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Abstract

In this article we construct a free and σ-complete ultrafilter on the
set ω1, using the Axiom of Determinateness (AD). First we define for
each V ⊆ ω1 a perfect information game G(V ). The axiom AD guar-
antees that in each game G(V ), either the first or the second player
has a winning strategy. For several different constructions of V from
other sets, we construct winning strategies in the game G(V ). We show
that these constructions correspond to closure properties of the set {V |
player I has a winning strategy in G(V )}. Finally we show that this set
is a free and σ-complete ultrafilter on ω1.

1 Introduction

The set of ordinals ω1 = {α ∈ ORD | α is finite or countable} is a set of cardi-
nality ℵ1, the first uncountable cardinality. Let V ⊆ ω1. We will define auxiliary
perfect information games G(V ) in which two players (I and II) independently
construct countably many countable ordinals as subsets of the set of rational
numbers Q′ and try to ‘force’ the supremum into or out of V . The game can be
sketched as follows:

• The two players maintain separate (countable) collections of (initially
empty) subsets of Q′ .

• Each round, both players add a finite number of elements to finitely many
of their own subsets.

• At the end of the game, ‘after’ playing countably infinitely many rounds,
both players have generated countably many subsets of Q′ , each one rep-
resenting either a countable ordinal (if the set is well-ordered) or 0 (if it
isn’t).
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• If the supremum of these ordinals (which is itself a countable ordinal) is
in V , player I wins, otherwise player II wins.

It is well-known that in any two-player finite perfect information game G, one of
the two players always has a winning strategy. The Axiom of Determinateness
(AD) holds that this is also true for any countably infinite game G, i.e. any game
G of countably infinite maximum duration, with a countably infinite selection
of moves each turn. Since in the games G(V ), each move can be described
as a finite sequence of pairs of an index from some countable index-set and a
rational number, there are only countably many possible moves at each turn,
and AD applies. Hence under AD, in any game G(V ) either player I can force
the supremum to be an ordinal in V , or player II can force the supremum to
be an ordinal in ω1−V .

A σ-complete ultrafilter on a set X is a collection of subsets of X, closed
under countable intersection and taking supersets, and such that for each set
V ⊆ X, exactly one of V,X − V is in the ultrafilter. An ultrafilter is free if it is
not of the form {V ⊆ X | x ∈ V } for some x ∈ X. Free ultrafilters are used in
the study of certain classes of large ordinals, notably the measurable ordinals.

An ultrafilter U can be thought of as a partitioning of the subsets of X into
‘large’ subsets (those in U) and ‘small’ subsets (those not in U). The property
‘player I can force the supremum to be in V ’ intuitively seems likely to be a type
of ‘largeness’ property. And indeed, we will show that the collection of all sets
V ⊆ ω1, such that player I can win the game G(V ), is a free and σ-complete
ultrafilter on ω1.

2 Definitions

Definition 1 Let A and B be two countably infinite, disjoint sets. For any
subset V ⊆ ω1, define the game GA,B(V ) as follows:

• In any round i ≥ 1, first player I selects a finite set ai of pairs (a, q) ∈
A×Q′ , and then player II selects a finite set bi of pairs (b, r) ∈ B ×Q′ .

• Set I := A∪B, and define the result z by z := a1∪b1∪a2∪b2∪. . . ⊆ I×Q.

• Let the function π : P(Q′ )→ ω1 be defined by

π(R) :=

{

the order type of (R,<) if (R,<) is well-ordered
0 otherwise

Set ΠA,B(z) := supi∈I π({q ∈ Q′ | (i, q) ∈ z}).
Player I wins if ΠA,B(z) ∈ V , otherwise player II wins.

If we interpret ΠA,B as a function from P(I ×Q′ ) to ω1, then we can set

V A,B := Π−1
A,B[V ] = {z ⊆ I ×Q′ | ΠA,B(z) ∈ V }

and the winning condition of the game can be reformulated as ‘Player I wins if
z ∈ V A,B, otherwise player II wins’.
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Remark 2 For technical reasons, it is necessary at some places in the proof
to be able to react to one’s own moves as if they had been made by the oppo-
nent. This is done by temporarily considering some of one’s own subsets-under-
construction to belong to the other player, for the purpose of reacting to the
moves made in them. The ‘index-structure’ (A,B) used in the definition above
is used to facilitate this. When the distinction is not important, we write G(V ),
Π(z) and V for GA,B(V ), ΠA,B(z) and V A,B. Note that ΠA,B and V A,B depend
on A ∪ B only.

