on average) at most v, no matter what
the other plays. As before, it can be shown (using induction and a theorem of von
Neumann) that all finite two-person zero-sum games with Imperfect Information
(i.e. the games with the properties mentioned above, except that players make
moves at the same time instead of one after the other) are determined.

2.4 Infinite Games

All the games mentioned so far are of finite duration. Let, as before, X and Y
be two finite sets, and let f be a function assigning to each countably infinite
sequence w of pairs (xi, yi) ∈ X×Y , a payoff f(w) ∈ IR. We first consider games
of infinite duration and perfect information:

Two players are playing against each other. Each player, in turn,
makes a move by selecting an element x1 ∈ X or y1 ∈ Y , respec-
tively, and announcing his or her selection. Then they each in turn
make a second move, and a third move, and continue making moves
for a countably infinite number of rounds. This generates an infinite
sequence w of pairs (xi, yi) ∈ X × Y . ‘Then’ they stop, and player II
pays player I the amount f(w).

The problem with infinite games, of course, is that the outcome is only known
after an infinite number of moves, and thus it is impractical to play the game
as it is. But our concept of a strategy as a specification of which move to make
in each position, is still valid in the case of games of infinite duration. And
given strategies for both players we can construct the infinite sequence of moves
that will be played (or the probability distribution thereof), and apply the payoff
function to obtain our (expectation of the) outcome. Hence we can still play the
game in a fashion, by using its normal form.

The concepts of values and determinacy carry over as well. But it is no longer
provable that all such games are determined. For some payoff functions f , such as
bounded Borel-measurable functions f , it has been proven that the infinite game
of perfect information Γp.i.(f) is determined. But using the Axiom of Choice,
a non-measurable payoff function f can be constructed such that Γ(f) is not
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determined [6]. The Axiom of Determinacy, the axiom that all games Γ(f) are
determined, is a commonly used alternative to AC [8, 17].
A game of infinite duration and imperfect information is similar, except that
both players make their nth move at the same time. These games are called
Blackwell games, named after D. Blackwell, the first person to describe and study
these games [2]. For Blackwell games, it was quickly proven that the game Γ(f)
is determined if f is the indicator function of an open or Gδ set, [2, 3], and
after a considerable period determinacy was also shown for the case where f
is the indicator function of a Gδσ set[20]. In 1996, D.A. Martin finally proved
determinacy of Γ(f) for the case that f is Borel[16].



Chapter 3

Definitions, Lemmas and Terminology

In this chapter, we define the basic concepts of Blackwell games, introduce some
terminology, and derive some lemmas that we’ll be using in the chapters to come.

3.1 Games, Strategies and Values

The definitions in this section are fairly standard, and merely formalize the in-
tuitive concepts from the introduction. The lemmas are all basic properties of
game-values.
First we will define the concept of Blackwell games itself, and the basic concepts of
plays and positions. Fix two finite, nonempty sets X and Y , and put Z = X×Y ,
W = ZIN ,

3.1.1. Definition. Let f : W → IR be a bounded Borel-measurable6 Borel-
measurable function. The Blackwell game Γ(f) with payoff function f is the
two-person zero-sum infinite game of imperfect information played as follows:

Player I selects an element x1 ∈ X (we say that she makes the move
x1) and simultaneously player II selects an element y1 ∈ Y . Then
both players are told z1 = (x1, y1). Next, player I selects x2 ∈ X,
and simultaneously player II selects y2 ∈ Y . Then both players are
told z2 = (x2, y2). Next, both players simultaneously selects x3 ∈ X
and y3 ∈ Y , etc. In this manner they produce an infinite sequence
w = (z1, z2, . . .). Finally, player II pays player I the amount f(w),
ending the game.

6These conditions on the payoff function ensure that expectations and values of strategies
can be easily defined. In the next chapters, if a function is introduced as the payoff function
of a Blackwell game, it may be implicitly assumed to be bounded and Borel-measurable unless
explicitly stated otherwise.

13



14 Chapter 3. Definitions, Lemmas and Terminology

If the payoff function is the indicator function IS of a set S ⊆ W , then we will
often write Γ(S) for Γ(IS).

3.1.2. Definition. Let Γ(f) be a Blackwell game. A countably infinite sequence
w of pairs (x, y) ∈ Z is called an (infinite) play of Γ(f). A finite sequence p of
length k of pairs (x, y) ∈ Z is called a finite play or position of Γ(f), of length k.
Note that a finite play of length k contains k moves of each of the players, not k
moves total.
If an infinite play w starts with a finite play p of length k, we say that w hits p
on round k, or that w passes through p on round k. Analogously for a finite play
p′ instead of w. If p′ passes through p and p′ 6= p, we also say that p′ follows p,
or that p precedes p′.

Notation. We use the following notational conventions:

• w and p are used to denote infinite plays and positions, respectively.

• W denotes the set of infinite plays, as previously defined.

• P denotes the set of positions Z<ω.

• For all n ∈ IN , Wn denotes the set Zn of finite plays of length n.

• len(p) denotes the length of a finite play p.

• w|k [p|k] denote the position w [p] passes through on round k.

• p ⊂ w [p ⊆ p′] denote that w [p′] passes through p on some round.

• p ⊂ p′ denotes that p precedes p′.

• e denotes the position of length 0, i.e. the empty sequence.

• p̂p′ [p̂w] denotes the sequence consisting of the finite sequence p followed
by the finite sequence p′ [the infinite sequence w].

• [p] denotes the set {w ∈W | w ⊃ p} of all plays hitting the position p.

• [H] denotes the set {w ∈ W | ∃p ∈ H : w ⊃ p} of all plays hitting any
position in a set of positions H.

• We sometimes write (x1, y1, x2, y2, . . .) instead of ((x1, y1), (x2, y2), . . .).

3.1.3. Remark. We give W the usual topology by letting the basic open sets
be the sets of the form [H] for some some set H ⊆ Wn of positions of fixed
length n. Then the open subsets of W are exactly those of the form [H] for
some set H of positions. The Gδ subsets of W are exactly those of the form
{w ∈ W | #{p ∈ H | w hits p} = ∞} for some set H of positions. Note that
under this topology, W is a compact space.
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Next we will give the definitions of strategies and values, and some basic properties
thereof. Proofs are omitted for reasons of conciseness.

3.1.4. Definition. A strategy for player I in a Blackwell game Γ(f) is a function
σ assigning to each position p a probability distribution on X. More formally, σ
is a function P → [0, 1]X satisfying ∀p ∈ P :

∑
x∈X σ(p)(x) = 1.

Analogously, a strategy for player II is a function τ assigning to each position p a
probability distribution on Y .

3.1.5. Definition. Let σ and τ be strategies for players I and II in a Blackwell
game Γ(f). σ and τ determine a probability measure µσ,τ on W , induced by

µσ,τ [p] = P{w | w hits p} =
n∏

i=1

(
σ(p|(i−1))(xi) • τ(p|(i−1))(yi)

)
(3.1)

for any position p = (x1, y1, . . . , xn, yn) ∈ P .

The expected income of player I in Γ(f), if she plays according to σ and player II
plays according to τ , is the expectation of f(w) under this probability measure:

E(σ vs τ in Γ(f)) =
∫
f(w)dµσ,τ (w) (3.2)

3.1.6. Definition. Let Γ(f) be a Blackwell game. The value of a strategy σ
for player I in Γ(f) is the expected income player I can guarantee if she plays
according to σ. Similarly, the value of a strategy τ for player II in Γ(f) is the
amount to which player II can restrict player I’s income if he plays according to
τ . I.e.

val(σ in Γ(f)) = inf
τ
E(σ vs τ in Γ(f)) (3.3)

val(τ in Γ(f)) = sup
σ
E(σ vs τ in Γ(f)) (3.4)

3.1.7. Definition. Let Γ(f) be a Blackwell game. The lower value of Γ(f) is
the smallest upper bound on the income that player I can guarantee. Similarly,
the upper value of Γ(f) is the largest lower bound on the restrictions player II
can put on player I’s income. I.e.

val↓(Γ(f)) = sup
σ

val(σ in Γ(f)) = sup
σ

inf
τ
E(σ vs τ in Γ(f)) (3.5)

val↑(Γ(f)) = inf
τ
val(τ in Γ(f)) = inf

τ
sup
σ
E(σ vs τ in Γ(f)) (3.6)

Clearly, for all games Γ(f), val↓(Γ(f)) ≤ val↑(Γ(f)). If val↑(Γ(f)) = val↓(Γ(f)),
then Γ(f) is called determined, and we write val(Γ(f)) = val↑(Γ(f)) = val↓(Γ(f)).
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3.1.8. Definition. Let Γ(f) be a Blackwell game, and let ε > 0. A strategy
σ for player I in Γ(f) is optimal if val(σ in Γ(f)) = val↓(Γ(f)). A strategy σ
for player I in Γ(f) is ε-optimal if val(σ in Γ(f)) > val↓(Γ(f)) − ε. Similarly,
a strategy τ for player II in Γ(f) is optimal if val(τ in Γ(f)) = val↑(Γ(f)), and
ε-optimal if val(τ in Γ(f)) < val↑(Γ(f)) + ε.

3.1.9. Lemma. Let f , g be two payoff functions such that for all w ∈W , f(w) ≤
g(w). Then val↓(Γ(f)) ≤ val↓(Γ(g)) and val↑(Γ(f)) ≤ val↑(Γ(g)).

3.1.10. Lemma. Let f be a payoff function, and let a, c ∈ IR, a ≥ 0.Then
val↓(Γ(af + c)) = a val↓(Γ(f)) + c and val↑(Γ(af + c)) = a val↑(Γ(f)) + c.

3.1.11. Lemma. Let f be a payoff function, and let fsw : (Y × X)IN → IR be
defined by

fsw((y1, x1), (y2, x2), . . .) = f((x1, y1), (x2, y2), . . .) (3.7)

Then

val↓(Γ(−f)) = −val↑(Γsw(fsw)) (3.8)

val↑(Γ(−f)) = −val↓(Γsw(fsw)) (3.9)

where Γsw(fsw) is the Blackwell game with payoff function fsw in which player I
selects moves from Y and player II selects moves from X.

3.1.12. Lemma. Let (fi)i be a sequence of payoff functions fi : W → [a, b] such
that (fi)i converges pointwise to a function f : W → [a, b]. Then for any two
strategies σ, τ , limi→∞E(σ vs τ in Γ(fi)) = E(σ vs τ in Γ(f))

3.1.13. Lemma. Let (fi)i be a sequence of payoff functions fi : W → [a, b] such
that (fi)i converges uniformly to a function f : W → [a, b]. Then val↓(Γ(f)) =
limi→∞ val↓(Γ(fi)) and val↑(Γ(f)) = limi→∞ val↑(Γ(fi)).

3.2 Starting and Stopping

On occasion, we would like to ‘fix’ a finite sequence of initial moves, and to
consider the game starting from that position rather than the game starting
from the empty position e. Similarly, we sometimes like to consider a game with
positions such that if the game ever hits such a position, the outcome is known and
the players may stop playing. This section will lay the basics for using starting
and stopping positions. The next section will give some tools for using starting
and stopping positions to ‘combine’ games.
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3.2.1. Definition. Let f : W → IR be a bounded Borel function, and p =
((x1, y1), (x2, y2), . . . , (xn, yn)) a position. The subgame Γ(f, p) starting from po-
sition p is the game played like Γ(f), except that the players start at round n+1,
and the first n moves are supposed to have been x1, y1, x2, y2, . . . , xn, yn. The
game Γ(f, p) is played exactly the same as the game Γ(g), where g is the payoff
function defined by g(w) = f(p̂w).
As before, strategies σ and τ determine a probability measure µσ,τ in Γ(f,p) on W .
This measure is equal to the conditional probability measure obtained from µσ,τ

given [p], i.e.

µσ,τ in Γ(f,p)(S) =
µσ,τ (S ∩ [p])

µσ,τ [p]
if µσ,τ [p] = 0 (3.10)

The expected income of player I, the value of a strategy σ, etc. are defined for
the games Γ(f, p) in the same manner as for the games Γ(f).

3.2.2. Definition. A stopping position in a Blackwell game Γ(f) is a position
p, such that for all plays w,w′ ∈ [p], f(w) = f(w′). We will denote this value by
f(p). A stopset in a Blackwell game Γ(f) is a set H of stopping positions, such
that no stopping position p ∈ H precedes another stopping position p′ ∈ H.

We will often define a payoff function f using the following format:

f(p) = some formula for p ∈ H
f(w) = some other formula for w 6∈ [H]

where H is a set of positions such that no position p ∈ H precedes another
position p′ ∈ H. In the game Γ(f) constructed in this fashion, H is a stopset.

3.2.3. Remark. If p is a stopping position, any moves made at or after p will
not affect the outcome of the game. It is often convenient to assume that both
players will stop playing if a stopping position is hit. If Γ(f) is a Blackwell game,
and H is a stopset, we write ΓH(f) to explicitly denote that players stop playing
at the positions in H. In this case, we only require strategies to be defined on
non-stopping positions. Similarly, with respect to a subgame Γ(f, p), we only
require strategies to be defined on positions that are following or equal to p.

Using stopsets, a finite game can be treated as a special type of infinite game.

3.2.4. Definition. Let Γ(f) be a Blackwell game. If, for some n, all positions
in Wn are stopping positions, then Γ(f) is called finite (of length n). If Γ(f) is
finite, we can stop after playing n rounds, and we will denote this by writing
Γn(f).
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3.3 Equivalent Truncated Subgames

In games like chess, Go, or even Risk or Monopoly, a player is usually allowed
to give up if he has no hope of winning. He or she doesn’t have to play it out
in the hope that the other player will make a mistake. Two players can agree
beforehand to stop in certain positions, and pay out the value of the game at that
position rather than continue playing. Provided their assessment of that value is
accurate, this does not change the value of the total game. We will call a game
resulting from such an alteration a truncated subgame.

3.3.1. Definition. Let f , g be two payoff functions, and H a stopset in Γ(g).
ΓH(g) is an equivalent truncated subgame of Γ(f) (truncated at H), if for any
play w 6∈ [H], f(w) = g(w), and for any p ∈ H, g(p) = val(Γ(f, p)). ΓH(g) is a
truncated subgame, equivalent for player I [for player II], if for any play w 6∈ H,
f(w) = g(w), and for any p ∈ H, g(p) = val↓(Γ(f, p)) [g(p) = val↑(Γ(f, p))]. In
all three cases, Γ(f) is called an extension of ΓH(g).

Note that ΓH(g) is an equivalent truncated subgame of Γ(f) if and only if it is a
truncated subgame equivalent for both player I and player II.

3.3.2. Lemma. Let Γ(f) be a Blackwell game, and let ΓH(g) be a truncated sub-
game of Γ(f), truncated at a set of positions H, equivalent for player I [for player
II]. Then val↓(Γ(f)) = val↓(ΓH(g)) [val↑(Γ(f)) = val↑(ΓH(g))]. Furthermore, for
any ε > 0, any ε-optimal strategy for player I [player II] in ΓH(g) (if it is unde-
fined on all positions at or after positions in H) can be extended to an ε-optimal
strategy for player I [player II] in Γ(f), and conversely, any ε-optimal strategy for
player I [player II] in Γ(f) is also an ε-optimal strategy for that player in ΓH(g).

Proof
Let σ0 be an ε-optimal strategy for player I in ΓH(g). Let δ = val↓(ΓH(g)) −
val(σ in ΓH(g)), and for each stopping position p′ ∈ H, let σp′ be an (ε − δ)-
optimal strategy for player I in Γ(f, p′). We can combine these strategies in a
single strategy σ for player I in Γ(f), by setting

σ(p) =

{
σp′(p) if for some p′ ∈ H, p′ ⊆ p
σ0(p) otherwise

(3.11)

It is easy to verify that this is an ε-optimal strategy for player I in Γ(f). The
converse holds trivially.

2

3.3.3. Corollary. Let Γ(f) be a Blackwell game, and let ΓH(g) be an equivalent
truncated subgame of Γ(f) (truncated at H). If ΓH(g) is determined, then Γ(f)
is determined, and val(Γ(f)) = val(ΓH(g)). Furthermore, for any ε > 0, any ε-
optimal strategy for player I or player II in ΓH(g) can be extended to an ε-optimal
strategy for player I or player II in Γ(f).
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3.3.4. Corollary. Let Γ(f),ΓH(g) be Blackwell games. If for any p ∈ H,
g(p) ≤ val↓(Γ(f, p)), and for any w 6∈ [H], g(w) ≤ f(w), then val↓(ΓH(g)) ≤
val↓(Γ(f)). Similarly for the value and the upper value, and for ≥ instead of ≤.
Truncated subgames may be nested. If we have a nested series of truncated
subgames, then we may extend a strategy for the smallest subgame to a strategy
for all subgames. This allows us to approximate complicated games with a series
of simpler, truncated subgames, obtain a strategy that is (ε-)optimal in all the
subgames. The final lemma in this section allows us to prove results for that
strategy in the original game.

3.3.5. Definition. Let, for n ∈ IN , fn be a payoff function, and Hn a set of
stopping positions in Γ(fn). If for all n ∈ IN , ΓHn

(fn) is a truncated subgame
of ΓHn+1(fn+1), and equivalent to ΓHn+1(fn+1) [for player I, II], then the series
of games (ΓHn

(fn))n∈IN is called a nested series of equivalent truncated subgames
[equivalent for player I, II].

3.3.6. Lemma. Let (ΓHi
(fi))i∈IN be a nested series of truncated games equivalent

for player I [player II]. Then all the games have the same lower value [upper
value]. Furthermore, we can find a strategy for player I [player II] that is ε-
optimal in all the games ΓHi

(fi).

Proof
We may assume without loss of generality that H0 = {e} and that for any i ∈ IN ,
any stopping position in ΓHi

(fi) is either equal to or preceded by a stopping
position from the set Hi. Note that for j > i, all elements of Hj are stopping
positions in ΓHi

(fi).
For i > 0 and p′ ∈ Hi−1, let σi,p′ be a 2−iε-optimal strategy for player I in
ΓHi

(fi, p
′). We can combine these strategies in a single strategy σ for player I in

Γ(f), by setting

σ(p) =

{
σi,p′(p) if p′ ∈ Hi, p

′ ⊆ p, and ¬∃p′′ ∈ Hi+1 : p
′′ ⊆ p

arbitrary if ∀i∃p′ ∈ Hi : p
′ ⊆ p

(3.12)

It is easy to verify that for all i, this is an (1− 2−i)ε-optimal strategy for player
I in the game ΓHi

(fi). Conversely, any ε-optimal strategy for player I in a game
ΓHi

(fi) is also an ε-optimal strategy for player I in the games ΓHj
(fj), for all

j < i.
2

3.3.7. Lemma. Let (ΓHi
(fi))i∈IN be a nested series of equivalent truncated sub-

games equivalent for player I [player II]. Let f : W → IR be a bounded Borel
function such that

∀w ∈ W : lim inf
i→∞

fi(w) ≤ f(w) ≤ lim sup
i→∞

fi(w) (3.13)

Then the game Γ(f) has the same lower value [upper value] as the games ΓHi
(fi).
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Proof
The proof of this lemma is based on work of D.A. Martin[16, proof of Lemma
1.1]. We may assume without loss of generality that H0 = {e} and that for
any i ∈ IN , any stopping position in ΓHi

(fi) is either equal to or preceded by a
stopping position from the set Hi. Note that for j > i, all elements of Hj are
stopping positions in ΓHi

(fi).
Let v be the value of the games ΓHi

(fi), First we will show that the lower value
of the game Γ(f) is at least v. Let ε > 0, and consider the strategy σ defined in
Lemma 3.3.6. The value of this strategy in Γ(f) is at least v−3ε. For let τ be an
arbitrary counter-strategy for player II, and suppose that E(σ vs τ in Γ(f)) <
v − 3ε. We can find a continuous bounded function g : W → IR such that f ≤ g
and7

E(σ vs τ in Γ(g)) =
∫
g(w)dµσ,τ (w) ≤

∫
f(w)dµσ,τ (w) + ε < v − 2ε (3.14)

Define the functions gi : W → IR, for i ∈ IN , by setting

gi(p) = E(σ vs τ in Γ(g, p)) for p ∈ Hi

gi(w) = g(w) for w 6∈ [Hi]
(3.15)

Then we have for any i ∈ IN and any position p ∈ Hi,

E(σ vs τ in ΓHi+1
(gi+1, p)) = gi(p) (3.16)

By the construction of σ, we know that for any i ∈ IN and any position p ∈ Hi,

E(σ vs τ in ΓHi+1
(fi+1, p)) > fi(p)− 2−i−1ε (3.17)

Using induction, we can now construct a sequence of positions pi such that for
all i, pi ∈ Hi, pi ⊆ pi+1, and

gi(pi) < fi(pi)− (1 + 2−i)ε (3.18)

For i = 0, we can take p0 = e, since by our assumption that H0 = {e} we can
write

g0(e) = E(σ vs τ in Γ(g)) < v − 2ε = f0(e)− 2ε (3.19)

For i + 1, we use the induction hypothesis and equations (3.16) and (3.17) to
derive

E(σ vs τ in ΓHi+1
(gi+1)) < E(σ vs τ in ΓHi+1

(fi+1))− (1 + 2−i−1)ε (3.20)

which, together with the observation that for all w ∈ W − [Hi], gi(w) = g(w) ≥
f(w) = fi(w), implies that there must be a position pi+1 ∈ Hi+1 extending pi and
satisfying (3.18).

7The existence of g is guaranteed by the observation that f is bounded, and that we can
contain the discontinuities of f in an open set of arbitrary small µσ,τ -measure[9, Theorem 17.12].
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If for some i, pj = pi for all j > i, then we are done, for then pi is a stopping
position of f and E(σ vs τ in Γ(g, pi)) < f(p)−ε, contradicting g ≥ f . So assume
that the sequence (pi)i∈IN is not eventually constant. For all i ∈ IN we can find
wi ∈ [pi] such that

g(wi) ≤ E(σ vs τ in Γ(g, pi)) = gi(pi) (3.21)

Since (pi)i∈IN is not eventually constant, the sequence (wi)i∈IN converges to some
w ∈ W . Since g is continuous, we now have

g(w) = lim
i→∞

g(wi) ≤ lim inf
i→∞

gi(pi) ≤ lim inf
i→∞

fi(pi)− ε ≤ f(w)− ε (3.22)

again contradicting g ≥ f . It follows that there exists no counter-strategy τ for
player II with E(σ vs τ in Γ(f)) < v − 3ε, as required.
To show that the lower value of the game Γ(f) is not greater than v, let σ be
a strategy for player I in Γ(f), and suppose that σ is of value > v + 3ε. In the
manner of the construction of Lemma 3.3.6, we can construct a counter-strategy
τ for player II such that for any i ∈ IN and any position p ∈ Hi,

E(σ vs τ in ΓHi+1
(fi+1, p)) < fi(p) + 2−i−1ε (3.23)

From here on, we can continue in the manner of the first part of this proof, to
again derive a contradiction.

2

3.3.8. Corollary. Let (ΓHi
(fi))i∈IN be a nested series of equivalent truncated

subgames. If ΓH0(f0) is determined, then all the games ΓHi
(fi) are determined,

as well as the game Γ(f), where f is as in Lemma 3.3.7. Furthermore, all the
games have the same value, and we can find strategies for player I and player II
that are ε-optimal in all the games ΓHi

(fi) and the game Γ(f).

3.3.9. Remark. If the component games involved all have optimal strategies,
then we can extend optimal strategies with optimal strategies to optimal strate-
gies, i.e. drop the ε in the above lemmas and corollaries.





Chapter 4

Determinacy Results

In this chapter, we first give some proofs of determinacy for finite Blackwell
games, and for Blackwell games whose payoff function is the indicator function
of an open or Gδ set. We show that open or Gδ games can be approximated with
finite or open games. Then we use this to show that Blackwell games over Gδσ

sets are determined as well. Finally, we show that the determinacy of Blackwell
games for general Borel payoff functions follows from the determinacy of Borel
perfect information games.

4.1 Finite Games

The most basic game of imperfect information is where both players select a single
move simultaneously, and then the game is finished and the payoff is determined.
The aforementioned game of Scissors-Paper-Stone is an example of such a game.
Of course these games can also be seen as one-round Blackwell games. The
determinacy of these games is the foundation supporting all the other results in
this chapter.

4.1.1. Theorem (Von Neumann’s Minimax Theorem[18]). Let Γ1(f) be a
finite one-round Blackwell game (i.e. of length 1). Then Γ1(f) is determined,
and both players have optimal strategies.

Proof
f can be interpreted as a function X × Y → IR. Without loss of generality we
may assume that X = {1, . . . , n}, Y = {1, . . . ,m}. Strategies σ and τ for players
I and II in Γ1(f) can be represented by nonnegative vectors ~xσ = (xσ

1 , . . . , x
σ
n)

and ~yτ = (yτ1 , . . . , y
τ
m) satisfying

∑n
i=1 x

σ
i =

∑m
j=1 y

τ
j = 1. It is easily seen that

E(σ vs τ in Γ1(f)) =
n∑

i=1

m∑

j=1

xσ
i y

τ
j f(i, j) (4.1)

23
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val(σ in Γ1(f)) = min
1≤j≤m

n∑

i=1

xσ
i f(i, j) (4.2)

val(τ in Γ1(f)) = max
1≤i≤n

m∑

j=1

yτj f(i, j) (4.3)

For each strategy σ for player I, let ~zσ ∈ IRm be the vector with coordinates zσj =∑n
i=1 xif(i, j). For strategies σ and τ for players I and II, E(σ vs τ in Γ1(f)) =
〈~yτ , ~zσ〉 (where 〈·, ·〉 denotes the in-product on IRm), and val(σ in Γ(f)) is equal
to the lowest coordinate of ~zσ. Let the closed convex set C ⊆ IRm be defined by

C := {~z ∈ IRm | ~z ≤ ~zσ for some strategy σ for player I} (4.4)

Let v = val↓(Γ1(f)), ε > 0. Then there exists no strategy σ for player I of value

v+ε, and it is easily seen that this implies that the vector~b = (v+ε, . . . , v+ε) 6∈ C.

Let ~c ∈ C be the vector of C closest to ~b (i.e. such that |~b − ~c| is minimal). For

all j ≤ m, cj ≤ bj, because otherwise we would be able to move closer to ~b by

reducing cj to bj. Since ~b 6= ~c, it follows that b1+. . .+bm > c1+. . .+cm, and we
can set

~y =
1

(b1+. . .+bm)−(c1+. . .+cm)
(
~b− ~c

)
(4.5)

Now y1 + . . . + ym = 1 and yj ≥ 0 for all j ≤ m, so ~y = ~yτ for some strategy τ
for player II. Furthermore,

〈~y,~c〉 = 〈~y,~b〉 − 〈~y,~b−~c〉 = (v + ε)− |~b− ~c|2
(b1+. . .+bm)−(c1+. . .+cm)

< v + ε (4.6)

So for any ~z ∈ IRm, if 〈~y, ~z〉 ≥ v + ε, then 〈~y, ~z − ~c〉 > 0, This means that for

λ > 0 small enough, ~c+ λ(~z − ~c) is closer to ~b than ~c is, and hence by our choice
of ~c, ~c+ λ(~z − ~c) 6∈ C. From the convexity of C it follows that ~z 6∈ C. It follows
that if ~z ∈ C, then 〈~y, ~z〉 < v + ε. In particular, for any strategy σ for player I,

E(σ vs τ in Γ1(f)) = 〈~y, ~zσ〉 < v + ε (4.7)

and hence the strategy τ is of value ≤ v + ε. Since ε > 0 was taken arbitrarily, it
follows that val↑(Γ(f)) = val↓(Γ(f)), i.e. Γ(f) is determined.
The existence of an optimal strategy for player I follows from the observation
that the space of possible strategies for player I can be seen as a closed and
bounded subset of IRn, and the value-function is continuous on this set. The
same argument holds for strategies for player II.

2

For finite games in general, we also have determinacy. Furthermore, the value-
function is, in a sense, continuous.

4.1.2. Theorem. Let Γn(f) be a finite Blackwell game of length n. Then Γn(f)
is determined, and both players have optimal strategies.
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Proof

We will proof this by induction on the length n of the games.

For n = 0, determinacy is trivial. So let n > 0, let Γn(f) be a finite Blackwell
game of length n, and suppose that all finite Blackwell games of length m < n
have already been shown to be determined, and to have optimal strategies. For
each position p ∈ W1, the game Γ(f, p) is finite of length ≤ n − 1. Hence, by
the induction hypothesis, each of those games is determined and has a value
val(Γ(f, p)). Define the payoff function g : W → IR by

g(p) = val(Γ(f, p)) for p ∈ W1 (4.8)

Then by von Neumann’s Minimax Theorem, the game Γ1(g) is determined. Γ1(g)
is by its definition an equivalent truncated subgame of Γn(f), so by Corollary
3.3.3, Γn(f) is determined. Furthermore, by Remark 3.3.9 the optimal strategy
produced by von Neumann’s Mini-Max Theorem can be extended to an optimal
strategy in Γn(f).

2

4.1.3. Lemma. Let n ∈ IN . Let (fi)i be a sequence of payoff functions fi :
Wn → [a, b] such that (fi)i converges to a payoff function f : Wn → [a, b]. Then
val(Γn(f)) = limi→∞ val(Γn(fi)).

Proof

Directly from Lemma 3.1.13 and the observation that since Wn is finite, conver-
gence is uniform.

2

4.2 Generalized Open Games

In this section we prove determinacy of a class of ‘generalized open games’, where
payoff for a play is calculated as the supremum of values associated with the
positions hit in the play. In addition we derive a result for these and open games
comparable to the compactness of W .

4.2.1. Theorem. Let u : P → IR be a bounded function, for n ∈ IN let fn :
Wn → IR be the payoff function defined by fn(p) = supj≤n u(p|j) for p ∈Wn, and
let f : W → IR be the payoff function defined by f(w) = supj∈IN u(w|j). Then
Γ(f) is determined, and

val(Γ(f)) = lim
n→∞

val(Γn(fn)) (4.9)
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Proof
For any p ∈ P , and any n ∈ IN , the game Γn(fn, p) is finite (of length ≤ n),
and hence determined. It is easily seen that f0 ≤ f1 ≤ f2 ≤ . . . ≤ f ≤ 1.
Consequently, for any p ∈ P ,

val(Γ0(f0, p)) ≤ val(Γ1(f1, p)) ≤ val(Γ2(f2, p)) ≤ . . . ≤ val↓(Γ(f, p)) ≤ r (4.10)

where r is an upper bound for u. We can approximate Γ(f) with a collection of
finite auxiliary games Γn(gn) by setting, for n ∈ IN ,

gn(p) := lim
i→∞

val(Γi(fi, p)) for p ∈Wn (4.11)

The games Γn(gn) form a nested series of equivalent truncated subgames. For if
we define the functions hk

n : Wn → IR by setting hk
n = val(Γk(fk, p)) for k, n ∈ IN ,

p ∈Wn, then we have for all n ∈ IN and p ∈Wn:

∀k ∈ IN : hk
n(p) = val(Γn+1(h

k
n+1, p)) (4.12)

by Corollary 3.3.3, and then

gn(p) = lim
k→∞

hk
n(p) = val(Γn+1( lim

k→∞
hk
n+1, p)) = val(Γn+1(gn+1, p)) (4.13)

by Lemma 4.1.3 and the fact that Wn+1 is finite.
Furthermore, for all p ∈ Wn,

gn(p) ≥ val(Γn(fn, p)) = fn(p) (4.14)

and hence for all w ∈W

lim
n→∞ gn(w|n) ≥ lim

n→∞ fn(w|n) = f(w) (4.15)

So by Lemma 3.3.7,
g0(e) ≥ val↑(Γ(f)) (4.16)

Since by definition

g0(e) = lim
n→∞ val(Γn(fn)) ≤ val↓(Γ(f)) (4.17)

it follows that the game Γ(f) is determined, and has value equal to

val(Γ(f)) = lim
n→∞ val(Γn(fn)) (4.18)

2

4.2.2. Corollary. Let O be an open set. Then Γ(O) is determined.
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Proof
There exists a set of positions H such that O = [H]. Then for all w ∈ W ,
IO(w) = supn∈IN IH(w|n). Applying Theorem 4.2.1 yields the corollary.

2

4.2.3. Corollary. Let O =
⋃

iOi be the union of open sets. Then val(Γ(O)) =
limn→∞ val(Γ(

⋃
i≤nOi)).

Proof
As the union of open sets, O is open, and hence there is a set of positions H such
that O = [H], i.e.

O =
⋃
{[p] | p ∈ H} (4.19)

(where [p] denotes the set {w ∈ W | p ⊂ w} as usual). Define the basic open sets
Bm ⊆ O by

Bm =
⋃
{[p] | p ∈ H, len(p) ≤ m} (4.20)

then applying Theorem 4.2.1 with u = IH yields

val(Γ(O)) = lim
m→∞ val(Γm(Bm)) (4.21)

For each m ∈ IN , Bm is a closed set covered by the open sets (Oi)i∈IN . So by the
compactness of W there is for each m ∈ IN a nm ∈ IN such that Bm ⊆

⋃nm
i=1Oi.

Then for all n ≥ nm,

val(Γm(Bm)) ≤ val(Γ(
n⋃

i=1

Oi)) ≤ val(Γ(O)) (4.22)

The corollary follows immediately.
2

4.2.4. Corollary. Let f be a continuous function. Then Γ(f) is determined.

Proof
As W is compact, and f is continuous, f [W ] is compact, and hence bounded.
Define u : P → IR by u(p) := infw∈[p] f(w). Then u is well-defined and bounded,
and by the continuity of f , f(w) = supn∈IN u(w|n) for all w ∈ W . Applying
Theorem 4.2.1 yields the corollary.

