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Abstract. This article is about recurrence in reinforced random walks, where edges in a
graph are traversed with probabilities that may be different (reinforced) at second, third etc.
traversals. After a brief review of general theory, we focus on the case where the proba-
bility for any edge only changes once, after its first traversal. As a special case, we show
that the once-reinforced random walk on the infinite ladder is almost surely recurrent if
reinforcement is small, extending a result by Thomas Sellke from an at this time unpub-
lished article[7]. Then we adapt these techniques to show that for a class of graphs which
generalizes the infinite ladder, recurrence also holds for sufficiently large reinforcements.
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1. Introduction

In the orthodox random walk, the probability of traversing a specific street from
a specific intersection is always the same, unaffected by anything that happened
before. In this paper, we will study reinforced random walks, where traversing a
street changes the probabilities for that street. In terms of the Drunkard’s Walk
example, the drunkard vaguely recognizes streets he has walked before, and is ei-
ther more likely to traverse them (as he considers them safe) or less likely (as he
considers them boring), depending on the conditions of the reinforcement. Rein-
forced random walks were first introduced by Diaconis and Coppersmith[1], and
later generalized by Davis[2] and Pemantle[6]
This paper presumes some knowledge of graph theory and probability theory,
although an effort has been made to make it as self-contained as possible.
The paper has the following structure. We start in Section 2 by characterizing
recurrence of non-reinforced random walks. The basic concepts and techniques
introduced in this section will be used throughout the rest of this paper, as will
the results themselves. In Section 3 we will introduce reinforced random walks,
and review some of their general properties. Section 4 will focus on a more spe-
cific reinforcement scheme, where traversing an edge more than once does not
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cause additional reinforcement. Random walks on several classes of graphs will
be considered, including the square lattice graph on ZZ × {1, . . . , n}. In Section
5, we adapt these techniques to show recurrence on a particular class of graphs for
random walks with large reinforcements.

2. The Non-Reinforced Random Walk

In this section we will consider the non-reinforced random walk. We will start by
reviewing notational conventions, defining the non-reinforced random walk and
giving several characterizations of recurrence for this walk. Next we will intro-
duce such basic concepts as martingales, stopping times and harmonic functions,
and show how martingales naturally arise from random walks. Then we will char-
acterize recurrence of non-reinforced random walks on graphs in terms of the exis-
tence of certain superharmonic functions on the vertices of these graphs, and give
several examples of the application of these theorems to specific graphs. Finally,
we will use a correspondence with electrical circuit equations to derive some re-
sults about recurrence on subgraphs of a known graph. As all but the final results
are common to many random walk papers, proofs will be omitted.
The random walks considered in this paper are walks on the edges of weighted
graphs with countably infinitely many vertices.

Remark 1. We will assume that any given graph is connected, that there are no
‘degenerate’ edges of weight 0, and that each vertex has only finitely many neigh-
bors. We will also assume that any given graph is simple (i.e. without loops or
parallel edges) unless explicitly stated otherwise. The reader is invited to verify
for him- or herself that all definitions, proofs and results in this paper can easily be
extended to non-simple graphs. Indeed, the generalization to non-simple graphs of
Lemma 11 will be used in the proof of Theorem 8. However, since this extension
does not add anything conceptually, and since it is convenient to be able to denote
edges and arcs by their endpoints, we will concern ourselves with simple graphs,
and postulate generalizations to non-simple graphs when necessary.

Notation. We denote a weighted graph G as G = (V, E, w), where V and E are
the sets of vertices and edges of G, and w : E → IR>0 is its weight function. Edges
are denoted by their endpoints, as in ‘the edge uv’. Note that uv and vu denote the
same edge. Whenever the order of the vertices is important (for instance, when we
want to indicate the direction in which an edge has been traversed), we use arcs
(oriented edges), denoted as in ‘the arc −→uv’, instead of edges. u and v are called
the tail and head of −→uv, respectively.
Some other notational conventions:

– #S denotes the size of a set S.
– v and u are used for vertices.
– NG(v) denotes the neighbor set of a vertex v in a graph G = (V, E, w), i.e.

the set of vertices u such that uv ∈ E.
– wG(v) denotes the total weight

∑

u∈N(v) w(vu) of the edges adjacent to v.
– ρG(v) denotes the degree of v in G, i.e. the number of adjacent edges.
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Fig. 1. The first few steps of a random walk on the square lattice on ZZ 2.

– dG(v, u) denotes the distance in G between the vertex v and the vertex u (i.e.
the number of edges contained in the shortest v − u path in G).

– dG(v, F ) denotes the distance in G between a vertex v and a vertex set F .

The index G is omitted when no confusion is possible.

A random walk is a stochastic process of traversing the edges of a graph, where,
each time a vertex is reached, the random walk continues over a randomly se-
lected adjacent edge. Specifically, the non-reinforced random walk on a graph
G = (V, E, w) starting at a vertex v0 ∈ V , is the following stochastic process:

– We start with the vertex v0.
– Next, we randomly pick an edge v0v1 ∈ E that connects v0 with some other

vertex v1 ∈ V . All candidate edges have a probability of being picked propor-
tional to their weight. The random walk is said to traverse the edge v0v1, and
to visit the vertex v1 at time 1.

– Next, we randomly pick an edge v1v2 ∈ E that connects v1 with some other
vertex v2 ∈ V , in the same manner as in the previous step.

– Continuing in this manner, we obtain an infinite path v0v1v2v3 . . ..

More formally,

Definition 1. A non-reinforced random walk on a weighted graph G = (V, E, w)
is a series of stochastic variables v0, v1, . . . ∈ V such that for any time t ∈ IN ,

P (vt+1 = u | Ft) =

{

w(vtu)
w(vt)

if u ∈ N (vt)

0 otherwise
(1)

where Ft denotes the σ-algebra of the history up to time t. Note that by our as-
sumptions on graphs, N (v) 6= ∅ for all v ∈ V .

Notation. vt always denotes the location of the random walk at time t. Sometimes
we write v0v1v2 . . . for the random walk itself. Throughout this paper s and t are
used for (integer) times, and the use of t as a subscript indicates a (stochastic)
variable whose contents changes over time (such as vt).
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Definition 2. A realization of a random walk is said to be recurrent if every vertex
is visited infinitely often, and transient if every vertex is visited only finitely many
times.

The question we are mainly concerned with in this paper, is under what condi-
tions a random walk is recurrent almost surely (i.e. with probability 1). For non-
reinforced random walks we have the following observations:

Lemma 1. Let G=(V, E, w) be a weighted graph, and consider the non-reinforced
random walk on G starting in a vertex v0. Then, depending on G, the random walk
is either almost surely recurrent or almost surely transient.

Lemma 2. Let G = (V, E, w) be a weighted graph, F ⊂ V a finite set of vertices
of G, and v ∈ F . Then the following are equivalent:

(i) Any non-reinforced random walk on G is almost surely recurrent.
(ii) The non-reinforced random walk on G starting in v is almost surely recurrent.

(iii) The non-reinforced random walk on G starting in v returns to v almost surely.
(iv) Any non-reinforced random walk on G visits F almost surely.

Our main tools for showing recurrence of random walks will be the concept of
martingales and the Optional Stopping Theorem.

Definition 3. A series of stochastic variables (Mt)t∈IN is called a martingale if
for all t ∈ IN ,

Mt = E(Mt+1 | Ft) (2)

where E(Mt+1 | Ft) denotes the expectation, at time t, of the value of Mt+1.

Definition 4. A series of stochastic variables (Mt)t∈IN is called a supermartin-
gale [submartingale] if for all t ∈ IN ,

Mt ≥ [≤] E(Mt+1 | Ft) (3)

It is easy to see that if M is a martingale, then E(Mt) = M0 for any time t ∈ IN .
The Optional Stopping Theorem for Martingales basically states that the same
holds for the expectation of the value of the martingale at times which are defined
in terms of states or conditions, such as the first time at which the value of the
martingale is < 0 or > 100. To state the theorem, we need the concept of stopping
times.

Definition 5. A stopping time is a stochastic variable τ , taking values in IN ∪
{∞}, such that for all t ∈ IN , the history up to time t completely determines
whether τ = t or not.

Stopping times are usually defined in the manner of ‘let τ be the first time at which
some condition holds’. Often we are only interested in the course of a random walk
up to a certain event, such as its first visit to some given vertex v. In that case we
write ‘the random walk which stops at time τ ’, ‘the random walk which stops as
soon as some condition holds’, or even ‘the random walk which stops at v’.
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Theorem 1 (Optional Stopping Theorem for Martingales). Let Mt be a mar-
tingale [supermartingale, submartingale] and τ a stopping time such that τ < ∞
almost surely. If Mt is bounded [bounded from below, bounded from above] for
t < τ , then

M0 = [≥,≤]E(Mτ ) (4)

and more generally
Mt0 = [≥,≤]E(Mτ | Ft0) (5)

if t0 ≤ τ .