Formally, a strategy for player I in a gameG(V ) is a function f which takes an ar-
bitrary finite even-length sequence of moves 〈a1, b1, . . . , ak−1, bk−1〉 (the ‘moves
up to then’) as an argument and produces a move ak. Player I plays according
to a strategy f if ak = f(〈a1, b1, . . . , ak−1, bk−1〉) for all k. A strategy f for
player I in G(V ) is called a winning strategy if player I, playing according to f ,
will win the game no matter what moves player II plays, i.e. if for any sequence
〈b1, b2, . . .〉 of moves for player II, if we set ak = f(〈a1, b1, . . . , ak−1, bk−1〉) for
all k, then a1 ∪ b1 ∪ a2 ∪ b2 ∪ . . . ∈ V . Strategies and winning strategies for II
are defined in a like manner.

Theorem 3 Under AD, the set

U := {V ⊆ ω1 | player I has a winning strategy in G(V )}

is a free and σ-complete ultrafilter on ω1.

The proof of this follows after some lemmas.

3 Lemmas

First we need an auxiliary lemma to justify writing G(V ) for GA,B(V ) when
there are no other index-structures involved.

Lemma 4 If player I [II] has a winning strategy in a game GA,B(V ), then I

[II] has a winning strategy in GA′,B′(V ) for any index structure (A′,B′).

Proof:

Since A,B,A′,B′ are all countably infinite, there exist bijective mappings A ↔
A′ and B ↔ B′. These in turn induce bijective mappings between the moves,
games and (winning) strategies of GA,B(V ) and those of GA′,B′(V ).

2

The following lemmas each correspond to a different property. of an ultra-
filter.

Lemma 5 If player I has a winning strategy in the game G(V ), and V ⊆ W ,
then I has a winning strategy in G(W ).
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Proof:

Let f be a winning strategy for I in G(V ), and suppose that player I plays
according to f in the game G(W ). Then for any sequence of moves b1, b2, . . .
for player II,

z = a1 ∪ b1 ∪ a2 ∪ b2 ∪ . . . ∈ V ⊆W

So f is a winning strategy for I in G(W ) as well.
2

Lemma 6 If V is a singleton, then player II has a winning strategy in the
game G(V ).

Proof:

Suppose that V = {α} for some countable ordinal α. Then player II can force
Π(z) to be above α. For let B be player II’s index-set, let b ∈ B and let
{r1, r2, r3, . . .} ⊆ Q′ be a countable set of order-type α + 1. If in each round i,
player II plays (b, ri), then for any sequence of moves a1, a2, . . . for player I,

Π(z) = Π( ({b}×{r1, r2, r3 . . .}) ∪ a1 ∪ a2 ∪ . . .) ≥ π({r1, r2, r3, . . .}) = α+ 1

This is a winning strategy for player II.
2

Lemma 7 If player I has a winning strategy in the game G(V ), then player II
has a winning strategy in G(ω1−V ), and vica versa.

Proof:

Suppose that player I has a winning strategy f in the game GA,B(V ). Then
this is also a winning strategy for player II in the game GB,A(ω1−V ), except
that since II does not have the first move, player II’s response to any move is
always ‘delayed’ by one round. Formally, we construct a strategy g for player
II by setting

g(〈b1, a1, b2, a2, . . . , ak−1, bk〉) := f(〈a1, b1, a2, b2, . . . , ak−1, bk−1〉)

For any sequence of moves b1, b2, . . . for player I in GB,A(ω1−V ), if player II
plays according to g, then the resulting sequence of moves 〈b1, a1, b2, a2, . . .〉
corresponds to a sequence of moves 〈a1, b1, a2, b2, . . .〉 in the game GA,B(V ),
such that player I’s moves are according to the strategy f . Hence we have

z = b1 ∪ a1 ∪ b2 ∪ a2 ∪ . . . = a1 ∪ b1 ∪ a2 ∪ b2 ∪ . . . ∈ V

So g is a winning strategy for player II in GB,A(V ).
Now suppose that player II has a winning strategy g in the game GB,A(ω1−

V ). Then this is also a winning strategy for player I in the game GA,B(V ),
except that player I has a first move in which she does nothing. Formally, we
construct a strategy f for player I by setting

f(〈〉) := ∅, f(〈a1, b1, a2, b2, . . . , ak−1, bk−1〉) := g(〈b1, a2, b2, . . . , ak−1, bk−1〉)
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For any sequence of moves b1, b2, . . . for player II in GA,B(V ), if player I plays
according to f , then the resulting sequence of moves 〈∅, b1, a2, b2, a3, . . .〉 corre-
sponds to a sequence of moves 〈b1, a2, b2, a3, . . .〉 in the game GB,A(ω1−V ), such
that player II’s moves are according to the strategy g. Hence we have

z = ∅ ∪ b1 ∪ a2 ∪ b2 ∪ a3 ∪ . . . = b1 ∪ a2 ∪ b2 ∪ a3 ∪ . . . ∈ V

So f is a winning strategy for player I in GA,B(V ).
2

Lemma 8 Let (V i)i≥0 be a countable sequence of subsets of ω1. If for all i ≥ 0,
player II has a winning strategy in G(V i), then II has a winning strategy in
G(
⋃

i≥0 V
i).