2

4.2.5. Remark. If the games Γn(gn) are as in the proof of Theorem 4.2.1, then
Lemma 3.3.6 yields a strategy τ for player II8. And since all the games involved
are finite, by Remark 3.3.9 we can even take this strategy τ to be optimal in all

8This strategy basically consisting of playing, at every position, the one-round subgame
whose payoff (after one move) is the expected payoff of the continuance of the game.
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the games Γn(gn). This strategy can easily be shown to be optimal in the game
Γ(f) as well. For let σ be a counter-strategy for player I. Then

E(σ vs τ in Γ(f)) = lim
n→∞E(σ vs τ in Γn(fn)) = lim

n→∞E(σ vs τ in Γn(gn)) = v

(4.23)
However, for player I there does not always exist an optimal strategy, as the
following example shows.

4.2.6. Example. Consider the following Blackwell game. Each round, both
players say either ‘Stop’ or ‘Continue’. If both players say ‘Continue’, then play
continues. Otherwise, the game halts: player II wins (payoff 0) if both players
said ‘Stop’, while player I wins (payoff 1) if only one of the players said ‘Stop’. If
play continues indefinitely, and neither player ever says ‘Stop’, then payoff is 0,
i.e. player II wins.
This is clearly an open game. An interpretation of this game is, that player II
tries to guess on which round player I will say ‘Stop’, and tries to match her. If
player II guesses wrong, i.e. says ‘Stop’ too soon or not soon enough, then player
I wins, if player II guesses right, then he wins.
A strategy of value 1− 1

n
for player I is, to select at random a number i between 1

and n, and say ‘Stop’ on round i. Translated to the standard format for strategies,
this becomes:
on round 1, say ‘Stop’ 1

n
of the time,

on round 2, if not yet stopped, say ‘Stop’ 1
n−1 of the time,

on round 3, if not yet stopped, say ‘Stop’ 1
n−2 of the time,

...
on round n, if not yet stopped, say ‘Stop’ 1

1
of the time.

Hence, the value of this game is 1. In fact, the value of this game at any position
in which game has not yet ended is 1. But there exists no optimal strategy of
value 1. For suppose there exists such a strategy, of value 1. Then on any round
(in which play has not yet ended), the chance that player I will say ‘Stop’ in
that round is 0%. For otherwise, the strategy would not score 100% against the
counter-strategy that player II says ‘Stop’ on that round. But then, player I
will never say ‘Stop’, and this strategy will lose against the counter-strategy that
player II never says ‘Stop’. So any strategy for player I has value strictly less
than 1, although there are strategies with values arbitrarily close to 1. This game
is an example of a game in which one of the players has no optimal strategy.

4.3 Gδ-sets

M. Davis gave a proof of determinacy for Gδσ games of perfect information [5] that
was based upon the idea of ‘imposing restrictions’ on the range of moves player
II can make. I.e. certain moves were declared ‘forbidden’, or a loss for player II,
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in such a way that (a) player I did not get a win she did not have before, and (b)
a particular Gδ subset of player I’s winning set would be avoided with certainty.
By applying this to all the Gδ subsets of a Gδσ set, and using compactness, Davis
showed that if player I could not force the resulting sequence to be in one of the
Gδ sets, player II could force the resulting sequence to be outside all of them.
The union of all the sequences in which one of the ‘forbidden’ moves is played,
formed an open set containing the Gδ set under consideration. One way of looking
at Davis’ proof is, that each of the Gδ sets was enlarged to an open set without
increasing the (lower) value of the game, in order to be able to apply determinacy
of open games.
In this section, we show that this holds (in a fashion) for Blackwell games, i.e.
that a Gδ set can be ‘enlarged’ to an open set without increasing the lower value
of the game by more than an arbitrarily small amount, even in the presence of a
‘background function’, a payoff function for those sequences that are not in the
Gδ set.

4.3.1. Theorem. Let f : W → [0, 1] be a measurable function and let D be a Gδ

set. Then

val↓(Γ(max(f, ID))) = inf
O⊇D,O open

val↓(Γ(max(f, IO))) (4.24)

Proof
For any Gδ set D we can find a set of positions H, such that D = {w ∈ W |
#{p ∈ H | p ⊂ w} = ∞}. We may assume that e ∈ H. We partition the set H
into sets Hi by setting, for i ∈ IN ,

Hi := {p ∈ H | there are exactly i positions p′ in H strictly preceding p}
(4.25)

Now we can approximate the game Γ(max(f, ID)) by a series of games ΓHi
(gi) by

setting, for i ∈ IN ,

gi(p) = infO⊇D,O open val
↓(Γ(max(f, IO), p)) for p ∈ Hi

gi(w) = f(w) for w 6∈ [Hi]
(4.26)

The games ΓHi
(gi) form a nested series of truncated subgames equivalent for

player I. To see this, fix i ∈ IN and p ∈ Hi. For any open set O ⊇ D and any
p′ ∈ Hi+1, val

↓(Γ(max(f, IO), p
′)) ≥ gi+1(p

′). Hence by Corollary 3.3.4, for any
open set O ⊇ D,

val↓(Γ(max(f, IO), p)) ≥ val↓(ΓHi+1
(gi+1, p)) (4.27)

On the other hand, for any ε > 0, if we select for each p′ ∈ Hi+1, an open set Op′ ⊇
D such that val↓(Γ(max(f, IOp′

), p′))≤ gi+1(p
′)+ε, and setO =

⋃
p′∈Hi+1

([p′]∩Op′),
then by 3.3.4 this open set O ⊇ D satisfies

val↓(Γ(max(f, IO), p)) ≤ val↓(ΓHi+1
(gi+1, p)) + ε (4.28)
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It follows that

gi(p) = inf
O⊇D,O open

val↓(Γ(max(f, IO), p)) = val↓(ΓHi+1
(gi+1, p)) (4.29)

Hence for each i ∈ IN , GHi
(gi) is a truncated subgame of GHi+1

(gi+1), equivalent
for player I.
Now for all p ∈ Hi,

gi(p) ≤ val↓(Γ(max(f, 1))) = 1 (4.30)

Hence for w ∈ D, gi(w) ≤ 1 for all i ∈ IN . Furthermore, for w ∈ W − D,
gi(w) = f(w) for i large enough. So for all w ∈W ,

lim inf
i→∞

gi(w) ≤ max(f, ID) (4.31)

So by Lemma 3.3.7,
g0(e) ≤ val↓(Γ(max(f, ID))) (4.32)

Since by Lemma 3.1.9 and the definition of g0,

g0(e) = inf
O⊇D,Oopen

val↓(Γ(max(f, IO))) ≥ val↓(Γ(max(f, ID))) (4.33)

it follows that

val↓(Γ(max(f, ID))) = g0(e) = inf
O⊇D,Oopen

val↓(Γ(max(f, IO))) (4.34)

2

4.3.2. Corollary. Let S be a measurable set, and let D be a Gδ set. Suppose
that Γ(S ∪D) has lower value v. Then for any ε > 0, there exists an open set O,
D ⊆ O, such that Γ(S ∪O) has lower value at most v + ε.

Proof
Take f ≡ IS and apply the non-trivial part of Theorem 4.3.1.

2

4.3.3. Theorem. Let D be a Gδ set. Then Γ(D) is determined, and

val(Γ(D)) = inf
O⊇D,O open

val(Γ(O)) (4.35)

Proof
For any open set O ⊇ D, Γ(O) is determined and val↓(Γ(D)) ≤ val↑(Γ(D)) ≤
val(Γ(O)). Applying Theorem 4.3.1 with f ≡ 0 yields the required result. Note
that the determinacy of Gδ Blackwell games was already proven by Blackwell
[2, 3].

2
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4.4 Gδσ-sets

In this section, we prove the determinacy of Γ(f) in the case that f is the indicator
function of a Gδσ set. Structurally, this proof is similar to the aforementioned
proof by M. Davis for Gδσ games of perfect information [5]. We enlarge each of
the Gδ sets composing a Gδσ set to an open set, in such a way that the lower
value of the game does not increase by more than an arbitrarily small amount.
Instead of the compactness used in Davis’ proof, we use Corollary 4.3.2

4.4.1. Theorem. Let S =
⋃

iDi be a Gδσ set. Then Γ(S) is determined.

Proof
Let ε > 0. Using Corollary 4.3.2, we can inductively find open sets Oi ⊇ Di such
that for all j ∈ IN ,

val↓(Γ(S ∪
⋃

i≤j+1

Oi)) ≤ val↓(Γ(S ∪
⋃

i≤j

Oi)) + ε/2j (4.36)

Then for all j ∈ IN ,

val↓(Γ(S ∪
⋃

i≤j

Oi)) ≤ val↓(Γ(S)) + ε (4.37)

Now, the sets Oi are open, so the games Γ(
⋃

i∈IN Oi) and Γ(
⋃

i≤j Oi) are deter-
mined, and by Corollary 4.2.3,

val(Γ(
⋃

i∈IN
Oi)) = lim

j→∞
val(Γ(

⋃

i≤j

Oi)) ≤ lim
j→∞

val↓(Γ(S ∪
⋃

i≤j

Oi)) ≤ val↓(Γ(S)) + ε

(4.38)
On the other hand, S =

⋃
i∈IN Di ⊆

⋃
i∈IN Oi. Therefore

val↑(Γ(S)) ≤ val(Γ(
⋃

i∈IN
Oi)) ≤ val↓(Γ(S)) + ε (4.39)

Since ε was chosen arbitrary, we conclude

val↑(Γ(S)) = val↓(Γ(S)) (4.40)

2

4.5 Borel sets

In this section, we will consider a proof of Borel determinacy given by D.A.
Martin[16]. Unlike the previous proofs, this is not an direct proof. Martin’s
method is to define auxiliary perfect information games Gv(f), and use winning
strategies in these games to construct mixed strategies in the game Γ(f). This
yields a reduction to the problem of the determinacy of perfect information games,
which has been solved for Borel games[7, 13, 14].
For the next proofs, we need the following lemma:
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4.5.1. Lemma. Let the function u : P → IR be such that for all p ∈ P ,

u(p) ≤ val(Γ∆(u, p)) [u(p) ≥ val(Γ∆(u, p))] (4.41)

where Γ∆(u, p) is the game starting at position p, and stopping after one round
at some position p′ = p̂z with payoff u(p′). If f : W → IR is a payoff function
such that for all w ∈W ,

f(w) ≥ lim inf
n→∞ u(w|n) [f(w) ≤ lim sup

n→∞
u(w|n)] (4.42)

then val↓(f) ≥ u(e) [val↑(f) ≤ u(e)].

Proof

Let r be a lower bound for the payoff function f . It is easily seen that without
invalidating the conditions of the Lemma, we can modify the function u in such
a way that the equality holds in equation 4.41 and that for all p ∈ P , if u(p) ≤ r,
then u(p) = r and u(p′) = r for all p′ following p. Now for i ∈ IN , let ΓHi

(fi)
be the finite game which stops after i rounds with payoff fi(p) = u(p). Applying
Lemma 3.3.7 yields the desired result.

2

4.5.2. Definition. Let Γ(f) be a Blackwell game. For each v ∈ IR we define a
perfect information game Gv(f):

Let p0 = e, h0(e) = v.
Player I selects9 a function h1 : {p0̂z | z ∈ Z} → Q′ satisfying

val(Γ∆(h1, p0)) ≥ h0(p0) (4.43)

Then player II selects a position p1 ∈ {p0̂z | z ∈ Z}.
Next, player I selects a function h2 : {p1̂z | z ∈ Z} → Q′ satisfying

val(Γ∆(h2, p1)) ≥ h1(p1) (4.44)

Then player II selects a position p2 ∈ {p1̂z | z ∈ Z}.
The players continue in this fashion, generating a sequence of moves
(h0,p0,h1,p1,h2,p2,. . .). Finally, player I wins the game Gv(f) if and
only if lim supi→∞ hi(pi) ≤ f(w), where w is the unique infinite play
of Γ(f) which passes through the positions pi.

9Note that since Z is finite, player I selects moves from a countable set, and player II from
a finite set.
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4.5.3. Remark. One way to think of the game Gv(f) is to imagine that player I
is trying to show that val↓(Γ(f)) ≥ v by constructing a ‘witness’ of the type used
in Lemma 4.5.1. Indeed, in this manner we will show, in the next lemma, that
if player I has a winning strategy for the game Gv(f), then val↓(Γ(f)) ≥ v. The
converse does not hold: if Γ(f) is the game of Example 4.2.6, then val(Γ(f)) = 1,
but player II has a winning strategy in the corresponding game G1(f). However,
a weaker form of the converse does apply: from a later lemma it follows that
if val↓(Γ(f)) > v, then player II will not have a winning strategy for the game
Gv(f).

4.5.4. Lemma. Let Γ(f) be a Blackwell game, and let v ∈ IR. If player I has a
winning strategy in the game Gv(f), then val↓(Γ(f)) ≥ v.

Proof
Let S be a winning strategy for player I in the game Gv(f). Given S, the moves
of player II determine the course of the game Gv(f). Set u(e) = v, and for any
position p ∈ P of length i ≥ 1, set

u(p) := hi(p) (4.45)

where (h0, p|0, h1, p|1, . . . , hi, p) is the unique sequence of moves of the game Gv(f),
that is consistent with S and ends with the move p by player II. It is easily seen
that this is a proper definition, and that for all p ∈ P ,

u(p) ≤ val(Γ∆(u, p)) (4.46)

Furthermore, for any w ∈ W , there exists a unique play (h0, w|0, h1, w|1, h2, . . .)
of Gv(f) consistent with S, and since S is a winning strategy for player I we have

f(w) ≥ lim inf
i→∞

hi(w|i) = lim inf
i→∞

u(w|i) (4.47)

So by Lemma 4.5.1, val↓(Γ(f)) ≥ v.
2

4.5.5. Lemma. Let Γ(f) be a Blackwell game, and let v ∈ IR. If player II has a
winning strategy in the game Gv(f), then val↑(Γ(f)) ≤ v.

Proof
Let T be a winning strategy for player II in the game Gv(f), and let ε > 0. By
induction on i we will define, for any p ∈ P of length i ≥ 1, a value u(p) and (pos-
sibly) a function hp and a set Sp. Set u(e) = v, he(e) = v. Now suppose that for
some i > 0 and some position p of length i, he, u(e), hp|1 , u(p|1), . . . , h

p|i−1 , u(p|i−1)
are all defined. If the set

Sp :=

{
h

(he, e, hp|1 , p|1, . . . , p|i−1, h, p) is a sequence of
moves consistent with T and ending with p

}
(4.48)
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is nonempty, set u(p) := inf{h(p) | h ∈ S(p)} and select hp ∈ Sp such that
hp(p) < u(p) + ε/2i+1. If Sp is empty, set u(p) = r, and set u(p′) = r for all p′

following p, where r ∈ Q′ is an upper bound of f .
Now for all positions p ∈ P of length i for which hp is defined,

u(p) + ε/2i+1 > hp(p) ≥ val(Γ∆(u, p)) (4.49)

For suppose that for some δ > 0

hp(p) < val(Γ∆(u, p))− δ (4.50)

Let h : {p̂z | z ∈ Z} → IR be a function such that for all z ∈ Z,

u(p̂z)− δ ≤ h′(p̂z) < u(p̂z) (4.51)

The sequence of moves (he, e, hp|1 , p|1, . . . , p|i−1, h
p, p) is consistent with T , and

h is a valid move for player I in this situation, so the strategy T prescribes
some response p̂z, For this response, h ∈ Sp̂z, contradicting the fact that
u(p̂z) > h(p̂z).
For those positions p ∈ P of length i for which hp is not defined, we also have

u(p) + ε/2i+1 = r + ε/2i+1 > r = val(Γ∆(u, p)) (4.52)

So if we set

u′(p) = u(p) + ε/2len(p) (4.53)

then u′ satisfies

u′(p) > val(Γ∆(u
′, p)) (4.54)

Furthermore, for any play w ∈ W of Γ(f), either hp|i is not defined for some
i ∈ IN , and then

lim sup
i→∞

u′(w|i) = r ≥ f(w) (4.55)

or (he, e, hp|1 , p|1, h
p|2 , p|2, . . .) is a play of Gv(f) consistent with T , and since T is

a winning strategy for player II,

lim sup
i→∞

u′(w|i) ≥ lim inf
i→∞

u′(w|i) ≥ lim inf
i→∞

hw|i(w|i) ≥ f(w) (4.56)

So by Lemma 4.5.1, val↑(Γ(f)) ≤ u′(e) = v + ε.
2

Now for the main theorem

4.5.6. Theorem. Let f be a bounded Borel function. Then the Blackwell game
Γ(f) is determined.
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Proof
If f is Borel, then the games Gv are all Borel games of perfect information, with
the players selecting their moves from countable sets. It is well-known that these
games are determined[7, 13, 14]. Let v be the least upper bound of all the v
such that player I has a winning strategy in the game Gv. Then by Lemma 4.5.4,
val↓(Γ(f)) ≥ v, and by Lemma 4.5.5, val↑(Γ(f)) ≤ v. Hence Γ(f) is determined,
and val(Γ(f)) = v.

2

The proof of Theorem 4.4.1 shows that any Gδσ set (and a fortiori any set of lesser
complexity) can be enlarged to an open set such that the value of the Blackwell
game on that set is not increased by more than an arbitrarily small amount. For
games of Perfect Information, this holds for all Borel sets, and given an optimal
strategy T for player II, such an open set can be constructed as the set of plays
that cannot occur if player II uses T . We can derive a similar result for Blackwell
games.

4.5.7. Theorem. Let S be a Borel set. Then

val(Γ(S)) = inf{val(Γ(O)) | O ⊆ W open, O ⊇ S} (4.57)

Proof
Let ε > 0, let f : W → {0, 1} be the indicator function of S, and let v = val(Γ(S)).
Let u : P → IR be the function constructed in the proof of Lemma 4.5.5 as a
witness that val↑(Γ(S)) ≤ v+ε. Note that u is constructed in such a manner that
u(p) ≥ val↑(Γ(S, p)) for all p ∈ P , and hence u ≥ 0. Define the set of stopping
positions H by setting

H := {p∈P | u(p)>1−ε ∧ ¬∃p′∈P : (p′ ⊂ p ∧ u(p′)>1−ε)} (4.58)

Now [H] ⊆ W is an open set. If w ∈ W − [H], then for any i ∈ IN , u(w|i) < 1− ε,
and then by the construction of u, f(w) < 1 − ε and w 6∈ S. It follows that
[H] ⊇ S. Furthermore, if we define the payoff function g : W → IR by

g(p) = u(p) for p ∈ H
g(w) = lim inf i→∞ u(w|i) for w 6∈ [H]

(4.59)

then val(Γ(g)) = u(e) ≤ v + ε, and χ[H] ≤ g + ε (where χ[H] is the indicator
function of [H]), and hence

val(Γ(H)) ≤ val(Γ(g)) + ε ≤ v + 2ε (4.60)

Note that this result was also obtained by D.A. Martin[16], using a slightly dif-
ferent proof. Furthermore, Maitra, Purves and Sudderth had already shown that
this follows from Borel Blackwell determinacy[12].

2





Chapter 5

Non-Borel Blackwell Games

Up to this point, we have implicitly assumed that any payoff function f is Borel
measurable. Indeed, properly speaking Blackwell games are (as yet) only defined
for Borel measurable payoff functions. In this chapter we will look at non-Borel
Blackwell games.

5.1 Definitions

If f is a bounded non-Borel function, then we can play the corresponding Black-
well game in exactly the same manner as before. However, when we try to define
the value of a strategy, we run into a problem: f is not necessarily integrable
under arbitrary measures µσ,τ . So instead of the value of the integral itself, we
have to use approximations from above and below.

5.1.1. Definition. Let f be a bounded but not necessarily Borel measurable
function. The Blackwell game Γ(f) with payoff function f is played exactly as
in Definition 3.1.1. For any strategies σ and τ for players I and II, we define the
probability measure µσ,τ as in Definition 3.1.5. However, instead of the expected
income of player I (if she plays according to σ and player II plays according to τ)
we now define the lower and upper expected income of player I:

E−(σ vs τ in Γ(f)) = sup
g≤f,g Borel measurable

∫
g(w)dµσ,τ (w) (5.1)

E+(σ vs τ in Γ(f)) = inf
g≥f,g Borel measurable

∫
g(w)dµσ,τ (w) (5.2)

The definition of the value of a strategy σ or τ in Γ(f) is slightly different as well:

val(σ in Γ(f)) = inf
τ
E−(σ vs τ in Γ(f)) (5.3)

val(τ in Γ(f)) = sup
σ
E+(σ vs τ in Γ(f)) (5.4)

37
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The definitions of lower and upper values and of determinacy are the same as in
Definition 3.1.7.

Note that when f is measurable, these definitions are all equivalent to the old
definitions.
It is easy to see that Lemmas 4.5.4 and 4.5.5 also hold for non-Borel Blackwell
games. This means that determinacy of a particular class of perfect informa-
tion games implies determinacy of the corresponding class of Blackwell games.
The determinacy of many classes of perfect information games can be deduced
from so-called large cardinal axioms, and hence we have corresponding results
for Blackwell games[15]. Martin gives the example that, for n ≥ 0, determinacy
of Σ1n+1 Blackwell games follows from determinacy of Σ1n+1 perfect information
games, which in turn follows from the existence of n Woodin cardinals with a
measurable cardinal above them.

5.2 The Axiom of Blackwell Determinacy

A well-known axiom in set theory is the Axiom of Determinacy[17].

5.2.1. Definition. The Axiom of Determinacy (AD) is the assertion that

all game of Perfect Information and finite or countable choice of moves
are determined.

Using the Axiom of Choice (AC), a non-measurable payoff function f can be
constructed such that Γ(f) is not determined [6], hence AD contradicts the Axiom
of Choice. AD has many other interesting consequences, such as the existence of
an ultrafilter on ℵ1 and of a complete measure on IR. It is commonly used in large
cardinal theory as an alternative to AC [8, 17]. We can formulate an analogue of
this axiom for Blackwell games.

5.2.2. Definition. The Axiom of Determinacy for Blackwell Games (AD-Bl)
is the assertion that

all Blackwell games are determined

In this case as well, we can use Lemmas 4.5.4 and 4.5.5 to obtain

5.2.3. Theorem. Working in ZF without the Axiom of Choice, AD implies AD-
Bl.

It is unknown whether the converse also holds, i.e. whether AD-Bl also implies
AD. For a given game of Perfect Information, we can easily construct a Blackwell
game that is ‘equivalent’, and assuming AD-Bl we can find an ε-optimal mixed
strategy for that equivalent Blackwell-game. But to derive AD from AD-Bl, we
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need to have a pure strategy, and even though we can interpret any mixed strategy
as a probability distribution on pure strategies, there is no guarantee that any of
these pure strategies by itself will do as well as the mixed strategy.
However, a number of consequences of AD can be derived from AD-Bl. In fact,
one of them is almost trivial:

5.2.4. Theorem. Assuming AD-Bl, it follows that all sets of reals are Lebesgue
measurable.

Proof
It suffices to show that the Lebesgue measure on [0, 1] is complete. Set X = Y =
{0, 1}, and define φ : W → [0, 1] by

φ((x1, y1, x2, y2, . . .)) =
∞∑

i=1

2−i(xi ⊕ yi) (5.5)

where 0 ⊕ 0 = 1 ⊕ 1 = 0 and 0 ⊕ 1 = 1 ⊕ 0 = 1. Now let σ, τ be strategies,
and suppose that one of those strategies is the strategy that assigns the 1

2
-1
2

probability distribution on X or Y , respectively. Then for any i ∈ IN , xi⊕ yi has
equal chances of being 0 or 1, and the distribution of φ(w) on [0, 1] is the uniform
distribution on [0, 1] under the Lebesgue measure on [0, 1]. It follows that for any
subset S ⊂ [0, 1],

µinnerσ,τ (φ−1[S]) = µinnerλ (S) (5.6)

µouterσ,τ (φ−1[S]) = µouterλ (S) (5.7)

where µinner(A) = supB⊆A measurable µ(B), µouter(A) = infB⊇A measurable µ(B).
Let S ⊂ [0, 1]. No strategy for player I in the game Γ(φ−1[S]) can have value
greater than µinnerλ (S), since this is the lower expected income of any strategy for
player I against the 1

2
-1
2
strategy. Similarly, no strategy for player II in the game

Γ(φ−1[S]) can have value less than µouterλ (S). Therefore

val↓(Γ(φ−1[S])) ≤ µinnerλ (S) ≤ µouterλ (S) ≤ val↑(Γ(φ−1[S])). (5.8)

From the determinacy of the game Γ(φ−1[S]), it now follows that

µinnerλ (S) = µouterλ (S) (5.9)

Since this holds for arbitrary sets S ⊂ [0, 1], all subsets of [0, 1] are Lebesgue
measurable.

2

5.2.5. Corollary. AD-Bl is not consistent with AC, and the consistency of ZF
+ AD-Bl cannot be proven in ZFC.
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5.3 Mixed Strategies in Games of Perfect Infor-

mation

There are a number of other consequences of AD that are also consequences of
AD-Bl [11]. In some cases, it is possible to adapt the proofs for AD to use mixed
strategies instead of pure strategies (an example will be given in the next section).
In general, a requirement for such an adaption is that we may assume the mixed
strategy is of value 0 or 1, rather than somewhere in between. The theorems in
this section show that for games of perfect information, this is a valid assumption.

5.3.1. Remark. The games of perfect information that fall under AD, and are
used in this section and the next, are usually defined on a game tree. Aside
from the fact that only one player moves at a time, games defined on game trees
differ from the games as defined in definition 3.1.1, in that the sets from which
the players select their moves are dependent on the current position, and may
even be countably infinite. However, all such games are equivalent to games
with binary choice-of-moves. For instance, a selection of a natural number can
be emulated by letting the player repeatedly choose between 0 and 1 until the
player chooses 1, and interpreting the number of times the player selected 0 as
the natural number selected. In turn, a binary perfect information game can be
simulated by a Blackwell game with X = Y = {0, 1}, simply by constructing a
payoff function which only depends on the moves made in the Blackwell game by
the player whose turn it was to move in the perfect information game (at that
position).
It follows that all the definitions and statements relating to Blackwell games
(including AD-Bl) also apply to mixed strategies in countable perfect information
games. Therefore we will simply treat these games as Blackwell games, ignoring
the formal differences.

We first need an auxiliary lemma:

5.3.2. Lemma. Let Γn(f) be a finite perfect information game, and let σ, τ be
mixed strategies for players I and II of values v and v ′. Then

∀x > v′ : µσ,τ{w ∈Wn | f(w) ≥ x} ≤ v′ − v
x− v (5.10)

and

∀x < v : µσ,τ{w ∈ Wn | f(w) ≤ x} ≤ v′ − v
v′ − x (5.11)

Proof
We will prove this by induction on the length n of the game Γn(f). For n = 0,
it is trivial. For n+ 1, we may assume without loss of generality that in the first
round, player I is to move. Let p1, p2, . . . denote the positions of Γn that can be
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reached from the starting position e in a single move. For i ∈ IN , let zi denote the
probability (according to player I’s strategy σ) that player I will move to pi, and
let vi and v′i denote the values of the strategies σ and τ at that position. Then
for all i ∈ IN , vi ≤ v′i ≤ v′, and v =

∑
i∈IN zivi.

From the induction hypothesis it follows that for x > v ′ and i ∈ IN ,

µσ,τ ({w ∈ [pi] | f(w) ≥ x}) ≤ zi
v′i − vi
x− vi

≤ zi
v′ − vi
x− vi

= zi − zi
x− v′
x− vi

(5.12)

and hence for x > v′

µσ,τ ({w∈Wn | f(w) ≥ x}) =
∑

i∈IN
µσ,τ ({w ∈ [pi] | f(w) ≥ x}) (5.13)

≤
∑

i∈IN

(
zi−zi

x−v′
x−vi

)
≤ 1− x−v′

x−v =
v′−v
x−v (5.14)

Similarly it follows from the induction hypothesis that for x < v and i ∈ IN ,

µσ,τ ({w ∈ [pi] | f(w) ≤ x}) ≤ zi ·




v′i−vi
v′
i
−x

if x < vi

1 if vi ≤ x
≤ zi

v′ − vi
v′ − x (5.15)

and hence for x < v

µσ,τ ({w∈Wn | f(w) ≤ x}) =
∑

i∈IN
µσ,τ ({w ∈ [pi] | f(w) ≤ x}) (5.16)

≤
∑

i∈IN
zi
v′−vi
v′−x =

v′−v
v′−x (5.17)

2

5.3.3. Theorem (0-1 Law for Mixed Strategies). Let Γ(S) be an count-
ably infinite perfect information game, whose payoff function is the characteristic
function of a set S. If Γ(S) is determined (in the sense of mixed strategies), then
its value is either 0 or 1.

Proof
The following proof is based on communications with D.A. Martin. Let v be the
value of Γ(S), and suppose that 0 < v < 1. Then we can select ε > 0 such that
2ε < v, 2ε < 1−v and v−2ε > 2ε/(1−v−2ε). Let σ and τ be ε-optimal mixed
strategies for players I and II in Γ(S), and assume that players I and II play
according to σ and τ . Let H be the set of positions

H := {p ∈ P | E(σ vs τ in Γ(S, p)) ≥ 1−ε} (5.18)
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Now, we can find open sets O ⊇ S with µσ,τ (O) arbitrarily close to µσ,τ (S), and
for any such O, (1−ε)µσ,τ (O) + εµσ,τ ([H]) ≥ µσ,τ (S). It follows that

µσ,τ ([H]) ≥ µσ,τ (S) ≥ val(σ in Γ(S)) ≥ v−ε (5.19)

i.e. with probability at least v− ε, the game will eventually visit a position in H.
Let n ∈ IN be such that the probability of visiting H before time n is at least
v− 2ε, and let ΓH′(f) be the truncated subgame which stops at time n or when
H is visited (whichever happens first), with payoff f(p) = E(σ vs τ in Γ(S, p)).
Now, since for all p ∈ H ′, f(p) ≥ val(σ in Γ(S, p)), we have

val(τ in Γ(f)) ≥ val(σ in Γ(f)) ≥ val(σ in Γ(S)) > v − ε (5.20)

and similarly,

val(σ in Γ(f)) ≤ val(τ in Γ(f)) ≤ val(τ in Γ(S)) < v + ε (5.21)

so by applying the previous Lemma we obtain,

µσ,τ{w∈Wn | f(w) ≥ 1−ε} ≤ 2ε

1− v − 2ε
< v − 2ε (5.22)

contradicting our choice of n.
2

5.3.4. Theorem. Assuming AD-Bl, in every countably infinite perfect informa-
tion game Γ(S) whose payoff function is the characteristic function of a set S,
either player I has a strategy of value 1 or player II has a strategy of value 010.

Proof
By AD-Bl and the 0-1 Law for Mixed Strategies, for any position p ∈ P the value
of the game Γ(S, p) is either 0 or 1. Without loss of generality we may assume
that Γ(S) itself is of value 1. If we eliminate positions of value 0 (or equivalently,
constrain player I to avoid those positions), the value of the game will not change,
so we may also assume without loss of generality that for any position p ∈ P ,
val(Γ(S, p)) = 1.
Now, for any p ∈ P , let σp be a strategy of value > 2/3 in the game Γ(S, p)11.
Set H0 = {e}. We can inductively define nested stopping sets Hi such that, for
all i ≥ 0, Hi+1 consists of all the first positions p′ following a position p in Hi,

10To avoid confusion, remember: for player II, lower values are better. A strategy for player
II of value 0 is a strategy such that the expected payoff is at most 0, i.e. such that player II
wins almost surely.

11 This does not require the Axiom of Choice. Consider an auxiliary game where player II
first selects a position p ∈ P , and the players then play Γ(S, p). Obviously player II cannot
have a strategy of value < 1, so by AD-Bl, player I has a strategy of value > 2/3. This strategy
contains all the strategies hp.
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such that val(σp in Γ(S, p′)) < 1/3. Let σ be the strategy where player I starts
out by playing according to σe, and whenever a position p ∈ H0 ∪H1 ∪ . . . is hit,
player I switches to playing according to σp. Then for any i ≥ 0, and any p ∈ P ,
val(σ in ΓHi

(S ∪ [Hi], p)) ≥ 1/3.
If player I uses this strategy, and player II uses some strategy τ , then for any
i ≥ 0, the probability (conditional on hitting Hi) of hitting Hi+1 is at most 1/2.
Hence µσ,τ (

⋂
i≥0Hi) = 0. It follows that for all p ∈ P ,

E(σ vs τ in Γ(S, p)) = E(σ vs τ in Γ(S ∪
⋂

i≥0
[Hi], p)) (5.23)

= lim
i→∞

E(σ vs τ in Γ(S ∪Hi, p)) (5.24)

≥ 1/3 (5.25)

Now, for any strategy τ for player II, if E(σ vs τ in Γ(S)) < 1, then for any ε > 0
there would be positions p ∈ P such that

E(σ vs τ in Γ(S, p)) < ε (5.26)

We conclude that such a strategy τ does not exist, and that therefore σ is of value
1 in Γ(S).

