Systematic Study of Mass Loss in the Evolution of Massive Stars

Mathieu Renzo

advisors: Prof. S. N. Shore, Prof. C. D. Ott
Outline

Introduction

• Importance of Massive Stars
• How do they lose mass?

Stellar Winds

• Outline of the Theory
• Methods
• Results: Amplitude of the Uncertainty
• Results: Blue Loops in \(15M_\odot\) models

Impulsive Mass Loss Events

• Motivations for This Study
• Methods
• Results: Wind + Impulsive Mass Loss
• Results: pre-SN Stripped Structures

Conclusions
Outline

Introduction

- Importance of Massive Stars
- How do they lose mass?

Stellar Winds

- Outline of the Theory
- Methods
- Results: Amplitude of the Uncertainty
- Results: Blue Loops in $15M_\odot$ models

Impulsive Mass Loss Events

- Motivations for This Study
- Methods
- Results: Wind + Impulsive Mass Loss
- Results: pre-SN Stripped Structures

Conclusions
Why are Massive Stars Important?

\[M_{\text{ZAMS}} \gtrsim 8 - 10 \, M_\odot \]

- Nucleosynthesis
- Chemical Evolution of Galaxies
- Effects on Star Formation
- Re-ionization Epoch
- Observations of Farthest Galaxies
- Catastrophic Events
Mass Loss – Why does it Matter...

... for the environment of the stars?

- Pollution of the InterStellar Medium (ISM)
- Tailoring of the CircumStellar Material (CSM)
- Effects on the Star Formation

... for the stellar structure?

- Evolutionary Timescales
- Final Fate (BH, NS or WD?)
- Light Curve and Explosion Spectrum
- Appearance: CSM and Wind Features (e.g. WR)
- Role in the Solution of the RSG Problem?
Possible Mass Loss Mechanisms

Radiative Driving
⇒
Stellar Winds

Dynamical Instabilities
⇒
LBVs, Impulsive Mass Loss, Pulsations, Super-Eddington Winds

Binary interactions
⇒
Roche Lobe OverFlows (RLOF)

Figure: η Carinae.
Introduction

• Importance of Massive Stars
• How do they lose mass?

Stellar Winds

• Outline of the Theory
• Methods
• Results: Amplitude of the Uncertainty
• Results: Blue Loops in 15M_\odot models

Impulsive Mass Loss Events

• Motivations for This Study
• Methods
• Results: Wind + Impulsive Mass Loss
• Results: pre-SN Stripped Structures

Conclusions
\[
\Delta p = \frac{h}{c} (v_i \cos(\theta_i) - v_f \cos(\theta_f))
\]

Problems: High Non-Linearity and Clumpiness:

\[
f_{cl} \overset{\text{def}}{=} \frac{\langle \rho^2 \rangle}{\langle \rho \rangle^2} \neq 1 \Rightarrow \text{Inhomogeneities} \Rightarrow \dot{M} \neq 4\pi r^2 \rho v(r)
\]
Radiatively Driven Winds in One Slide

\[\Delta p = h c \left(\nu_i \cos(\theta_i) - \nu_f \cos(\theta_f) \right) \]

\[f_{\text{cl}} \overset{\text{def}}{=} \frac{\langle \rho^2 \rangle}{\langle \rho \rangle^2} \neq 1 \Rightarrow \text{Inhomogeneities} \Rightarrow \dot{M} \neq 4\pi r^2 \rho v(r) \]

Risk:
Possible Overestimation of the Wind Mass Loss Rate

Problems: High Non-Linearity and Clumpiness:
(Semi–)Empirical parametric models. Uncertainties encapsulated in efficiency factor:

\[\dot{M}(L, T_{\text{eff}}, Z, R, M, \ldots) \]

\[\eta \dot{M}(L, T_{\text{eff}}, Z, R, M, \ldots) \]

\(\eta \) is a free parameter:

\[\eta \in [0, +\infty) \]