Kakutani[5] found that random walks give rise to martingales naturally, if we can
find a function on the vertex set of the graph with the property of harmonicity:

Definition 6. Let G = (V, E, w) be a weighted graph, and let h : V → IR be a
function. We say that h is harmonic [superharmonic, subharmonic] on a vertexset
V ′ ⊂ V if for all v ∈ V ′,

h(v) = [≥,≤]
∑

u∈N(v)

h(u)
w(vu)

w(v)
(6)

or, equivalently,
∑

u∈N(v)

w(vu)∆h(−→vu) = [≤,≥] 0 (7)

where ∆h(−→vu) denotes h(u) − h(v).

Lemma 3. Let G = (V, E, w) be a weighted graph, and let h : V → IR be a
harmonic [superharmonic,subharmonic] function on a subset V ′ ⊂ V . Consider
a non-reinforced random walk on G, and define

Mt =

t
∑

t′=0

{

∆h(−−−−−→vt′vt′+1) if vt′ ∈ V ′

0 otherwise
(8)

for t ∈ IN . Then M is a martingale [supermartingale, submartingale]. Further-
more, as long as V − V ′ has not yet been visited,

Mt = h(vt) − h(v0) (9)

More about martingales may be found in [3].
Now, if h is a superharmonic function on (a subset of) the vertex set V of a graph
G then the Optional Stopping Theorem for Martingales places bounds on the ex-
pected values of h(vt). We can use this to characterize recurrence of random walks
in terms of the existence of superharmonic functions with certain properties.

Definition 7. Let G = (V, E, w) be a weighted graph, and let h : V → IR be a
function. We say that h(v) goes to infinity if v goes to infinity if

∀r∈IR ∃n∈IN ∀v∈V (dG(v0, v)>n ⇒ h(v)>r) (10)

For the graphs we are concerned about, in which no vertex has infinitely many
neighbors, this is equivalent to the condition that

for each r ∈ IR, {v ∈ V | h(v) < r} is finite (11)
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Theorem 2. Let G = (V, E, w) be a weighted graph. Then non-reinforced ran-
dom walks on G are almost surely recurrent if there exists a function h : V → IR
satisfying

1. h is superharmonic everywhere except on some finite set F .
2. h(v) goes to infinity if v goes to infinity.

Conversely, if non-reinforced random walks on G are almost surely recurrent, then
a function h as above exists, and F may be chosen to be an arbitrary non-empty
finite set.

Example 1. The random walk on the square lattice graph on ZZ 2 with unit weights
is almost surely recurrent.

Proof
Let h : ZZ2 → IR be defined by

h(x, y) =







log(1/12) if (x, y) = (0, 0)
log(1/4) if (x, y) = (0,±1) or (x, y) = (±1, 0)

log(x2 + y2 − 1) otherwise
(12)

Then h satisfies the conditions of theorem 2, with F = {(0, 0)}.
2

Example 2. For any n ∈ IN >0, the random walks on the square lattice graphs on
ZZ × {1, . . . , n} and ZZ × (ZZ/nZZ) with unit weights are almost surely recurrent.

Proof
Let h : (ZZ × {1 . . .n}) → IR be defined by

h(x, y) = |x| (13)

Then h satisfies the conditions of theorem 2, with F = {(0, y) | 1 ≤ y ≤ n}. The
proof for the cylinder lattice ZZ × (ZZ/nZZ) is completely analogous.

2

Interestingly enough, the non-recurrence of random walks on a graph can also be
characterized in terms of the existence of certain superharmonic functions.

Theorem 3. Let G = (V, E, w) be a weighted graph. Then non-reinforced ran-
dom walks on G are not almost surely recurrent if and only if there exists a bounded
non-constant function h : V → IR that is superharmonic on V .

Example 3. The random walk on the cubic lattice graph on ZZ 3 is not almost surely
recurrent.

Proof
Let h : ZZ3 → [0, 6−1/2] be defined by

h(x, y, z) =
1

(x2 + y2 + z2 + 6)1/2
(14)
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Using a truncated Taylor Series expansion of h, we can show that for all x, y, z ∈
ZZ ,

h(x + 1, y, z) + h(x − 1, y, z) ≤ 2h(x, y, z) +
2x2 − y2 − z2

(x2 + y2 + z2 + 6)5/2
(15)

Analogous inequalities hold for h(x, y +1, z)+h(x, y−1, z) and h(x, y, z +1)+
h(x, y, z − 1). Taking the sum of these inequalities yields the superharmonicity
inequality.

2

Example 4. Let G = (V, E, w) be a weighted graph with V = {vn | n ∈ ZZ}, and
E = {vnvn+1 | n ∈ ZZ}.1 Then random walks on G are almost surely recurrent
if and only if

∑−1
n=−∞(1/w(vnvn+1)) and

∑∞
n=0(1/w(vnvn+1)) both diverge.

Proof
If
∑∞

n=0(1/w(vnvn+1)) converges to c ∈ IR, then define h : V → [0, c] by setting
h(vn) = max(c,

∑∞
k=n(1/w(vkvk+1))) for n ∈ ZZ . It is easily verified that h

is non-constant, harmonic on V − {v0} and superharmonic on {v0}, fulfilling
the conditions of Theorem 3. Likewise for the case that

∑−1
n=−∞(1/w(vnvn+1))

converges.
Now suppose

∑−1
n=−∞(1/w(vnvn+1)) and

∑∞
n=0(1/w(vnvn+1)) both diverge

to ∞. Then define h : V → IR≥0 by setting h(vn) =
∑n−1

k=0(1/w(vkvk+1)) for
n ≥ 0 and h(vn) =

∑−1
k=−n(1/w(vkvk+1)) for n < 0. Again it is easily verified

that h is non-constant, h(vn) → ∞ if n → ∞ or n → −∞, and h is harmonic on
V − {v0}, fulfilling the conditions of Theorem 2

2

The harmonicity equations are the same as the equations governing electrical cur-
rent and potential levels in networks of resistors. This is not surprising, since elec-
trical current can be viewed as a statistical universe’s worth of electrons traversing
a network randomly. This connection was explored by Doyle and Snell [4]:

Lemma 4. Let G = (V, E, w) be a weighted graph, let F ⊂ V be a nonempty set
of stopping positions, and consider the non-reinforced random walk on G starting
in a vertex v0, and stopping as soon as a vertex in F is reached. Define the function
H : V → IR by

H(v) =
1

w(v)
E(#{t < τ | vt = v}) (16)

where τ denotes the stopping time of the walk. Then H is well-defined, and satisfies

∑

u∈N(v)

w(vu)(H(v) − H(u)) =

{

1 if v = v0

0 if v 6= v0
(17)

on V − F , i.e. H is harmonic on V − F − {v0} and superharmonic on {v0}.
Now, we can convert G to an electrical circuit, with each edge e corresponding to
a resistor of resistance 1/w(e), and electrical poles connected to v0 and F . If we

1 The superscript index vn is used here to avoid confusion with the temporal index vt.



8 REINFORCED RANDOM WALKS

apply sufficient potential difference to generate a current of 1 unit, then at each
node v ∈ V , the potential difference with F will be equal to H(v).
As a consequence, H(v0) is the maximum of H . Furthermore, since H(v0) is the
potential difference between v0 and F necessary to generate a current of 1 unit,
it is also equal to the resistance of the electrical circuit between v and F . Finally,
for each edge vu, the current flowing through vu is at most 1 (the total current
flowing through the circuit), and thus the potential difference |H(v) − H(u)| is at
most 1/w(vu).

Proof
See Doyle and Snell [4]. Note that for each vertex v there is at least one path from
v to F , which will be traversed with positive probability each time v is visited, and
therefore the expected number of visits to v will be finite and H(v) is well-defined.

2

For random walks without stopping positions, there is no direct correspondence
with electrical networks, but we have the following result, also by Doyle and Snell:

Lemma 5. Let G=(V, E, w) be a weighted graph, and consider the non-reinforced
random walk on G starting in a vertex v0. For n ∈ IN , let Fn ⊂ V be the set of
vertices at distance n from v0, and let Hn be the corresponding function from
Lemma 4. Then the non-reinforced random walk on G is recurrent if and only if
limn→∞ Hn(v0) = ∞.

Now taking a subgraph corresponds to removing some connections in the electrical
circuit and increasing the resistance of other connections, both of which increase
the electrical resistance of the circuit as a whole. Hence, this perspective yields the
following results:

Corollary 1. Let G = (V, E, w) be a weighted graph, let G′ = (V ′, E′, w′) be
a subgraph (i.e. V ′ ⊂ V , E′ ⊂ E and for all e ∈ E′, w′(e) ≤ w(e)), and let
F ⊂ V ′ be a nonempty set of stopping positions. Consider the non-reinforced
random walks on G and G′ starting in a vertex v0 ∈ V ′, and stopping as soon as a
vertex in F is reached. Let H and H ′ be the corresponding functions from Lemma
4. Then H(v0) ≤ H ′(v0).

Theorem 4. Let G = (V, E, w) be a weighted graph, such that non-reinforced
random walks on G are almost surely recurrent. If G′ = (V ′, E′, w′) is a subgraph
of G, then random walks on G′ are almost surely recurrent.