2

5.4 Constructing a Free and σ-Complete Ultra-

filter on ω1

A σ-complete ultrafilter on a set X is a collection U of subsets of X, closed under
countable intersection and taking supersets, such that for each set V ⊆ X, exactly
one of V,X −V is in the ultrafilter. For any cardinal α, U is called α-complete if
it is closed under the intersection of less than α sets. An ultrafilter is called free
if it is not of the form {V ⊆ X | x ∈ V } for some x ∈ X. If there exists a free,
α-complete ultrafilter on a set of cardinality α, we say that α is measurable.
Under AC, ℵ1 (the first uncountable cardinal) is not measurable, i.e. there exists
no free, σ-complete ultrafilter on a set of cardinality ℵ1. It is a well-known
theorem of large cardinal theory that under AD, ℵ1 is measurable[8]. In this
section we take a construction of a free σ-complete ultrafilter on the set ω1 =
{α ∈ ORD | α is finite or countable} (a set of cardinality ℵ1) which uses the
Axiom of Determinacy [19], and modify it to use AD-Bl instead.
Let V ⊆ ω1. We define auxiliary perfect information games Γω1(V ) in which play-
ers I and II independently construct countably many countable ordinals, repre-
sented as subsets of Q′ . The two players maintain separate (countable) collections
of (initially empty) subsets of Q′ , and each round adds finitely many elements to
finitely many subsets. Player I wins at the ‘end’ of the game if the supremum of
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the ordinals represented by the constructed subsets is in V , otherwise player II
wins. Formally:

5.4.1. Definition. Let A and B be two countably infinite, disjoint sets. For
any subset V ⊆ ω1, the game Γω1

A,B(V ) is defined as follows:

• In any round i ≥ 1, first player I selects a finite set ai of pairs (a, q) ∈ A×Q′ ,
and then player II selects a finite set bi of pairs (b, r) ∈ B ×Q′ .

• Set I := A∪B, and define the result z by z := a1∪b1∪a2∪b2∪ . . . ⊆ I×Q.

• Let the function π : P(Q′ )→ ω1 be defined by

π(R) :=

{
the order type of (R,<) if (R,<) is well-ordered

0 otherwise
(5.27)

Set ΠA,B(z) := supi∈I π({q ∈ Q′ | (i, q) ∈ z}).
Player I wins if ΠA,B(z) ∈ V , otherwise player II wins.

If we interpret ΠA,B as a function from P(I ×Q′ ) to ω1, then we can set

V A,B := Π−1A,B[V ] = {z ⊆ I ×Q′ | ΠA,B(z) ∈ V } (5.28)

and the winning condition of the game can be reformulated as “Player I wins if
z ∈ V A,B, otherwise player II wins”.

5.4.2. Remark. For technical reasons, it is necessary at some places in the proof
to be able to react to one’s own moves as if they had been made by the oppo-
nent. This is done by temporarily considering some of one’s own subsets-under-
construction to belong to the other player, for the purpose of reacting to the
moves made in them. The ‘index-structure’ (A,B) used in the definition above
is used to facilitate this.
For any two index-structures (A,B), (A′,B′), there exist bijective mappings A ↔
A′ and B ↔ B′, which in turn induce bijective mappings between the moves,
games and strategies of Γω1

A,B(V ) and those of Γω1
A′,B′(V ). Therefore, when the

distinction is not important, we write Γω1(V ), Π(z) and V for Γω1
A,B(V ), ΠA,B(z)

and V A,B. Note that ΠA,B and V A,B depend on A ∪ B only.

An ultrafilter U can be thought of as a partitioning of the subsets of X into ‘large’
subsets (those in U) and ‘small’ subsets (those not in U). The property ‘player I
can almost surely force the supremum to be in V ’ intuitively seems likely to be a
‘largeness’-type property. And indeed, we will show that

5.4.3. Theorem. Under AD-Bl, the set

U := {V ⊆ ω1 | player I has a strategy of value 1 in Γω1(V )} (5.29)

is a free and σ-complete ultrafilter on ω1.
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To prove this, first we give lemmas constructing strategies in Γω1(V ), for several
different constructions of V from other sets.

5.4.4. Lemma. If player I has a strategy of value 1 in the game Γω1(V ), and
V ⊆ W , then player I has a strategy of value 1 in Γω1(W ).

Proof
Any strategy of value 1 for player I in Γω1(V ) is also of value 1 in Γω1(W ).

2

5.4.5. Lemma. If V is a singleton, then player II has a strategy of value 1 in the
game Γω1(V ).

Proof
If V = {β}, then player II can win by constructing β + 1.

2

5.4.6. Lemma. If player I has a strategy of value 1 in the game Γω1(V ), then
player II has a strategy of value 0 in Γω1(ω1−V ), and vica versa.

Proof
Suppose that player I has a strategy f of value 1 in the game GA,B(V ). Then
this is also a strategy for player II of value 0 in the game GB,A(ω1−V ), except
that since II does not have the first move, player II’s response to any move is
always ‘delayed’ by one round. Formally, we construct a strategy g for player II
by setting

g(〈b1, a1, b2, a2, . . . , ak−1, bk〉) := f(〈a1, b1, a2, b2, . . . , ak−1, bk−1〉) (5.30)

For any moves for player I in GB,A(ω1−V ), if player II plays according to g,
then the resulting sequence of moves 〈b1, a1, b2, a2, . . .〉 corresponds to a sequence
of moves 〈a1, b1, a2, b2, . . .〉 in the game GA,B(V ), such that the probability distri-
bution of player I’s moves is according to the strategy f . Hence we have

z = b1 ∪ a1 ∪ b2 ∪ a2 ∪ . . . = a1 ∪ b1 ∪ a2 ∪ b2 ∪ . . . ∈ V almost surely (5.31)

So g is a strategy for player II of value 0 in GB,A(V ).
Now suppose that player II has a strategy g of value 0 in the game GB,A(ω1−V ).
Then this is also a strategy for player I of value 1 in the game GA,B(V ), except
that player I has a first move in which she does nothing. Formally, we construct
a strategy f for player I by setting

f(〈〉) := ‘play ∅’, f(〈a1, b1, a2, b2, . . . , ak−1, bk−1〉) := g(〈b1, a2, b2, . . . , ak−1, bk−1〉)
(5.32)



46 Chapter 5. Non-Borel Blackwell Games

For any moves for player II in GA,B(V ), if player I plays according to f , then
the resulting sequence of moves 〈∅, b1, a2, b2, a3, . . .〉 corresponds to a sequence
of moves 〈b1, a2, b2, a3, . . .〉 in the game GB,A(ω1−V ), such that the probability
distribution of player II’s moves is according to the strategy g. Hence we have

z = ∅ ∪ b1 ∪ a2 ∪ b2 ∪ a3 ∪ . . . = b1 ∪ a2 ∪ b2 ∪ a3 ∪ . . . ∈ V almost surely (5.33)

So f is a strategy for player I of value 1 in GA,B(V ).
2

5.4.7. Lemma. Let (V i)i≥0 be a countable sequence of subsets of ω1. If for all
i ≥ 0, player II has a strategy of value 0 in Γω1(V i), then player II has a strategy
of value 0 in Γω1(

⋃
i≥0 V

i).

Proof
Let (V i)i≥0 be a countable sequence of subsets of ω1, and suppose that for all
i ≥ 0, player II has a strategy of value 0 in Γω1(V i). Let (A,B) be an index-
structure for the game. We will construct a strategy g of value 0 for player II in
Γω1
A,B(

⋃
i≥0 V

i).
Let (Bi)i≥0 be a partitioning of B into a countably infinite number of disjoint
countably infinite sets. Define Ai = (A ∪ B) − Bi for i ≥ 1. Then for all i ≥ 1,
(Ai,Bi) is an index-structure. By assumption, we can find12 strategies gi of value
0 for player II in each of the games Γω1

Ai,Bi(V
i).

Now let w = (a1, b1, a2, b2, . . .) be a play of Γω1
A,B(V ) such that for all i ≥ 0 and

k ≥ 1, b2i(2k−1) ∈ Bi. If we define for i ≥ 0 and k ≥ 1,

ai1= a1 ∪ b1 ∪ a2 ∪ . . . ∪ a2i
aik = a2i(2k−3)+1 ∪ b2i(2k−3)+1 ∪ a2i(2k−3)+2 ∪ . . . ∪ a2i(2k−1) for k > 1

bik= b2i(2k−1)

then for all i ≥ 0 and k ≥ 1, aik and bik are finite subsets of Ai × Q′ and Bi × Q′ ,
so wi = (ai1, b

i
1, a

i
2, b

i
2 . . .) is a valid play of the game Γω1

Ai,Bi(V
i). So construct the

strategy g for player II in Γω1
A,B(V ) by setting, for i ≥ 0 and k ≥ 1,

g((a1, b1, . . . , a2i(2k−1))) := gi((ai1, b
i
1, . . . , a

i
k)) (5.34)

It can easily be shown (inductively) that for all i ≥ 0 and k ≥ 1, b2i(2k−1) ∈ Bi

always, so g is well-defined. Moreover, for all i ≥ 0 and k ≥ 1, the probability
distribution of bik is given by gi((ai1, b

i
1, a

i
2, . . . , a

i
k)), so for all i ≥ 0, the probability

distribution of wi in the game Γω1

Ai,Bi(V
i) is consistent with player II’s strategy gi.

It follows that for all i ≥ 0,

z = a1 ∪ b1 ∪ a2 ∪ b2 ∪ . . . = ai1 ∪ bi1 ∪ ai2 ∪ bi2 ∪ . . . ∈ ω1−V i almost surely (5.35)

12Again, we do not need the Axiom of Choice for this. See footnote 11.
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and hence

z = a1 ∪ b1 ∪ a2 ∪ b2 ∪ . . . ∈
⋂

i≥0
ω1−V i = ω1 − V almost surely (5.36)

So g is a strategy of value 0 for player II in the game Γω1
A,B(V ).

2

Proof of Theorem 5.4.3
In any game Γω1

A,B(V ), there are only countably many possible moves each turn,
since A, B and Q′ are all countable, and therefore there are only countably many
different finite collections of pairs (a, q) ∈ A×Q′ or (b, q) ∈ B×Q′ . Hence Theorem
5.3.4 applies, and we have that for all V ⊆ ω1:

V ∈ U ⇔ player I has a strategy of value 1 in Γω1(V )

V 6∈ U ⇔ player II has a strategy of value 0 in Γω1(V )

By the above equivalences, the previous lemmas correspond to the following prop-
erties of U :

1. For any V,W ⊆ ω1, if V ∈ U and V ⊆ W , then W ∈ U .

2. For any V ⊆ ω1, if V is a singleton, then V 6∈ U .

3. For any V ⊆ ω1, V ∈ U if and only if ω1−V 6∈ U .

4. For any sequence Vi ⊆ ω1, if Vi 6∈ U for all i ≥ 0, then
⋃

i≥0 Vi 6∈ U .

and from the third and fourth property we can derive

5 For any sequence Vi ⊆ ω1, if Vi ∈ U for all i ≥ 0, then
⋂

i≥0 Vi ∈ U .

So U is a free and σ-complete ultrafilter on ω1.
2





Part II

Random Walks
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Overview

As the title indicates, this part of the dissertation is about random walks. Specif-
ically, it is about recurrence in so-called reinforced random walks, where edges
in a graph are traversed with probabilities that may be different (reinforced) at
second, third etc. traversals.
We start by reviewing some general theory of random walks, in Chapter 6. Chap-
ter 7 is a brief digression to a problem involving gambling and related to random
walks, namely the problem of calculating the expected time until one of the
players is broke. In Chapter 8, we introduce reinforced random walks. After
some general results, we focus on the case where the probability for any edge
only changes once, after its first traversal. As a special case, we show that the
once-reinforced random walk on the infinite ladder is almost surely recurrent if
reinforcement is small, extending a result by T. Sellke from an at this time un-
published article[31]. In Chapter 9, we briefly review the basics of nonstandard
analysis and its application to graph theory. We use this in Chapter 10 to show
that for a class of graphs which generalizes the infinite ladder, recurrence holds
for sufficiently large reinforcements.
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Chapter 6

Random Walks

In this chapter we will introduce the basic random walk. The stereotypical exam-
ple of a random walk is that of the Drunkard’s Walk, where a drunken vagrant,
starting from Times Square, wanders the streets of Manhattan aimlessly and to-
tally at random. The behavior of this famous alcoholic has been studied in many
papers [25, 32]. One of the more interesting aspects of this stochastic process is
that it has the property of recurrence. It can be shown that, given enough time,
the drunkard is certain to return to Times Square eventually. Indeed, even if we
extend Manhattan to some hypothetical infinite city (preserving the characteris-
tic street pattern, of course), not only is the drunkard certain to return to Times
Square, but eventually he will visit each and every corner of the city infinitely
often. Or to be exact, the probability of his doing so is equal to 1.

We will start this chapter by reviewing notational conventions, defining the non-
reinforced random walk and giving several characterizations of recurrence for this
walk. Next we will introduce such basic concepts as martingales, stopping times
and harmonic functions, and show how martingales naturally arise from random
walks. Finally, we will characterize recurrence of non-reinforced random walks on
graphs in terms of the existence of certain superharmonic functions on the vertices
of these graphs, and give several examples of the application of these theorems
to specific graphs. This chapter presumes some basic knowledge of graph theory
and probability theory, but an effort has been made to make it as self-contained
as possible.

6.1 The Non-Reinforced Random Walk

6.1.1. Remark. In this dissertation, random walks are always considered to
be walks on the edges of weighted graphs with finitely or countably infinitely
many vertices. We will assume that any given graph is connected, that there are
no ‘degenerate’ edges of weight 0, and that each vertex has only finitely many
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neighbors. To avoid needless notational complications we will also assume that
any given graph is countably infinite, and simple (i.e. without loops or parallel
edges) unless explicitly stated otherwise.

The reader is invited to verify for him- or herself that all definitions, proofs and
results in these chapters can easily be extended to non-simple graphs. Indeed, the
generalization to non-simple graphs of Lemma 8.3.4 will be used in the proof of
Theorem 8.3.9. However, since this extension does not add anything conceptually,
and since it is convenient to be able to denote edges and arcs by their endpoints,
we will concern ourselves with simple graphs, and postulate generalizations to
non-simple graphs when necessary.

Notation. We denote a weighted graph G as G = (V,E,w), where V and E are
the sets of vertices and edges of G, and w : E → IR>0 is its weight function. Edges
are denoted by their endpoints, as in ‘the edge uv’. Note that uv and vu denote
the same edge. Whenever the order of the vertices is important (for instance,
when we want to indicate the direction in which an edge has been traversed), we
use arcs (oriented edges), denoted as in ‘the arc −→uv’, instead of edges. u and v
are called the tail and head of −→uv, respectively.
Some other notational conventions:

• v and u are used for vertices.

• NG(v) denotes the neighbor set of a vertex v in a graph G = (V,E,w), i.e.
the set of vertices u such that uv ∈ E.

• wG(v) denotes the total weight
∑

u∈N(v)w(vu) of the edges adjacent to v.

• ρG(v) denotes the degree of v in G, i.e. the number of adjacent edges.

• dG(v, u) denotes the distance in G between the vertex v and the vertex u
(i.e. the number of edges contained in the shortest v − u path in G).

• dG(v, F ) denotes the distance in G between a vertex v and a vertex-set F .

The index G is omitted when no confusion is possible.

A random walk is a stochastic process of traversing the edges of a graph, where,
each time a vertex is reached, the random walk continues over a randomly se-
lected adjacent edge. Specifically, the non-reinforced random walk on a graph
G = (V,E,w) starting at a vertex v0 ∈ V , is the following stochastic process:

• We start with the vertex v0.

• Next, we randomly pick an edge v0v1 ∈ E that connects v0 with some
other vertex v1 ∈ V . All candidate edges have a probability of being picked
proportional to their weight. The random walk is said to traverse the edge
v0v1, and to visit the vertex v1 at time 1.
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Figure 6.1: The first few steps of a random walk on the square lattice on ZZ2.

• Next, we randomly pick an edge v1v2 ∈ E that connects v1 with some other
vertex v2 ∈ V , in the same manner as in the previous step.

• Continuing in this manner, we obtain a path v0v1v2v3 . . ..

More formally,

6.1.2. Definition. A non-reinforced random walk on a weighted graph G =
(V,E,w) is a series of stochastic variables v0, v1, . . . ∈ V such that for any time
t ∈ IN ,

P (vt+1 = u | Ft) =

{
w(vtu)
w(vt)

if u ∈ N(vt)

0 otherwise
(6.1)

where Ft denotes the σ-algebra of the history up to time t. Note that by our
assumptions on graphs, N(v) > 0 for all v ∈ V .

Notation. vt always denotes the location of the random walk at time t. Some-
times we write v0v1v2 . . . for the random walk itself. Throughout these chapters
s and t are used for (integer) times, and the use of t as a subscript indicates a
(stochastic) variable whose contents changes over time (such as vt).

6.1.3. Definition. A realization of a random walk is said to be recurrent if
every vertex is visited infinitely often, and transient if every vertex is visited only
finitely many times.

The question we are mainly concerned with in these chapters , is under what
conditions a random walk is recurrent almost surely (i.e. with probability 1). For
non-reinforced random walks we have the following observations:

6.1.4. Lemma. Let G = (V,E,w) be a weighted graph, and consider the non-
reinforced random walk on G starting in a vertex v0. Then, depending on G, the
random walk is either almost surely recurrent or almost surely transient.
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Proof
Whenever the random walk is at v0, there is a probability p that v0 is revisited at
some later time. The probability that the random walk will revisit v0 at least n
times is exactly pn. Hence, if p = 1 then almost surely v0 will be visited infinitely
often, and if p < 1 then almost surely v0 will be visited only finitely often.
If two vertices u, u′ ∈ V are neighbors in G, then whenever u is visited, there is
a probability p′ > 0 that the next vertex visited will be u′. It follows that

P (u is visited infinitely often and u′ only finitely often) = 0 (6.2)

By induction on dG(u, u
′) we can show that the same holds for any two vertices

u, u′ ∈ V . The result follows.
2

6.1.5. Lemma. Let G = (V,E,w) be a weighted graph, F ⊂ V a finite set of
vertices of G, and v ∈ F . Then the following are equivalent:

(i) Any non-reinforced random walk on G is almost surely recurrent.

(ii) The non-reinforced random walk on G starting in v is almost surely recur-
rent.

(iii) The non-reinforced random walk on G starting in v returns to v almost
surely.

(iv) Any non-reinforced random walk on G visits F almost surely.

Proof
(i)⇒ (ii) and (ii)⇒ (iii) are obvious.
If we assume (iv) does not hold, then for some u ∈ V , the non-reinforced random
walk starting in u will not almost surely visit F . Since there is a path between
v and u, the non-reinforced random walk starting in v will visit u with positive
probability, and hence will not almost surely return to v, and (iii) fails.
Finally assume (iv) holds. Then starting at any vertex u ∈ V , F is visited almost
surely. After this first visit F is almost surely visited again, and repeating this
process we find that F is almost surely visited infinitely often. Therefore the non-
reinforced random walk starting in u is almost surely not transient, and hence by
Lemma 6.1.4 almost surely recurrent, proving (i).

2

6.2 Random Walks and Martingales

Our major tools for showing recurrence of random walks will be the concept of
martingales and the Optional Stopping Theorem.
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6.2.1. Definition. A series of stochastic variables (Mt)t∈IN is called a martin-
gale if for all t ∈ IN ,

Mt = E(Mt+1 | Ft) (6.3)

where E(Mt+1 | Ft) denotes the expectation, at time t, of the value of Mt+1.

6.2.2. Definition. A series of stochastic variables (Mt)t∈IN is called a super-
martingale [submartingale] if for all t ∈ IN ,

Mt ≥ [≤] E(Mt+1 | Ft) (6.4)

It is easy to see that if M is a martingale, then E(Mt) = M0 for any time t ∈ IN .
The Optional Stopping Theorem for Martingales basically states that the same
holds for the expectation of the value of the martingale at times which are defined
in terms of states or conditions, such as the first time at which the value of the
martingale is < 0 or > 100. To state the theorem, we need the concept of stopping
times.

6.2.3. Definition. A stopping time is a stochastic variable τ , taking values in
IN ∪ {∞}, such that for all t ∈ IN , {τ = t} ∈ Ft.

Stopping times are usually defined in the manner of ‘let τ be the first time at
which some condition holds’. Often we are only interested in the course of a
random walk up to a certain event, such as its first visit to some given vertex. In
that case we write ‘the random walk which stops at time τ ’, or sometimes simply
‘the random walk which stops as soon as some condition holds’.

6.2.4. Theorem (Optional Stopping Theorem for Martingales). Let
Mt be a martingale [supermartingale, submartingale] and τ a stopping time such
that τ < ∞ almost surely. If Mt is bounded [bounded from below, bounded from
above] for t < τ , then

M0 = [≥,≤]E(Mτ ) (6.5)

and more generally
Mt0 = [≥,≤]E(Mτ | Ft0) (6.6)

if t0 ≤ τ .

Kakutani[26] found that random walks give rise to martingales naturally, if we can
find a function on the vertex-set of the graph with the property of harmonicity :

6.2.5. Definition. Let G = (V,E,w) be a weighted graph, and let h : V → IR
be a function. We say that h is harmonic [superharmonic, subharmonic] on a
vertex-set V ′ ⊂ V if for all v ∈ V ′,

h(v) = [≥,≤]
∑

u∈N(v)
h(u)

w(vu)

w(v)
(6.7)
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or, equivalently, ∑

u∈N(v)
w(vu)∆h(−→vu) = [≤,≥] 0 (6.8)

where ∆h(−→vu) denotes h(u)− h(v).
6.2.6. Lemma. Let G = (V,E,w) be a weighted graph, and let h : V → IR be a
harmonic [superharmonic,subharmonic] function on a subset V ′ ⊂ V . Consider
a non-reinforced random walk on G, and define

Mt =
t∑

t′=0

{
∆h(vt′vt′+1) if vt′ ∈ V ′

0 otherwise
(6.9)

for t ∈ IN . Then M is a martingale [supermartingale, submartingale]. Further-
more, as long as V − V ′ has not yet been visited,

Mt = h(vt)− h(v0) (6.10)

Proof
If vt ∈ V − V ′ then Mt+1 = Mt, otherwise

Mt = [≥,≤] Mt +
1

w(vt)
·
∑

u∈N(vt)
∆h(vtu)w(vtu) (6.11)

= Mt +
∑

u∈N(vt)
P (vt+1=u | Ft)∆h(vtu) (6.12)

= E(Mt+1 | Ft) (6.13)

The proof of the final statement is trivial.
2

More about martingales may be found in [24].

6.3 Recurrence and Superharmonic Functions

Now, if h is a superharmonic function on (a subset of) the vertex-set V of a
graph G then the Optional Stopping Theorem for Martingales places bounds
on the expected values of h(vt). We can use this to characterize recurrence of
random walks in terms of the existence of superharmonic functions with certain
properties.

6.3.1. Definition. Let G = (V,E,w) be a weighted graph, and let h : V → IR
be a function. We say that h(v) goes to infinity if v goes to infinity if

∀r∈IR ∃n∈IN ∀v∈V (dG(v0, v)>n ⇒ h(v)>r) (6.14)

For the graphs we are concerned about, in which no vertex has infinitely many
neighbors, this is equivalent to the condition that

for each r ∈ IR, {v ∈ V | h(v) < r} is finite (6.15)
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6.3.2. Theorem. Let G = (V,E,w) be a weighted graph. Then non-reinforced
random walks on G are almost surely recurrent if there exists a function h : V →
IR satisfying

1. h is superharmonic everywhere except on some finite set F .

2. h(v) goes to infinity if v goes to infinity.

Conversely, if non-reinforced random walks on G are almost surely recurrent, then
a function h as above exists, and F may be chosen to be an arbitrary non-empty
finite set.

Proof
First assume such a function h exists. Then h is bounded from below. We may
assume without loss of generality that h ≥ 0. So consider the random walk,
starting at an arbitrary point v0 ∈ V . By Lemma 6.1.5, it suffices to show that
F will be visited almost surely. Let Mt be the martingale from Lemma 6.2.6, and
let for r > 0 the stopping time τr be the first time at which the random walk
leaves the finite set of vertices {v ∈ V | v 6∈ F ∧ h(v) < r}.
By Lemma 6.1.4, almost surely the random walk is either transient or recurrent,
and in both cases the random walk visits infinitely many vertices. It follows that
τr <∞ almost surely. Furthermore, Mt = h(vt) ≥ 0 for t ≤ τ . Hence we can use
the Optional Stopping Time Theorem to obtain

M0 ≥ E(Mτr) ≥ (1− P (vτr ∈ F ))r (6.16)

and hence P (vτr ∈ F ) ≥ 1 −M0/r for all r > 0. We conclude that P (∃t : vt ∈
F ) ≥ 1−ε for arbitrarily small ε > 0, and hence the random walk is almost surely
recurrent.
For the converse implication, let F ⊂ V be a non-empty finite set of vertices, and
assume random walks on G almost surely visit F . Let, for any vertex v ∈ V , τv
be the time that the random walk starting from v first visits F . Then for any
vertex v ∈ V , τv <∞ almost surely. Now set h(v) = E(f(τv)), where f : IN → IR
is such that such that f monotonely diverges to infinity and E(f(τv)) is finite for
all v ∈ V .13 Then h is well-defined, and by the monotonicity of f we have that
for v ∈ V − F

h(v) ≥ E(f(τv−1)) (6.17)

=
∑

u∈N(v)
E(f(τv−1) | v1 = u)

w(vu)

w(v)
(6.18)

=
∑

u∈N(v)
E(f(τu))

w(vu)

w(v)
(6.19)

13For example, f(n) = minv∈V
(
d(v, F ) + (P (τv ≥ n))−1/2

)
can be shown to have these prop-

erties. Unfortunately E(τv) is not generally finite, or we would not need f .
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=
∑

u∈N(v)
h(u)

w(vu)

w(v)
(6.20)

So h is superharmonic on V − F , Furthermore, since starting from a vertex v F
cannot be reached before time t = d(v, F ),

h(v) = E(f(τv)) ≥ f(d(v, F ))→∞ if v →∞ (6.21)

2

6.3.3. Example. The random walk on the square lattice graph on ZZ2 with unit
weights is almost surely recurrent.

Proof

Let h : ZZ2 → IR be defined by

h(x, y) =





log(1/12) if (x, y) = (0, 0)
log(1/4) if (x, y) = (0,±1) or (x, y) = (±1, 0)

log(x2 + y2 − 1) otherwise
(6.22)

Then h satisfies the conditions of theorem 6.3.2, with F = {(0, 0)}.
2

6.3.4. Example. For any n ∈ IN>0, the random walks on the square lattice
graphs on ZZ × {1, . . . , n} and ZZ × (ZZ/nZZ) with unit weights are almost surely
recurrent.

Proof

Let h : (ZZ × {1 . . . n})→ IR be defined by

h(x, y) = |x| (6.23)

Then h satisfies the conditions of theorem 6.3.2, with F = {(0, y) | 1 ≤ y ≤ n}.
The proof for the cylinder lattice ZZ × (ZZ/nZZ) is completely analogous.

2

Interestingly enough, the non-recurrence of random walks on a graph can also be
characterized in terms of the existence of certain superharmonic functions.

6.3.5. Theorem. Let G = (V,E,w) be a weighted graph. Then non-reinforced
random walks on G are not almost surely recurrent if and only if there exists a
bounded non-constant function h : V → IR that is superharmonic on V .
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Proof
First assume that such a function h exists. Let v0, u ∈ V be vertices with h(v0) <
h(u). By Lemma 6.1.5, it suffices to prove that the random walk starting at the
vertex v0 does not almost surely visit u. So consider the random walk, starting
at the vertex v0, which halts on visiting the vertex u, and assume that it does so
almost surely. Then the stopping time τ = min{t ≥ 1 | vt = u} is finite almost
surely. By Lemma 6.2.6, the stochastic process Mt = h(vt) is a supermartingale,
and by our initial assumption it is bounded. Hence we can use the Optional
Stopping Times Theorem to obtain

h(v0) = M0 ≥ E(Mτ ) = h(u) (6.24)

contradicting our choice of v and u.
Now assume that random walks on G are not almost surely recurrent. Then there
are vertices v0, u ∈ V such that starting at v0, the random walk will not almost
surely visit u. Define the function h by

h(v) = P (the random walk starting at v will reach u) (6.25)

Then h : V → [0, 1] is bounded, h(v0) < h(u) = 1, h is harmonic on V −{u} and
h is superharmonic on {u}.

2

6.3.6. Example. The random walk on the cubic lattice graph on ZZ3 is not
almost surely recurrent.

Proof
Let h : ZZ3 → [0, 6−1/2] be defined by

h(x, y, z) =
1

(x2 + y2 + z2 + 6)1/2
(6.26)

Using a truncated Taylor series expansion of h, we can show that for all x, y, z ∈
ZZ,

h(x+ 1, y, z) + h(x− 1, y, z) ≤ 2h(x, y, z) +
2x2 − y2 − z2

(x2 + y2 + z2 + 6)5/2
(6.27)

Analogous inequalities hold for h(x, y + 1, z) + h(x, y − 1, z) and h(x, y, z + 1) +
h(x, y, z − 1). Taking the sum of these inequalities yields the superharmonicity
inequality.

2

6.3.7. Example. Let G = (V,E,w) be a weighted graph with V = {vn | n ∈
ZZ}, and E = {vnvn+1 | n ∈ ZZ}.14 Then random walks on G are almost surely
recurrent if and only if

∑−1
n=−∞(1/w(vnvn+1)) and

∑∞
n=0(1/w(v

nvn+1)) both di-
verge.

14The superscript index vn is used here to avoid confusion with the temporal index vt.
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Proof
If
∑∞

n=0(1/w(v
nvn+1)) converges to c ∈ IR, then define h : V → [0, c] by setting

h(vn) = max(c,
∑∞

k=n(1/w(v
kvk+1))) for n ∈ ZZ. It is easily verified that h is

non-constant, harmonic on V − {v0} and superharmonic on {v0}, fulfilling the
conditions of Theorem 6.3.5. Likewise for the case that

∑−1
n=−∞(1/w(vnvn+1))

converges.
Now suppose

∑−1
n=−∞(1/w(vnvn+1)) and

∑∞
n=0(1/w(v

nvn+1)) both diverge to ∞.
Then define h : V → IR≥0 by setting h(vn) =

∑n−1
k=0(1/w(v

kvk+1)) for n ≥ 0
and h(vn) =

∑−1
k=−n(1/w(v

kvk+1)) for n < 0. Again it is easily verified that h is
non-constant, h(vn)→∞ if n→∞ or n→ −∞, and h is harmonic on V −{v0},
fulfilling the conditions of Theorem 6.3.2

2

The next Theorem is included because it will be used in a later chapter. The
proof, unfortunately, is beyond the scope of these pages. A beautiful proof was
given by Doyle and Snell in [25].

6.3.8. Theorem. Let G = (V,E,w) be a weighted graph such that non-reinforced
random walks on G are almost surely recurrent. If G′ = (V ′, E ′, w′) is a connected
subgraph of G, possibly with lesser weights (i.e. V ′ ⊂ V , E ′ ⊂ E and for all
e ∈ E ′, w′(e) ≤ w(e)), then random walks on G′ are almost surely recurrent.



Chapter 7

Why The Gambler Came Home Late

Consider the following stochastic experiment. We have n players, each possessing
a1, a2, . . . , an coins. They play a gambling game, where each round, one of the
players loses a coin to one of the other players (both selected randomly). The
game continues until one of the players has no more coins. Let us denote the
expected duration of the game (in rounds) by Tn(a1, a2, . . . , an).

7.0.9. Remark. This process of gambling can be viewed as a random walk on
a finite graph. Consider the graph Gs

n = (V s
n , E

s
n) with vertices and edges

V s
n = {~a ∈ INn : a1 + . . .+ an = s} (7.1)

Es
n = {~a~b | ~a,~b ∈ V s

n ,∃i∃j : ai=bi+1 ∧ aj=bj−1 ∧ ∀k 6= i, j : ak=bk} (7.2)

Then the gambling process above corresponds to a random walk in Gs
n. where

we take s to be the total number of coins the players possess. In particular, the
expected duration of the gambling process corresponds to the expected time until
the random walk reaches a vertex ~a with ∃i : ai = 0. Since the graph on which
the random walk takes place is finite, the expectation of this time is finite. Hence
Tn(a1, . . . , an) exists for all n ≥ 1 and all a1, . . . , an ≥ 0.

Question: What can be said about Tn as a function on INn?