Proof:

Assume that for all i ≥ 0, player II has a winning strategy in G(V i). Let (A,B)
be an index-structure for players I and II, and let (Bi)i≥0 be a partitioning of
B into a countably infinite number of disjoint countably infinite sets. Define
Ai = (A ∪ B) − Bi for i ≥ 1. Then for all i ≥ 1, (Ai,Bi) is a valid index-
structure. By Lemma 4 we can find1 winning strategies gi for player II in each
of the games GAi,Bi(V i).

Now let 〈a1, b1, a2, b2, . . .〉 be a sequence of moves, and suppose that all for
i ≥ 0 and k ≥ 1, b2i(2k−1) ∈ B

i. If we define for i ≥ 0 and k ≥ 1,

ai
1 = a1 ∪ b1 ∪ a2 ∪ . . . ∪ a2i

ai
k = a2i(2k−3)+1 ∪ b2i(2k−3)+1 ∪ a2i(2k−3)+2 ∪ . . . ∪ a2i(2k−1) if k > 1

bik= b2i(2k−1)

then for all i ≥ 0 and k ≥ 1, ai
k and bik are finite subsets of Ai ×Q′ and Bi ×Q′ ,

so 〈ai
1, b

i
1, a

i
2, b

i
2 . . .〉 is a valid sequence of moves in the game GAi,Bi(V i). So

construct the strategy g for player II in GA,B(V ) by setting, for i ≥ 0 and
k ≥ 1,

g(〈a1, b1, a2, . . . , a2i(2k−1)〉) = gi(〈ai
1, b

i
1, a

i
2, . . . , a

i
k〉)

It can easily be shown (inductively) that for all i ≥ 0 and k ≥ 1, b2i(2k−1) ∈ B
i,

and hence the strategy g is well-defined. Moreover, for all i ≥ 0 and k ≥ 1,

bik = gi(〈ai
1, b

i
1, a

i
2, . . . , a

i
k〉)

so for all i ≥ 0, 〈ai
1, b

i
1, a

i
2, b

i
2 . . .〉 is a sequence of moves in the game GAi,Bi(V i)

in which player II’s moves are according to the strategy gi. It follows that for
all i ≥ 0,

z = a1 ∪ b1 ∪ a2 ∪ b2 ∪ . . . = ai
1 ∪ b

i
1 ∪ a

i
2 ∪ b

i
2 ∪ . . . ∈ ω1−V

i

1This does not require the Axiom of Choice. Consider an auxiliary game where player I
first selects i ≥ 0, and the players then play GAi,Bi (V i). Obviously player I can’t have a

winning strategy, so by AD, player II has a winning strategy, from which the strategies gi can
be extracted.
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and therefore

z = a1 ∪ b1 ∪ a2 ∪ b2 ∪ . . . ∈
⋂

i≥0

ω1−V
i = ω1 − V

So g is a winning strategy for player II in the game GA,B(V ).
2

4 Conclusions

Theorem 3 Under AD, the set

U := {V ⊆ ω1 | player I has a winning strategy in G(V )}

is a free and σ-complete ultrafilter on ω1.

Proof:

In any game GA,B(V ), there are only countably many possible moves each turn,
since A, B and Q′ are all countable, and therefore there are only countably many
different finite collections of pairs (a, q) ∈ A × Q′ or (b, q) ∈ B × Q′ . Hence the
Axiom of Determinateness applies, and we have that for all V ⊆ ω1:

V ∈ U ⇔ player I has a winning strategy in G(V )

V 6∈ U ⇔ player II has a winning strategy in G(V )

The previous lemmas therefore yield the following properties of U :

1. For any V,W ⊆ ω1, if V ∈ U and V ⊆W , then W ∈ U .

2. For any V ⊆ ω1, if V is a singleton, then V 6∈ U .

3. For any V ⊆ ω1, V ∈ U if and only if ω1−V 6∈ U .

4. For any sequence Vi ⊆ ω1, if Vi 6∈ U for all i ≥ 0, then
⋃

i≥0 Vi 6∈ U .

and from the third and fourth property we can derive

5 For any sequence Vi ⊆ ω1, if Vi ∈ U for all i ≥ 0, then
⋂

i≥0 Vi ∈ U .

So U is a free and σ-complete ultrafilter on ω1.
2

Example 9 Some examples of V ∈ U and the corresponding winning strategies
for player I in G(V ) are:

• V = ω1: Trivial.

• V is co-countable: Player I constructs the ordinal sup(ω1−V ) + 1.

• V = {ω · α | α ∈ ω1}: There exists an order-isomorphic bijection h :
B ×Q′ → A×Q′ <0. Each turn player I copies the moves player II makes
using this bijection h, and then add the points {0, 1, 2, . . . , k} to each one
of her non-empty sets, where k is the number of the current round. In this
manner, for each subset of Q′ produced by player II, player I produces a
subset that is order-isomorphic, followed by a ‘tail’ of ω points.
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