3. Reinforced Random Walks

In this section, we will introduce the concept of reinforced random walks. We
will compare them with non-reinforced random walks, give analogs of results and
techniques from the previous section, and show that under some very general con-
ditions reinforced random walks on trees are almost surely recurrent. Finally we
will give a sufficient condition for recurrence of reinforced random walks on gen-
eral graphs, which we will use in later sections.
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In a reinforced random walk, when an edge has been traversed we change the
probability that it will be traversed again, by increasing or decreasing the weight
of the edge. In general reinforced random walks, the new weight may depend on
many things, such as the edge in question, the number of times it has been traversed
before, the time of traversal and the pattern formed by edges traversed at previous
times, etc. etc. Davis [2] defines the category of reinforced random walks of matrix
type, where for each edge vu, the current weight of vu is determined solely by the
number of times kt(vu) it has been traversed up to then, and is not influenced by
anything that has happened to any other edge. Note that in general walks of matrix
type, the relationship between current weight and number of traversals may be
different for each edge. In this paper we concern ourselves with a specific subclass
of walks of matrix type, where a sequence (δk)k∈IN is given which is the same for
all edges, and the current weight of an edge at any given time is determined by
multiplying its original weight by δkt(vu). A formal definition:

Definition 8. Let (δk)k∈IN be a sequence of strictly positive real numbers, Set the
weight of vu at time t to

wt(vu) = δkt(vu)w(vu) (18)

where kt(vu) denotes the number of traversals of vu up to time t, i.e.

kt(vu) = # {t′ < t | vt′vt′+1 = vu} (19)

A reinforced random walk on a graph G = (V, E, w) with reinforcement sequence
(δk)k∈IN , is a series of stochastic variables v0, v1, . . . ∈ V such that for all t ∈ IN ,

P (vt+1 = u | Ft) =

{

wt(vtu)
wt(vt)

if u ∈ N (vt)

0 otherwise
(20)

Recurrence and transience are defined in the same manner as before.

Remark 2. The random walks defined above are similar but not identical to Davis’
random walks of sequence type, where the current weight of an edge vu is defined
as wt(vu) = w0(vu) + δkt(vu) for some non-descending sequence (δk)k∈IN [2].
Davis gave many results for walks of this type on the linear lattice ZZ , most of
which also hold for the random walks defined above. In this paper, we focus on
more general classes of graphs.

There are a number of differences between a reinforced and a non-reinforced ran-
dom walk. For instance, a reinforced random walk is influenced by its history, and
hence we might want to consider random walks with initial states in which some
edges are considered to have been traversed already. Another difference is that if
the reinforcement increases sharply enough, the random walk might get ‘stuck’ on
an edge:
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Theorem 5. Let G = (V, E, w) be a weighted graph, and let (δk)k∈IN be such
that

∞
∑

k=0

1

δk
converges. (21)

Then for any edge vu ∈ E, and all random walks on G, there exists a t0 ≥ 0 such
that

P (∀t > t0 : vt ∈ {v, u}) > 0 (22)

Proof
Since G is connected, every point is reachable, and hence there exists a t0 ∈ IN
such that with non-zero probability v is visited at time t0. Assume that it has. Then
the probability that from time t0 on, the random walk will keep traveling from v
to u and back again, is

∞
∏

i=0

wt0+i(vu)

wt0+i(vt0+i)
(23)

≥
∞
∏

i=0

δkt0 (vu)+iw(vu)

c + δkt0 (vu)+iw(vu)
(24)

≥
∞
∏

k=kt0(vu)

e−c/(δkw(vu)) (25)

= e
−c/w(vu)·

∑

∞

k=kt0
(vu)

(1/δk)
(26)

> 0 (27)

where c is the total weight assigned at time t to edges other than vu that are incident
with v or u.

2

The converse implication, that if
∑

k∈IN δk diverges, the random walk will almost
surely not get ‘stuck’, does not hold in general.2However, it does hold for non-
descending sequences, and for general sequences it is possible to come close, as
the following analogs of Lemma’s 1 and 2 show:

Lemma 6. Let G = (V, E, w) be a weighted graph, and let (δk)k∈IN be such that

∞
∑

j=0

1

max(δ0, δ1, . . . , δj)
diverges. (28)

Then a reinforced random walk on G starting from any initial state will almost
surely visit infinitely many vertices, and

P (the walk is transient) + P (the walk is recurrent) = 1 (29)

2 For instance, if G is a tree with unit weights on which non-reinforced random walks
are almost surely recurrent, then it can be shown that the reinforced random walk on G
with reinforcement sequence (δk)k∈IN = (1, 2, 1, 4, 1, 8, 1, 16, . . .) starting from a vertex
v0 almost surely eventually stays within {v0} ∪ N(v0).
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Proof
The first assertion follows from the second, since both transient and recurrent
walks visit infinitely many vertices. To prove the second assertion it suffices to
show that for all v, u ∈ V

P (v is visited infinitely often and u only finitely often) = 0 (30)

If we can show that the above holds for vertices v, u ∈ V with vu ∈ E, then
the general result follows by induction on the distance dG(v, u). So let v, u ∈ V
with vu ∈ E. Fix t0 ∈ IN , and suppose that u has not been visited since time
t0 ∈ IN , and at some time t > t0 v is visited again for the k-th time. Then
wt(v) ≤ w(v) max{δ0, . . . , δ2k}, and since vu has been traversed at most t0
times, wt(vu) ≥ w(vu) min{δ0, . . . , δt0}. Hence, the probability of not imme-
diately traversing vu in this situation is at most

1 − c/max{δ0, . . . , δ2k} < e−c/max{δ0 ,...,δ2k} (31)

where c = w(vu) min{δ0, δ1, . . . , δt0}/w(v).
Therefore, applying induction on k, we have that for all k ≥ 1,

P (u is not visited between t0 and the k + 1-th visit to v)(32)

≤
k
∏

k′=1

e−c/max(δ0,...,δ2k′ ) (33)

= e−c·
∑

k

k′=1
(1/max(δ0 ,...,δ2k′ )) (34)

Consequently

P (v is visited infinitely often and u never after time t0)

≤ e−c
∑

∞

k=1
(1/max(δ0,...,δ2k)) (35)

= 0 (36)

Summing over all times t0 ∈ IN gives the desired result.
2

Lemma 7. Let G = (V, E, w) be a weighted graph, F ⊂ V a finite set of vertices
of G, and v0 ∈ V . Let (δk)k∈IN be such that equation (28) holds. Then for the
reinforced random walk on G starting from v0, the following are equivalent:

(i) The reinforced random walk on G starting from v0 is almost surely recurrent.
(ii) For any t0 ∈ IN , and any history up to time t0, F will be (re)visited at some

time at or after time t0 almost surely.

Proof
(i) ⇒ (ii) is trivial. If (ii) holds, then by applying it repeatedly we find that the
reinforced random walk on G starting from v0 will almost surely visit F infinitely
often. Then the random walk is almost surely not transient, and by the previous
Lemma, this implies it is almost surely recurrent.

2
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Remark 3. In condition (ii) of Lemma 7, conceptually we restart the walk at time
t0. i.e. we look at a walk which starts at time t0, with t0 traversals part of a ‘fixed’
history up to time t0 (as opposed to starting at time 0 with a blank initial state).
If all such restarted walks can be shown to visit F almost surely, Lemma 7 states
that the original reinforced random walk is almost surely recurrent.

Lemma 8. For random walks on weighted trees, the direction in which an edge is
traversed is the same at all odd-numbered traversals (and opposite to the direction
of traversal at all even-numbered traversals). This allows us to replace, for rein-
forced random walks on weighted trees, the condition of Lemma’s 6 and 7 by the
condition that

∞
∑

k=0

(1/δ2k) and
∞
∑

k=0

(1/δ2k+1) both diverge. (37)

Proof
Consider a random walk on a weighted tree G = (V, E, w), and assume that
equation (37) holds. In order to show that the conclusions of Lemma’s 6 and 7
hold, it suffices to show that for all vertices v, u ∈ V with vu ∈ E,

P (v is visited infinitely often and u only finitely often) = 0 (38)

So let v ∈ V , and let u0, u1, . . . , um be the neighbors of v in G, with u0 being
the unique neighbor of v that is on a path between v and v0 if v 6= v0. Set, for
i ≤ m, k ∈ IN ,

Ri
k = δ2k+1w(vui) if i = 0 and v 6= v0, Ri

k = δ2kw(vui) otherwise (39)

Then Ri
k is the weight of the edge vui if v is visited and the arc vui has been

traversed (in that direction) k times before.
The next part of the proof is based on a proof of Herman Rubin concerning a
generalized Polya Urn problem [2]. Let Y i

k be independent exponential random
variables such that E(Y i

k ) = 1/Ri
k,3 and put

Ai =

{

k
∑

k′=0

Y i
k′, k′ ≥ 0

}

for i ≤ m (40)

2

Define a sequence of edges vui by making the k-th element of the sequence vui

if the k-th smallest element of A0 ∪ . . .∪ Am is from Ai. Now since by equation
(37)

for all i ≤ m,
∞
∑

k=0

1

Ri
k

diverges. (41)

we have that almost surely

for all i ≤ m,
∞
∑

k=0

Y i
k′ diverges. (42)

3 I.e. the probability distribution of Y i

k is given by P (Y i

k > r) = e−rR
i

k for all r ∈ IR
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and hence almost surely vui will appear infinitely often in the sequence for all
i ≤ m.
As it turns out, this sequence has exactly the same probability distribution as the
sequence of edges traversed from v in the reinforced random walk. In other words,
we may decide that at visits to v we traverse successive arcs of the sequence, with-
out changing any probabilities. The proof of this relies on properties of exponential
random variables, and is straightforward but cumbersome. Interested readers are
referred to Rubin’s proof [2]. We conclude that equation (38) holds.