7.1 Basic properties of Tn

To get an idea of the properties of the function Tn, let us consider first the case
where n = 2. Here we have two players, and each round, one of the players loses
one coin to the other player, until one of the players is broke. If the players cur-
rently possess a1 and a2 coins, respectively, then after one round, with probability
1/2 they will possess a1−1 and a2+1 coins, and otherwise they will possess a1+1
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and a2 − 1 coins, respectively. It is easily seen that the function T2 satisfies the
equation

T2(a1, a2) =

{
0 if a1 = 0 or a2 = 0

1 + T2(a1−1,a2+1)+T2(a1+1,a2−1)
2

otherwise
(7.3)

Furthermore, for constant s = a1 + a2, this is a finite linear set of equations in
the variables T (0, s), T (1, s − 1), . . . , T (s, 0). It can be shown that this system
of equations has a unique solution. Hence the function T2 is uniquely determined
by equation 7.3 Since the function a1a2 satisfies this condition,

T2(a1a2) = a1a2 (7.4)

For n = 3, we can do something similar. In this case, each round there are
6 possibilities (one of three players loses a coin, and one of the remaining two
players gains one), and we obtain the equation

T3(a1, a2, a3) =

{
0 if ∃i : ai = 0

1 + T3(a1−1,a2+1,a3)+...+T3(a1,a2+1,a3−1)
6

otherwise
(7.5)

Again, T3 is uniquely defined by this equation (for a proof, see the general proof
in the next lemma), and with some searching we can find the formula

T3(a1, a2, a3) =
3a1a2a3

a1 + a2 + a3
(7.6)

In general

7.1.1. Lemma. If we define

Pn = {~d∈ZZn | ∃i∃j : di=1 ∧ dj=−1 ∧ ∀k 6= i, j : dk=0} (7.7)

then we have, for general n, that Tn satisfies and is uniquely defined by the equa-
tion

Tn(~a) =

{
0 if ∃i : ai = 0

1 + 1
n(n−1)

∑
~d∈Pn

Tn(~a+ ~d) otherwise
(7.8)

Proof
By Remark 7.0.9, Tn exists, and that Tn satisfies this equation follows directly
from the definition of the gambling process, analogously to the cases with two and
three players. To show that it is uniquely defined, fix s ∈ IN , and view the linear
system of equations given by equation 7.8 for all ~a ∈ INn with a1+a2+. . .+an = s,
i.e. for all ~a ∈ V s

n . This system has exactly as many equations as it has variables,
so to show that it has a unique solution, it suffices to show that the related system
of equations

T ′n(~a) =

{
0 if ∃i : ai = 0

1
n(n−1)

∑
~d∈Pn

T ′n(~a+
~d) otherwise

(7.9)
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for all ~a ∈ V s
n , only has the solution with T ′n(~a) = 0 for all ~a ∈ V s

n . Now, if T ′n
satisfies this system of equations, and if for some a ∈ V s

n , T
′
n(~a) is nonzero and

either maximal or minimal in V s
n , then we have that T ′n(~a + ~d) = T ′n(~a) for all

d ∈ Pn. Since G
n
s is a connected and finite graph, this would imply that T ′n(~a) is

constant and non-zero on V n
s , a contradiction.

2

Unfortunately, for n > 3 there is no formula known to satisfy this equation.
Simply generalizing of the formulas for n = 2 and n = 3 to

Tn(~a) =
Ca1a2 . . . an

(a1 + . . .+ an)m
, for some C > 0, m ∈ IN (7.10)

does not work: the differential

Tn(~a)−
1

n(n− 1)

∑

~d∈Pn

Tn(~a+ ~d) (7.11)

should be constant in order to satisfy equation (7.8), but if we write it out we get

C

(a1 + . . .+ an)m
∑

1≤i<j≤n

∏

k 6=i,j

ak (7.12)

For n > 3, this expression is not constant for any C > 0 and m ∈ IN , and hence
Tn cannot be expressed in this particular form. In Theorem 7.3.1, we will show
that if such a formula exists, it must be considerably more complicated than the
formulas for n = 2 and n = 3.

7.2 Tn, Hn and T ∗n
For each s, Tn can be thought of as a function on the graph Gs

n having constant
curvature. There are known functions with constant curvature, such as 1/2|~a|2,
which unfortunately do not have the right boundary values. However, the differ-
ence between such functions and Tn would be a function of zero curvature, i.e. a
harmonic function.

7.2.1. Lemma. Tn can be written as

Tn(~a) =
1

2
(Hn(~a)− |~a|2) (7.13)

where Hn is the unique function satisfying

Hn(~a) = |~a|2 if ∃i : ai = 0 (7.14)
∑

~d∈Pn

(Hn(~a+ ~d)−Hn(~a)) = 0 otherwise (7.15)
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Proof
It is straightforward to see that Hn = 2Tn + |~a|2 satisfies the given equations.
Uniqueness can be proven exactly as in the previous lemma.

2

7.2.2. Remark. For any s, Hn is harmonic on Gs
n everywhere except on vertices

~a with ∃i : ai = 0. As such, for ~a ∈ V s
n Hn(~a) is equal to the expected value of |~b|2,

where ~b is the first vertex of Gs
n with ∃i : bi = 0 which is visited by the random

walk on Gs
n starting in ~a.

Interestingly, if we look at a variation on the first game where, once one gambler
is broke, the game continues with the remaining gamblers until one gambler has
won all the money, we get an expected duration function T ∗n which does have a
simple form:

7.2.3. Theorem. Let T ∗n(~a) denote the expected duration of the variation of the
game where play continues until all but one gambler is broke. Then

T ∗n(~a) =
1

2
((
∑

i

ai)
2 − |~a|2) (7.16)

Proof
We will prove this by induction on n. For n = 1, both sides of equation (7.16)
are equal to 0, and the equation holds. For n > 1, using the methods of Lemma
7.1.1, it follows from the Induction Hypothesis that that T ∗n is the unique function
satisfying

Tn(~a) =

{ 1
2
((
∑

i ai)
2 − |~a|2) if ∃i : ai = 0

1 + 1
n(n−1)

∑
~d∈Pn

Tn(~a+ ~d) otherwise
(7.17)

and it is straightforward to check that this is satisfied by the formula of equation
(7.16).

2

7.2.4. Remark. Some calculation shows that

T ∗n(~a) = Tn(~a)−
1

2
Hn(~a) +

1

2
(
∑

i

ai)
2 (7.18)

In other words, with respect to this other game, Tn is the expectation of the time
until the first gambler goes broke, and 1

2
((
∑

i ai)
2 −Hn(~a)) is the expectation of

the time the game will last after the first gambler goes broke.

7.2.5. Corollary. For all ~a ∈ INn,

0 ≤ Tn(~a) ≤
1

2
((
∑

i

ai)
2 − |~a|2) (7.19)

7.2.6. Corollary. For all ~a ∈ INn,

|~a|2 ≤ Hn(~a) ≤ (a1 + . . .+ an)
2 (7.20)
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7.3 Simple Rational Polynomials

Now, the formulas we have for T2 and T3 are rational polynomials. It would be
nice to show that for n ≥ 4, Tn can’t be expressed as a rational polynomial. Al-
though Lemma 7.4.1 is an effort in that direction, the proposition is still unproven.
However, we can prove that Tn can’t be expressed as a rational polynomial such
that the denominator only depends on a1 + . . .+ an:

7.3.1. Theorem. For all n ≥ 4, Tn is not of the form

Tn(~a) =
P (a1, . . . , an)

Q(a1 + . . .+ an)
(7.21)

for any two polynomials P (a1, . . . , an) and Q(s).

This theorem follows directly from the following two lemmas

7.3.2. Lemma. Suppose that, for some n ≥ 3, Tn is as in equation (7.21), for
some polynomials P (a1, . . . , an) and Q(s). Then there exists a nonzero polynomial
R(a1, . . . , an−1) of degree ≥ n, that is divisible by a1 . . . an−1 and a1 + . . . + an−1
and satisfies ∑

~d∈Pn

D~d|n−1
D~d|n−1

R(~a) = 0 (7.22)

where D~uf denotes the partial derivative of f in the direction ~u, and ~d|n−1 denotes

the vector obtained from ~d by discarding the final coordinate.

Proof
Without loss of generality we may assume that P (a1, . . . , an) and Q(s) have no
common factors. Now, P and Q are polynomials, and Q(a1 + . . . + an) only de-
pends on the total amount of money, which does not change during the gambling.
Combining these facts with the properties of Tn, we find that P (a1, . . . , an) is
divisible by a1 . . . an and that for all ~a ∈ IRn

2n(n− 1)Q(a1 + . . .+ an) =
∑

~d∈Pn

(
P (~a+ ~d) + P (~a− ~d)− 2P (~a)

)
(7.23)

We want to replace Q(a1 + . . . + an) by 0, and P (~a + ~d) + P (~a − ~d) − 2P (~a) by
the partial derivative D~dD~dP (~a). Both can be accomplished by taking the limit
of an appropriate scaling, provided we can take Q(a1 + . . . + an) to be constant.
The easiest way to do this is to set an = −(a1 + . . . + an−1). So consider the
polynomial

P ∗(a1, . . . , an−1) = P (a1, . . . , an−1,−(a1 + . . .+ an−1)) (7.24)
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This polynomial is divisible by a1 . . . an−1 and a1 + . . . + an−1, and satisfies for
~a ∈ IRn−1

2n(n− 1)Q(0) =
∑

~d∈Pn

(
P ∗(~a+ ~d|n−1) + P ∗(~a− ~d|n−1)− 2P ∗(~a)

)
(7.25)

Now, if P ∗(a1, . . . , an−1) were the zero polynomial, then we would have Q(0) =
0, and then P (a1, . . . , an) and Q(a1 + . . . + an) would have a common factor
a1 + . . .+ an, contradicting one of our starting assumptions. So P ∗(a1, . . . , an−1)
is nonzero, and of total degree d ≥ n. Let R be the uniformization of P , i.e. set

R(a1, . . . , an−1) = lim
δ→0

δdP ∗(
a1
δ
, . . . ,

an−1
δ

) (7.26)

Then R(a1, . . . , an−1) is a uniform polynomial15 of total degree d, is divisible by
a1 . . . an−1 and a1 + . . .+ an−1, and satisfies

∑

~d∈Pn

D~d|n−1
D~d|n−1

R(~a) (7.27)

=
∑

~d∈Pn

lim
ε→0

1

ε2

(
R(~a+ ε~d|n−1) +R(~a− ε~d|n−1)− 2S(~a)

)
(7.28)

=
∑

~d∈Pn

lim
ε→0

lim
δ→0

δd

ε2

(
P ∗(

~a

δ
+
ε

δ
~d|n−1) + P ∗(

~a

δ
− ε

δ
~d|n−1)− 2P ∗(

~a

δ
)

)
(7.29)

= lim
δ→0

δd−2
∑

~d∈Pn

(
P ∗(

~a

δ
+ ~d|n−1) + P ∗(

~a

δ
− ~d|n−1)− 2P ∗(

~a

δ
)

)
(7.30)

= lim
δ→0

δd−22n(n− 1)Q(0) (7.31)

= 0 (7.32)

Note that in the third equality, we are allowed to set ε = δ and swap limits and
sums, because the expression after the limit can be written as a polynomial in
a1, . . . , an−1, δ and ε.

2

7.3.3. Lemma. For n ≥ 4, there is no polynomial R(a1, . . . , an−1), other than
the zero polynomial, that is divisible by a1 . . . an−1 and satisfies

∑

~d∈Pn

D~d|n−1
D~d|n−1

R(~a) is constant (7.33)

Proof
Let n ≥ 4 and let R(a1, . . . , an−1) be a polynomial. Set

R(2) =
1

2

∑

~d∈Pn

D~d|n−1
D~d|n−1

R(~a) (7.34)

15R may be obtained from P ∗ by omitting all terms of total degree less than d
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A bit of calculating shows that

R(2) = (n− 1)
∑

1≤i≤n−1

∂2R

∂a2i
−

∑

1≤i,j≤n−1,i6=j

∂2s

∂ai∂aj
(7.35)

Now suppose that R is divisible by a1, . . . , an−1, and that R(2) is constant. Since
R contains no terms of total degree 2 or less, we immediately conclude that
R(2) = 0 everywhere. Now we shall prove by induction on m, that for all m ∈ IN
the following holds

For all i < j ≤ n− 1, R contains no terms such that the exponents of
ai and aj in the term sum to m or less

Since R is divisible by a1, . . . , an−1, this is trivial for m = 0, 1. So let m ≥ 2, let
1 ≤ i < j ≤ n−1 and let P be any product of variables other than ai and aj. Set
C to be the collection of terms of R such that the exponents of ai and aj sum to
m and the remaining variables form P , i.e. C can be written as

{ckaki am−k
j P | 0 ≤ k ≤ m} (7.36)

Each term of R contributes terms to R(2), as given by equation (7.35). Amongst
the terms contributed by a term cka

k
i a

m−k
j P of C are (n−1)k(k−1)ckak−2i am−kj P ,

−2k(m−k)ckak−1i am−k−1j P and (n−1)(m−k)(m−k−1)ckaki am−k−2j P . In these three

terms of R(2), the exponents of ai and aj sum tom−2 and the remaining variables
form P . It is easily seen that such terms are not contributed by any terms of R
outside of C, since by the Induction Hypothesis, R does not contain any terms
such that the exponents of ai and aj sum to m − 1 or less. Since R(2) = 0, this
implies that for k = 1, 2, . . . ,m− 1,

(n−1)(m−k + 1)(m−k)ck−1 − 2k(m−k)ck + (n−1)k(k + 1)ck+1 = 0 (7.37)

Multiplying by (k− 1)!(m− k− 1)! and writing c∗k for (m− k)!k!ck yields, for
k = 1, 2, . . . ,m− 1,

(n−1)c∗k−1 − 2c∗k + (n−1)c∗k+1 = 0 (7.38)

Furthermore, since ai and aj divide R, c0 = cm = c∗0 = c∗m = 0. This system of
linear equations has a nontrivial solution if and only if detBn−1

m−1 = 0, where Bn−1
m−1

is the (m−1)× (m−1) matrix




−2 n−1 0 0 . . . 0 0
n−1 −2 n−1 0 . . . 0 0
0 n−1 −2 n−1 . . . 0 0
0 0 n−1 −2 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . −2 n−1
0 0 0 0 . . . n−1 −2




(7.39)
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Defining the matrices Bn−1
i analogously, we get the recursive equation

detBn−1
i = −2 detBn−1

i−1 − (n−1)2 detBn−1
i−2 (7.40)

with detBn−1
0 = 1, detBn−1

1 = −2. Now, if n > 3, then either 4|n − 1, or p|n − 1
for some prime number p > 2. In the first case, it is easy to show by induction
on i that for all i, detBn−1

i is a multiple of 2i but not of 2i+1. In the second case,
it is easy to show by induction on i that for all i, detBn−1

i is not a multiple of p.
In both cases, detBn−1

i 6= 0 for all i ≥ 0. In particular, detBn−1
m−1 6= 0. 16

It follows that all coefficients of terms of R in C are 0. We conclude that R
contains no terms such that for some i and j, the exponents of ai and aj in the
term sum to m or less. Since this holds for all m ≥ IN , R is the zero polynomial.

2

7.3.4. Remark. The proof of Lemma 7.3.3 also goes through, with only minor
modifications, for the case where R can be written as a power series. However,
scaling in the manner of Lemma 7.3.2 is not generally possible for analytic func-
tions. When it is, i.e. when for some d ≥ 2 and some s ∈ IR, the function

R(a1, . . . , an−1) := lim
δ→0

δdP (
a1
δ
, . . . ,

an−1
δ

,
−a1 − . . .− an−1

δ
) (7.41)

can be written as a power series in a1, . . . , an−1 and equation (7.30) holds, then
Lemma 7.3.3 can be applied. But aside from the polynomials there appear to
be very few functions for which this is the case. For instance, if P is a rational
polynomial, the denominator of R is 0 for ~a = ~0, and then R cannot be written
as a power series in a1, . . . , an−1.

Unfortunately, when we try to adapt this proof to rational polynomials in general,
we run into a number of problems. For instance, the formula for the second-
order derivatives of the quotient of two functions involves taking products of the
numerator, the denominator and their derivatives, and as a result the equations
that the coefficients of the polynomials must satisfy are no longer linear equations.

7.4 General Rational Polynomials

Now, the following lemma may be useful in order to prove that Tn cannot be
expressed as a rational polynomial, by giving a consequence of this premise which
seems refutable. Unfortunately, there appear to be no general results in this area

16From the recursive equation we can derive an explicit formula, which turns out to be
Bn−1

i = (n−1)i sin(i+1)α/ sinα, where 0 ≤ α ≤ π and cosα = −1/(n−1). Hence this result is
distantly related to the fact that the only rational c ∈ Q′ such that cosβ = c for some rational
multiple β of π, are −1,−0.5,0,0.5 and 1.



7.4. General Rational Polynomials 71

that could be used to refute it. Please note that it is not a complete reduction of
the problem: the implication is one-way. In particular, if a function hn is found
with the properties given below, it is not at all clear how to obtain Tn from hn.

7.4.1. Lemma. Suppose that Tn(a1, . . . , an) can be expressed as a rational poly-
nomial (the quotient of two polynomials). Then there exists a rational polynomial
function hn on an n-simplex S ⊂ IRn−1, such that

1. hn is harmonic on S (i.e. the Laplacian ∆hn is 0 on S).

2. for some point ~m, hn(~x) = d2(~x, ~m) for all x ∈ ∂S.

Proof
Suppose that Tn can be expressed as a rational polynomial. Then so can Hn.
Furthermore, whenever the denominator of Tn is non-zero, Hn is defined and
satisfies ∑

~d∈Pn

(Hn(~a+ ~d) +Hn(~a− ~d)− 2Hn(~a)) = 0 (7.42)

and

Hn(~a) = |~a|2 if ∃i : ai = 0 (7.43)

As in the proof of Theorem 7.3.1, we will substitute partial derivatives for their
discrete counterparts, by taking the limit of an appropriate scaling. From Lemma
7.2.6 it follows that the total degree of the numerator is exactly 2 more than the
total degree of the denominator. Let R be the uniformization of Hn, i.e. set

R(~a) = lim
δ→0

δ2Hn(~a/δ) (7.44)

on IR× IRn. R is a uniform rational polynomial17 in a1, . . . , an satisfying

R(~a) = |~a|2 if ∃i : ai = 0 (7.45)

and

|~a|2 ≤ R(~a) ≤ (a1 + . . .+ an)
2 if ~a ∈ Rn

≥0 (7.46)

In particular, R exists on IRn
≥0. Furthermore, since R is a rational polynomial,

the partial derivatives DdDdR(~a) exist whenever R(~a) exists, and

∑

~d∈Pn

D~dD~dR(~a) (7.47)

=
∑

~d∈Pn

lim
ε→0

1

ε2

(
R(~a+ ε~d) +R(~a− ε~d)− 2R(~a)

)
(7.48)

17R may be obtained from Hn by removing from the numerator and the denominator all
terms of less than maximal total degree.
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=
∑

~d∈Pn

lim
ε→0

lim
δ→0

δ2

ε2

(
Hn(

~a

δ
+
ε

δ
~d) +Hn(

~a

δ
− ε

δ
~d)− 2Hn(

~a

δ
)

)
(7.49)

= lim
δ→0

∑

~d∈Pn

(
Hn(

~a

δ
+ ~d) +Hn(

~a

δ
− ~d)− 2Hn(

~a

δ
)

)
(7.50)

= 0 (7.51)

Note that in the second-to-last equality, we are allowed to set ε = δ and swap
limits and sums, because the expression after the limit can be written as a rational
polynomial in a1, . . . , an, δ and ε whose denominator is non-zero for δ = ε = 0
(provided the denominator of R(~a) is non-zero in the first place).
If we consider the simplex S = {~a ∈ IRn :

∑
i ai = 1,∀i : ai ≥ 0} in the

hyperplane V = {~a ∈ IRn :
∑

i ai = 1}, then (after mapping V to IRn−1) the
function hn(~a) = R(~a)−1/n satisfies the requirements, taking m to be the center
of the simplex.

2

7.4.2. Remark. For n = 2, 3 we have

h2(a1, a2) = 1 for a1 + a2 = 1 (7.52)

h3(a1, a2, a3) = a21 + a22 + a23 + 6a1a2a3 for a1 + a2 + a3 = 1 (7.53)



Chapter 8

Reinforced Random Walks

In the orthodox random walk, the probability of traversing a specific street from
a specific intersection is always the same, unaffected by anything that has gone
before. In this chapter, we will study reinforced random walks, where the walk
is given a particular kind of feedback such that edges already traversed are either
more or less likely to be traversed in the future. In terms of the Drunkard’s Walk
example, the drunkard vaguely recognizes streets he has walked before, and is
either more likely to traverse them (as he considers them safe) or less likely (as
he considers them boring), depending on the conditions of the reinforcement.

Reinforced random walks were first introduced by Diaconis and Coppersmith[22],
and generalized later by B. Davis[23] and Pemantle[29]. They were originally pre-
sented as an alternative to Pólya’s urn18as a simplified model of a self-organizing
system, i.e. a system whose basic parameters are very simple, and whose behavior
‘evolves’ to approach a (possibly random) limit. Such systems occur naturally,
for instance in the formation of stalactites and stalagmites. For another example,
consider a man who has just moved to a new city: if he does not know the shops,
he will start out by visiting shops at random, but after a while he will develop
preferences and habits.

8.1 General Reinforced Random Walks

First we will compare reinforced walks with non-reinforced random walks, give
analogues of results and techniques from Chapter 6, and show that under some

18Pólya’s urn is one of the simplest (and oldest) processes with reinforcement. In this model,
there is an urn containing red and blue balls. At time t = 0, the urn contains one red and
one ball. At each time t > 0, a ball is chosen uniformly from the contents of the urn, and is
put back into the urn along with another ball of the same color. Eggenberger and Pólya[30]
showed that the proportion of red balls converges almost surely, and that the limit is random
with uniform distribution on [0, 1].

73
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very general conditions reinforced random walks on trees are almost surely recur-
rent. Then we will give a sufficient condition for recurrence of reinforced random
walks on general graphs, which we will use in later sections.
In a reinforced random walk, when an edge has been traversed we change the
probability that it will be traversed again, by increasing or decreasing the weight
of the edge. In general reinforced random walks, the new weight may depend
on many things, such as the edge in question, the number of times it has been
traversed before, the time of traversal and the pattern formed by edges traversed
at previous times, etc. etc. B. Davis [23] defines the category of reinforced
random walks of matrix type, where for each edge vu, the current weight of vu is
determined solely by the number of times kt(vu) it has been traversed up to then,
and is not influenced by anything that has happened to any other edge. Note
that in general walks of matrix type, the relationship between current weight and
number of traversals may be different for each edge. In this chapter and the next
we concern ourselves with a specific subclass of walks of matrix type, where a
sequence (δk)k∈IN is given which is the same for all edges, and the current weight
of an edge at any given time is determined by multiplying its original weight by
δkt(vu). A formal definition:

8.1.1. Definition. Let (δk)k∈IN be a sequence of strictly positive real numbers,
Set the weight of vu at time t to

wt(vu) = δkt(vu)w(vu) (8.1)

where kt(vu) denotes the number of traversals of vu up to time t, i.e.

kt(vu) = # {t′ < t | vt′vt′+1 = vu} (8.2)

A reinforced random walk on a graph G = (V,E,w) with reinforcement sequence
(δk)k∈IN , is a series of stochastic variables v0, v1, . . . ∈ V such that for all t ∈ IN ,

P (vt+1 = u | Ft) =

{
wt(vtu)
wt(vt)

if u ∈ N(vt)

0 otherwise
(8.3)

Recurrence and transience are defined in the same manner as before.

8.1.2. Remark. The random walks defined above are similar but not identical to
B. Davis’ random walks of sequence type, where the current weight of an edge vu
is defined as wt(vu) = w0(vu)+ δkt(vu) for some non-descending sequence (δk)k∈IN
[23]. Davis gave many results for walks of this type on the linear lattice ZZ, most
of which also hold for the random walks defined above. We will concern ourselves
mainly with more general classes of graphs.

There are a number of differences between a reinforced and a non-reinforced
random walk. For instance, a reinforced random walk is influenced by its history,
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and hence we might want to consider random walks with initial states in which
some edges are considered to have been traversed already. Another difference is
that if the reinforcement increases sharply enough, the random walk might get
‘stuck’ on an edge:

8.1.3. Theorem. Let G = (V,E,w) be a weighted graph, and let (δk)k∈IN be such
that

∞∑

k=0

1

δk
converges. (8.4)

Then for any edge vu ∈ E, and all random walks on G, there exists a t0 ≥ 0 such
that

P (∀t > t0 : vt ∈ {v, u}) > 0 (8.5)

Proof

Since G is connected, every point is reachable, and hence there exists a t0 ∈ IN
such that with non-zero probability v is visited at time t0. Assume that it has.
Then the probability that from time t0 on, the random walk will keep traveling
from v to u and back again, is

∞∏

i=0

wt0+i(vu)

wt0+i(vt0+i)
(8.6)

≥
∞∏

i=0

δkt0 (vu)+iw(vu)

c+ δkt0 (vu)+iw(vu)
(8.7)

≥
∞∏

k=kt0 (vu)

e−c/(δkw(vu)) (8.8)

= e
−c/w(vu)·

∑∞

k=kt0
(vu)

(1/δk)
(8.9)

> 0 (8.10)

where c is the total weight assigned at time t to edges other than vu that are
incident with v or u.

2

The converse implication, that if
∑

k∈IN δk diverges, the random walk will almost
surely not get ‘stuck’, does not hold in general.19However, it does hold for non-
descending sequences, and for general sequences it is possible to come close, as
the following analogues of Lemmas 6.1.4 and 6.1.5 show:

19For instance, if G is a tree with unit weights on which non-reinforced random walks are
almost surely recurrent, then it can be shown that the reinforced random walk on G with
reinforcement sequence (δk)k∈IN = (1, 2, 1, 4, 1, 8, 1, 16, . . .) starting from a vertex v0 almost
surely eventually stays within {v0} ∪N(v0).
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8.1.4. Lemma. Let G = (V,E,w) be a weighted graph, and let (δk)k∈IN be such
that

∞∑

j=0

1

max(δ0, δ1, . . . , δj)
diverges. (8.11)

Then a reinforced random walk on G starting from any initial state will almost
surely visit infinitely many vertices, and

P (the walk is transient) + P (the walk is recurrent) = 1 (8.12)

Proof
The first assertion follows from the second, since both transient and recurrent
walks visit infinitely many vertices. To prove the second assertion it suffices to
show that for all v, u ∈ V

P (v is visited infinitely often and u only finitely often) = 0 (8.13)

If we can show that the above holds for vertices v, u ∈ V with vu ∈ E, then
the general result follows by induction on the distance dG(v, u). So let v, u ∈ V
with vu ∈ E. Fix t0 ∈ IN , and suppose that u has not been visited since time
t0 ∈ IN , and at some time t > t0 v is visited again for the k-th time. Then wt(v) ≤
w(v)max{δ0, . . . , δ2k}, and since vu has been traversed at most t0 times, wt(vu) ≥
w(vu)min{δ0, . . . , δt0}. Hence, the probability of not immediately traversing vu
in this situation is at most

1− c/max{δ0, . . . , δ2k} < e−c/max{δ0,...,δ2k} (8.14)

where c = w(vu)min{δ0, δ1, . . . , δt0}/w(v).
Therefore, applying induction on k, we have that for all k ≥ 1,

P (u is not visited between t0 and the k + 1-th visit to v)(8.15)

≤
k∏

k′=1

e−c/max(δ0,...,δ2k′ ) (8.16)

= e−c·
∑k

k′=1
(1/max(δ0,...,δ2k′ )) (8.17)

Consequently

P (v is visited infinitely often and u never after time t0)

≤ e−c
∑∞

k=1
(1/max(δ0,...,δ2k)) (8.18)

= 0 (8.19)

Summing over all times t0 ∈ IN gives the desired result.
2
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8.1.5. Lemma. Let G = (V,E,w) be a weighted graph, F ⊂ V a finite set of
vertices of G, and v0 ∈ V . Let (δk)k∈IN be such that equation (8.11) holds. Then
for the reinforced random walk on G starting from v0, the following are equivalent:

(i) The reinforced random walk on G starting from v0 is almost surely recurrent.

(ii) For any t0 ∈ IN , and any history up to time t0, F will be (re)visited at some
time at or after time t0 almost surely.

Proof
(i)⇒ (ii) is trivial. If (ii) holds, then by applying it repeatedly we find that the
reinforced random walk on G starting from v0 will almost surely visit F infinitely
often. Then the random walk is almost surely not transient, and by the previous
Lemma, this implies it is almost surely recurrent.

2

8.1.6. Remark. In condition (ii) of Lemma 8.1.5, conceptually we restart the
walk at time t0. i.e. we look at a walk which starts at time t0, with t0 traversals
part of a ‘fixed’ history up to time t0 (as opposed to starting at time 0 with a
blank initial state). If all such restarted walks can be shown to visit F almost
surely, Lemma 8.1.5 states that the original reinforced random walk is almost
surely recurrent.

8.1.7. Lemma. For random walks on weighted trees, the direction in which an
edge is traversed is the same at all odd-numbered traversals (and opposite to the
direction of traversal at all even-numbered traversals). This allows us to replace,
for reinforced random walks on weighted trees, the condition of Lemmas 8.1.4 and
8.1.5 by the condition that

∞∑

k=0

(1/δ2k) and
∞∑

k=0

(1/δ2k+1) both diverge. (8.20)

Proof
Consider a random walk on a weighted tree G = (V,E,w), and assume that
equation (8.20) holds. In order to show that the conclusions of Lemmas 8.1.4 and
8.1.5 hold, it suffices to show that for all vertices v, u ∈ V with vu ∈ E,

P (v is visited infinitely often and u only finitely often) = 0 (8.21)

So let v ∈ V , and let u0, u1, . . . , um be the neighbors of v in G, with u0 being
the unique neighbor of v that is on a path between v and v0 if v 6= v0. Set, for
i ≤ m, k ∈ IN ,

Ri
k = δ2k+1w(vu

i) if i = 0 and v 6= v0, R
i
k = δ2kw(vu

i) otherwise (8.22)
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Then Ri
k is the weight of the edge vui if v is visited and the arc vui has been

traversed (in that direction) k times before.
The next part of the proof is based on a proof of H. Rubin concerning a generalized
Pólya Urn problem [23]. Let Y i

k be independent exponential random variables
such that E(Y i

k ) = 1/Ri
k,
20 and put

Ai =

{
k∑

k′=0

Y i
k′ , k

′ ≥ 0

}
for i ≤ m (8.23)

2

Define a sequence of edges vui by making the k-th element of the sequence vui

if the k-th smallest element of A0 ∪ . . . ∪ Am is from Ai. Now since by equation
(8.20)

for all i ≤ m,
∞∑

k=0

1

Ri
k

diverges. (8.24)

we have that almost surely

for all i ≤ m,
∞∑

k=0

Y i
k′ diverges. (8.25)

and hence almost surely vui will appear infinitely often in the sequence for all
i ≤ m.
As it turns out, this sequence has exactly the same probability distribution as the
sequence of edges traversed from v in the reinforced random walk. In other words,
we may decide that at visits to v we traverse successive arcs of the sequence,
without changing any probabilities. The proof of this relies on properties of
exponential random variables, and is straightforward but cumbersome. Interested
readers are referred to Rubin’s proof [23]. We conclude that equation (8.21) holds.

2

8.2 A Martingale for Reinforced RandomWalks

Now let us consider recurrence for reinforced random walks. The proofs given
in Chapter 6 used the fact that, if a function h on the vertex-set of a weighted
graph G is harmonic, then in a non-reinforced random walk, h(vt) behaves like a
martingale. This does not in general hold for reinforced random walks. If h is a
harmonic function, then a vertex which has neighbors with higher h-values will
also have neighbors with lower h-values, but the probabilities of the corresponding
edges being traversed are not necessarily balanced, or even constant over time.
In order to find an analogue of Lemma 6.2.6, we will need to compensate for the
difference in probabilities.

20I.e. the probability distribution of Y i
k is given by P (Y i

k > r) = e−rRi
k for all r ∈ IR
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8.2.1. Lemma. Let G = (V,E,w) be a weighted graph, and let h : V → IR be a
harmonic [superharmonic, subharmonic] function on a subset V ′ ⊂ V . Consider
the reinforced random walk with reinforcement sequence (δk)k∈IN and define

Mt =
t∑

t′=0





∆h(vt′vt′+1)

δk
t′ (vt′vt′+1)

if vt′ ∈ V ′

0 otherwise
(8.26)

for t ∈ IN , where (as before) ∆h(−→vu) denotes h(u)−h(v). Then M is a martingale
[supermartingale,submartingale].

Proof
If vt ∈ V − V ′, then Mt+1 = Mt, otherwise

Mt = [≥,≤] Mt +
1

wt(vt)
·
∑

u∈N(vt)
w(vtu)∆h(−→vtu) (8.27)

= Mt +
∑

u∈N(vt)

wt(vtu)

wt(vt)
·∆h(−→vtu)
δkt(vtu)

(8.28)

= Mt +
∑

u∈N(vt)
P (vt+1 = u | Ft)

∆h(−→vtu)
δkt(vtu)

(8.29)

= E(Mt+1 | Ft) (8.30)

2

As an application of the above martingale, we will show that if non-reinforced
random walks on a weighted tree are almost surely recurrent, then for reinforced
random walks on that tree, a very weak condition on the reinforcement sequence
suffices to show recurrence.

8.2.2. Theorem. Let G = (V,E,w) be a weighted tree, with the property that
non-reinforced random walks on G are almost surely recurrent. Let (δk)k∈IN be a
non-descending reinforcement sequence that satisfies the condition of Lemma 8.1.5
(or that of Lemma 8.1.7). Furthermore, assume either that (δk)k∈IN is bounded,
or that δk+1 > δk for some even k ∈ IN . Then the reinforced random walk with
reinforcement sequence (δk)k∈IN is almost surely recurrent.

Proof
Consider a reinforced random walk on G starting from some vertex v0 ∈ V . By
Lemma 8.1.5 (or Lemma 8.1.7), to show recurrence, it suffices to show for all
t0 ∈ IN , and any history up to time t0, that v0 will be revisited almost surely at
some time at or after time t0. So let t0 ∈ IN , and fix the history up to time t0.
First, we need a function h on V that is superharmonic on V − {v0}. Since
non-reinforced random walks on G are almost surely recurrent, such a function
h exists by Theorem 6.3.2. For r ∈ IR, define the stopping time τr as the first
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time t ≥ t0 at which vt = v0 or h(vt) > r. By Lemma 8.1.4, the random walk will
almost surely leave the finite set of vertices {v ∈ V | h(v) ≤ r}. Hence τr < ∞
almost surely.

Next, let Mt be the martingale of Lemma 8.2.1. For walks on weighted trees,
the direction of traversal of an edge is the same for all odd-numbered traversals,
and opposite to the direction for all even-numbered traversals. Furthermore, all
odd-numbered traversals are traversals going from the lower to higher h-value,
for otherwise it would be possible to construct an infinite sequence of vertices
of decreasing h-value, which would contradict the fact that h → ∞ if v → ∞.
Hence, an edge vu which has been traversed k times at time t contributes

|∆h(−→vu)| ·
k−1∑

j=0





1/δj if j is even and vu is not incident with v0
0 if j is even and vu is incident with v0

−1/δj if j is odd
(8.31)

to the value of the martingale. Now by the conditions on (δk)k∈IN , there exists a
c > 0 such that either 1/δk > c for all k ∈ IN , or 1/δk − 1/δk+1 > c for some even
k ∈ IN . We can use either property, together with the monotonicity of (δk)k∈IN ,
to obtain the following lower bound on the above contribution:

|∆h(−→vu)| ·
({

c if k is odd
0 if k is even

−
{
dk/2e/δ1 if vu is incident with v0

0 otherwise

)
(8.32)

At any time t, the edges of G that have been traversed an odd number of times
are exactly the edges of the unique path in G between v0 and vt. Furthermore,
between times t0 and τ , there will be no traversals of edges incident with v0,
except for a possible traversal to v0 at time τ . Hence the martingale Mt satisfies

Mt ≥ c(h(vt)− h(v0))− c′ (8.33)

where c′ =
∑

u∈N(v0)∆h(v0u)dkt0(v0u)/2e/δ1. Now we can apply the Optional
Stopping Times Theorem to obtain

Mt0 ≥ E(Mτr) ≥ (1− P (vτr = v0))c(r − h(v0))− c′ (8.34)

We conclude that P (vτr = v0) ≥ 1− (Mt0 + c′)/c(r− h(v0)) for all r > h(v0), and
hence v0 is almost surely revisited at some time after time t0.

2

8.2.3. Remark. For the proof of the above theorem, we can weaken the condi-
tions on the reinforcement sequence to the conditions of Lemma 8.1.7 and, for
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some c > 0,21the inequality

k−1∑

j=0

(−1)j/δk > 0 for k even , > c for k odd (8.35)

8.3 Once-Reinforced Random Walks

In this section we will consider the once-reinforced random walk, where the weight
of an edge only changes the first time it is traversed, and afterwards remains
constant. For this walk, the martingale Mt defined in the previous section can
be expressed as h(vt) plus a certain (bounded) bias. If the expectation of the
bias is small enough, we will be able to show recurrence in a similar manner as
in Chapter 6.

8.3.1. Definition. Let δ > 0. The once-reinforced random walk with reinforce-
ment factor δ is the reinforced random walk with reinforcement sequence

(δk)
∞
k=0 = (1, δ, δ, δ, δ, . . .) (8.36)

8.3.2. Definition. Define the stochastic variables Et and At, for t ∈ IN , by
setting

Et = {vsvs+1 | s < t} (8.37)

At = {−→vu | vu ∈ Et,−→vu = −−−→vsvs+1 for s = min{s′<t | vs′vs′+1 = vu}} (8.38)

i.e. Et is an edge-set containing the edges that have been traversed up to time
t, and At is an arc-set obtained from Et by orienting each edge in the direction
that it was first traversed.

8.3.3. Lemma. In a once-reinforced random walk with reinforcement factor δ >
0, let t0 ∈ IN , and let Mt be as in Lemma 8.2.1 for some function h : V → IR
which is (super/sub)harmonic on V ′ ⊂ V . Then for t ≥ t0,

δ(Mt −Mt0) = h(vt)− h(vt0) + (δ−1)
∑

−→vu∈At−At0

∆h(−→vu) (8.39)

as long as V − V ′ has not been visited at any time between t0 and t (including t0
and excluding t).

21Regrettably, the constant c > 0 cannot be replaced by 0. We can find a counterexample
on the linear lattice graph G = (V,E,w) with V = {vn | n ∈ IN}, E = {vnvn+1 | n ∈ IN}
and w(vnvn+1) = n + 1. Non-reinforced random walks on this graph are recurrent, but the
reinforced random walk with reinforcement sequence (δk)k∈IN = (1, 1, 2, 2, 3, 3, . . .) starting in
v0 is almost surely transient.
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Proof
At time t = t0, the equality holds. If an arc −→vu is traversed that has been traversed
before, then Mt changes by ∆h(−→vu)/δ, h(vt) changes by ∆h(−→vu), and At does not
change, so equality is preserved. If an arc vu is traversed that has not been
traversed before, then Mt changes by ∆h(−→vu), h(vt) changes by ∆h(−→vu), and −→vu
is added to At, so equality is again preserved.

2

Now, in our proof of the recurrence of non-reinforced random walks, a key point
was that when we moved farther away from F , the value of the martingale in-
creased as well. Since the expectation of the martingale was bounded, this im-
plied that the probability of reaching a border decreased if we moved the bor-
der further away. In order to use similar reasoning here, we will need the bias
(δ−1)∑−→vu∈At

∆h(−→vu) to be positive in the long run, or at least not too negative.

8.3.4. Lemma. Let G = (V,E,w) be a weighted graph. Let h : V → IR be a
function satisfying

1. h is superharmonic everywhere except on a finite subset F ⊂ V .

2. h goes to infinity if v goes to infinity.

Consider the once-reinforced random walk on G with reinforcement factor δ start-
ing at some vertex v0. Suppose that for some ε > 0, the following holds for any
time t0 and any history up to time t0:

There exists a c ∈ IR such that for all r0 ∈ IR we can find r > r0 with

(δ − 1)E




∑

−→vu∈Aτr

∆h(−→vu) Ft0


 ≥ −(1− ε)r − c (8.40)

(where the stopping time τr is the first time at or after t0 that F is
visited or h(vt) ≥ r).

Then the once-reinforced random walk on G with reinforcement factor δ starting
at v0 is almost surely recurrent.

Proof
Without loss of generality we may assume that h ≥ 0. Note that the reinforcement
sequence satisfies the condition of Lemmas 8.1.4 and 8.1.5. Therefore it suffices
to show for all t0 ∈ IN , and any history up to time t0, that F will be revisited
almost surely at some time at or after time t0. So let t0 ∈ IN , and fix the history
up to time t0.
Let Mt be the supermartingale of Lemma 8.2.1, and let r ∈ IR. For any t ≤ τr,
the set At − At0 is contained in the finite set {−→vu ∈ V | v 6∈ F ∧ h(v)< r}. So
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Mt is bounded for t ≤ τr, and furthermore τr < ∞ almost surely by Lemma
8.1.4. Hence we can apply the Optional Stopping Times Theorem to obtain
E(δMτr) ≤ δMt0 , which by Lemma 8.3.3 is equivalent to

E(h(vτr)) ≤ h(vt0) + (δ − 1)
∑

−→vu∈At0

∆h(−→vu)− (δ − 1)E




∑

−→vu∈Aτr

∆h(−→vu)


 (8.41)

Combining this with the formula E(h(vτr)) ≥ (1− P (vτr ∈ F | Ft0))r, we obtain

P (vτr ∈F | Ft0) ≥ 1− h(vt0)

r
− δ−1

r

∑

−→vu∈At0

∆h(−→vu) +
δ−1
r

E




∑

−→vu∈Aτr

∆h(−→vu)




(8.42)
By assumption we can find c, r ∈ IR such that

ε

2
r > c+ h(vt0) + (δ − 1)

∑

−→vu∈At0

∆h(−→vu) (8.43)

and (8.40) holds. Then

P (vτr ∈F | Ft0) ≥ 1− ε/2 + c

r
− (1− ε)r + c

r
= ε/2 (8.44)

So there is at least a chance of ε/2 of coming back to F at time t = τr. In the
event that this does not happen, we repeat the entire process starting at time
τr + 1, and each time we have a chance of ε/2 of visiting F . It follows that the
random walk will visit F almost surely.

2

Next are some applications of this lemma. We will write the bias as the sum of
‘local’ biases in order to estimate it. The first application demonstrates how to
use absolute bounds on

∑−→vu∈Aτr
∆h(−→vu), to show recurrence for δ close to 1.

8.3.5. Theorem. Let n ≥ 1, and let G = (V,E,w) be the square lattice graph
on ZZ × {1, . . . , n} or on ZZ × (ZZ/nZZ). If 1 − 1

n
< δ < 1 + 1

n−2 (for n ≥ 3),

or 1 − 1
n
< δ (for n = 1, 2), then the once-reinforced random walk on G with

reinforcement factor δ is almost surely recurrent 22.

Proof
First assume that G is the square lattice graph on ZZ × {1, . . . , n}. With each
vertex v of G we can associate coordinates xv, yv with xv ∈ ZZ, yv ∈ {1, . . . , n},
in the obvious fashion. We may assume that the random walk starts at a point
v0 with xv0 = 0. For our superharmonic function h we will use h(v) = |xv|, which

22Recurrence for 1 ≤ δ < 1 + 1
n−2 was first proven by Sellke in [31], using different methods.
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y=0

y=1

y=2

y=n-1

y=n

x=-4 x=-3 x=-2 x=-1 x=0 x=1 x=2 x=3 x=4

untraversed edge

traversed edge

 horizontal edges
column of

Figure 8.1: The square lattice graph on ZZ × {1, . . . , n}.

is easily seen to be harmonic everywhere except on the finite set F = {v ∈ V |
xv = 0}.
With this function h, the only edges that contribute to the bias are horizontal
edges. For any c ∈ ZZ, consider the column Cc of n horizontal edges connecting
points v with xv = c to points u with xu = c+1. We need to estimate the number
of edges of this column that, at first traversal, are traversed going from the lower
to the higher h-value. This number is obviously at most n, and unless the column
has not been traversed at all, it is at least 1 (since the random walk cannot reach
the side of the column with higher h-values without crossing the column at least
once). Similarly, the number of edges that, at first traversal, are traversed going
from the higher to the lower h-value, is at least 0 and at most n − 1. So the
contribution of the column to the bias satisfies

(δ−1)
∑

−→vu∈At,vu∈Cc

∆h(−→vu) ≥
{

(δ−1)max(0, n−2) if δ ≥ 1
(1−δ)n if δ < 1

= −(1− ε) (8.45)

where ε = 1 − (δ− 1)max(0, n− 2) > 0 if 1 ≤ δ < 1 + 1/max(0, n− 2) and
ε = 1− (1−δ)n > 0 if 1− 1/n < δ < 1.
Now for any t0 and any r > t0/ε, if τr is the first time at or after t0 that F is
visited or h(vt) > r, then the horizontal edges in Aτr are all contained in the
r + t0 columns with x-coordinates between −t0 and r (in the case that xvt0

> 0)
or between −r and t0 (in the case that xvt0

> 0). Summing all columns, we obtain

(δ−1)
∑

−→vu∈Aτ

∆h(−→vu) ≥ −(1− ε)r − (1− ε)t0 (8.46)

Hence the conditions of Lemma 8.3.4 are satisfied, and the reinforced random
walk is almost surely recurrent.
The proof for the square lattice graph on the cylinder ZZ× (ZZ/nZZ) is identical.

2

8.3.6. Remark. Of course, using the absolute bound on
∑{∆h(−→vu) | −→vu ∈ Aτr}

is a very unsophisticated method of obtaining a bound on the expected value of
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w=1/4

w=1/4

w=1/4

w=1/8

w=1/8

w=1/2

w=1/2

v
0

w=1/4

Figure 8.2: A tree on which the once-reinforced random walk with δ < 1/4 is not
almost surely recurrent.

the bias. In the above case, we could improve the bounds on the expected value of
the bias with a few simple probabilistic calculations, resulting in slight improve-
ments to our bounds on δ. This does not yield any substantial improvements,
unfortunately.
In the next chapter a proof will be given of recurrence for large values of δ. No
proof is yet known for intermediate values of δ. It is also not yet known whether
the once-reinforced random walk on the square lattice graph on ZZ2 is recurrent
for any reinforcement factor δ 6= 1, although a related marginal result is given at
the end of this chapter. The intuition, however, is that once-reinforced random
walks on the square lattice graphs on ZZ2 and ZZ × {1, . . . , n} are recurrent for
all δ ≥ 1.
For reinforced random walks on weighted trees, recurrence can be proven for all
δ ≥ 1 (provided the tree is such that non-reinforced random walks are recurrent
in the first place). This follows already from Theorem 8.2.2. To prove recurrence
for all δ ≥ 1, in any graph on which non-reinforced random walks are recurrent,
one could use something like

8.3.7. Proposition. For any edge vu that is ‘far away’ from all edges traversed
so far, if v is closer than u to the origin of the walk (in the sense that h(v) <
h(u)), then vu has at least as much chance of being traversed (the first time it is
traversed) from v to u as it has of being traversed (the first time it is traversed)
from u to v.

This means, very loosely formulated, that closer vertices are visited earlier. Alas,
so far this proposition has neither been proved nor refuted.

8.3.8. Example. For negative reinforcements, recurrence is not necessarily pre-
served. There are examples of cases where the non-reinforced random walk on a
graph is recurrent, but for certain δ < 1, the once-reinforced random walk with
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0-1-2 1
E E E E

-2 -1 0 1 2
vvvvv

Figure 8.3: The graph of Theorem 8.3.9

reinforcement δ is not. Figure 8.2 is such a case: it can be shown that for δ < 1/4,
the once-reinforced random walk on this tree is not almost surely recurrent.

Next is an application of Lemma 8.3.4 that uses probabilistic methods rather
than an absolute bound. Note that we actually use the generalization of Lemma
8.3.4 to graphs with parallel edges, rather than the lemma as written. As stated
in Remark 6.1.1, we will simply postulate this generalization and proceed.

8.3.9. Theorem. Let G = (V,E,w) be a weighted graph with vertices V = {vi |
i ∈ ZZ} and for any n, a finite non-zero number of parallel edges between the
vertices vn and vn+1. If the non-reinforced random walk on G is almost surely
recurrent, then the reinforced random walk on G is almost surely recurrent for
any reinforcement factor δ > 0.

Proof
If the non-reinforced random walk on G is almost surely recurrent, then by The-
orem 6.3.2 there exists a function h : V → IR such that h is superharmonic
on V − {v0} and h(vn) → ∞ if n → ∞ or n → −∞. It is easily seen that
h(vn) > h(vm) if n > m > 0 or n < m < 0.
Now for n ∈ ZZ, let Gn = (V n, En, wn) be the subgraph induced by {vn, vn+1}
(i.e. V n = {vn, vn+1}, En is the set of edges between vn and vn+1, and wn =
w|En). Although events outside Gn may effect whether and when an edge of Gn is
traversed, which edge of Gn is traversed is only dependent on the relative current
weights of the edges of Gn. So we can estimate the expected contribution to the
bias of each set En separately, and take the sum to arrive at an estimate for the
total expected bias. The possibility that at some point the walk in G will no
longer return tot Gn can be simulated by a stopping time for the walk in Gn.
So fix n ∈ ZZ and consider the reinforced random walk on the finite graph Gn,
starting in vn if n ≥ 0, and in vn+1 otherwise. Note that in both cases the random
walk will start at the vertex with the lower h-value and then alternate between
the two vertices. Set c = |h(vn+1)−h(vn)|. If for Gn we define An

t and En
t as

usual, we have for any t ∈ IN

E


 ∑

~a∈An
t+1

∆h(~a) Ft


 =

∑

~a∈An
t

∆h(~a) + (−1)t w(En)−w(En
t )

w(En)+(δ−1)w(En
t )
· c (8.47)

where w(X) denotes
∑

e∈X w(e). This implies that for any stopping time τ

E


 ∑

~a∈An
τ

∆h(~a)


 = E

(
τ−1∑

t=0

(−1)t w(En)−w(En
t )

w(En)+(δ−1)w(En
t )

)
· c (8.48)
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For all t, w(En
t ) ≤ w(En

t+1) ≤ w(En), and hence

w(En)−w(En
t )

w(En)+(δ−1)w(En
t )
≤ w(En)−w(En

t+1)

w(En)+(δ−1)w(En
t+1)

(8.49)

We conclude that for any stopping time τ ,

0 ≤ E


 ∑

~a∈An
τ

∆h(~a)


 ≤ c (8.50)

Now let us return to the random walk on G. Fix t0 ∈ IN and the history up to
time t0. Then all the vertices that have been visited up to time t0 have indices
between −t0 and t0. Furthermore, all the vertices that can be visited after time
t0 are on the same side of v0 until the first visit to v0; without loss of generality
we may assume that this is the side of the vertices with positive indices. If we
transfer the results we obtained for the walks on the graphs Gn to the random
walk on the graph G, and take the sum of the inequalities over all edge-sets En

with n ≥ t0, then we obtain

−c′ ≤ E


∑

~a∈Aτ

∆h(~a) Ft0


 ≤ E(max{h(vt) | t ≤ τ})− h(vt0) + c′ (8.51)

where τ is any stopping time such that the walk does not leave the set of vertices
with positive indices, and c′ =

∑t0−1
n=−t0

(#En)|h(vn+1)− h(vn)|.
This implies the condition of (the generalization of) Lemma 8.3.4 for all δ > 0.

2

The third application of Lemma 8.3.4 yields an (admittedly rather marginal) re-
sult for a variant once-reinforced random walk on the square lattice graph with
unit weights on ZZ2. In this variant once-reinforced random walk, the reinforce-
ment factor is not constant, but is allowed to be different for each edge. It is not
difficult to modify Definition 8.1.1 to allow this type of once-reinforced random
walks, although we will encounter some hidden complications in modifying some
of the Lemmas given in this chapter.

8.3.10. Theorem. Consider the variant once-reinforced random walk on the
square lattice graph G with unit weights on ZZ2, where the reinforcement fac-
tor is not constant but is, for each edge, reciprocal to the Euclidean distance of
the edge from the origin (0, 0), i.e. for some C > 0,

wt(vu) =

{
1 if vu has not yet been traversed

1 + C/(max(|(xv, yv)|, |(xu, yu)|)) if vu has been traversed
(8.52)

This random walk is recurrent for C < 1/(2
√
2π).
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Proof
First we need to find analogues of Lemmas 8.2.1 and 8.3.3 for variant walks of
this type. Unfortunately, the lack of a constant reinforcement factor δ makes it
difficult to even formulate an analogue of Lemma 8.3.3, let alone prove it. This
is not surprising: essential to the concept of Lemma 8.3.3 is that as long as the
walk only traverses edges that have been traversed before, the change in the value
of the martingale is reflected in the change of the current value of h(vt). This no
longer holds if we use the definition of Lemma 8.2.1 and the reinforcement factor
is not constant.
However, there is a solution to this dilemma: we can modify both the nominal
weight of the edges and the initial reinforcement factors (the multipliers that are
applied to edges that have not been traversed before), in such a way that the
reinforcement factors that are applied to traversed edges become constant. I.e.
without changing the actual walk, we consider it to be on the square lattice graph
G′ on ZZ2 with weights

w′(vu) = 1 + C/(max(|(xv, yv)|, |(xu, yu)|)) for vu ∈ E (8.53)

and for each edge vu ∈ E a reinforcement sequence

(δk(vu))
∞
k=0 = (

1

1 + C/(max(|(xv, yv)|, |(xu, yu)|))
, 1, 1, 1, . . .) (8.54)

In the actual walk, this yields the same weights as before. Of course, this means
that we need to select h to be a function with the right properties on G′ rather
than on G. Fortunately, the weight of an edge of G′ is never more than twice the
weight of the corresponding edge of G, so by by Theorem 6.3.8 non-reinforced
random walks are as recurrent on G′ as they are on G. Hence a function h with
the necessary properties exists. As it turns out, the function

h(x, y) =





log(1/12) if (x, y) = (0, 0)
log(1/4) if (x, y) = (0,±1) or (x, y) = (±1, 0)

log(x2 + y2 − 1) otherwise
(8.55)

which we used in Example 6.3.3 for G, also works for G′.
Now we can obtain, in sequence, analogues of Lemmas 8.2.1, 8.3.3 and 8.3.4.
The proofs of the following statements is straightforward and quite similar to the
proofs of the original lemmas, and therefore will be omitted. First, the stochastic
process

Mt =
t∑

t′=0





∆h(vt′vt′+1)

δk
t′ (vt′vt′+1)(vt′vt′+1)

if vt′ ∈ V ′

0 otherwise
(8.56)

is an martingale. Next, for t ≥ t0 ≥ 0 the equation

Mt −Mt0 = h(vt)− h(vt0) +
∑

−→vu∈At−At0

(
1

δ0(vu)
−1

)
∆h(−→vu) (8.57)
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holds, as long as V −V ′ has not been visited at any time between t0 and t. Finally,
in order to show recurrence, it suffices to show that for some ε > 0, for any time
t0, and for any history up to time t0,

There exists a c ∈ IR such that for all r0 ∈ IR we can find r > r0 with

E




∑

−→vu∈Aτr

(
1

δ0(vu)
−1
)
∆h(−→vu) Ft0


 ≥ −(1− ε)r − c (8.58)

where the stopping time τr is the first time at or after t0 that (0, 0) is
visited or h(vt) ≥ r.

So now the only thing left to do are a few calculations in the manner of Theorem
8.3.5. First note that for an edge vu ∈ E with 1 < |(xv, yv)| ≤ |(xu, yu)|,

∣∣∣∣∣

(
1

δ0(vu)
−1

)
∆h(−→vu)

∣∣∣∣∣ = C
log(x2u+y

2
u−1)− log(x2v+y

2
v−1)

|(xu, yu)|
(8.59)

≤ C
x2u+y

2
u−x2v−y2v

(x2v+y
2
v−1)|(xv, yv)|

(8.60)

Now for most v ∈ V , there are two vertices u∈N(v) with |(xu, yu)|> |(xv, yv)|,
and

∑

u∈N(v),|(xu,yu)|>|(xv ,yv)|
x2u+y

2
u−x2v−y2v ≤ 2|xv|+2|yv|+2 ≤ 2

√
2|(xv, yv)|+2 (8.61)

The exceptions are the vertices v ∈ V with xv = 0 or yv = 0, and for those

∑

u∈N(v),|(xu,yu)|>|(xv ,yv)|
x2u+y

2
u−x2v−y2v ≤ 2|(xv, yv)|+ 3 ≤ 2

√
2|(xv, yv)|+ 3 (8.62)

Hence, for any C ′ > 2
√
2C, we can find an R > 0 such that for all v ∈ V with

|(xv, yv)| > R,

∑

u∈N(v),|(xu,yu)|>|(xv ,yv)|

∣∣∣∣∣

(
1

δ0(vu)
−1
)
∆h(−→vu)

∣∣∣∣∣ ≤
C ′

(x2v+y
2
v)

(8.63)

Furthermore, for any C ′′ > C ′, we can find r0 ≥ log(R′2 − 1) such that for any
r > r0,

∑

−→vu∈Aτr

∣∣∣∣∣

(
1

δ0(vu)
−1
)
∆h(−→vu)

∣∣∣∣∣

≤
∑

vu∈E,|(xv ,yv)|<
√
er+1

∣∣∣∣∣

(
1

δ0(vu)
−1
)
∆h(−→vu)

∣∣∣∣∣ (8.64)
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≤
∑

vu∈E,|(xv ,yv)|≤R

∣∣∣∣∣

(
1

δ0(vu)
−1
)
∆h(−→vu)

∣∣∣∣∣+
∑

v∈V,R<|(xv ,yv)|<
√
er+1

C ′

(x2v+y
2
v)

(8.65)

≤
∑

vu∈E,|(xv ,yv)|≤R

∣∣∣∣∣

(
1

δ0(vu)
−1
)
∆h(−→vu)

∣∣∣∣∣+
∮

D(O,R,er+1)

C ′′

(x2v+y
2
v)

(8.66)

≤
∑

vu∈E,|(xv ,yv)|≤R

∣∣∣∣∣

(
1

δ0(vu)
−1
)
∆h(−→vu)

∣∣∣∣∣+ 2C ′′π(log(
√
er+1)−log(R)) (8.67)

≤
∑

vu∈E,|(xv ,yv)|≤R

∣∣∣∣∣

(
1

δ0(vu)
−1
)
∆h(−→vu)

∣∣∣∣∣+ C ′′πr+1−2C ′′π log(R) (8.68)

where D(O,R, er + 1) = {(x, y)∈IR2 | R< |(x, y)|<
√
er+1}. For C<1/(2

√
2π),

we can select C ′ and C ′′ such that C ′′<1, and hence such that equation (8.58) is
satisfied and the random walk is shown to be recurrent.

2



Chapter 9

Nonstandard Analysis

In Chapter 10, we will consider once-reinforced random walks whose reinforcement
factor is near-infinite. To do that, we make extensive use of nonstandard analysis
(NSA), the extension of real analysis with infinitesimals. Although it is known
that anything that can be proven with NSA can also be proven without it, NSA
allows for a much more intuitive treatment of concepts such as ‘sufficiently large’
and ‘may be safely ignored’, and hence is a very useful tool in this context.

This chapter aims to give a brief introduction to NSA, and an overview of its
basic principles and techniques. A full treatment of NSA falls outside the scope
of this chapter, but interested readers can find more material in [21], [27] and
[28].

9.1 Introduction

The idea of using infinitesimals is nothing new. Newton used infinitesimals to
define the derivative of a function, and in an old proof relating the area of a
circle to its circumference the circle is treated as an infinity-sided polygon, and
as a composition of triangles with infinitesimal bases. However, careless usage of
infinitesimals and infinities can easily lead to contradictions, and hence the tech-
nique always was considered to be suspect. Eventually, the use of infinitesimals
was discarded in favor of limit constructions.

The disadvantage of using limit constructions is that they are considerably less
intuitive than infinitesimals. When we see the expression δy/δx, we may define it
in terms of limits, but we visualize it as ‘the rate of change over an infinitesimal
interval’. For this reason, the study of infinitesimals was never wholly abandoned.
And in 1961, these efforts finally bore fruit, as A. Robinson developed a consistent
formalism for using infinitesimals, and founded the field of nonstandard analysis,
abbreviated as NSA.

The nonstandard approach can also be applied to other fields of mathematics,
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yielding concepts such as nonstandard ordinals, hyperfinitely-dimensional mani-
folds etc. In 1977, Nelson invented Internal Set Theory (abbreviated as IST) in
an attempt to give a unified axiomatical background for nonstandard mathemat-
ics. IST extends ZFC, Zermelo-Fraenkel set theory, by adding a ‘standardness’
predicate, and three axioms, Idealization, Standardization and Transfer. In the
next sections we will introduce and use this formalism.
Anything which holds in ‘orthodox’ mathematics also holds in nonstandard anal-
ysis. In a sense, the reverse holds as well: any statement that does not refer to
any nonstandard concepts or constants, and that can be proven in nonstandard
mathematics, can be proven in orthodox (non-nonstandard) mathematics. More
formally:

9.1.1. Theorem. IST is a conservative extension of ZFC.

Note that this implies that if ZFC is consistent, then so is IST. Nelson [28] gives
an explicit algorithm to translate proofs to orthodox mathematics. So in a sense
nonstandard analysis doesn’t add anything new. However, proofs in nonstandard
analysis are often much simpler.

9.2 The standardness predicate

Amusingly enough, the most important concept in nonstandard analysis is the
concept of ‘standard ’. The easiest way to introduce this concept is probably to
consider infinitesimals, and what properties we desire them to have. For example,
we want to be able to calculate with them: if δ is an infinitesimal, we want
to be able to talk about 2δ, 1 + δ, 1/δ etcetera. Furthermore, we want those
‘nonstandard’ numbers to obey the same rules that ‘normal’ numbers do.
Robinson’s original approach was to take a model of the real line, and construct
a new model of the axioms of the real numbers, by adding the infinitesimals (and
related numbers) in such a manner that everything that held in the old model
also held in the new one. The drawback of this approach is that it is not possible
to talk about infinitesimals without in some way referring to the old model and
how it differs from the new one. For instance, it is common practice to refer to
those real numbers that already exist in the old model as being ‘standard ’. Using
this concept of standardness we can define infinitesimals as

An infinitesimal is a real number whose absolute value is smaller than
every standard positive real

However, it is impossible to define infinitesimals without either using the concept
of standardness or referring to the old model in some other manner. The reason
for this is that in the old model it was impossible to ‘access’ infinitesimals because
they didn’t exist, and (by our design) everything that held in the old model also
holds in the new model.
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Nelson’s approach made it possible to bypass this need to refer to different models
of the reals. Since from ‘within’ a model of the reals it is impossible to see in
which model you are, it is consistent to assume that the real line that you are
using already contains infinitesimals. So Nelson simply postulated that they exist,
and introduced a standardness predicate ‘st(x)’, and some axioms to describe
its properties, that allowed us to access them. In this perspective, rather than
adding or creating infinitesimals and other ‘nonstandard’ numbers, we discover
them using the new predicate and axioms.
The two approaches are basically two different perspectives on the same concept.
In the first perspective there are two worlds, an ‘old’ one and a ‘new’ one con-
taining extra elements. In this second perspective there is no new ‘world’, merely
aspects of the old ‘world’ that existed before but couldn’t be seen. The difference
between the two perspectives is more or less a matter of personal taste. In these
pages we will keep to the second perspective.
So, nonstandard analysis contains all axioms of ‘orthodox’ real analysis, and hence
all the usual theorems and tools are still valid. All the real numbers we knew
before, such as 0, 1, e and π, still exist and have the same properties as before.
But in addition they satisfy the standardness predicate, and we now can see that
inside the gaps between standard reals exist nonstandard reals. However, the only
abnormal property these reals have is that they do not satisfy the standardness
predicate: they are not noticeable except for that.

9.2.1. Remark. As a rule of thumb, anything that can be defined using only
standard parameters, is itself standard. Conversely, anything that can be used to
define something that is known to be nonstandard, is itself nonstandard.

The standardness predicate can also be applied to sets. Again, sets such as {0},
IR and [0, e] still exist, have the same properties as before, and additionally satisfy
the standardness predicate. But now we have new sets, such as {δ} and [0, δ],
which are nonstandard (if δ 6= 0 is an infinitesimal). Note that it is not true
that standard sets are sets containing standard elements. The correspondence
does hold for finite sets. But the set IR, for example, is a standard set containing
nonstandard elements, since by definition IR contains all the reals, including the
nonstandard ones.
In fact, it can be shown that every infinite set, whether standard or nonstandard,
contains a nonstandard element. Infinite collections containing only standard
elements are undefinable as a set. The reason for this is that such sets would
contradict some of the laws for sets that already hold in orthodox real analysis.
For example, since in orthodox real analysis every bound set has a greatest lower
bound, the same should hold in nonstandard analysis. However, if we consider
the ‘set’ of positive standard reals, every infinitesimal is a lower bound of this
set. So the greatest lower bound cannot be 0, it obviously cannot be a positive
standard real, and if it were an infinitesimal then twice that value would be a
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greater lower bound. Hence this ‘set’ would not have a greatest lower bound. The
solution to this apparent paradox is to disallow the use of formulas containing the
standardness predicate when defining a subset, i.e. when using the Separation
Axiom. The same applies when using the Replacement Axiom. This ensures that
collections such as the collection of standard positive reals are undefinable as a
set.23

9.3 Basics of Nonstandard Real Analysis

In a sense, nonstandard real analysis is about infinitesimals. To prove the ex-
istence of infinitesimals, we need the axioms of Internal Set Theory. However,
rather than immediately reviewing these axioms, we will first look at the in-
finitesimals themselves, consider some related concepts and their properties, and
give some examples of their use in mathematics.
First, we will formalize the definition of infinitesimals given before:

9.3.1. Definition. A real number x ∈ IR is called infinitesimal if it satisfies

∀stε > 0 : |x| < ε (9.1)

Here the quantifier ∀stx is an abbreviation for ∀x(st(x)→ . . .), or ‘for all standard

x, . . . ’. Similarly, the quantifier ∃stε would be an abbreviation for ∃x(st(x)∧ . . .),
or ‘there exists a standard x such that . . . ’. This definition properly captures the
notion that infinitesimals are ‘very, very small’. However, we also want to capture
the notion that if δ is infinitesimal, then 1 + δ is ‘very, very close to 1’:

9.3.2. Definition. x, y ∈ IR are called infinitesimally close (denoted x ≈ y) if

∀stε > 0 : |x− y| < ε (9.2)

x ∈ IR is called nearstandard if x is infinitesimally close to some standard real:

∃sty ∈ IR : y ≈ x (9.3)

This standard real is called the standard part of x, denoted ◦x.

Now, for all δ > 0, 1/δ is a positive real. However, if δ is infinitesimal, then 1/δ
is very, very big. In fact, it is larger than every standard real. This is an example
of a hyperfinite real:

23One of the few differences between the two perspectives we described before, is that in the
first perspective, these collections are considered to exist as sets of elements of the model, or
‘external sets’. What we consider to be a set, is called an ‘internal set’ in the first perspective,
being a set of elements of the model that is also a set in the model. Since we keep to the second
perspective, we only consider internal sets to be sets.
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( ) ( ) ( ) ( )

-1 10 e

Figure 9.1: The standard reals −1, 0, 1 and e, each surrounded by a ‘cloud’ of
infinitesimally close nonstandard reals.

0 1 2 3 4 N-2 N-1 N N+1 N+2

Figure 9.2: A hyperfinite number N

9.3.3. Definition. x ∈ IR is called hyperfinite if it satisfies

∀str ∈ IR : |x| > r (9.4)

The reciprocals of hyperfinite numbers are non-zero infinitesimals, and vica versa.
Hyperfinite numbers can also be characterized as those numbers that are not
nearstandard. Note that although a hyperfinite number is larger (in absolute
value) than all standard real numbers, it is still a member of IR, and as such not
infinite. Figure 9.2 sketches the position of a hyperfinite number N , relative to
the standard natural numbers and to infinity.
Now with these concepts, we will give some examples of their use.