2

Now let us consider recurrence for reinforced random walks. The proofs given in
the previous section used the fact that, if a functionh on the vertexset of a weighted
graph G is harmonic, then in a non-reinforced random walk, h(vt) behaves like a
martingale. This does not in general hold for reinforced random walks. If h is
a harmonic function, then a vertex which has neighbors with higher h-values will
also have neighbors with lower h-values, but the probabilities of the corresponding
edges being traversed are not necessarily balanced, or even constant over time. In
order to find an analog of Lemma 3, we will need to compensate for the difference
in probabilities.

Lemma 9. Let G = (V, E, w) be a weighted graph, and let h : V → IR be a
harmonic [superharmonic, subharmonic] function on a subset V ′ ⊂ V . Consider
the reinforced random walk with reinforcement sequence (δk)k∈IN and define

Mt =

t
∑

t′=0

{

∆h(−−−−−→vt′vt′+1)

δk
t′

(v
t′

v
t′+1)

if vt′ ∈ V ′

0 otherwise
(43)

for t ∈ IN , where (as before) ∆h(−→vu) denotes h(u)−h(v). Then M is a martingale
[supermartingale,submartingale].

Proof
If vt ∈ V − V ′, then Mt+1 = Mt, otherwise

Mt =[≥,≤] Mt +
1

wt(vt)
·
∑

u∈N(vt)

w(vtu)∆h(−→vtu) (44)

= Mt +
∑

u∈N(vt)

wt(vtu)

wt(vt)
·
∆h(−→vtu)

δkt(vtu)
(45)

= Mt +
∑

u∈N(vt)

P (vt+1 = u | Ft)
∆h(−→vtu)

δkt(vtu)
(46)

= E(Mt+1 | Ft) (47)

2

As an application of the above martingale, we will show that if non-reinforced
random walks on a weighted tree are almost surely recurrent, then for reinforced
random walks on that tree, a very weak condition on the reinforcement sequence
suffices to show recurrence.
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Theorem 6. Let G = (V, E, w) be a weighted tree, with the property that non-
reinforced random walks on G are almost surely recurrent. Let (δk)k∈IN be a non-
descending reinforcement sequence that satisfies the condition of Lemma 7 (or that
of Lemma 8). Furthermore, assume either that (δk)k∈IN is bounded, or that δk+1 >
δk for some even k ∈ IN . Then the reinforced random walk with reinforcement
sequence (δk)k∈IN is almost surely recurrent.

Proof
Consider a reinforced random walk on G starting from some vertex v0 ∈ V . By
Lemma 7 (or Lemma 8), to show recurrence, it suffices to show for all t0 ∈ IN ,
and any history up to time t0, that v0 will be revisited almost surely at some time
at or after time t0. So let t0 ∈ IN , and fix the history up to time t0.
First, we need a function h on V that is superharmonic on V − {v0}. Since non-
reinforced random walks on G are almost surely recurrent, such a function h exists
by Theorem 2. For r ∈ IR, define the stopping time τr as the first time t ≥ t0 at
which vt = v0 or h(vt) > r. By Lemma 6, the random walk will almost surely
leave the finite set of vertices {v ∈ V | h(v) ≤ r}. Hence τr < ∞ almost surely.
Next, let Mt be the martingale of Lemma 9. For walks on weighted trees, the di-
rection of traversal of an edge is the same for all odd-numbered traversals, and
opposite to the direction for all even-numbered traversals. Furthermore, all odd-
numbered traversals are traversals going from the lower to higher h-value, for
otherwise it would be possible to construct an infinite sequence of vertices of de-
creasing h-value, which would contradict the fact that h → ∞ if v → ∞. Hence,
an edge vu which has been traversed k times at time t contributes

|∆h(−→vu)| ·
k−1
∑

j=0







1/δj if j is even and vu is not incident with v0

0 if j is even and vu is incident with v0

−1/δj if j is odd
(48)

to the value of the martingale. Now by the conditions on (δk)k∈IN , there exists
a c > 0 such that either 1/δk > c for all k ∈ IN , or 1/δk − 1/δk+1 > c for
some even k ∈ IN . We can use either property, together with the monotonicity of
(δk)k∈IN , to obtain the following lower bound on the above contribution:

|∆h(−→vu)| ·

({

c if k is odd
0 if k is even

−

{

dk/2e/δ1 if vu is incident with v0

0 otherwise

)

(49)

At any time t, the edges of G that have been traversed an odd number of times are
exactly the edges of the unique path in G between v0 and vt. Furthermore, between
times t0 and τ , there will be no traversals of edges incident with v0, except for a
possible traversal to v0 at time τ . Hence the martingale Mt satisfies

Mt ≥ c(h(vt) − h(v0)) − c′ (50)

where c′ =
∑

u∈N(v0) |∆h(−→v0u)|dkt0(v0u)/2e/δ1. Now we can apply the Op-
tional Stopping Times Theorem to obtain

Mt0 ≥ E(Mτr
) ≥ (1 − P (vτr

= v0))c(r − h(v0)) − c′ (51)
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We conclude that P (vτr
= v0) ≥ 1− (Mt0 + c′)/c(r − h(v0)) for all r > h(v0),

and hence v0 is almost surely revisited at some time after time t0.
2

Remark 4. For the proof of the above theorem, we can weaken the conditions on
the reinforcement sequence to the conditions of Lemma 8 and, for some c > 0,4the
inequality

k−1
∑

j=0

(−1)j/δk > 0 for k even , > c for k odd (52)

4. Once-Reinforced Random Walks

In this section we will consider the once-reinforced random walk, where the weight
of an edge only changes the first time it is traversed, and afterwards remains con-
stant. For this walk, the martingale Mt defined in the previous section can be ex-
pressed as h(vt) plus a certain (bounded) bias. If the expectation of the bias is
small enough, we will be able to show recurrence in a similar manner as in Section
2.

Definition 9. Let δ > 0. The once-reinforced random walk with reinforcement
factor δ is the reinforced random walk with reinforcement sequence

(δk)∞k=0 = (1, δ, δ, δ, δ, . . .) (53)

Definition 10. Define the stochastic variables Et and At, for t ∈ IN , by setting

Et = {vsvs+1 | s < t} (54)

At = {−→vu | vu ∈ Et,−→vu = −−−−→vsvs+1 for s = min{s′<t | vs′vs′+1 = vu}} (55)

i.e. Et is an edgeset containing the edges that have been traversed up to time t,
and At is an arcset obtained from Et by orienting each edge in the direction that
it was first traversed.

Lemma 10. In a once-reinforced random walk with reinforcement factor δ > 0,
let t0 ∈ IN , and let Mt be as in Lemma 9 for some function h : V → IR which is
(super/sub)harmonic on V ′ ⊂ V . Then for t ≥ t0,

δ(Mt − Mt0) = h(vt) − h(vt0) + (δ−1)
∑

−→vu∈At−At0

∆h(−→vu) (56)

as long as V − V ′ has not been visited at any time between t0 and t (including t0
and excluding t).

4 Regrettably, the constant c > 0 cannot be replaced by 0. A counterexample is given by
the reinforced random walk with reinforcement sequence (δk)k∈IN = (1, 1, 2, 2, 3, 3, . . .)
on the linear lattice graph G = (V, E,w) with V = {vn | n ∈ IN}, E = {vnvn+1 | n ∈
IN} and w(vnvn+1) = n + 1. Starting from v0, this walk is almost surely transient.
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Proof
At time t = t0, the equality holds. If an arc −→vu is traversed that has been traversed
before, then Mt changes by ∆h(−→vu)/δ, h(vt) changes by ∆h(−→vu), and At does
not change, so equality is preserved. If an arc vu is traversed that has not been
traversed before, then Mt changes by ∆h(−→vu), h(vt) changes by ∆h(−→vu), and −→vu
is added to At, so equality is again preserved.

2

Now, in our proof of the recurrence of non-reinforced random walks, a key point
was that when we moved farther away from F , the value of the martingale in-
creased as well. Since the expectation of the martingale was bounded, this im-
plied that the probability of reaching a border decreased if we moved the bor-
der further away. In order to use similar reasoning here, we will need the bias
(δ−1)

∑

−→vu∈At

∆h(−→vu) to be positive in the long run, or at least not too negative.