9.3.4. Example. Let us imagine some object, say a bowling ball, falling from a
large height with a constant acceleration g = 9.8. If the bowling ball starts out
with speed v(0) = 0, its speed at time t satisfies

v(t) = gt (9.5)

Now, let T be a standard time, and let N be a hyperfinite natural number. Then
for any time t, [t, t+T/N ] is an infinitesimal time interval. The distance the ball
travels in such an interval satisfies

gt(T/N) = v(t)(T/N) ≤ s(t+T/N)−s(t) ≤ v(t+T/N)(T/N) = g(t+T/N)(T/N)
(9.6)

We can divide the time interval [0, T ] into N such intervals and take the sum over
these intervals. Since the speed of the ball increases steadily, this yields

1

2
gT 2 ≈ 1

2
g(T/N)2(N − 1)N (9.7)

= g(T/N)
N−1∑

i=0

(T/N)i (9.8)

≤ s(T )− s(0) (9.9)

≤ g(T/N)
N−1∑

i=0

(T/N)(i+ 1) (9.10)
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=
1

2
g(T/N)2N(N + 1) (9.11)

≈ 1

2
gT 2 (9.12)

If g, v(0) and T are all standard, then so is s(T )− s(0), and hence

s(T )− s(0) = 1

2
gT 2 (9.13)

9.3.5. Example. Consider a three-dimensional sphere S with center M and
some standard radius r > 0. Let A denote the surface area of S, and V its vol-
ume. We can approximate this sphere by a polyhedron with hyperfinitely many
faces, each of which is a triangle of infinitesimal dimensions. The surface area A′

and volume V ′ of this polyhedron are infinitesimally close to A and V . Now, for
each face DEF of the polyhedron, we can construct a tetrahedron DEFM . The
volume of this tetrahedron is r/3 times the area of DEF . The polyhedron can
be thought of as being composed of hyperfinitely many of these tetrahedrons, one
for each face. Taking the sum over all these tetrahedrons, we get

V ′ = r/3 · A′ (9.14)

Hence V ≈ r/3 ·A. Since we are dealing with a sphere of standard radius, V and
A are both standard, and hence

V = r/3 · A (9.15)

It can be shown (using the method of the previous example) that V = 4/3πr3.
Hence

A = 4πr2 (9.16)

9.4 Idealization, Standardization and Transfer

Nelson’s Internal Set Theory extends ZFC with the standardness predicate and
three axioms: Idealization, Standardization and Transfer. As stated before, the
ZFC axiom schemas of Separation and Replacements are not extended to include
formulae that use the standardness predicate. In this section we will review the
three axioms and their common usage. We will formulate the axioms in terms
of objects and sets rather than real numbers, in order to pave the way for the
application of nonstandard analysis to graph theory. At the end of the section,
we will give some examples of how the three axioms work together.

The Axiom of Idealization: For there to exist an object which
has a particular property relative to all standard objects, it suffices
that there exist objects having that property relative to finitely many
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standard objects at a time. Formally, for any formula φ(x, y) not
containing the predicate st,

(
∀st finF ∃x∀y∈F φ(x, y)

)
↔

(
∃x∀sty φ(x, y)

)
(9.17)

φ(x, y) may contain standard or nonstandard constants, or free vari-
ables other than x and y.

The right-to-left implication of this axiom is only used to show that finite sets are
standard if and only if their elements are standard. The left-to-right implication
is used to obtain nonstandard, ‘idealized’ objects. For instance, it is obvious
that for any finite standard set of positive numbers F , there exists an x ∈ IR
such that ∀y ∈ F : |x| < y. Hence, if we apply Idealization to the formula
φ(x, y) ≡ (y > 0 → 0 < |x| < y), the left side of the equivalence holds, and we

obtain the existence of x 6= 0 such that ∀sty > 0 : |x| < y, i.e. x is infinitesimal.

Another form of (the left-to-right-implication of) the Idealization Axiom is that
of the principle of Overflow, which states that any (definable) set containing
arbitrarily large standard reals also contains a hyperfinite real, and the related
principle of Underflow, which states that any (definable) set containing arbitrarily
small positive hyperfinite reals also contains a nearstandard real.

The Axiom of Standardization: If S is an arbitrary set, then we
can obtain a (unique) standard set ◦S, the standardization of S, by
changing just the nonstandard elements. Formally, for any sets S
there exists a standard set ◦S such that

∀stx(x ∈ ◦S ↔ x ∈ S) (9.18)

Standardization is often used to allow us to ‘ignore’ infinitesimal discrepancies.
Note that the Standardization Axiom does not necessarily remove the nonstan-
dard elements of a set: it makes the set as a whole standard by making arbitrary
changes in its nonstandard elements. Standardizing a standard set such as IR
will have no effect, and standardizing the set {0, 1, . . . , N}, where N is a hyper-
finite natural number, will actually add nonstandard numbers (resulting in the
standard set IN).

Furthermore, although we can represent objects such as functions as sets in order
to apply the Standardization Axiom, this will result in the standardization of all
aspects of the object. In the case of a function, the domain may well change, for
instance. And the Standardization Axiom cannot be applied to infinitely many
objects at the same time: to standardize each object in a collection, we have to
standardize the collection itself, including its index set. For these reasons, one
has to take care to set up the right conditions before using Standardization.
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The Axiom of Transfer: The Transfer axiom states, that if some-
thing holds for all standard objects, it holds for all objects, and con-
versely if there exists an object satisfying some condition, there exists
a standard object satisfying that condition. The formula involved may
not refer to standardness or to nonstandard constants. Formally, for
each formula φ(x, ȳ) not containing ‘st’, nonstandard constants or free
variables other than x and ȳ,

∀stȳ (∃xφ(x, ȳ)↔ ∃stxφ(x, ȳ) ) (9.19)

The Transfer Axiom can be used to drop a condition of the form ‘let x be stan-
dard’, and to translate results back into the language of Real Analysis. It can also
be used to show that we may take some entity to be standard. For instance, if
F (ȳ) is a function definable without using nonstandard constants or the predicate
st, then by applying Transfer to the formula φ(ȳ) ≡ x = F (ȳ) we obtain that for
all standard parameters ȳ, if F (ȳ) exists it is standard. Hence objects that can
be uniquely defined using only standard constants are standard (as we already
stated in Remark 9.2.1).

9.4.1. Example. The Idealization Axiom can be used to show that there exists
a finite set containing all the standard elements. For it is obviously true that for
any standard finite set F there exists a finite set x satisfying y ∈ x for all y ∈ F :
simply take F for x. Applying Idealization with φ(x, y) ≡ (x is finite) ∧ (y ∈ x)
yields the desired result. Note that the resulting set cannot be standard (else it
would contain itself), and therefore must contain some nonstandard elements as
well.

9.4.2. Example. Standardization and Transfer can be used to obtain the stan-
dard part of a real x ∈ IR, provided x is not hyperfinite. Let S = {z ∈ IR | z ≤ x}.
Since x is not hyperfinite, −C < x < C for some standard C > 0, so S has a
standard element and a standard upper bound. Now consider the least upper
bound of its standardization ◦S. If y is a standard upper bound of S, then y ≥ z
for all standard z ∈ ◦S, and by Transfer y ≥ z for all z ∈ ◦S. So S and ◦S have
the same standard upper bounds. By the definition of ◦S, they also have the
same standard elements. It follows that the least upper bound of ◦S exists and
is infinitesimally close to the least upper bound of S, i.e. to x. Furthermore, by
Transfer the least upper bound of ◦S is standard. So the least upper bound is
equal to the standard part ◦x of x.
Note that if we try to use this approach with a hyperfinite real x ∈ IR, then
the resulting set ◦S turns out to be equal to ∅ or IR, depending on whether x is
negative or positive. Hence the nearstandard reals are exactly those reals that
are not hyperfinite.
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Reinforced Random Walks with Large
Reinforcements

In this chapter we will consider recurrence of once-reinforced random walks with
very large reinforcement factors. To do this, we make extensive use of techniques
from Nonstandard Analysis. Readers who are unfamiliar with NSA are advised
to first read Chapter 9, which gives an overview of the basics.

The first section of this chapter elaborates on the application of NSA to graph the-
ory, which is not always straightforward. After that, we consider once-reinforced
random walks with hyperfinite reinforcement. We first show that if the reinforce-
ment factor δ is hyperfinite, then the ‘growth process’ of the subgraph of traversed
edges will not only be very slow, but also very uniform. Later in this chapter we
use this to show that on some graphs, the estimated bias of the random walk
is nonnegative, enabling us to use Lemma 8.3.4 to show recurrence. Finally we
translate the result back to Real Analysis, and show recurrence for δ large enough.

10.0.3. Remark. A word of caution: in the context of this chapter, ‘almost
surely’ is taken to mean ‘with probability 1’, which is not the same as ‘with
probability infinitesimally close to 1’. We make similar distinctions between ‘hy-
perfinitely often’ and ‘infinitely often’, and between ‘graphs of hyperfinite size’
and ‘graphs of infinite size’. The rule of thumb is, as always, that hyperfinite
counts as finite, and infinitesimal is not the same as zero.

10.1 Nonstandard Analysis and Graph Theory

In the next section we will use nonstandard analysis applied to graph theory,
with graphs that may be of hyperfinite size. Unfortunately there is a slight
complication. We commonly consider isomorphic graphs to be essentially the
same, merely different representations of a single object, and consider this single
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100 Chapter 10. Reinforced Random Walks with Large Reinforcements

object to be the ‘true’ graph24. The problem is that in this case, the representation
of a graph does matter: standardness doesn’t respect graph isomorphisms, as the
following example shows.

10.1.1. Example. Consider the graphs Gn = (V,E,wn) with V = ZZ, E =
{vivi+1 | i∈Z}, wn(vnvn+1) = 2, wn(vivi+1) = 1 for all i 6= n. It is clear that all
the graphs Gn are isomorphic. Given n, the graph Gn is uniquely defined, and
conversely we can obtain n from Gn, both without using any (other) nonstandard
constants. It follows from the Transfer Axiom that Gn is standard if and only if
n is standard.

To solve this problem, we could try to find some kind of ‘canonic’ representation
of a graph25. Unfortunately, for an infinite graph it is not possible to choose a new
representation such that every vertex is standard, and there are few other notions
on which to base canonicity. However, note that if G is a standard graph and v is
a standard vertex of G, then the standard vertices of G are exactly those vertices
that are within standard G-distance of v, i.e. if we try to choose a different
representation of a graph, and we limit ourselves to standard representations,
the choice of a single vertex to be standard determines the standardness of the
remaining vertices. This gives rise to the following notion of relative standardness :

10.1.2. Definition. A graph G = (V,E,w) is standard relative to a vertex
v ∈ V if there is a standard graph isomorphic to G, such that v corresponds to a
standard vertex of that graph.

We can also define a notion of uniform standardness:

10.1.3. Definition. A graph G = (V,E,w) is uniformly standard if it is stan-
dard relative to any vertex v ∈ V .

For example, by Transfer the graph G0 of Example 10.1.1 is standard relative to
v0, but not relative to vN for any nonstandard N , and therefore it is not uniformly
standard. Examples of uniformly standard graphs are the square lattice graphs
on ZZ2 and ZZ × (ZZ/nZZ) with unit weights.

10.1.4. Remark. If a graph G = (V,E,w) is standard relative to a vertex v,
then it is not possible to define any hyperfinite number using G and v. If there is
some anomalous feature of G, for instance a vertex u ∈ V which is the only vertex
of degree 1, then d(v, u) would be definable using only G and v as parameters,
and hence d(v, u) would have to be standard. It follows that all definable features
of G are somewhere within standard distance of v. Outside of these anomalies,

24Although technically it is not a graph but an equivalence class of graphs under graph
isomorphism.

25I.e. a canonically chosen graph isomorphic with the original graph
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and hence everywhere outside a ‘standard-distance neighborhood’ of v, G will
follow some kind of regular pattern.

By the same token, if G is uniformly standard, then G has no anomalies anywhere.
Hence the standard-distance neighborhood of any one vertex of G will look the
same as that of any other.

The difficulties we encountered with standardness also apply to the notion of
taking the standard part of a graph. The naive approach to taking the standard
part would be to simply standardize the vertex-set, the edge-set and the weight
function of the graph. Applying this notion of standardization to the graphs Gn

of Example 10.1.1 yields Gn if n is standard, since then V , E and wn are standard
themselves. But if n is nonstandard, then the result is the graph G∗ = (V,E,w∗),
where w∗ is the weight function with w∗(vivi+1) = 1 for all i ∈ ZZ. Hence for
this naive notion of taking the standard part, the result is dependent on the
representation of the graph: not a desirable state of affairs. Again, we can solve
this by defining a notion of relative standard parts :

10.1.5. Definition. Let G = (V,E,w) be a weighted graph, and let v ∈ V be a
vertex. The standard part G(v) of G relative to v is a graphG(v) = (V (v), E(v), w(v))
containing the vertex v, such that

(a) G(v) is standard relative to v.

(b) The vertices and edges of G within standard G-distance of v are the same
as the vertices and edges of G(v) within standard G(v)-distance of v.

(c) For any edge e within standard G-distance of v, w(v)(e) = ◦(w(e)).

For example, the standard part of the graph G0 of Example 10.1.1 relative to v0
is G0 itself, but the standard part relative to vN for some hyperfinite N is the
graph G∗ from the remark preceding the definition. Obviously, if G is uniformly
standard, then the standard part of G relative to any vertex v is G itself.

Note that if G is a graph and v is a vertex, and within standard distance of v
G has a vertex of nonstandard degree or an edge of hyperfinite weight, then it is
easily seen that the standard part of G relative to v cannot exist. However, if this
isn’t the case, then the standard part of G relative to v does exist, and is unique
up to isomorphism.

10.1.6. Lemma. Let G = (V,E,w) be a weighted graph, and let v ∈ V be a
vertex, such that within standard distance of v, all vertices are of standard degree
and all edges are of nearstandard weight. Then the standard part G(v) of G relative
to v is well-defined and unique (up to isomorphism).
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Proof
Let G and v be as given. We will construct the relative standard part explicitly
and show uniqueness afterwards. Our basic strategy will be to first change the
representation, then standardize the vertex-set, edge-set and weight function, and
finally change the representation back again.
We can arrange the vertices of G in order of ascending distance to v (resolving
ties arbitrarily), thus creating a mapping m : V → IN . Let Gv = (IN,Ew, wv) be
the image of G under this mapping. By assumption, all vertices within standard
distance of v are of standard degree. Hence the vertices within standard distance
of v are exactly those that are mapped to standard numbers. It follows that the
edges and vertices of G within standard distance of v correspond exactly to the
standard edges and vertices of Gv, with v itself corresponding to 0.
Since all edges of G within standard distance of v have nearstandard weight, the
standard part ◦(wv) of the weight function of Gv exists. Now consider the standard
graph ◦(Gv) = (IN, ◦(Ev), ◦(wv)). The standard vertices and edges of ◦(Gv) and
Gv are the same. Moreover, both in Gv and ◦(Gv), no paths of standard length
exist between standard and nonstandard vertices, so the standard vertices and
edges are exactly those within standard distance of 0. So the edges and vertices
of G within standard distance of v correspond exactly to the edges and vertices
of ◦(Gv) within standard distance of 0. This correspondence is again given by
the mapping m. Furthermore, for any edge e ∈ E within standard distance of v,
(◦(wv))(m(e)) ≈ w(e).
Now all we need to do to finish the construction is to represent each standard
vertex of ◦(Gv) by the corresponding vertex of G. This can be done by taking
the image of ◦(Gv) under the inverse mapping m−1. The resulting graph G(v) =
(V (v), E(v), w(v)) satisfies all the conditions of Definition 10.1.5.
It remains to show that the standard part of G relative to v is unique up to
isomorphism. So let G(v), G(v)

′
be two graphs that satisfy the conditions of

Definition 10.1.5. Then they are isomorphic with standard graphs H and H ′,
with v corresponding to standard vertices u, u′ of those graphs. For all standard
n ∈ IN , the subgraphs of H and H ′ induced by the vertices within distance n of u
or u′ are isomorphic. Since the two constants involved, H and H ′, are standard,
we can apply the Transfer Axiom to obtain that the above holds for all n ∈ IN .
We conclude that H and H ′ are isomorphic.

2

10.1.7. Remark. If we study what happens when we take the standard part
G(v) of a graph G relative to a vertex v, we find that all the features found
within standard distance of v are preserved, and all the features found outside
standard distance of v are ignored. Speaking informally, G(v) can be viewed as the
standard-distance neighborhood of v in G, extended to an entire graph. Within
standard distance of v, G(v) approximates G. Outside of this area, G(v) continues
the pattern found inside. For instance, if within standard distance of v, G looks
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like a square lattice, then G(v) looks like a square lattice everywhere.

10.1.8. Remark. By Remark 6.1.1, when we consider a graph G we assume that
G is a connected countably infinite simple graph, without vertices with infinitely
many neighbors. It is easy to see that the same then holds for G(v). For example,
since all standard vertices of Gv are connected to v, so are all the standard vertices
of ◦(Gv), and since ◦(Gv) is a standard graph, by Transfer this holds for all vertices
of ◦(Gv). However, by Remark 6.1.1 we also assume that there are no ‘degenerate’
edges of weight 0, and this property is not preserved. In particular, if G contains
edges of infinitesimal weight, G(v) may contain edges of weight 0, and deleting
those edges might cause G(v) to be disconnected.

In using the graphs G(v) we will state preconditions to prevent this.

10.2 Large Reinforcements and Uniform growth

So let us start by considering what happens if the reinforcement δ is hyperfinite.
Then an edge that has never been traversed before has an infinitesimally small
chance of being selected, compared to an edge that has been walked before. As a
result, the once-reinforced random walk will remain in the subgraph of traversed
edges for (on average) hyperfinitely long periods. Each such period ends when
the walk leaves the subgraph (thereby extending it with a new edge) and during
each period the walk behaves like a non-reinforced random walk.

Now consider this non-reinforced random walk. Generalizing the situation, we
have a graph and a subgraph, with the property that the weight of edges outside
the subgraph is infinitesimal compared to the weight of edges in the subgraph,
and we are considering the non-reinforced random walk which stops when it leaves
this subgraph. If we compare this walk to the non-reinforced random walk in the
standard part of the subgraph relative to some arbitrary vertex vc, then we see
that if the latter is almost surely recurrent, then the former will visit each vertex
of the subgraph within standard distance of vc, on average, a hyperfinite number
of times. Furthermore, this number will be proportional to the total weight of
edges adjacent to that vertex. This is enough to show that the probability that the
walk ends by leaving the subgraph by a particular edge (and hence the probability
that in the original once-reinforced random walk that edge will be added to the
subgraph of traversed edges), is nearly the same for edges that are close together,
relative to their weight.

10.2.1. Lemma. Let G = (V,E,w) be a weighted graph, and let G′ = (V ′, E ′, w′)
be a finite26connected subgraph of G with edges of non-infinitesimal weight. Con-
sider the random walk starting from a vertex v0 ∈ V ′ and walking randomly in G

26Again, this includes hyperfinite



104 Chapter 10. Reinforced Random Walks with Large Reinforcements

until an edge in E −E ′ is traversed. Now, if v1u1 and v2u2 are edges in E −E ′,
then

P (the random walk ends by walking from v1 to u1)/w(v1u1)

P (the random walk ends by walking from v2 to u2)/w(v2u2)
≈ 1 (10.1)

provided that there exists a vertex vc, with dG′(v
c, v1) and dG′(v

c, v2) standard,
such that the following holds

(a) If e ∈ E − E ′ and dG′(vc, e) is standard, then w(e) is infinitesimal.

(b) The standard part G′(v
c) of G′ relative to vc exists and has no degenerate

edges, i.e. if e ∈ E ′ is an edge with dG′(v
c, e) standard, then its weight

w′(e) is nearstandard and non-infinitesimal, and if u ∈ V ′ is a vertex with
dG′(v

c, u) standard, then its degree ρG′(y) is standard.

(c) Non-reinforced random walks on G′(v
c) are almost surely recurrent27.

Proof
Let G, G′, v0 and vc be as stated, and let G(v

c) = (V ′(v
c), E ′(v

c), w′(v
c)) be the

standard part of G relative to vc. As before, we denote the combined weights
of all the edges of G, G′ and G′(v

c) adjacent to the vertex v by w(v), w′(v) and
w′(v

c)(v), respectively. Note that for all v ∈ V within standard G′-distance of vc,
w(v) ≈ w′(v) ≈ w′(v

c)(v).

Note that the random walk cannot end by traversing
−−→
v1u1 or

−−→
v2u2 without first

visiting v1 or v2. So if the random walk does not start at v1 or v2, then we
can walk until the first visit to v1 or v2 (or the walk ends by traversing some
other edge E −E ′), and therefore we can write the probabilities to be calculated
as linear combinations of the probabilities for the cases where the random walk
does start at v1 or v2. Hence it suffices to prove the Lemma for the case where
v0 = v1 = vc.
For any v ∈ V , there is some path from v to an edge of E−E ′, and some pv > 0,
such that at every visit to v the walk will proceed with probability > pv by
traversing the route to the edge of E − E ′ and then traversing that edge. Then
the expected number of visits to v before the random walk leaves G′ is at most
1/pv, and therefore finite. Denote this number by F (v). For any edge vu ∈ E, the
expected number of traversals from v to u is equal to F (v)w(vu)/w(v). Obviously,
except for the initial visit to v0, a vertex v is visited once for each time an edge
is traversed to v. Hence F satisfies, for all v ∈ V ′,

F (v) =
∑

u∈NG′ (v)

F (u)w(vu)

w(u)
+

{
1 if v = v0
0 if v 6= v0

(10.2)

27If non-reinforced random walks on G′(vc) are almost surely recurrent, then each vertex
of G′ is going to be visited a hyperfinite number of times, and therefore the location of the
starting vertex is of negligible importance. Otherwise the location of the starting vertex affects
the probabilities, and the conclusion of the lemma does not hold. Hence this is a necessary
requirement.
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Setting H(v) = F (v)
w(v)

, we obtain

H(v)
∑

u∈NG(v)

w(vu) =
∑

u∈NG′ (v)

H(u)w(vu) +

{
1 if v = v0
0 if v 6= v0

(10.3)

which can be rewritten as

∑

u∈NG′ (v)

w(vu)(H(v)−H(u)) = −H(v)(w(v)− w′(v)) +
{

1 if v = v0
0 if v 6= v0

(10.4)

Now we can write down the following inequality:

0 ≥
∑
{w(vu)(H(v)−H(u)) | v,u∈V ′, vu∈E ′, H(v)>H(v0)} (10.5)

=
∑
{w(vu)(H(v)−H(u)) | v,u∈V ′, vu∈E ′, H(v)>H(v0)≥H(u)}(10.6)

≥ 0 (10.7)

All sums in this inequality are defined, since V ′ is finite. It follows that all sums
are equal to 0, and hence for all v ∈ V ′, H(v) ≤ H(v0). So setting H ′(v) =
H(v)/H(v0), we have that for all v ∈ V ′, H ′(v) is nearstandard (and ≤ 1), and
H ′ satisfies

∑

u∈NG′ (v)

w(vu)(H ′(v)−H ′(u)) ≈
{

1/H(v0) if v = v0
0 if v 6= v0

(10.8)

for all v ∈ V ′ within standard G′-distance of vc.
By Standardization, there exists a function H ′(vc) on V (v

c) such that for all v ∈
V ′ within standard G′-distance of vc, H ′(vc)(v) = ◦H ′(v).28 Then the following
equation holds for all v ∈ V (v

c) that are within standard G′-distance of vc, and
hence by Transfer for all v ∈ V (vc):

∑

u∈N
G′(v

c) (v)

w′(v
c)(vu)(H ′(vc)(v)−H ′(vc)(u)) =

{ ◦(1/H(v0)) if v = v0
0 if v 6= v0

(10.9)

Clearly H ′(vc) is a well-defined bounded superharmonic function on G′(v
c). By

assumption random walks on G′(v
c) are almost surely recurrent, hence by Theorem

6.3.5, there exist no non-constant bounded superharmonic functions on V (v
c).

Therefore H ′(vc) must be a constant function on V (v
c), i.e. for all v ∈ V (v

c),
H ′(vc)(v) = 1. It follows that H(v0) is hyperfinite, and for all v ∈ V ′ within
standard G′-distance of vc, H(v)/H(v0) ≈ 1.

28We obtain H ′ by mapping the domain of H to the graph Gvc

of Lemma 10.1.6, taking the
standard part, and mapping the domain back to Gvc

. It is not generally possible to standardize
the values of a function without changing its domain. In a sense, the whole purpose of the
graph G′(vc) is to provide the new domain.
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Now we have that

P (the random walk ends with vu) =
F (v)w(vu)

w(v)
= w(vu)H(v) (10.10)

and hence

P (the random walk ends by walking from v to u)/w(vu)

P (the random walk ends by walking from v′ to u′)/w(v′u′)
=

H(v)

H(v′)
≈ 1

(10.11)

2

Now let us apply this lemma to the reinforced walk with hyperfinite reinforcement
factor δ. As before, let Et denote the set of edges already-traversed at time t,
and At the set of arcs (oriented edges) obtained by orienting all edges of Et in
the direction of first traversal. We say that an arc −→vu extends At if it could be
added to At, i.e. if At does not contain −→vu but does contain an edge incident with
v. Then the above lemma can be used to show that all edges that can extend
At and are standardly close together, have approximately the same probability of
being added to At, relative to their weight.
To apply the above lemma, we need to ensure that non-reinforced random walks
on the standard part of the subgraph of traversed edges are always recurrent. We
do this by requiring the existence of a uniformly standard graph on which non-
reinforced random walks are recurrent, of which the original graph is required to
be a subgraph. Note that, in order to be able to apply the result later, we will
allow stopping times satisfying certain conditions.

10.2.2. Corollary. Let G = (V,E,w) be a weighted graph. Assume that all
edges have non-infinitesimal, non-hyperfinite weights, and that G is a subgraph
(possibly with lesser weights) of a uniformly standard graph G∗ on which non-
reinforced random walks are recurrent.
Consider the once-reinforced random walk on G with hyperfinite reinforcement
factor δ, let t0 ∈ IN and fix the history up to time t0. Let B be a set of arcs
extending Et0, all of which have tails within standard Et0-distance of one another.
Then for any arc −→vu ∈ B,

P (the first arc added to At is −→vu)/w(vu)
P (the first arc added to At is from B)/w(B)

≈ 1 (10.12)

where w(B) denotes the sum of the weights of all arcs of B.
This also holds if the walk stops at a stopping time τ , provided the walk is certain
not to stop within standard Et0 distance of an arc of B.

Proof
Given the history up to time t0, set G

′ to the graph of vertices and edges that
have been traversed. For all v, the graph G′(v) is isomorphic to a subgraph of G∗
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vt0

completely filled area completely filled area

h=0 h increasing

wide ‘room’ R

Figure 10.1: An anomalous situation

(possibly with lesser weights) by the uniform standardness of G∗, so by Theorem
6.3.8, random walks on G′(v) are almost surely recurrent for all v. If we divide
all weights by δ, then all edges of E ′ have non-infinitesimal weight and all edges
of E − E ′ have infinitesimal weight. Hence, if we set vc to be any vertex within
standard Et0-distance of B, then the conditions of Lemma 10.2.1 are satisfied for

any pair of arcs −→vu,−→v′u′ ∈ B. The result follows.
If a stopping time τ is given, then by the given condition on τ and the Overflow
Principle, there exists a hyperfinite N such that the random walk will not stop
within Et0-distance N of an arc of B. By limiting G′ to arcs and edges within
Et0-distance N − 1 of arcs of B, there will be some edges of E − E ′ with non-
infinitesimal weight, but these will not be within standard Et0-distance of any arc
of B, so the conditions of Lemma 10.2.1 will still be satisfied. If the walk leaves
G′ and then returns without stopping or adding an edge to At, we apply Lemma
10.2.1 again until the walk has stopped or an edge has been added to At.

2

10.3 Recurrence of Random Walks with Large

Reinforcements

If the previous corollary would hold for arcs whose tails were arbitrarily far apart,
then we would be done. For then the growth of At would always be uniform, and
the expected change to the bias would be proportional to the weighted average
of ∆h(−→vu) over all arcs −→vu extending At. For any (super)harmonic function h this
can be shown to be positive, and hence we would then be able to apply Lemma
8.3.4 to show recurrence on any graph.
Unfortunately, Corollary 10.2.2 is not that strong. In order to be able to use
the corollary, we need to divide the graph into smaller areas, such that the arcs
in that area extending At are standardly close together and have, on average,
nonnegative ∆h(−→vu). Then we can take the sum over the areas, and arrive at a
nonnegative expected change to the total bias.
As it turns out, this does not always work. Figure 10.1 shows a situation where
it doesn’t, arising in the random walk on the ladder ZZ × {1, 2, 3, 4} with h(v) =
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|x(v)|. Thick lines in the figure denote edges that have been traversed (and hence
are in At), and thin lines denote edges that are in the graph but have not yet
been traversed. In this particular situation, all edges extending At that are not far
away from vt0 are contained in an extremely-wide ‘room’ R. If the next horizontal
edge added to At is from the right side of the room, then it will be traversed right-
to-left, and will contribute a negative ∆h to the bias. If it is from the left side of
the room, then it will be traversed left-to-right, and will contribute a positive ∆h.
h(v) = |x(v)| is a harmonic function, and the harmonicity equations ensure that
these potential contributions have a zero sum. So all would be well if the edges
would have equal probabilities of being added to At. But if the width of the room
is large enough (relative to δ), then in the reinforced random walk starting at vt0 ,
the next arc added to At will be much more likely to come from the right side of
the room than from the left side. In the given situation therefore, the expectation
of the next change to the bias is negative.
So we need to make sure that such anomalous situations occur so rarely that they
will have a negligible effect on the expectation of the change to the bias. In the
case of the next theorem, this problem is addressed by considering only graphs
that can be viewed as rows of connected vertex-sets Vi.

29 At any time there will
be sets Vi such that all edges in the subgraph Vi have been traversed, which will
act as ‘walls’, dividing the graph into ‘rooms’ similar to the one shown in figure
10.1. If the size of the sets Vi is standardly bounded, these walls will be only
standardly far apart (on average). Anomalous situations can only occur in rooms
with extremely large width, much greater than average, and therefore they will
be extremely rare (outside a given initial situation) and will have little effect on
the expectation of the bias.
This structure also solves an additional problem, namely that in general edges that
are close together in G are not guaranteed to be close together in the subgraph
of traversed edges, and if they are not, At has no uniform growth there. This
cannot happen in rooms of small width, since the walls ‘short-circuit’ long paths.

10.3.1. Theorem. Let G = (V,E,w) be a weighted graph, such that w has stan-
dard upper and lower bounds wmax and wmin > 0, there is a standard bound ρmax

to the degree of the vertices, and there is a partition (V i)i∈ZZ of V satisfying the
following:

1. |V i| is bounded by some standard k ∈ ZZ.

2. All edges in G are between vertices of V i, or between vertices of V i and
V i+1, for some i ∈ ZZ.

3. For all i, G|V i is connected.

29This class of graphs may be viewed as a generalization of the infinite ladders ZZ×{1, . . . , n}
and cylinders ZZ × (ZZ/nZZ) of Theorem 8.3.5.
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V V V V-1 0 1 2

Figure 10.2: An example of a graph for Theorem 10.3.1, with k = 3.

Then a once-reinforced random walk on G with hyperfinite reinforcement factor
δ is almost surely recurrent.

To show recurrence of the random walk, it suffices to show that at any time t0,
the probability of returning to V 0 is 1. Hence we may assume, without loss of
generalization, that vt0 ∈ V ≥0 = V 0∪V 1∪ . . ., and that for purposes of this proof,
V −1 ∪ V −2 ∪ . . . can be safely ignored. Unless stated otherwise, we assume i ≥ 0
whenever we write V i.
Before we start with the proof of this theorem, we need to a little more work
on our tools. In particular we need to show that Corollary 10.2.2 applies, and
since we are going to have to calculate with the results, it seems desirable to find
explicit limits to replace ‘standardly close’ and ‘≈ 1’.

10.3.2. Lemma. Let G be a graph as in Theorem 10.3.1, and consider the once-
reinforced random walk on G with hyperfinite reinforcement factor δ. Then there
exists a hyperfinite N ∈ IN and an infinitesimal η > 0 such that

at any time t0, if B is a set of arcs extending At0, within Et0-distance
N of one another, then for any arc −→vu ∈ B

1

1 + η
≤ P (the first arc added to At is −→vu)/w(vu)
P (the first arc added to At is from B)/w(B)

≤ 1

1− η
(10.13)

This also holds for the random walk that stops at V 0 if we fix a hyperfinite cdist ∈
IR and add the condition that

no arc of B is within G-distance cdist of V
0

Proof
Let k and wmax be as in Theorem 10.3.1, and define the graph G∗=(V ∗, E∗, w∗) by
setting V ∗=ZZ×{1, . . . , k}, E∗={((i1, j1), (i2, j2)) | |i1−i2|≤1} and w∗(e) = wmax.
Then G is a subgraph of G∗ (possibly with lesser weights). Moreover, it is easily
seen that G∗ is uniformly standard, and that non-reinforced random walks on
G∗ are almost surely recurrent. Hence the conditions of Corollary 10.2.2 are
satisfied. If cdist ∈ R is hyperfinite and N ∈ IN and η > 0 are standard, then the
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conclusion of Corollary 10.2.2 is stronger than the statement we want to prove,
so that statement holds. The Overflow Principle states that if it holds for all
standard N and η > 0, then it also holds for some hyperfinite N and infinitesimal
η > 0.

2

Since G is a subgraph of the graph G∗ from the above lemma, non-reinforced
random walks on G are almost surely recurrent, and hence there exists a super-
harmonic function on V − V 0 witnessing this, which we can use when applying
Lemma 8.3.4. But using the given restrictions on G, we can construct a func-
tion h with some additional nice properties, which will simplify later calculations
considerably:

10.3.3. Lemma. Let G and δ be as above. Then there exists a function h : V →
IR satisfying

1. h is harmonic on V − V0.

2. h→∞ if v →∞.

3. For all vertices vu ∈ E, |∆h(−→vu)| ≤ 1/w(vu) ≤ 1/wmin.

4. For all i ∈ IN ,
∑{w(vu)∆h(−→vu) | v ∈ V i, u ∈ V i+1, vu ∈ E} = 1.

Proof
Begin by defining, for i > 0, v ∈ V ≥0,

hi(v) = P (starting in v, V i is reached before V 0) (10.14)

qi =
∑
{w(vu)∆hi(

−→vu) | v ∈ V 0, u ∈ V 1, vu ∈ E} (10.15)

It is easily seen that hi is harmonic on V 1 ∪ V 2 ∪ . . . ∪ V i−1, hi(v) = 0 for
v ∈ V 0, and qi > 0. There exists a function h : V ≥0 → IR≥0 that is a limit of
(hi)

∞
i=1 in the sense that, for any finite set F ⊂ V ≥0, (h(v))v∈F is a limit point of

((hi(v)/qi)v∈F )
∞
i=1. It follows that this function h is harmonic on V 1 ∪ V 2 ∪ . . .,

h(v) = 0 for v ∈ V 0, and
∑
{w(vu)∆h(−→vu) | v ∈ V 0, u ∈ V 1, vu ∈ E} = 1 (10.16)

By taking linear combinations of the harmonicity equality, we obtain

∑
{w(vu)∆h(−→vu) | v ∈ V i, u ∈ V i+1, vu ∈ E} = 1 for i ∈ IN (10.17)

∑
{w(vu)∆h(−→vu) | v, u ∈ V, h(v) ≤ r < h(u), vu ∈ E} = 1 for r ≥ 0 (10.18)

From (10.18) we see that for all vu ∈ E |∆h(−→vu)| ≤ 1/w(vu) ≤ 1/wmin.
Finally, let r ≥ 0, and set Ur = {v ∈ V ≥0 | h(v) ≤ r}. If Ur were to have an
infinite connected component, then for some i0 > 1, Ur would intersect all V i with
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wall room wall room wall room wall room
(unfinished)

Figure 10.3: Traversed edges forming walls and rooms in the square lattice graph
on ZZ × {1, 2, 3, 4}

i ≥ i0, and hence by the connectedness of the sets Vi, h(v) < r + kwmin for all
v ∈ V ≥i0 . Then −h would be a bounded non-constant superharmonic function,
contradicting the fact that non-reinforced random walks on G are almost surely
recurrent. On the other hand, if Ur were to have a finite non-empty component F
disjoint from V 0, we could take linear combinations of the harmonicity equality
to obtain ∑

{w(vu)∆h(−→vu) | v ∈ F, u ∈ V − F, vu ∈ E} = 0 (10.19)

contradicting the fact that if v ∈ F, u ∈ V − F , then h(u) ≥ r > h(v). So for
all r ≥ 0, Ur consists only of a finite component containing V 0. We conclude
that h(v) → ∞ if v → ∞, and that h is a proper witness to the recurrence of
non-reinforced random walks in G.

2

Proof of Theorem 10.3.1

Let h be the function of Lemma 10.3.3. We will use Lemma 10.3.2 to show that
the condition of Lemma 8.3.4 is satisfied.

We say that there is a wall at V i, when all edges of E with both vertices in V i

are in Et. The area between two successive walls we will call a room. Given
that there are at most kρmax edges involved, it can easily be seen that there is
a non-infinitesimal pwall > 0 such that the probability that a wall appears at V i

before a single vertex of V i+2 is visited is at least pwall. It follows that, not taking
into account rooms already present in any given initial situation, the expected
average width of a room is at most p−1wall.

Let t > 0, and fix the history up to time t. Let
−−→
v∗u∗ denote the next arc (at or

after time t) that is added to At. Now first consider a room R with walls at V i

and V j and width ≤ N/k, at distance ≥ cdist from the origin. It is easily seen
that any non-self-intersecting Et-path that does not extend beyond the room is of
length at most N , and since walls connect all their vertices, paths that leave the
room and return can be ‘short-circuited’. Hence all arcs in the room extending
At have tails with Et-distance N or less to one another, and for any such arc −→vu,

P (
−−→
v∗u∗=−→vu |Ft)(1−η) ≤ P (v∗u∗ in R |Ft)

w(vu)

wext(R)
≤ P (

−−→
v∗u∗=−→vu |Ft)(1+η)

(10.20)
where wext(R) denotes the total weight of all arcs in R that extend At. It follows
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that

P (
−−→
v∗u∗=−→vu |Ft)(∆h(−→vu) + η|∆h(−→vu)|) ≥

P (v∗u∗ in R |Ft)

wext(R)
w(vu)∆h(−→vu) (10.21)

By taking linear combinations of the harmonicity equation, we can show that

∑

vu in R−→vu extends At

w(vu)∆h(−→vu) = 0 (10.22)

and hence

∑

vu in R

−→vu extends At

P (
−−→
v∗u∗=−→vu | Ft) (∆h(−→vu) + η|∆h(−→vu)|) ≥ 0 (10.23)

Similarly, if we let imax
t denote the largest index i > 0 such that a vertex of V i has

been visited at time t, then the area between V imax
t +1 and the wall V i0 with the

largest index i0 can be considered to be an ‘unfinished room’ Rlast. Here, taking
linear combinations of the harmonicity equation yields

∑

vu in Rlast

−→vu extends At

w(vu)∆h(−→vu) = 1 (10.24)

and if Rlast has width ≤ N/k, we derive in the same manner as before

∑

vu in Rlast

−→vu extends At

P (
−−→
v∗u∗=−→vu | Ft) (∆h(−→vu) + η|∆h(−→vu)|) ≥

P (v∗u∗ in Rlast | Ft)

wext(Rlast)

(10.25)
where wext(Rlast) denotes the total weight of all arcs in Rlast that extend At.
Hence, if we pretend for the moment that we do not need to take into consideration
edges within distance cdist of the V

0, rooms of width > N/k, or the fact that to
apply Lemma 8.3.4 we need to show that its condition holds given an arbitrary
fixed history up to some time t0, we obtain

E

(
∆h(
−−→
v∗u∗) + η|∆h(

−−→
v∗u∗)| Ft

)
≥ P (v∗u∗ in Rlast | Ft)

wext(Rlast)
(10.26)

Combined with the inequality

P (imax
t+1 = imax

t + 1 | Ft) ≤
kρmaxwmax

wext(Rlast)
· P (v∗u∗ in Rlast | Ft) ·

1

1− η (10.27)
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this implies

E

(
∆h(
−−→
v∗u∗) + η|∆h(

−−→
v∗u∗)| − (imax

t+1 − imax
t )

1− η
kρmaxwmax

Ft

)
≥ 0 (10.28)

Now, if τ is a stopping time, then we can take the sum of the above equation over
all t < τ , to obtain

E




∑

−→vu∈Aτ

∆h(−→vu) + η
∑

−→vu∈Aτ

|∆h(−→vu)| − imax
τ

1− η
kρmaxwmax


 ≥ 0 (10.29)

Now let us consider those aspects that we chose to ignore before. We will show
that the number of edges involved in those aspects is relatively small. One of the
aspects we ignored was the existence of rooms of width N/k or greater. But if
a new room is ‘growing’, then the probability is less than (1− pwall)

N/k that the
room will reach a width of N/k or greater, and even in that case the expected
width of the room is at most N/k + p−1wall. Hence the expectation of the number
of sets V i contained in rooms of width > N/k at any time τ is at most

E(imax
τ )(1−pwall)

N/k(N/k + p−1wall) (10.30)

Another aspect we ignored was that, in order to apply Lemma 8.3.4 we need
to show that its condition holds given an arbitrary fixed history up to some
time t0. But any such initial situation is contained within the area defined by
V 0 ∪ . . . ∪ V imax

t0 . The same holds for edges within distance cdist of the origin: all
such edges are contained in V 0 ∪ . . .∪ V cdist . Edges in rooms extending from one
of these areas may be affected, but the expected number of sets V i involved in
such an ‘extension’ is at most p−1wall. Hence the expected number of sets V i for
which the previous calculations do not apply is at most

max(imax
t0

, cdist) + p−1wall + E(imax
τ )(1−pwall)

N/k(N/k + p−1wall) (10.31)

Each set V i contains at most k vertices, each of which is adjacent to at most
ρmax edges. Each edge vu that we ‘counted wrongly’ before might have caused
the expectation above to be higher than it should have been, but the difference
will be at most 2∆h(vu) ≤ 2/wmin. So the expectation above may be higher than
it should have been, but not by more than

2kρmax

wmin

(
max(imax

t0
, cdist)+p

−1
wall + E(imax

τ |Ft0)(1−pwall)
N/k(N/k+p−1wall)

)
(10.32)

Combining everything, and taking into account that

η
∑

−→vu∈Aτ

|∆h(−→vu)| ≤ η
kρmaxi

max
t

wmin

(10.33)



114 Chapter 10. Reinforced Random Walks with Large Reinforcements

we derive that for any stopping time τ

E




∑

−→vu∈Aτ

∆h(−→vu) Ft0


 ≥ c · E(imax

τ | Ft0)− c′ (10.34)

with

c =
1− η

kρmaxwmax

− kρmax(2(1−pwall)
N/k(N/k + p−1wall) + η)

wmin

(10.35)

c′ =
2kρmax(max(imax

t0
, cdist) + p−1wall)

wmin

(10.36)

Since η is infinitesimal and N is hyperfinite, c ≈ 1/kρmaxwmax > 0, and we
conclude that the condition of Lemma 8.3.4 is satisfied.

2

10.3.4. Corollary. Let n be standard. The once-reinforced random walks with
hyperfinite reinforcement factor δ on the square lattice graphs on ZZ × {1, . . . , n}
and ZZ × (ZZ/nZZ) are almost surely recurrent.

10.3.5. Corollary. Let n be a natural number. The once-reinforced random
walks with reinforcement factor δ on the square lattice graphs on ZZ × {1, . . . , n}
and ZZ × (ZZ/nZZ) are almost surely recurrent if δ is large enough, i.e. if δ > δ0
for some δ0 ∈ IR.

Proof
If n is standard, then the above holds for any hyperfinite δ0. The property of ‘for
some δ0, for all δ > δ0, the random walk on the infinite ladder or cylinder with
width n is almost surely recurrent’ can be expressed without using nonstandard
constants or the predicate st(x). Hence by Transfer the above holds for any
n, standard or not. Note that if n is standard, it follows from the principle
of Underflow that δ0 may be taken standard. Also note that this Corollary is
formulated without using nonstandard concepts.

2

10.3.6. Remark. The proof above can be translated back to orthodox mathe-
matics, at the expense of (even more) pages of computations. The adapted proof
may be reduced in size somewhat by applying the techniques used by Doyle and
Snell [25] to the proof of Lemma 10.2.1. The main contributor to the size of
the lower bound δ0 obtained by this proof, is the requirement that N/k À p−1wall,
which unfortunately is hyperexponential in k. The resulting bound δ0 is of order
(kρmaxwmax/wmin)

2kρmax+6.
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10.3.7. Remark. The function of walls in the above proof is, as was stated
before, to limit the occurrence of anomalous situations, where the edges that are
close together in the graph of traversed edges do not form areas balanced by the
harmonicity equations and vica versa. This approach fails when considering the
random walk on the square lattice on ZZ2. Although it is possible to view ZZ2 as a
row of vertex-sets Vi, as i increases the size of the vertex-sets would also increase,
the probability of a wall forming would converge to 0, and the average width of
a room would diverge to ∞.
Although presumably the reasoning above would hold up in a variant random
walk, where the value of δ increases with the distance from some arbitrary origin,
this is a marginal result at best. A better avenue of investigation for this problem
is likely to find some other way of limiting the expected occurrence of anomalous
situations.





Part III

The EMILE Grammar Inducer
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Overview

In this section of the dissertation we consider the EMILE program, a program that
reads a text, and without prior knowledge, attempts to determine the grammatical
structure of the language.
In chapter 11, we consider the problem of grammar inference, and introduce some
of the basic concepts of EMILE.
In chapter 12, we study the algorithm underlying EMILE, starting with a very
simple version of the basic algorithm, and changing it to the full algorithm in
several steps, elaborating on the motivations for the change at each step.
In chapter 13, we consider the results of the EMILE program, both in theory
and in practice. It is conjectured that natural languages satisfy the condition of
shallowness, and that this implies that the EMILE program will work well for
natural languages.
Finally, appendix A lists the sub-algorithms used in EMILE, giving both a syn-
opsis and explicit pseudo-code for each sub-algorithm.
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Chapter 11

The Basics of EMILE

11.1 Introduction

Human being are remarkably good in working with natural languages. Even if
someone has no knowledge of the formal structure of a language, he or she will be
able to tell when ‘something’ is like ‘something else’. For instance, Lewis Caroll’s
famous poem ‘Jabberwocky’ starts with

’Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
All mimsy were the borogoves
and the mome raths outgrabe.

Even without Humpty Dumpty’s annotations, it is immediately obvious what
the syntactic structure of the first sentence is: ‘brillig’ and ‘slithy’ are adjectives,
‘toves’ is a noun, ‘gyre’ and ‘gimble’ are verbs, etcetera.
So how do we know such things? The short answer is ‘from context’. When a
sentence starts with ‘ ’Twas’, we are not surprised if the next word is an adjective.
Similarly, if a sentence has the pattern ‘the (.) did (.) and (.) in the (.)’, we
expect the missing phrases to be a noun-phrase, two verb-phrases and another
noun-phrase, respectively.
The notion of grammatical type has many possible definitions. For instance, if
we had a context-free grammar of a language, we can view each non-terminal
symbol as a grammatical type. In general, one of the properties of a grammatical
type is, that wherever some expression is used as an expression of that type,
other expressions of that type can be substituted without making the sentence
ungrammatical. This gives rise to a notion of a grammatical type as a set of
expressions together with a set of contexts. For instance, the type ‘noun-phrase’
could be represented by the set of all noun-phrases, together with the set of all
contexts in which a noun-phrase can appear. Combining any of the expressions of
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a type with any of the contexts will yield a grammatical sentence. Many of these
combinations might appear in actual texts, especially the short ones (in terms of
number of words).
In this terminology, we can describe the above phenomenon, as the existence of
contexts which are characteristic for a type, meaning that whenever something
appears in that context, we assume it also belongs to that type. Some types may
also have characteristic expressions, with the analogous property.
EMILE30 4.1 is a program based on the above concepts. It attempts to learn the
grammatical structure of a language from sentences of that language, without
being given any prior knowledge of the grammar. For any type in any valid
grammar for the language, we can expect context/expression combinations to
show up in a sufficiently large sample of sentences of the language. EMILE
searches for such clusters of expressions and contexts in the sample, and interprets
them as grammatical types. It then tries to find characteristic contexts and
expressions, and uses them to extend the types. Finally, it formulates derivation
rules based on the types found, in the manner of the rules of a context-free
grammar. The program can present the grammatical structure found in several
ways, as well as use it to parse other sentences or generate new ones.
The theoretical concepts used in EMILE 4.1 are elaborated on in P. Adriaans
articles on EMILE 1.0/2.0 [33] and EMILE 3.0 [34]. in these chapters we will
focus on the practical aspects. Note that although EMILE 4.1 is based on the
same theoretical concepts as EMILE 3.0, it is not based on the same algorithm.
More information on the precursors of EMILE 4.1 may be found in the above
articles, as well as in the E. Dörnenburg’s Master’s Thesis[36].

11.2 Definitions

The three most basic concepts in EMILE are contexts, expressions and con-
text/expression pairs.

11.2.1. Definition. A context/expression pair is a sentence split into three
parts, for instance

John (makes) tea

Here, ‘makes’ is called an expression, and ‘John (.) tea’ is called a context (with
left-hand side ‘John’ and right-hand side ‘tea’).

11.2.2. Definition. We say that an expression e appears with a context c, or
that the context/expression pair (c, e) has been encountered, if cl̂êcr appears

30EMILE 4.1 is a successor to EMILE 3.0, written by P. Adriaans. The original acronym
stands for Entity Modeling Intelligent Learning Engine. It refers to earlier versions of EMILE
that also had semantic capacities. The name EMILE is also motivated by the book on education
by J.-J. Rousseau.
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as a sentence in a text, where cl and cr are the left-hand side and the right-hand
side of c, respectively, and âb denotes the concatenation of a and b.

11.2.3. Remark. Context/expression pairs are not always sensible, as for in-
stance in the sentence

John (drinks coffee, and Mary drinks) tea

where the expression ‘drinks coffee, and Mary drinks’ appears in the context ‘John
(.) tea’. EMILE will find such context/expression pairs and attempt to use them
in the grammar induction process, But such pairs are usually isolated, i.e. they
are not part of any significant clusters. So EMILE will fail to make use of them,
and they will be effectively ignored.

As stated before, we view grammatical types in terms of the expressions that
belong to that type, and the contexts in which they can appear (as expressions
of that type). As such, we define grammatical types as follows:

11.2.4. Definition. In the context of this paper, a grammatical type T is de-
fined as a pair (TC , TE), where TC is a set of contexts, and TE is a set of expres-
sions. Elements of TC and TE are called primary contexts and expressions for
T .

The intended meaning of this definition is, that all expressions of a type can
appear with all of its the contexts.
In natural languages, the type of an expression is not always unambiguous. For
instance, the word ‘walk’ can be both a noun and a verb. Hence ‘walk’ will not
only appear in contexts for noun-phrases, but also in contexts for verb-phrases.
The same does not hold for the phrase ‘thing’: ‘thing’ only appears in contexts for
noun-phrases, and in any such context, any noun can be substituted for ‘thing’
without making the sentence ungrammatical. We say that ‘thing’ is characteristic
for the type ‘noun’. Formally,

11.2.5. Definition. An expression of a type T is characteristic for T if it only
appears with contexts of type T .31 Similarly, a context of a type T is characteristic
for T if it only appears with expressions of type T .

In these chapters, we will also use characteristic∗ and secondary expressions and
contexts. However, as these definitions are rather dependent on the algorithms,
they will be delayed until section 12.4. That section also has several examples of
characteristic expressions and contexts.

31EMILE changes this definition slightly in implementation, in that contexts which have been
assigned no type at all are completely ignored, i.e. an expression is characteristic if all contexts
with which it appears are of type T , or untyped.
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Notation. For any type T , TE, T
ch
E , T ∗E and T se

C denote the sets of primary,
characteristic, characteristic∗ and secondary expressions of T , and TC , T

ch
C , T ∗C

and T se
C denote the corresponding sets of contexts.

The EMILE program also attempts to transform the collection of grammatical
types found into a context-free grammar consisting of derivation rules. Such rules
generally are of the form

[T ]⇒ s0[T1]s1[T2] . . . [Tk]sk

where T, T1, T2, . . . , Tk are grammatical types, and s0, s1, . . . , sk are (possibly
empty) sequences of words. Given a rule with left-hand side [T ], and a sequence
of word-sequences and grammatical types containing [T ], that appearance of [T ]
can be replaced by the right-hand side of the rule, (concatenating adjacent word-
sequences as necessary). Any sequence which can be obtained from another se-
quence by such rule applications, is said to be derivable from that sequence. The
language of a context-free grammar consists of those word-sequences e such that
[0]⇒ e is derivable, where [0] denotes the type of whole sentences.



Chapter 12

The algorithms of EMILE

This chapter attempts to give some insight into the reasoning underlying the algo-
rithms of EMILE. We will start with a very simple version of the basic algorithm,
and in several steps change it to the full algorithm, at each step elaborating on
the motivations for the change.

12.1 1-dimensional clustering

Given a sample of sentences, we want to obtain sets of expressions and contexts
that correspond to grammatical types. A simple clustering technique is to extract
all possible context/expression combinations from a given sample of sentences,
and group together expressions that appear with the same context.

12.1.1. Example. If we take the sample sentences ‘John makes tea’ and ‘John
likes tea’, we get the following context/expression matrix :

(.) John John (.) John (.) (,) John
makes (.) makes tea (.) likes likes
tea tea (.) tea (.)

John x x
makes x
tea x x
John makes x
makes tea x
John makes tea x
likes x
John likes x
likes tea x
John likes tea x

125



126 Chapter 12. The algorithms of EMILE

from which we can obtain the clusters

[ ‘John (.) tea’, {‘makes’, ‘likes’} ]
[ ‘(.) tea’, {‘John makes’, ‘John likes’} ]
[ ‘John (.)’, {‘makes tea’, ‘likes tea’} ]

[ ‘(.)’, {‘John makes tea’, ‘John likes tea’} ]

Next, we can group contexts together if they appear with exactly the same ex-
pressions.

12.1.2. Example. If we add the sentences ‘John makes coffee’, ‘John likes coffee’
to the previous sample, the relevant part of the context/expression matrix looks
like

John John John John
(.) (.) makes likes
tea coffee (.) (.)

makes x x
likes x x
tea x x
coffee x x

which yields the clusters

[ {‘John (.) tea’, ‘John (.) coffee’}, {‘makes’, ‘likes’} ]
[ {‘John makes (.)’, ‘John likes (.)’}, {‘tea’, ‘coffee’} ]

As stated before, a grammatical type can be characterized by the expressions
that are of that type, and the contexts in which expressions of that type appear.
Hence the clusters we find here can be interpreted as grammatical types. For
instance, the clusters in the above example could be said to correspond to the
grammatical types of ‘verbs’ and ‘nouns’, respectively.

12.2 2-dimensional clustering

One of the flaws in this technique is that it doesn’t properly handle contexts
whose type is ambiguous.

12.2.1. Example. If we add the sentences ‘John likes eating’ and ‘John is eating’
to the previous example, the relevant part of the context/expression matrix will
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look like this:

John John John John John John
(.) (.) (.) makes likes is
tea coffee eating (.) (.) (.)

makes x x
likes x x x
is x
tea x x
coffee x x
eating x x

Here we can intuitively identify four grammatical types: noun-phrases, verb-
phrases, ‘ing’-phrases, and ‘verbs-appearing-with-ing-phrases’-phrases. The con-
text ‘John likes (.)’ is ambiguous, in the sense that it appears with both noun-
phrases and ‘ing’-phrases. If we proceed as before, we get the following clusters

[ {‘John (.) tea’, ‘John (.) coffee’}, {‘makes’, ‘likes’} ]
[ {‘John (.) eating’}, {‘likes’, ‘is’} ]

[ {‘John makes (.)’}, {‘tea’, ‘coffee’} ]
[ {‘John likes (.)’}, {‘tea’, ‘coffee’, ‘eating’} ]

[ {‘John is (.)’}, {‘eating’} ]
i.e. the context ‘John likes (.)’ is assigned a separate type.

Assigning ambiguous contexts a separate type not only results in a less natural
representation, in a later step it will prevent us from correctly identifying the
characteristic expressions of a type (as will be demonstrated in Example 12.4.2).
A more natural representation would be to allow ambiguous contexts and expres-
sions to belong to multiple types. For this, we need to use a different clustering
method. The clustering method EMILE uses is to search for maximum-sized
blocks in the matrix. This could be termed 2-dimensional clustering.

12.2.2. Example. The following picture shows the matrix of the previous ex-
ample, with the maximum-sized blocks indicated by rectangles.32

John John John John John John
(.) (.) (.) makes likes is
tea coffee eating (.) (.) (.)

makes x x
likes x x x
is x
eating x x

tea x x
coffee x x

32Please note that the expressions and contexts have been arranged to allow the blocks to be
easily indicated: in general, blocks will not consist of adjacent context/expression pairs.
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These blocks correspond to the clusters

[ {‘John (.) tea’, ‘John (.) coffee’}, {‘makes’, ‘likes’} ]
[ {‘John (.) eating’}, {‘likes’, ‘is’} ]

[ {‘John makes (.)’, ‘John likes (.)’}, {‘tea’, ‘coffee’} ]
[ {‘John is (.)’, ‘John likes (.)’}, {‘eating’} ]

[ {‘John (.) tea’, ‘John (.) coffee’, ‘John (.) eating’}, {‘likes’} ]
[ {‘John likes (.)’}, {‘eating’, ‘tea’, ‘coffee’} ]

The last two clusters correspond to sets of context/expression pairs which are
already ‘covered’ by the other blocks. In a sense these blocks are superfluous.

The algorithm to find these blocks is very simple: starting from a single con-
text/expression pair, EMILE randomly adds contexts and expressions while en-
suring that the resulting block is still contained in the matrix, and keeps adding
contexts and expressions until the block can no longer be enlarged. This is done
for each context/expression pair that is not already contained in some block.
Once all context/expression pairs have been ‘covered’, the superfluous blocks
(those completely covered by other blocks) are discarded.

12.3 Allowing for imperfect data

In the previous section, the requirement for a block was that it was entirely con-
tained within the matrix, i.e. the clustering algorithm did not find a type unless
every possible combination of contexts and expressions of that type had actually
been encountered and stored in the matrix. This only works if a perfect sam-
ple has been provided. In practical use, we need to allow for imperfect samples.
There are many context/expression combinations, such as for instance ‘John likes
evaporating’, which are grammatical but nevertheless will appear infrequently, if
ever.
To allow EMILE to be used with imperfect samples, two enhancements have been
made to the algorithm. First, the requirement that the block is completely con-
tained in the matrix, is weakened to a requirement that the block is mostly con-
tained in the matrix. Specifically, a certain percentage of the context/expression
pairs of the block as a whole should be contained in the matrix, as well as a cer-
tain percentage of the context/expression pairs in each individual row or column.
We can express this as

#(M ∩ (TC×TE)) ≥ #(TC × TE) · total support%

∀c ∈ TC : #(M ∩ ({c}×TE)) ≥ #TE · context support%

∀e ∈ TE : #(M ∩ (TC×{e})) ≥ #TC · expression support%

where M is the set of all encountered context/expression pairs, and the values
XXX support% are constants that can be set by the user.
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12.3.1. Example. Suppose that the matrix of context/expression pairs EMILE
has encountered has the following sub-matrix:

John John John John
makes likes drinks buys
(.) (.) (.) (.)

tea x x x x
coffee x x x x
lemonade x x x
soup x x x x
apples x

If the settings context support% and expression support% have been set to
75%, and total support% has been set to 80%, then the type represented by the
cluster

[
{‘John makes (.)’, ‘John likes (.)’, ‘John drinks (.)’, ‘John buys (.)’},

{‘tea’, ‘coffee’, ‘lemonade’, ‘soup’}

]

will be identified, in spite of the fact that one of the context/expression pair of
the block, (‘John buys (.)’, ‘lemonade’), does not appear in the matrix. However,
the expression ‘apples’ will not be added to the above type, since it appears with
less than expression support% of the contexts.

Secondly, note that of the different expressions and contexts belonging to a gram-
matical type, it can be expected that the short and medium-length ones (in terms
of number of words) will be encountered more often than the long ones. In other
words, if we restrict the sample to short and medium-length contexts and expres-
sions, it will be closer to a perfect sample. Implementing this notion, EMILE
uses only short and medium-length contexts and expressions when searching for
grammatical types.

12.4 Characteristic and secondary expressions

and contexts

To search for longer expressions and contexts associated with types, EMILE uses
characteristic expressions and contexts. As defined in Definition 11.2.5, a char-
acteristic expression of a type T only appears with contexts that are of type T .33

Since the types involved usually have not been fully identified yet, EMILE relaxes
this requirement to also allow untyped contexts.

33Note that a context may have more than one type, so a context appearing with a expression
characteristic for a type T may be of other types in addition to being of type T .
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Occasionally, a type has no characteristic expressions (due to imperfections in
the sample or the inherent ambiguity of the type): in such cases, the primary
expressions of the type are used in place of the characteristic expressions. We call
these the characteristic* expressions of T , i.e. the characteristic* expressions of
T are defined as the characteristic expressions of T if there are any, and as the
primary expressions of T otherwise.
The definitions of characteristic and characteristic∗ contexts of a type T are
analogous.
Any untyped context appearing with an characteristic expression of a type T is
likely to belong to T as well. Contexts which appear with (a certain percentage
of the) characteristic∗ expressions of T are called secondary contexts of T , as
opposed to the primary contexts found by the clustering algorithm. Analogous
for secondary expressions. Note that the constraint on the length of primary
contexts and expressions does not apply to secondary contexts and expressions,
and hence this allows for long contexts and expressions to be associated with
types.

12.4.1. Example. In the previous example, for the type represented by the clus-
ter

[ {‘John likes (.)’}, {‘eating’, ‘tea’, ‘coffee’} ]
‘John likes (.)’ only appears with ‘eating’, ‘tea’ and ‘coffee’, so it is a characteristic
(and hence characteristic∗) context for this type. The expression ‘eating’ also
appears with the context ‘John is (.)’, so it is not a characteristic expression. A
similar condition obtains for ‘tea’ and ‘coffee’, so the type has no characteristic
expressions at all. Consequentially, its primary expressions ‘eating’, ‘tea’ and
‘coffee’ are also its characteristic∗ expressions.
For the type represented by the cluster

[ {‘John makes (.)’, ‘John likes (.)’}, {‘tea’, ‘coffee’} ]

all its expressions and contexts are characteristic.

12.4.2. Example. In Example 12.2.1, we used 1-dimensional clustering to ob-
tain the cluster

[ {‘John makes (.)’}, {‘tea’, ‘coffee’} ]
Here, ‘tea’ and ‘coffee’ are not characteristic expressions, since they appear with
the context ‘John likes (.)’, which here is not a context belonging to the type.
So the type has no characteristic expressions. It is easy to see that when using
1-dimensional clustering, whenever a context is ambiguous34, all types involved
will lack characteristic expressions.

34‘Ambiguous’ in the sense that the set of expressions it appears with is the union of several
smaller sets associated with other contexts
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12.4.3. Example. Assume that primary expressions are constrained to be at
most 5 words long. If we add the sentence ‘John makes really really really really
strong coffee’ to the sample of the previous example, then the expression ‘really
really really really strong coffee’ will not be added as a primary expression to the
type represented by the cluster

[ {‘John makes (.)’, ‘John likes (.)’}, {‘tea’, ‘coffee’} ]

However, since ‘John makes (.)’ is a characteristic expression of this type, the
expression ‘really really really really strong coffee’ will be associated with the
type as a secondary expression.

12.5 Finding rules

The EMILE program also transforms the grammatical types found into deriva-
tion rules. For reasons of simplicity, EMILE constructs a context-free grammar
rather than a context-sensitive grammar. For this construction, only the sets of
expressions associated with the types are needed: the sets of contexts associated
with the types are not used in creating the derivation rules.
First, EMILE searches for rules that are supported. Obviously, if an expression e
belongs to a type T (as a secondary expression), the rule

[T ]⇒ e

is supported. EMILE finds more complex rules, by searching for characteristic∗

expressions of one type that appear in the secondary expressions of another (or
the same) type. For example, if the characteristic∗ expressions of a type T are

{dog, cat, gerbil}

and the type [0] contains the secondary expressions

{I feed my dog, I feed my cat, I feed my gerbil}

then EMILE will find the rule

[0]⇒ I feed my [T ]

This process of abstraction is repeated to obtain more abstract rules. Formally,
a rule R is considered to be supported if it is of the form [T ]⇒ e (with e being a
secondary expression of T ), or if it is of the form [T ]⇒ s0[T1]s1[T2] . . . sk, k ≥ 1,
and for some i ∈ {1, . . . , k},

#{e∈T ∗E | R with [Ti] replaced by e is supported} ≥ #T ∗E · rule support%

(12.1)
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In certain cases, using characteristic∗ and secondary expressions in this manner
allows EMILE to find recursive rules. For instance, a characteristic∗ expression
of the type of sentences S might be

Mary drinks tea

If the maximum length for primary expressions is set to 4 or 5, the sentence

John observes that Mary drinks tea

will be a secondary expression of S, but not a primary or characteristic one. So
if there are no other expressions involved, EMILE would derive the rules

[S] ⇒ Mary drinks tea
[S] ⇒ John observes that [S]

which would allow the resulting grammar to generate, for instance,

John observes that John observes that John observes that Mary drinks tea

EMILE creates a set of supported rules capable of generating all sentences in the
original sample. To reduce the size of this grammar, the program discards from
the final output rules which are superfluous, such as rules which are instantiations
of other rules35, and rules for types which aren’t referred to in other rules.
Experiments showed that often, EMILE finds several types which where only
slight variations of one another. If all these types are referred to in the rules, this
results in a much larger rule-set than is necessary. The most recent incarnation
of EMILE tries to prevent this by being actively conservative in the number of
types used: a set of used types is maintained, and only rules using those types are
considered for inclusion. This set initially contains only the whole-sentence type
[0], and types are added only if this would result in a decrease in the size of the
total rule-set.36

12.6 Future Developments

There is still a lot of room for improvement. The clustering algorithm could be ex-
tended to use negative samples (i.e. sentences which should not be constructible)
as well as positive ones. Furthermore, a module can be added to EMILE which
allows it to identify those sentences whose grammaticality is the most uncertain
(from those sentences which EMILE considers grammatical but which are not in
the original sample), which would allow it to query an oracle in a directed fashion.