Lemma 11. Let G = (V, E, w) be a weighted graph. Let h : V → IR be a
function satisfying

1. h is superharmonic everywhere except on a finite subset F ⊂ V .
2. h goes to infinity if v goes to infinity.

Consider the once-reinforced random walk on G with reinforcement factor δ start-
ing at some vertex v0. Suppose that for some ε > 0, the following holds for any
time t0 and any history up to time t0:

There exists a c ∈ IR such that for all r0 ∈ IR we can find r > r0 with

(δ − 1)E





∑

−→vu∈Aτr

∆h(−→vu) Ft0



 ≥ −(1 − ε)r − c (57)

(where the stopping time τr is the first time at or after t0 that F is visited
or h(vt) ≥ r).

Then the once-reinforced random walk on G with reinforcement factor δ starting
at v0 is almost surely recurrent.

Proof
Without loss of generality we may assume that h ≥ 0. Note that the reinforcement
sequence satisfies the condition of Lemma’s 6 and 7. Therefore it suffices to show
for all t0 ∈ IN , and any history up to time t0, that F will be revisited almost surely
at some time at or after time t0. So let t0 ∈ IN , and fix the history up to time t0.
Let Mt be the supermartingale of Lemma 9, and let r ∈ IR. For any t ≤ τr , the
set At − At0 is contained in the finite set {−→vu ∈ V | v 6∈F ∧ h(v)<r}. So Mt is
bounded for t ≤ τr , and furthermore τr < ∞ almost surely by Lemma 6. Hence
we can apply the Optional Stopping Times Theorem to obtain E(δMτr

) ≤ δMt0 ,
which by Lemma 10 is equivalent to

E(h(vt)) ≤ h(v0)+(δ−1)
∑

−→vu∈At0

∆h(−→vu)−(δ−1)E





∑

−→vu∈Aτr

∆h(−→vu)



 (58)
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 horizontal edges
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Fig. 2. The square lattice graph on ZZ × {1, . . . , n}.

Combining this with the formula E(h(vt)) ≥ (1−P (vτr
∈ F | Ft0))r, we obtain

P (vτr
∈F | Ft0) ≥ 1−

h(v0)

r
−

δ−1

r

∑

−→vu∈At0

∆h(−→vu) +
δ−1

r
E





∑

−→vu∈Aτr

∆h(−→vu)





(59)
By assumption we can find c, r ∈ IR such that

ε

2
r > c + h(v0) + (δ − 1)

∑

−→vu∈At0

∆h(−→vu)) (60)

and (57) holds. Then

P (vτr
∈F | Ft0) ≥ 1 − ε/2 +

c

r
−

(1 − ε)r + c

r
= ε/2 (61)

So there is at least a chance of ε/2 of coming back to F at time t = τr . In the event
that this does not happen, we start over at time τr + 1, and each time we have a
chance of ε/2 of visiting F . It follows that the random walk will visit F almost
surely.

2

Next are two applications of this lemma. In both cases, we will write the bias as
the sum of ‘local’ biases in order to estimate it. The first application demonstrates
how to use absolute bounds on

∑

−→vu∈Aτr

∆h(−→vu), to show recurrence for δ close
to 1, the second application uses more probabilistic methods.

Theorem 7. Let n ≥ 1, and let G = (V, E, w) be the square lattice graph on
ZZ × {1, . . . , n} or on ZZ × (ZZ/nZZ). If 1 − 1

n < δ < 1 + 1
n−2 (for n ≥ 3),

or 1 − 1
n < δ (for n = 1, 2), then the once-reinforced random walk on G with

reinforcement factor δ is almost surely recurrent 5.

Proof

5 Recurrence for 1 ≤ δ < 1 + 1

n−2
was first proven by Sellke in [7], using different

methods.
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First assume that G is the square lattice graph on ZZ×{1, . . . , n}. With each vertex
v of G we can associate coordinates xv, yv with xv ∈ ZZ, yv ∈ {1, . . . , n}, in the
obvious fashion. We may assume that the random walk starts at a point v0 with
xv0 = 0. For our superharmonic function h we will use h(v) = |xv|, which is
easily seen to be harmonic everywhere except on the finite set F = {v ∈ V |
xv = 0}.
With this function h, the only edges that contribute to the bias are horizontal edges.
For any c ∈ ZZ , consider the column Cc of n horizontal edges connecting points
v with xv = c to points u with xu = c + 1. We need to estimate the number of
edges of this column that, at first traversal, are traversed going from the lower to
the higher h-value. This number is obviously at most n, and unless the column has
not been traversed at all, it is at least 1 (since the random walk cannot reach the
side of the column with higher h-values without crossing the column at least once).
Similarly, the number of edges that, at first traversal, are traversed going from the
higher to the lower h-value, is at least 0 and at most n − 1. So the contribution of
the column to the bias satisfies

(δ−1)
∑

−→vu∈At,vu∈Cc

∆h(−→vu) ≥

{

(δ−1) max(0, n−2) if δ ≥ 1
(1−δ)n if δ < 1

= −(1 − ε) (62)

where ε = 1 − (δ−1)max(0, n−2) > 0 if 1 ≤ δ < 1 + 1/max(0, n−2) and
ε = 1 − (1−δ)n > 0 if 1 − 1/n < δ < 1.
Now for any t0 and any r > t0/ε, if τr is the first time at or after t0 that F is
visited or h(vt) > r, then the horizontal edges in Aτr

are all contained in the
r + t0 columns with x-coordinates between −t0 and r (in the case that xvt0

> 0)
or between −r and t0 (in the case that xvt0

> 0). Summing all columns, we obtain

(δ−1)
∑

−→vu∈Aτ

∆h(−→vu) ≥ −(1 − ε)r − (1 − ε)t0 (63)

Hence the conditions of Lemma 11 are satisfied, and the reinforced random walk
is almost surely recurrent.
The proof for the square lattice graph on the cylinder ZZ × (ZZ/nZZ) is identical.

2

Remark 5. Of course, using the absolute bound on
∑

{∆h(−→vu) | −→vu ∈ Aτr
} is

a very unsophisticated method of obtaining a bound on the expected value of the
bias. In the above case, we could improve the bounds on the expected value of the
bias with a few simple probabilistic calculations, resulting in

Corollary 2. Let n ≥ 1, and let G = (V, E, w) be the square lattice graph on
ZZ × {1, . . . , n} or on ZZ × (ZZ/nZZ). Then there exist δmin, δmax > 0 with
δmin < 1 − 1

n < 1 + 1
n−2 < δmax such that for all δ with δmin < δ < δmax , the

once-reinforced random walk on G with reinforcement factor δ is almost surely
recurrent



REINFORCED RANDOM WALKS 19

0-1-2 1
E E E E

-2 -1 0 1 2
vvvvv

Fig. 3. The graph of Theorem 8

with the actual values of δmin and δmax depending on the particular bound chosen
for the expected value of the bias. Unfortunately in practice this seens to be a lot
of effort, yielding only an insignificant improvement over the previous result. In
the next section a proof will be given of recurrence for large values of δ. No proof
is yet known for intermediate values of δ.
It is also not yet known whether the once-reinforced random walk on the square lat-
tice graph ZZ2 is recurrent for any reinforcement factor δ 6= 1. The above method
can be adapted to show recurrence for a variant once-reinforced random walk,
where the reinforcement factor converges to 1 if you move away to infinity. Sim-
ilarly, it is possible to adapt the proof given in the next two sections to show re-
currence for a variant once-reinforced random walk where the reinforcement factor
converges to ∞ if you move away to infinity. But except for these marginal results,
nothing is known yet for reinforced random walks on the square lattice ZZ 2.

Theorem 8. Let G = (V, E, w) be a weighted graph with vertices V = {vi |
i ∈ ZZ} and for any n, a finite non-zero number of parallel edges between the
vertices vn and vn+1. If the non-reinforced random walk on G is almost surely
recurrent, then the reinforced random walk on G is almost surely recurrent for any
reinforcement factor δ > 0.

Proof
Note that, to prove this, we actually will need the generalization of Lemma 11 to
graphs with parallel edges. As stated in Remark 1, we will simply postulate this
generalization and proceed.
If the non-reinforced random walk on G is almost surely recurrent, then by Theo-
rem 2 there exists a function h : V → IR such that h is superharmonic on V −{v0}
and h(vn) → ∞ if n → ∞ or n → −∞. It is easily seen that h(vn) > h(vm) if
n > m > 0 or n < m < 0.
Now for n ∈ ZZ , let Gn = (V n, En, wn) be the subgraph induced by {vn, vn+1}
(i.e. V n = {vn, vn+1}, En is the set of edges between vn and vn+1 , and wn =
w|En). Although events outside Gn may effect whether and when an edge of Gn is
traversed, which edge of Gn is traversed is only dependent on the relative current
weights of the edges of Gn. So we can estimate the expected contribution to the
bias of each set En separately, and take the sum to arrive at an estimate for the
total expected bias. The possibility that at some point the walk in G will no longer
return tot Gn can be simulated by a stopping time for the walk in Gn.
So fix n ∈ ZZ and consider the reinforced random walk on the finite graph Gn,
starting in vn if n ≥ 0, and in vn+1 otherwise. Note that in both cases the random
walk will start at the vertex with the lower h-value and then alternate between the
two vertices. Set c = |h(vn+1)−h(vn)|. If for Gn we define An

t and En
t as usual,
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we have for any t ∈ IN

E





∑

a∈An

t+1

∆h(a) Ft



 =
∑

a∈An

t

∆h(a) + (−1)t w(En)−w(En
t )

w(En)+(δ−1)w(En
t )

· c (64)

where w(X) denotes
∑

e∈X w(e). This implies that for any stopping time τ

E





∑

a∈An
τ

∆h(a)



 = E

(

τ−1
∑

t=0

(−1)t w(En)−w(En
t )

w(En)+(δ−1)w(En
t )

)

· c (65)

For all t, w(En
t ) ≤ w(En

t+1) ≤ w(En), and hence

w(En)−w(En
t )

w(En)+(δ−1)w(En
t )

≤
w(En)−w(En

t+1)

w(En)+(δ−1)w(En
t+1)

(66)

We conclude that for any stopping time τ ,

0 ≤ E





∑

a∈An
τ

∆h(a)



 ≤ c (67)

Now let us return to the random walk on G. Fix t0 ∈ IN and the history up to time
t0. Then all the vertices that have been visited up to time t0 have indices between
−t0 and t0. Furthermore, all the vertices that can be visited after time t0 are on the
same side of v0 until the first visit to v0; without loss of generality we may assume
that this is the side of the vertices with positive indices. If we transfer the results
we obtained for the walks on the graphs Gn to the random walk on the graph G,
and take the sum of the inequalities over all edgesets En with n ≥ t0, then we
obtain

−c′ ≤ E

(

∑

a∈Aτ

∆h(a) Ft0

)

≤ E(max{h(vt) | t ≤ τ}) − h(vt0) + c′ (68)

where τ is any stopping time such that the walk does not leave the set of vertices
with positive indices, and c′ =

∑t0−1
n=−t0

(#En)|h(vn+1) − h(vn)|.
This implies the condition of (the generalization of) Lemma 11 for all δ > 0.

2

Remark 6. Recurrence for δ ≥ 1 can be proven for all weighted trees (provided
non-reinforced random walks on the tree are recurrent): this already follows from
Theorem 6. The same doesn’t hold for δ < 1: it can be shown, for instance, that
the once-reinforced random walk on the tree given in figure 4 starting from v0 is
not almost surely recurrent if the reinforcement factor δ is less than 1/4.

To prove recurrence for all δ ≥ 1, in any graph on which non-reinforced random
walks are recurrent, one could use something like
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Fig. 4. A tree on which the once-reinforced random walk with δ < 1/4 is not almost surely
recurrent.

Proposition 1. For any edge vu that is ‘far away’ from all edges traversed so far,
if v is closer than u to the origin of the walk (in the sense that h(v) < h(u)), then
vu has at least as much chance of being traversed (the first time it is traversed)
from v to u as it has of being traversed (the first time it is traversed) from u to v.

or, very loosely formulated, closer vertices are visited earlier. Alas, so far this
proposition has neither been proved nor refuted.

5. Large Reinforcements

In this section we will consider recurrence of once-reinforced random walks with
very large reinforcement factors. We will first show that if the reinforcement factor
δ is very large, then the ‘growth process’ of the subgraph of traversed edges will
not only be very slow, but also very uniform. Later in the section we will use this
to show that on some graphs, this implies that the estimated bias of the random
walk is nonnegative. enabling us to use Lemma 11 to show recurrence for δ large
enough.
So let us start by considering what happens if the reinforcement δ is very large.
Then an edge that has never been traversed before has a very small chance of
being selected, compared to an edge that has been walked before. As a result, the
once-reinforced random walk will remain in the subgraph of traversed edges for
(on average) very long periods. Each such period ends when the walk leaves the
subgraph (thereby extending it with a new edge) and during each period the walk
behaves like a non-reinforced random walk.
Now consider this non-reinforced random walk. Generalizing the situation, we
have a graph and a subgraph, with the property that the weight of edges outside
the subgraph is very small compared to the weight of edges in the subgraph, and
we are considering the non-reinforced random walk which stops when it leaves
this subgraph. If we compare this walk to the non-reinforced random walk in the
subgraph, then we see that if the latter is almost surely recurrent, then the former
will visit each vertex of the subgraph, on average, a very large number of times.
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Furthermore, this number will be proportional to the total weight of edges adjacent
to that vertex. This is enough to show that the probability that the walk ends by
leaving the subgraph by a particular edge (and hence the probability that in the
original once-reinforced random walk that edge will be added to the subgraph of
traversed edges), is nearly the same for edges that are close together, relative to
their weight.
A necessary requirement for this is that non-reinforced random walks on the sub-
graph are recurrent, since otherwise each vertex will only get a bounded number of
visits (in an approximation of transience). Furthermore, in order to be able to put
uniform bounds on ‘very small’ and ‘nearly the same’, we will require the graph
to be a subgraph of a finitely-patterned graph:

Definition 11. A weighted graph G = (V, E, w) is called finitely-patterned if
there is a finite set F ⊂ V such that for any vertex v ∈ V , there is a graph-
automorphism φ of G with φ(v) ∈ F .

Lemma 12. Let G∗ = (V ∗, E∗, w∗) be a finitely-patterned weighted graph on
which non-reinforced random walks are almost surely recurrent. Then for any η >
0 there exist cdist, δ > 0 such that the following holds:

Let G = (V, E, w) be a subgraph of G∗ (possibly with lesser weights), v ∈
V , V ′ ⊂ V a (possibly empty) set of stopping positions, and E ′ ⊂ E a set
of edges. Consider the random walk in G starting from v0 and continuing
until an edge in E − E′ is traversed. Now, if vaua and vbub are edges in
E − E′, then

1 − ηd ≤
P (the walk ends by walking from vb to ub)/w(vaua)

P (the walk ends by walking from va to ua)/w(vbub)
≤

1

1 − ηd
(69)

provided that
1. for any edge vu ∈ E − E′, w(vu) ≤ w∗(vu)/δ
2. va and vb are in G∗ at least distance cdist away from any vertex v′ ∈

V ′

3. va and vb and connected by a path P in E′ with d =
∑

e∈P (1/w(e)) ≤
1/η

This also holds if we add additional stopping positions V ′, provided va and
vb are not within G∗-distance cdist of V ′.

Proof
Let G∗ be as stated, and let cdist be such that for any v ∈ V ∗, the random walk
on G∗ starting at v will on average revisit v at least 2w∗(v)/η times before time
t = cdist. Since G∗ is finitely-patterned, we need only consider finitely many
v ∈ V ∗, and hence we can take cdist finite. Let δ = 1/(21/M − 1).
Now let G, V ′, E′, v0, va, vb be as stated. Note that the random walk cannot end
by traversing −−→vaua or −−→vbub without first visiting va or vb. So if the random walk
does not start at va or vb, then we can walk until the first visit to va or vb (or the
walk ends by traversing some other edge E − E′), and therefore we can write the
probabilities to be calculated as linear combinations of the probabilities for the
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cases where the random walk does start at va or vb. Hence it suffices to prove the
Lemma for the case where v0 = va.
Let Gs be the graph obtained from G by adding another stopping position s to
G, and replacing all edges vu ∈ E − E′ by edges vs, us with weight ws(vs) =
ws(us) = w(vu), Then the random walk under consideration is equivalent to a
random walk in Gs which stops at V ′ ∪ {s}. Now, let H be the function from
Lemma 4. Then we have that, for vu ∈ E − E′,

P (the walk ends with vu) = E(the number of visits to v) ·
w(vu)

w(v)
= w(vu)H(v)

(70)
Furthermore, by Lemma 4 H is maximal at va, and for any edge vu, |H(v) −
H(u)| ≤ 1/w(vu). We conclude

H(va) − d ≤ H(va) −
∑

e∈P

(1/w(e)) ≤ H(vb) ≤ H(va) (71)

and therefore

1 −
d

H(va)
≤

H(vb)

H(va)
=

P (the walk ends by walking from vb to ub)/w(vaua)

P (the walk ends by walking from va to ua)/w(vbub)
≤ 1

(72)
We want to show that H(va) > 1/η. So consider the graph G∗

s obtained from G∗

by adding a stopping position s to G and edges vs and us for each edge vu ∈ E∗,
with weight w∗

s(vs) = w∗
s(us) = w∗(vu)/δ. Note that Gs is a subgraph of G∗

s .
Now in the random walk in G∗

s starting at va and stopping at s, at each node there
is a probability 1/δ

1+1/δ of traversing to s and stopping. Since it is impossible to visit
V ′ starting from va before time cdist the probability of not stopping before time
cdist is ( 1