35I.e. which can be obtained from other rules by replacing a type reference by a secondary
expression of that type

36EMILE can also be set to allow a small increase: this often results in a more meaningful
grammar at the expense of a slightly larger rule-set.
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Another possible extension is to the algorithm constructing the derivation-rule
grammars. Currently EMILE constructs a context-free grammar. It may be
possible to adapt EMILE to produce a more sensible context-sensitive grammars,
using the sets of contexts produced by the clustering algorithm.





Chapter 13

Results: Theory and Practice

13.1 Theoretical Results

First, we give some definitions and a conjecture adapted from P. Adriaans[34]:

13.1.1. Definition. Let G be a grammar (context-free or otherwise) of a lan-
guage L. G has context separability if each type of G has a characteristic context,
and expression separability if each type of G has a characteristic expression.

13.1.2. Definition. A class of languages37 C is shallow if for each language L
it is possible to find a context- and expression-separable grammar G, and a set
of sentences S inducing characteristic contexts and expressions for all the types
of G, such that the size of S and the length of the sentences of S are logarithmic
in the descriptive length of L (relative to C).

Natural languages seem to be context- and expression-separable for the most part,
i.e. if there are any types lacking characteristic contexts or expressions38, these
types are few in number, and rarely used. Furthermore, there is no known example
of a syntactical construction in a natural language that cannot be expressed in a
short sentence39. Hence the following conjecture seems tenable:

13.1.3. Conjecture. Natural languages are (mostly) context- and expression-
separable, and shallow.

37Strictly speaking the shallowness property cannot be applied to single languages. However,
when a language L has a grammar G and a set of sentences S as described in the definition,
then the size of S relative to the logarithm of the descriptive length of L can be taken as a
measure of the (un-)shallowness of S, so we can (imprecisely) speak of a language being ‘very
shallow’ or ‘not so shallow’.

38After rewriting types such as ‘verbs that are also nouns’ as composites of basic types.
39At the 1997 CSLI workshop, P. Adriaans offered a thousand dollars for a syntactical con-

struction in any known language, that cannot be expressed in 16 words or less. Nobody has
claimed this money yet. The offer is still open as of this writing.

135
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Now, if a grammar is context- and expression-separable, then EMILE will be able
to find its types given the proper settings and a sufficiently complete sample, as
the following lemma shows

13.1.4. Lemma. Let T be a type with a characteristic context cch and a char-
acteristic expression ech. Suppose that the maximum lengths for primary con-
texts and expressions are set to at least len(cch) and len(ech) and suppose that the
total support%, expression support% and context support% settings are all
set to 100%. Let T<max

C and T<max
E be the sets of contexts and expressions of T

that are small enough to be used as primary contexts and expressions. If EMILE
is given a sample containing all combinations of contexts from T<max

C and expres-
sions from T<max

E , then EMILE will find type T .

Proof
For any type U , if cch belongs to U , then all expressions of U appear with cch,
and hence are also expressions of T . Similarly, for any type U , if ech belongs to
U , then all contexts of U are also contexts of T . It follows that for any type
U , if U covers the context/expression pair (cch, ech), then UC × UE ⊆ TC × TE.
Conversely, TC×TE is a type covering (cch, ech). We conclude that TC×TE is the
unique maximal type covering (cch, ech), and hence will appear in the grammar
output by EMILE.

2

Given this result, if the conjecture that natural languages are (mostly) context-
and expression-separable holds, then EMILE should have the potential to learn
natural languages. If natural languages are also shallow, then the required sample
can be relatively small. The question whether EMILE works in practice, and what
constitutes a ‘small’ sample, will be considered in the next two sections.

13.2 Results for a Generated Sample

The EMILE program was given 100,000 different sentences generated by the fol-
lowing context-free grammar:

[S] ⇒ [NP ] [Vi] [ADV ] | [NPa] [V Pa] | [NPa] [Vs] that [S]
[NP ] ⇒ [NPa] | [NPp]
[V Pa] ⇒ [Vt] [NP ] | [Vt] [NP ] [P ] [NPp]
[NPa] ⇒ John | Mary | the man | the child
[NPp] ⇒ the car | the city | the house | the shop

[P ] ⇒ with | near | in | from
[Vi] ⇒ appears | is | seems | looks
[Vs] ⇒ thinks | hopes | tells | says
[Vt] ⇒ knows | likes | misses | sees

[ADV ] ⇒ large | small | ugly | beautiful
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(where the ‘|’ symbol is used to separate alternatives). The EMILE program used
the following settings (see appendix A for the exact meaning of all the settings):

maximum sentence length = 14 expression support percentage = 25
maximum primary expr length = 4 context support percentage = 25
maximum primary context length = 5 secondary expression support% = 25
minimum contexts per type = 3 secondary context support% = 25
minimum expressions per type = 4 rule support percentage = 25
type usefulness required = 1 sesp for no characteristics = 34
ruleset increase disallowed = 1 scsp for no characteristics = 26
total support percentage = 44 rsp for no characteristics = 26

After processing 100,000 sentences, EMILE generated the following grammar:

[0] ⇒ [17] [6] [17] ⇒ Mary
[0] ⇒ [17] [22] [17] [6] [17] ⇒ the city
[0] ⇒ [17] [22] [17] [22] [17] [22] [17] [6] [17] ⇒ the man
[6] ⇒ misses [17] [17] ⇒ John
[6] ⇒ likes [17] [17] ⇒ the car
[6] ⇒ knows [17] [17] ⇒ the house
[6] ⇒ sees [17] [17] ⇒ the shop
[6] ⇒ [22] [17] [6] [22] ⇒ tells that
[6] ⇒ appears [34] [22] ⇒ thinks that
[6] ⇒ looks [34] [22] ⇒ hopes that
[6] ⇒ is [34] [22] ⇒ says that
[6] ⇒ seems [34] [22] ⇒ [22] [17] [22]
[6] ⇒ [6] near [17] [34] ⇒ small
[6] ⇒ [6] from [17] [34] ⇒ beautiful
[6] ⇒ [6] in [17] [34] ⇒ large
[6] ⇒ [6] with [17] [34] ⇒ ugly
[17] ⇒ the child

As can be seen, EMILE identifies most of the structures of the original grammar,
and even manages to capture its recursive structure. Furthermore, the resulting
grammar is not much larger than the original grammar. This gives hope that
EMILE, or a program based on EMILE, could be used as a tool to find meaningful
patterns in languages.
However, it should be noted that the grammar found by EMILE is weaker than
the original grammar. For one, it does not differentiate between types of nouns,
making possible sentences such as ‘the car says that. . . ’. Furthermore, in the
original grammar, phrases such as ‘with the car’ were optional additions to cer-
tain sentences, and at most one such phrase could be appended. In the grammar
found by EMILE, a second recursive structure allows any sentence to be followed
by an arbitrary number of these phrases. Very likely, a higher value for ‘mini-
mum expression length’ and higher values for the support settings will result in
a grammar weakly equivalent to the original one, but for these settings, a larger
sample will probably be required to achieve meaningful results.
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The grammar found by EMILE contains a few superfluous rules, such as ‘[0]
⇒ [17] [22] [17] [22] [17] [22] [17] [6]’. This is caused by the fact that when
checking which rules have been made superfluous, EMILE only checks one-step
instantiations, i.e. those expressions which can be obtained from a rule by directly
replacing type references with secondary expressions. To check more thoroughly,
it is necessary to consider those expressions which can be obtained using successive
rule substitutions, which is very expensive (in terms of computation time).40

To study the program’s behavior as a function of the sample-size, the CFG was
used to generate 1000 sentences at a time. This produced the following statistics:

number of number of size of number of time used
sentences types found rule-set types used (minutes)41

1000 421 269 12 0
2000 647 288 19 3
3000 657 79 11 11
4000 643 82 14 30
5000 638 60 10 78
6000 566 72 12 78
7000 468 60 11 101
8000 283 98 12 98
9000 217 57 12 143

10000 195 87 12 112
11000 196 40 8 61
12000 211 68 8 45
13000 202 100 11 87
14000 214 84 11 50
15000 215 46 9 109
16000 202 41 8 157
17000 214 41 8 199
18000 211 63 10 107
19000 201 56 13 180
20000 199 66 12 169
30000 205 42 9 387
40000 180 40 6 521
50000 154 63 7 462
60000 168 38 7 773
70000 125 38 7 939
80000 112 34 6 838
90000 89 51 6 2806

100000 61 33 5 3598

40In fact this requires the program to solve the problem of whether two grammars are weakly
equivalent, which is undecidable in general. However, in this case we can limit ourselves to
expressions encountered by the program, which makes it decidable.
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As can be seen, these statistics do not yield a smooth curve, although the devi-
ations are not extravagantly large. This is probably caused by the randomizer,
which is used at a number of points in the grammar deduction process, to im-
plement nondeterministic selection. As can be seen, the number of rules found
briefly increases, then drops, increases again, and then slowly drops to slightly
more than 30. Something similar happens to the number of types found and the
number of types used. Presumably, the increase around the 10,000 sentence-point
is caused by a shift in probability distributions around then: the sentence gener-
ator is prohibited from repeating sentences, so around that point the proportion
of long sentences vs. short sentences will start to change. Another observation is
that, taking into account the large variations in used time caused by the chang-
ing CPU loads, the time used by EMILE does not seem to be exponential in the
number of sentences, or even high-order polynomial.
We can conclude that in this experiment, the output of EMILE converges to
a concise grammar, and that a sample of 30,000 sentences suffices to get good
results.

Results for large real-world datasets

EMILE was given the text of the Bible (King James edition) to see if it could
derive a grammar for the English language. Using the following settings, EMILE
processed the 21070 different sentences of the Bible that were of length ≤ 14:

maximum sentence length = 14 expression support percentage = 40
maximum primary expr length = 4 context support percentage = 40
maximum primary context length = 5 secondary expression support% = 20
minimum contexts per type = 2 secondary context support% = 20
minimum expressions per type = 3 rule support percentage = 20
type usefulness required = 1 sesp for no characteristics = 51
ruleset increase disallowed = 1 scsp for no characteristics = 34
total support percentage = 64 rsp for no characteristics = 34

The result was a grammar containing 20858 rules, only 212 less than the trivial
grammar containing only the literal sentences. In fact most (20441) of the rules
in the generated grammar are rules for literal sentences, such as

[0] ⇒ And the flood was forty days upon the earth ;

This indicates that for most sentences, EMILE could not discern a pattern, or
at least not a pattern that could be used to reduce the size of the grammar.
Amongst the patterns which EMILE did manage to discover. are some which
might be significant:

41This time should be taken as a very rough indication, as it is strongly influenced by the
load caused by other programs running on the same computer
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[0] ⇒ Thou shall not [582] [582] ⇒ eat it ;
[0] ⇒ Neither shalt thou [582] [582] ⇒ kill .

[582] ⇒ commit adultery .
[582] ⇒ steal .
[582] ⇒ bear false witness against thy neighbour .
[582] ⇒ abhor an Edomite ;

and some which are probably mere accidents:

[0] ⇒ and [72] [72] ⇒ Er and Onan died in the land of Canaan .
[0] ⇒ but [72] [72] ⇒ let me not fall into the hand of man .

[72] ⇒ they could not .
[72] ⇒ he saw :
[72] ⇒ now murderers .
[72] ⇒ they shall know that I am the Lord GOD .

EMILE was also run with successively larger subsets of this sample, with the
following results:

number of number of size of number of time used
sentences types found rule-set types used (seconds)

2107 63 2097 7 4
4214 151 4172 11 9
6321 290 6255 13 16
8428 396 8337 18 23

10535 420 10410 18 29
12642 487 12506 20 37
14749 579 14582 22 46
16856 653 16670 28 62
18963 800 18753 29 79
21070 840 20858 33 102

There is no sign of the convergence that characterized the previous experiment:
presumably, the Bible simply isn’t big enough as a sample of the English language.
A problem with using larger samples is that the EMILE program uses a lot of
memory. To analyze the Bible, EMILE needs between 100 and 250 megabytes
of memory (depending on the settings used): larger samples have proportionally
larger memory requirements. It may be possible to design a version of EMILE
which allows for the data to be distributed over several machines. However, even
if a distributed version turns out to be impractical, this is a temporary problem,
given the exponential growth of available computer memory of the last few years.



Appendix A

The inner workings of EMILE

At this moment of writing, the EMILE program consists of about 5500 lines of
C++-code. However, most of that is code for data type representation, user inter-
face, utility functions, various optimizations, etcetera. The algorithms themselves
are fairly simple. Each of the sections of this chapter focuses on a different algo-
rithm used in EMILE. For each algorithm, a synopsis is given, as well as explicit
pseudo-code, and a summary of the constants controlling the algorithm that can
be set by the user.

A.1 Gathering context/expression pairs.

Synopsis EMILE maintains a matrix M of the context/expression pairs it has
encountered. This routine updates this matrix, given text from some input I.

Algorithm

sub learn sentences(I)
while (there is input to be read) do

read the input I up to the next end-of-sentence marker;
set s := the sentence read, converted to a sequence of words;
if (length(s) ≤ max sentence length) then

for each triple (cl, e, cr) with cl̂êcr = s do
insert (cl̂“(.)”̂cr, e) into M ;

end for

end if

end while

end sub

User definable settings

141
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• max sentence length: sentences longer than this are ignored.

• end of sentence markers: a set of characters that EMILE interprets as
marking the end of a sentence.

• allow multi line sentences: a boolean variable. If this variable is set
to false, the end of an input line is considered to indicate the end of the
current sentence. If this variable is set to true, a sentence can span multiple
lines. In either case, the end of sentence markers also indicate the end
of the sentence, as does an empty line (i.e. two end-of-lines separated by
nothing but whitespace).

• ignore abbreviation periods: if the period symbol ‘.’ is used as an end-
of-sentence-marker, and this boolean variable is set to true, periods follow-
ing a single letter are not considered to indicate the end of a sentence.

• regular expression as marker: if this boolean variable is set to true, the
content of the setting end of sentence markers is interpreted as a regular
expression, using the syntax of Extended Regular Expressions as defined
in the regex(5) Unix man page. The standard C++ escape sequences
are recognized, i.e. ‘\n’ for newline, ‘\t’ for tab etcetera. The settings
of allow multi line sentences and ignore abbreviation periods are
ignored.

Although this is a more expressive mechanism for indicating end-of-sentence
markers, it is not more readable: for instance, the default settings of the
normal mode correspond to the regular expression

[.!;?]|\n[Ã\r\n\t]*\n|\r[Ã\r\n\t]*\r|^\\.|[^a-zA-Z]\\.|[^Ã\r\n\t].\\.

Notes When using regular expressions to mark the end of sentences, newlines
have to be explicitly included in the regular expression in order to be taken into
account. Note that on non-Unix systems, the ‘\n’ symbol refers to the end-of-line
marker customary on that system. The carriage return symbol ’\r’ can be used if
there is a need to explicitly take into account line endings of non-Unix files when
working on a Unix system.
An end-of-sentence marker is considered to be part of the sentence it is ending.
A sentence is converted into a sequence of words before it is searched for con-
text/expression pairs. A word is a nonempty sequence of alphanumeric characters,
or a single non-alphanumeric, non-whitespace symbol. Whitespace characters
(spaces, tabs, newlines and carriage returns) function as word separators where
necessary and are otherwise ignored.
For reasons of efficiency, contexts and expressions are not directly used as elements
of the matrix. Instead, the actual contexts and expressions are stored in a table,
and references to the entries in the table are used in the matrix.
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There is a compilation option to put Emile in ‘Morpheme Analysis’ mode. In
this mode, each word (using whitespace as a delimiter) is treated as a separate
element of S, and is split into single characters for analysis. The settings related
to end-of-sentence marking are ignored.

A.2 Extracting the grammatical types from the

matrix

Synopsis A type T = (TC , TE) is considered to have sufficient support if it
satisfies the following three conditions:

1. #(M ∩ (TC×TE)) ≥ #(TC × TE) · total support%

2. ∀c ∈ TC : #(M ∩ ({c}×TE)) ≥ #TE · context support%

3. ∀e ∈ TE : #(M ∩ (TC×{e})) ≥ #TC · expression support%

The program maintains a set G of grammatical types with sufficient support, and
with contexts and expressions of length at most max primary context length,
or max primary expression length, respectively. All these types are of maximal
size (under the constraint of having sufficient support), and all are at or above a
certain minimum size (as indicated by the settings min contexts per type and
min expressions per type).
An element (c, e) ∈M is considered covered by a type T if (c, e) ∈ TC ×TE. This
routine updates and enlarges G so that every element (c, e) ∈ M (that can be
covered by a type of minimum size) is covered by a type in G.

Algorithm

sub expand grammar(G)
for each T ∈ G do

call enlarge grammatical type(T );
if ((#TC < min contexts per type)

or (#TE < min expressions per type)) then
remove T from G;

end if

end for

for each (c, e) ∈M do

if (¬∃T ∈ G : (c, e) ∈ TC × TE) then
set T := ({c}, {e});
call enlarge grammatical type(T );
if ((#TC ≥ min contexts per type

or (#TE ≥ min expressions per type)) then
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insert T into G;
end if

end if

end for

end sub

sub enlarge grammatical type(T )
repeat

set X := {c′ a context | (TC ∪ {c′}, TE) has sufficient support,
length(c) ≤ max primary context length},

∪{e′ an expression | (TC , TE ∪ {e′}) has sufficient support,
length(e) ≤ max primary expression length};

if (X 6= ∅) then
nondeterministically select x from X;
if (x is a context) then

insert x into TC ;
else

insert x into TE;
end if

end if

until (X = ∅);
end sub

User definable settings

• max primary context length, max primary expression length: in order
to ensure that the set of types found will converge if sufficiently many
sentences are read, the search space can be limited to primary contexts and
expressions of bounded size.

• total support%, context support%, expression support%: these vari-
ables control the support required from the matrix for each type. The lower
these values, the larger the size of the types found. Note that lowering one
value while keeping the other values high will not have much effect.

• min contexts per type, min expressions per type: Types with fewer
contexts or expressions than indicated by these settings are discarded.

Notes The selection of x from X is not nondeterministic, but based on the
amount of support that would be added to the grammatical type.
For purposes of constructing a grammar, types of extremely small size usually
are not very interesting. Types with less than min contexts per type contexts
or min expressions per type expressions are discarded. This may cause some
elements (c, e) ∈M to be uncoverable.
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The type [0] is always set to the type of whole sentences, with ‘((),())’ as a
secondary context and all encountered sentences as secondary expressions.

Complexity The enlarge grammatical type subroutine maintains a signifi-
cant amount of auxiliary data to avoid having to repeat calculations to collect
the set X. Initialization of the auxiliary data has an execution time of order
O(#{(c, e) ∈ M | c ∈ TC ∨ e ∈ TE}), while each iteration of the repeat..until
loop has an average-case execution time of order O(#(TC ∪TE)) and a worst-case
execution time of order O(#{(c, e) ∈M | c ∈ TC ∨ e ∈ TE}).

A.3 Eliminating superfluous types

Synopsis It is possible that the contribution of some type to the coverage of
G is made (nearly) superfluous by types found later, i.e. most or all of the
context/expression pairs that are covered by that type, are also covered by other
types of G. This routine eliminates such types.

Algorithm

sub eliminate superfluous types(G)
set cover(*) = 0;
for each T ∈ G do

for each (c, e) ∈M ∩ (TC × TE) do
increment cover(c,e);

end for

end for

for each T ∈ G do

if (#{(c, e) ∈M ̂(TC × TE) | cover(c, e) = 1}
< type usefulness required) then

remove T from G;
for each (c, e) ∈M ∩ (TC × TE) do

decrement cover(c,e);
end for

end if

end for

end sub

User definable settings

• type usefulness required: this variable determines how useful a type
has to be (in terms of contributions to the coverage of G) in order to not
be discarded. Setting this to 0 will prevent types from being discarded,
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setting this to a high value will eliminate all but a few types of large size.
The default value is 1, which eliminates only types which do not contribute
anything.

Notes The types are checked in order of increasing absolute total support. This
means that if the matrix can be covered by either a lot of small types or a single
big one, probability favors the latter result.

A.4 Identifying characteristic and secondary

contexts and expressions

Synopsis This routine finds, for each type T ,

• the characteristic expressions of T , defined as those expressions which only
appear with contexts of no type or of type T .

• the characteristic contexts of T , defined analogously.

• the characteristic∗ expressions and contexts of T , defined as the character-
istic expressions and contexts of T if there are any, otherwise defaulting to
the primary expressions and contexts of T .

• the secondary expressions of T , defined as its primary expressions and those
expressions e satisfying

#{(c, e) | c ∈ T ∗C , (c, e) ∈M} ≥ #T ∗C · sec context support% (A.1)

• the secondary contexts of T , defined as its primary contexts and those
contexts c satisfying

#{(c, e) | e ∈ T ∗E, (c, e) ∈M} ≥ #T ∗E · sec context support% (A.2)

Algorithm

sub identify characteristic and secondary aspects(G)
for each T ∈ G do

set T ch
C := ∅

for each context c ∈ TC do

if ∀e : [(c, e) ∈M → (e ∈ TE ∨ ¬∃U ∈G : e∈UE)] then
insert c into T ch

C ;
end if

end for

set T ch
E := ∅
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for each expression e ∈ TE do

if ∀c : [(c, e) ∈M → (u ∈ TC ∨ ¬∃U ∈G : c∈UC)] then
insert e into T ch

E ;
end if

end for

if (T ch
C 6= ∅) then

set T ∗C := T ch
C ;

else

set T ∗C := TC ;
end if

if (T ch
E 6= ∅) then

set T ∗E := T ch
E ;

else

set T ∗E := TE;
end if

set T se
C := TC ;

for each context c do
if (#{e ∈ T ∗E | (c, e) ∈M} ≥ #T ∗E · sec context support%) then

insert c into T se
C ;

end if

end for

set T se
E := TE;

for each expression e do
if (#{c ∈ T ∗C | (c, e) ∈M} ≥ #T ∗C · sec expression support%) then

insert e into T se
E ;

end if

end for

end for

end sub

User definable settings

• sec context support%, sec expression support%: lower values for these
settings will increase the number of secondary contexts or expressions found.
Note that the effects of these settings are independent (unlike with the
settings for primary contexts and expressions).

• scsp for no characteristics, sesp for no characteristics%: if a type
has no characteristic expressions, the characteristic∗ expressions default to
the primary expressions. If required support percentages are low, this can
result in a single expression being taken as indicative of several types. To
prevent this, EMILE provides the setting scsp for no characteristics,
to be used instead of sec context support% when a type has no charac-
teristic expressions. Similar for sesp for no characteristics%.
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A.5 Deriving grammatical rules

Synopsis Emile uses the grammatical types it finds to infer grammatical deriva-
tion rules. A rule r : [T ]⇒ s0[T1]s1[T2] . . . sk is considered to be supported, if k = 0
and s0 ∈ T se

E , or if k ≥ 1 and for some i ≤ k,

#{e∈T ∗E | r with [Ti] replaced by e has support} ≥ #T ∗E ·rule support% (A.3)

An instantiation of a rule r : [T ] ⇒ s0[T1]s1 . . . sk, k ≥ 0, is an expression
e ∈ T se

E which can be obtained by replacing the type references [T1], . . . , [Tk]
in r by expressions e′1 ∈ (T1)

se
e , . . . , e

′
k ∈ (Tk)

se
e . A rule r for some type [T ] is

considered to be covered by other rules for [T ] if all of its instantiations are also
instantiations of one or more of the other rules.
EMILE tries to find a set of supported rules which contains no rules covered
by other rules, is capable of generating the original sample, and cannot easily be
reduced in size. To do this, the program maintains a set of used types Vused, which
initially contains only the whole-sentence type [0]. Whenever a type is added to
Vused, the program gathers all supported rules for all types of Vused which only
use types from Vused (note that for this purpose, rules for a type are considered to
be using that type). Then rules which are covered by other rules are eliminated,
until a set of rules R is obtained in which every rule has at least one instantiation
which is not shared with any other rule. The program adds types to Vused as long
as this will not result in a large increase in the size of the resulting rule-set.

Algorithm

sub derive rules(G,R)
for each T ∈ G do

set Rsup
T := {[T ]⇒ e | e ∈ T se

E };
set Rsup

T := Rsup
T ∪ {r | r is supported by Rsup

T . r uses [T ] and only [T ]};
set RT := Rsup

T ;
for each r ∈ RT do

if (∃r′ ∈ RT : r′ 6= r ∧ r′ covers r) then
remove r from RT ;

end if

end for

end for

set Vused := ∅;
set R := ∅;
set Rsup := ∅;
set Tadd := [0];
repeat

insert Tadd in Vused;
set Rsup := Rsup ∪Rsup

Tadd
;
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set R := RT ;
for each T ∈ G do

if (T 6∈ Vused) then

set Radd
T :=




r

r is supported by Rsup ∪Rsup
T ,

r uses both [T ] and [Tadd],
r uses no types outside Vused ∪ {T}




;

set Rsup
T := Rsup

T ∪Radd
T ;

set RT := R ∪ (RT ∩Rsup
T ) ∪Radd

T ;
for each r ∈ RT do

if (∃r′ ∈ RT : r′ 6= r ∧ r′ covers r) then
remove r from RT ;

end if

end for

end if

end for

if (∃T : #RT < #R + ruleset increase disallowed) then
select Tadd from G such that Tadd 6∈ Vused and #RT is minimal

end if

until (¬∃T : #RT < #R + ruleset increase disallowed);
for each r ∈ R do

if (R−{r} covers r) then
remove r from R;

end if

end for

end sub

User definable settings

• rule support%: this variable controls the support required for a rule before
it is considered for inclusion in the grammar. The lower this value, the more
rules will be found.

• rsp for no characteristics: if a type has no characteristic expressions,
the characteristic∗ expressions default to the primary expressions. If re-
quired support percentages are low, this can result in a single expression be-
ing taken as indicative of several types. To prevent this, EMILE provides the
setting rsp for no characteristics, to be used instead of rule support%

when a type has no characteristic expressions.

• ruleset increase disallowed%: this variable determines how useful a
type has to be (in terms of the resulting reduction in the number of rules)
in order to be used. Setting this to 0 requires types to reduce the number
of rules, setting this to 1 will include types as long as they don’t actually
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increase the size of the rule-set. Higher values will allow more types to be
included, at the expense of increasing the size of the rule-set.

Notes The sets RT are actually stored as changes to be applied to R.
For reasons of efficiency this routine only checks whether rules are covered by
single other rules, everywhere except at the very end. This decreases computation
time, and also allows for some other optimizations.
Covered rules are eliminated in order of increasing complexity. This means that
the final result will not contain any rule of which an abstraction exists that uses
only types in Vused and is supported.
Rules of the form [T ]⇒ [U ] are only allowed if #T se

E > #U se
E , to prevent loops.

For types T 6∈ Vused, the rules in RT for [T ] are retained for reference purposes.

A.6 Short-circuiting superfluous types

Synopsis If a type T ∈ G has only a single rule in R, or if there is only one
reference to [T ], then we can decrease the size of the rule-set, and remove T from
the set of used types, by substituting the rules of [T ] for all references to [T ].

Algorithm

sub short-circuit types(G,R)
for each [T ] ∈ Vused do

if (R contains only one rule for [T ]) then
let r ∈ R be the unique rule for [T ];
for each rule r′ ∈ R referring to [T ] do

remove r′ from R;
substitute r for [T ] in r′;
insert r′ into R;

end for

remove [T ] from Vused;
end if

if (R contains only one reference to [T ]) then
let r′ ∈ R be the unique rule referring to [T ];
remove r′ from R;
for each rule r ∈ R for [T ] do

substitute r for [T ] in r′;
insert r′ into R;

end for

remove [T ] from Vused;
end if

end for
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end sub

A.7 Parsing a sentence

Synopsis Given a set of rules, we will sometimes want to see whether a given
sentence is parsable with those rules. Furthermore, we will want to see what
types unknown words must be assigned in order to make the sentence parsable.
EMILE can check for parsability while allowing up to a user-settable number of
words to be assigned arbitrary types, using a recursive algorithm.

Algorithm

function parse phrase(R,s,[T ])
if (([T ]⇒ s) ∈ R) then

return 0;
else if (length(s) = 1) then

return 1;
else

set n := ∞;
for each rule ([T ]⇒ s0[T0]s1 . . . sk) ∈ R do

for each sequence (s′1, . . . , s
′
k) with s0̂s′1̂s1̂ . . . ̂s′k̂sk = s do

set n = min(n,
∑k

i=1 parse phrase(R, s′i, Ti));
end for

end for

return n;
end if

end function

function parse sentence(R,s)
if (parse phrase(R, s, [0]) ≤ parser tolerance) then

return true;
else

return false;
end if

end function

User definable settings

• parser tolerance: This setting is the maximum number of words to which
Emile will assign or reassign a type in order to make parsing of a sentence
possible.
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Notes Types are assigned ‘on the fly’ only to single words, not to larger expres-
sions.
Emile keeps track of the parser-tolerances used in the search: if a particular search
cannot possibly result in a better parsing than the best one found up to now, the
searching doesn’t take place.
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Samenvatting

Deze dissertatie bestaat uit drie delen.
Het eerste deel, getiteld ‘Blackwell Games’, gaat over het probleem van gedeter-
mineerdheid van Blackwell spellen, een klasse van oneindige spellen met imper-
fekte informatie, waarbij twee spelers tegelijkertijd zetten doen, de zetten gekozen
worden uit een eindige verzameling, het spel oneindig veel rondes duurt, en de
uitkomst van het spel wordt gegeven door een Borel-meetbare functie f op de
verzameling mogelijke series zetten. Elementaire bewijzen van gedetermineerd-
heid worden gegeven voor Blackwell spellen wiens uitkomst wordt gegeven door de
karakteristieke functie van een Borel verzameling met complexiteit tot Gδσ. Voor
algemene Borel functies geven we een reductie, afkomstig van D.A. Martin[16], tot
het al bekende resultaat van gedetermineerdheid van spellen met perfekte infor-
matie. We beschouwen ook Blackwell spellen wiens uitkomst wordt gegeven door
een functie die niet Borel meetbaar is, en formuleren een versie van het Axioma
van Gedetermineerdheid voor deze spellen. Tenslotte vergelijken we sommige van
de consequenties van dit ‘Axioma voor Blackwell Gedetermineerdheid’ met de
consequenties van het oorspronkelijke Axioma van Gedetermineerdheid.
In het tweede deel, getiteld ‘RandomWalks’, beschouwen we recurrentie in zelfver-
sterkende willekeurige reizen, waarbij de kanten in een graaf worden bereisd met
een waarschijnlijkheid die kan veranderen voor een tweede of latere doortocht.
We concentreren ons op het geval dat de waarschijnlijkheid voor een kant maar
één keer verandert, na de eerste keer dat de kant wordt bereisd. Als een speciaal
geval laten we zien dat de een-keer-versterkte willekeurige reis bijna zeker recur-
rent is als de versterking voldoende klein is (een uitbreiding van een resultaat
van T. Sellke[31]), en ook als de versterking voldoende groot is. Voor het laatste
resultaat gebruiken we een toepassing van nonstandaard analyse op grafentheorie.
Het derde deel, getiteld ‘The EMILE Grammar Inducer’, gaat over het EMILE
programma, een programma dat een tekst inleest, en zonder enige voorkennis
probeert om de grammatikale structuur van de taal te bepalen. De basiscon-
cepten en algoritmes die ten grondslag liggen aan het programma worden be-
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handeld, zowel als de resultaten van deze benadering, zowel in theorie als in
de praktijk. Het wordt betoogd dat natuurlijke talen voldoen aan een conditie
genaamd shallowness, ondiepheid, en dat dit betekent dat het EMILE programma
goed zal werken voor natuurlijke talen. In een aparte appendix wordt expliciete
pseudo-code gegeven voor de sub-algoritmes gebruikt in EMILE.



Abstract

This dissertation consists of three disjunct parts.
The first part, titled ‘Blackwell Games’, is about the problem of determinacy of
Blackwell games, a class of infinite games of imperfect information, where both
players simultaneously select moves from a finite set, infinitely many rounds are
played, and payoff is determined by a Borel measurable function f on the set of
possible resulting sequences of moves. We give elementary proofs of determinacy
for Blackwell games whose payoff function is an indicator function of a Borel set
up to complexity Gδσ. For general Borel payoff functions, we give a reduction,
found by D.A. Martin[16], to the known result of determinacy of Borel perfect
information games. We also consider Blackwell games whose payoff function is
not Borel measurable, and formulate an analogue of the Axiom of Determinacy
for these games, Finally, we compare some of the consequences of this ‘Axiom of
Blackwell Determinacy’ with those of the original Axiom of Determinacy.
In the second part, titled ‘Random Walks’, we consider recurrence in reinforced
random walks, where edges in a graph are traversed with probabilities that may
be different (reinforced) at second, third etc. traversals. We focus on the case
where the probability for any edge only changes once, after its first traversal.
As a special case, we show that the once-reinforced random walk on the infinite
ladder is almost surely recurrent if reinforcement is small (extending a result by
T. Sellke[31]), as well as when reinforcement is sufficiently large. For the last
result, we use an application of nonstandard analysis to graph theory.
The third part, titled ‘The EMILE Grammar Inducer’, is about the EMILE pro-
gram, a program that reads in a text, and without prior knowledge attempts to
determine the grammatical structure of the language. The basic concepts and
algorithms underlying the program are discussed, as well as the results of this ap-
proach, both in theory and in practice. It is argued that natural languages satisfy
the condition of shallowness, and that this implies that the EMILE program will
work well for natural languages. In a separate appendix, explicit pseudo-code for
each of the sub-algorithms of EMILE is given.
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