1+1/δ )M = 1/2, and the expected number of visits to va before stopping
is at least 2w∗(va)/η · 1/2 = w∗(va)/η. If H∗ is the function from Lemma 4 for
G∗

s , then this can be written as

H∗(va) ≥
1

w∗(va)
(w∗(va)/η) = 1/η (73)

which together with Corollary 1 implies

H(va) ≥ H∗(va) ≥ 1/η (74)

2

Now let us apply this lemma to the reinforced walk with large reinforcement factor
δ. As before, let Et denote the set of edges already-traversed at time t, and At the
set of arcs (oriented edges) obtained by orienting all edges of Et in the direction
of first traversal. We say that an arc −→vu extends At if it could be added to At,
i.e. if At does not contain −→vu but does contain an edge incident with v. Then the
above lemma can be used to show that all edges that can extend At and are close
together, have approximately the same probability of being added to At, relative
to their weight. Note that, in order to be able to apply the result later, we will allow
stopping times satisfying certain conditions.
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vt0

completely filled area wide empty ‘room’ completely filled area

h=0 h increasing

Fig. 5. An anomalous situation

Corollary 3. Let G = (V, E, w) be a weighted subgraph (possibly with lesser
weights) of a finitely-patterned graph G∗ on which non-reinforced random walks
are recurrent. Then for any η > 0 there exist cdist, δ > 0 such that the following
holds:

Consider the once-reinforced random walk on G with reinforcement factor
δ, let t0 ∈ IN , fix the history up to time t0. let 0 < d < 1/η, and let B be a
set of arcs extending Et0 . Then for any arc −→vu ∈ B,

P (the first arc added to At is −→vu)/w(vu)

P (the first arc added to At is from B)/w(B)
∈ [1−ηd, 1/(1−ηd)] (75)

provided the tails of B are all pairwise connected by Et0-paths P with
∑

e∈P(1/w(e)) ≤ d. Here w(B) denotes the sum of the weights of all arcs
of B.
This also holds if we add additional stopping positions V ′, provided we
add the condition that no arc of B is within G∗-distance cdist of V ′.

Proof
Given the history up to t0, let G2 be obtained from G by assigning each edge the
‘current’ weight at time t0, divided by δ. Then G2 is a subgraph of G and G∗. Set
E′ = Et0 , then all the conditions of Lemma 12 are satisfied w.r.t. G2 for any pair

of arcs −→vu,
−−→
v′u′ ∈ B. The result follows.

2

If the previous corollary would hold for some fixed d, with tails whose arcs where
arbitrarily far apart. then we would be done. For then the growth of At would
always be uniform, and the expected change to the bias would be proportional
to the weighted average of ∆h(−→vu) over all arcs −→vu extending At. For any (su-
per)harmonic function h this can be shown to be positive, and hence we would
then be able to apply Lemma 11 to show recurrence.
Unfortunately, Corollary 3 is not that strong. In order to be able to use the corollary,
we need to divide the graph into smaller areas, such that the arcs in that area
extending At are close together and have, on average, nonnegative ∆h(−→vu). Then
we can take the sum over the areas, and arrive at a nonnegative expected change to
the total bias.
As it turns out, this does not always work. Figure 5 shows a situation where it
doesn’t, arising in the random walk on the ladder ZZ × {1, 2, 3, 4} with h(v) =
|x(v)|. In this situation, all edges extending At that are not far away from vt0 are
contained in an extremely-wide ‘room’ R. If the next horizontal edge added to At
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is from the right side of the room, then it will be traversed right-to-left, and will
contribute a negative ∆h to the bias. If it is from the left side of the room, then
it will be traversed left-to-right, and will contribute a positive ∆h. h(v) = |x(v)|
is a harmonic function, and the harmonicity equations ensure that these potential
contributions have a zero sum. So all would be well if the edges would have equal
probabilities of being added to At. But if the width of the room is large enough
(relative to δ), then in the reinforced random walk starting at vt0 , the next arc added
to At will be much more likely to come from the right side of the room than from
the left side. In the given situation therefore, the expectation of the next change to
the bias is negative.
So we need to make sure that such anomalous situations occur so rarely that they
will have a negligible effect on the expectation of the change to the bias. In the case
of the next theorem, this problem is addressed by considering only only ‘strip-like’
graphs that can be viewed as rows of connected vertexsets Vi.6

Definition 12. Let G = (V, E, w) be a weighted graph. We say that G is strip-
like if w has upper and lower bounds wmax and wmin, and there is a partition
(V i)i∈ZZ of V satisfying the following:

1. |V i| is bounded by some k ∈ ZZ .
2. All edges in G are between vertices of V i, or between vertices of V i and V i+1,

for some i ∈ ZZ .
3. For all i, G|V i is connected.

At any time there will be sets Vi such that all edges in the subgraph Vi have been
traversed, which will act as ‘walls’, dividing the graph into ‘rooms’ similar to the
one shown in figure 5. Since the size of the sets Vi is bounded, so is the average
distance between the walls. Anomalous situations can only occur in rooms with
extremely large width, much greater than average, but these situations will be ex-
tremely rare (unless they are part of a given initial situation) and will have little
effect on the expectation of the bias.
This structure also solves an additional problem, namely that in general edges that
are close together in G are not guaranteed to be close together in the subgraph of
traversed edges, and if they are not, At has no uniform growth there. This cannot
happen in rooms of small width, since the walls ‘short-circuit’ long paths.
If G is strip-like, and k and wmax are as in definition 12, we can define the graph
G∗ = (V ∗, E∗, w∗)) by setting V ∗ = ZZ ×{1, . . . , k}, E∗ = {((i1, j1), (i2, j2)) |
|i1 − i2| ≤ 1} and w∗(e) = wmax . Now G∗ is finitely-patterned, and G is a
subgraph of G∗ (possibly with lesser weights). Moreover, it is easily seen that
non-reinforced random walks on G∗ are almost surely recurrent, and hence so are
non-reinforced walks on G.
Lemma 2 guarantees the existance of a superharmonic function on V − V 0 wit-
nessing this recurrence, which we can use when applying Lemma 11. But using
the given restrictions on G, we can construct a function h with some additional
nice properties, which will simplify later calculations considerably:

6 This class of graphs may be viewed as a generalization of the infinite ladders ZZ ×
{1, . . . , n} and cylinders ZZ × (ZZ/nZZ) of Theorem 7.
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V V V V-1 0 1 2

Fig. 6. An example of a strip-like graph for Theorem 9, with k = 3.

Lemma 13. Let G = (V, E, w) be a strip-like weighted graph, and let wmax,
wmin, k and (V i)i∈ZZ be as in 12. Then there exists a function h : V → IR
satisfying

1. h is harmonic on V − V0 and 0 on V0.
2. h → ∞ if v → ∞.
3. For all vertices vu ∈ E,

|∆h(−→vu)| ≤ 1/w(vu) ≤ 1/wmin (76)

4. For all i ∈ ZZ ,

∑

{w(vu)∆h(−→vu) | v ∈ V i, u ∈ V i+1, vu ∈ E} =

{

1 if i ≥ 0
−1 if i < 0

(77)

Proof
We can construct the function h on V >0 and V <0 separately. So for purposes
of this proof, we will ignore V <0. For v0 ∈ V >0, let Hv0 be the function from
Lemma 4 with respect to the random walk starting at v0 and stopping at V0. Then
for any v0, Hv0 is harmonic on V −V 0−v0, satisfies 76, and satisfies 77 for i = 0.
Now 76 implies that for any v ∈ V ≥0, {Hv0(v) | v0 ∈ V ≥0} is bounded, and
therefore has a limit point. We can inductively construct a ’common limit point’ in
the form of a function h such that for any finite set F ⊂ V ≥0, h|F is a limit point
of {hv0)|F | v0 ∈ V ≥0}. Then it follows that h is harmonic on V − V 0, satisfies
76, and satisfies 77 for i = 0. By taking linear combinations of the harmonicity
equality, we obtain 77 for i ≥ 0.
Finally, let r ≥ 0, and set Ur = {v ∈ V ≥0 | h(v) ≤ r}. If Ur were to have an
infinite connected component, then for some i0 > 1, Ur would intersect all V i with
i ≥ i0, and hence by the connectedness of the sets Vi, h(v) < r + kwmin for all
v ∈ V ≥i0 . Then −h would be a bounded non-constant superharmonic function,
contradicting the fact that non-reinforced random walks on G are almost surely
recurrent. On the other hand, if Ur were to have a finite non-empty component F
disjoint from V 0, we could take linear combinations of the harmonicity equality
to obtain

∑

{w(vu)∆h(−→vu) | v ∈ F, u ∈ V − F, vu ∈ E} = 0 (78)

contradicting the fact that if v ∈ F, u ∈ V − F , then h(u) ≥ r > h(v). So for
all r ≥ 0, Ur consists only of a finite component containing V 0. We conclude
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wall room wall room wall room wall room
(unfinished)

Fig. 7. Traversed edges forming walls and rooms in the square lattice graph on ZZ ×
{1, 2, 3, 4}

that h(v) → ∞ if v → ∞, and that h is a proper witness to the recurrence of
non-reinforced random walks in G.

2

Theorem 9. Let G = (V, E, w) be a strip-like weighted graph, and let wmax,
wmin, k and (V i)i∈ZZ be as in 12. Then a once-reinforced random walk on G with
large enough reinforcement factor δ is almost surely recurrent.

Proof
Let G, wmax, wmin, k and (V i)i∈ZZ be as stated, let ρmax denote the maximum
degree of vertices in G and let h be the function of Lemma 13. We will use Lemma
3 to show that the condition of Lemma 11 is satisfied. Note that to show recurrence
of the random walk, it suffices to show that at any time t0, the probability of re-
turning to V 0 is 1. Hence we may assume, without loss of generalization, that
vt0 ∈ V ≥0 = V 0 ∪V 1 ∪ . . ., and that for purposes of this proof, V −1 ∪V −2 ∪ . . .
can be safely ignored. Unless stated otherwise, we will assume i ≥ 0 whenever
we write V i.
We say that there is a wall at V i, when all edges of E with both vertices in V i are
in Et. The area between two successive walls we will call a room. Given that there
are at most kρmax edges involved, it can easily be seen that there is a pwall > 0
such that the probability that a wall appears at V i before a single vertex of V i+1 is
visited is at least pwall (irrespective of δ). It follows that, not taking into account
rooms already present in any given initial situation, the expected average width of
a room is at most p−1

wall . Now pick ε > 0 and N > k/pwall such that 94 will hold
later. Let d = N/wmin, let η = ε/(d + 1), and let cdist, δ be as in Corollary 3.

Let t > 0, and fix the history up to time t. Let
−−→
v∗u∗ denote the next arc (at or after

time t) that is added to At. Now first consider a room R with walls at V i and V j

and width ≤ N/k, at distance ≥ cdist from the origin. It is easily seen that any
non-self-intersecting Et-path that does not extend beyond the room is of length at
most N , and since walls connect all their vertices, paths that leave the room and
return can be ‘short-circuited’. Hence the tails of all arcs in the room extending At

are connected by paths P with
∑

e∈P 1/w(e) ≤ d,

P (
−−→
v∗u∗=−→vu |Ft)(1−ε) ≤ P (v∗u∗ in R |Ft)

w(vu)

wext(R)
≤ P (

−−→
v∗u∗=−→vu |Ft)(1+ε)

(79)
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where wext(R) denotes the total weight of all arcs in R that extend At. It follows
that

P (
−−→
v∗u∗=−→vu |Ft)(∆h(−→vu) + ε|∆h(−→vu)|) ≥

P (v∗u∗ in R |Ft)

wext(R)
w(vu)∆h(−→vu)

(80)
By taking linear combinations of the harmonicity equation, we can show that

∑

vu in R
−→vu extends At

w(vu)∆h(−→vu) = 0 (81)

and hence
∑

vu in R
−→vu extends At

P (
−−→
v∗u∗=−→vu | Ft) (∆h(−→vu) + ε|∆h(−→vu)|) ≥ 0 (82)

Similarly, if we let imax
t denote the largest index i > 0 such that a vertex of V i has

been visited at time t, then the area between V imax

t
+1 and the wall V i0 with the

largest index i0 can be considered to be an ‘unfinished room’ Rlast. Here, taking
linear combinations of the harmonicity equation yields

∑

vu in Rlast−→vu extends At

w(vu)∆h(−→vu) = 1 (83)

and if Rlast has width ≤ N/k, we derive in the same manner as before

∑

vu in Rlast−→vu extends At

P (
−−→
v∗u∗=−→vu | Ft) (∆h(−→vu) + ε|∆h(−→vu)|) ≥

P (v∗u∗ in Rlast | Ft)

wext(Rlast)

(84)
where wext(Rlast) denotes the total weight of all arcs in Rlast that extend At.
Hence, if we pretend for the moment that we do not need to take into consideration
edges within distance cdist of the V 0, rooms of width > N/k, or the fact that to
apply Lemma 11 we need to show that its condition holds given an arbitrary fixed
history up to some time t0, we obtain

E

(

∆h(
−−→
v∗u∗) + ε|∆h(

−−→
v∗u∗)| Ft

)

≥
P (v∗u∗ in Rlast | Ft)

wext(Rlast)
(85)

Combined with the inequality

P (imax
t+1 = imax

t + 1 | Ft) ≤
kρmaxwmax

wext(Rlast)
· P (v∗u∗ in Rlast | Ft) ·

1

1 − ε
(86)

this implies

E

(

∆h(
−−→
v∗u∗) + ε|∆h(

−−→
v∗u∗)| − (imax

t+1 − imax
t )

1 − ε

kρmaxwmax
Ft

)

≥ 0 (87)
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Now, if τ is a stopping time, then we can take the sum of the above equation over
all t < τ , to obtain

E





∑

−→vu∈Aτ

∆h(−→vu) + ε
∑

−→vu∈Aτ

|∆h(−→vu)| − imax
τ

1 − ε

kρmaxwmax



 ≥ 0 (88)

Now let us consider those aspects that we chose to ignore before. We will show
that the number of edges involved in those aspects is relatively small. One of the
aspects we ignored was the existence of rooms of width N/k or greater. But if a
new room is ‘growing’, then the probability is less than (1 − pwall)

N/k that the
room will reach a width of N/k or greater, and even in that case the expected width
of the room is at most N/k + p−1

wall . Hence the expectation of the number of sets
V i contained in rooms of width > N/k at any time τ is at most

E(imax
τ )(1−pwall)

N/k(N/k + p−1
wall) (89)

Another aspect we ignored was that, in order to apply Lemma 11 we need to show
that its condition holds given an arbitrary fixed history up to some time t0. But any
such initial situation is contained within the area defined by V 0∪ . . .∪V imax

t0 . The
same holds for edges within distance cdist of the origin: all such edges are con-
tained in V 0∪ . . .∪V cdist . Edges in rooms extending from one of these areas may
be affected, but the expected number of sets V i involved in such an ‘extension’
is at most p−1

wall . Hence the expected number of sets V i for which the previous
calculations do not apply is at most

max(imax
t0

, cdist) + p−1
wall + E(imax

τ )(1−pwall)
N/k(N/k + p−1

wall) (90)

Each set V i contains at most k vertices, each of which is adjacent to at most ρmax

edges. Each edge vu that we ‘counted wrongly’ before might have caused the
expectation above to be higher than it should have been, but the difference will
be at most 2|∆h(−→vu)| ≤ 2/wmin. So the expectation above may be higher than it
should have been, but not by more than

2kρmax

wmin

(

max(imax
t0 , cdist)+p−1

wall + E(imax
τ |Ft0)(1−pwall)

N/k(N/k+p−1
wall)

)

(91)
Combining everything, and taking into account that

ε
∑

−→vu∈Aτ

|∆h(−→vu)| ≤ ε
kρmaximax

t

wmin
(92)

we derive that for any stopping time τ

E





∑

−→vu∈Aτ

∆h(−→vu) Ft0



 ≥ c ·E(imax
τ | Ft0) − c′ (93)
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with

c =
1 − ε

kρmaxwmax
−

kρmax(2(1−pwall)
N/k(N/k + p−1

wall) + ε)

wmin
> 0 (94)

c′ =
2kρmax(max(imax

t0 , cdist) + p−1
wall)

wmin
(95)

Note that we can and did choose ε and N such that c > 0. We conclude that the
condition of Lemma 11 is satisfied.

2

Corollary 4. Let n ∈ N . Then for δ large enough, the once-reinforced random
walk with reinforcement factor δ on the square lattice graphs on ZZ × {1, . . . , n}
and ZZ × (ZZ/nZZ) is almost surely recurrent.

Remark 7. The main contributor to the size of the lower bound for δ for which
this proof goes through is the requirement that by 94, N/k > p−1

wall . Roughly
estimated, p−1

wall will be of order ρk
max , and to satisfy 94, ε and N should be of

order k−2ρ−2
max and kρk

max log(kρ). The proof of Lemma 12 can be refined (with
more extensive use of the electrical-circuit paradigma) to show that δ and cdist can
be taken to be proportional to k/η. The resulting final lower bound for δ is of order
k4ρk+2

max.

Remark 8. The function of walls in the above proof is, as was stated before, to
limit the occurrence of anomalous situations, where the edges that are close to-
gether in the graph of traversed edges do not form areas balanced by the har-
monicity equations and vica versa. This approach fails when considering the ran-
dom walk on the square lattice on ZZ2. Although it is possible to view ZZ2 as a
row of vertexsets Vi, as i increases the size of the vertexsets would also increase,
the probability of a wall forming would converge to 0, and the average width of a
room would diverge to ∞.
Although presumably the reasoning above would hold up in a variant random walk,
where the value of δ increases with the distance from some arbitrary origin, this
is a marginal result at best. A better avenue of investigation for this problem is
likely to find some other way of limiting the expected occurrence of anomalous
situations.
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