Figure: From Smith 2014, ARA&A, 52, 487S
Different dM/dt algorithms with MESA

Grid of $Z_\odot \simeq 0.019$, non-rotating stellar models:

- Initial mass:

 $$M_{ZAMS} = \{15, 20, 25, 30\} \, M_\odot;$$

- Efficiency:

 $$\eta \equiv \sqrt{f_{cl}} = \{1, \frac{1}{3}, \frac{1}{10}\};$$

- Different combinations of wind mass loss rates for “hot” ($T_{\text{eff}} \geq 15 \, [\text{kK}]$), “cool” ($T_{\text{eff}} < 15 \, [\text{kK}]$) and WR stars:

 Kudritzki et al. ’89; Vink et al. ’00, ’01;
 Van Loon et al. ’05; Nieuwenhuijzen et al. ’90;
 De Jager et al. ’88;
 Nugis & Lamers ’00; Hamann et al. ’98.
Results: Relative Final Mass

Diamonds \iff \eta = 1.0, \text{Squares} \iff \eta = 0.33, \text{Circles} \iff \eta = 0.1.
$M(t)$ for $M_{ZAMS} = 15M_\odot$ with MESA

$M_{ZAMS} = 15M_\odot$
$M(t)$ for $M_{\text{ZAMS}} = 15M_\odot$ with MESA

Only $\eta = 1.0$

- Vink et al., de Jager et al.
- Kudritzki et al., Nieuwenhuijzen et al.
- Kudritzki et al., de Jager et al.
- Vink et al., Nieuwenhuijzen et al.
- Kudritzki et al., van Loon et al.
- Vink et al., van Loon et al.
- $\eta = 1.0$
- $\eta = 0.33$
- $\eta = 0.1$
Comparison of Hot Wind Algorithms

Example: $M_{\text{ZAMS}} = 15M_\odot$ evolutionary tracks

\Rightarrow Early ("hot") wind influences subsequent evolution
Why Blue Loops? 1/2

- Blue loop ⇔ Large He-core
- Convection mixes H down, determining M_{He}
- μ is higher in He-rich regions

![Graph showing mass versus temperature with different curves for different values of η.](image)
Why Blue Loops? 2/2

- Blue loop starts when H-burning shell reaches the edge of the He core
- Lower μ and higher $X \Rightarrow$ Variations of ε_{nuc}
- Envelope responds on its thermal timescale
 \Rightarrow
- if $\eta < 1 \Rightarrow$ He core edge too deep for Blue Loops
- Vink et al. rate yields larger cores allowing for Blue Loops
Why not Blue Loops?

Density profiles at the onset of Blue Loops

Ideal gas EOS:

\[P_{\text{gas}} = \rho \mu m_p k_b T^{-\frac{16}{27}} \]

- \(\log_{10}(\rho [\text{g cm}^{-1}]) \)
- \(M [M_\odot] \)

- \(M_{\text{ZAMS}} = 15 M_\odot \)
- \(\text{age} \approx 13.3 \text{ [Myr]} \)
- \(\epsilon_{\text{nuc}} \geq 10^4 [\text{erg g}^{-1} \text{ s}^{-1}] \)

- de Jager et al.
- van Loon et al.
- Nieuwenhuijzen et al.
Why not Blue Loops?

Density profiles at the onset of Blue Loops

\[
\log_{10}(\rho \ [g \ cm^{-1}])
\]
\[
\varepsilon_{\text{nuc}} \geq 10^4 \ [\text{erg} \ g^{-1} \ \text{s}^{-1}]
\]

\[
M_{\text{ZAMS}} = 15M_\odot
\]
\[
\text{age} \approx 13.3 \ [\text{Myr}]
\]

Hot wind: Vink et al., \(\eta = 1.0\)

\[
P_{\text{gas}} = \frac{\rho}{\mu m_p} k_b T
\]
Results of the Comparison of Wind Algorithms:

- η has a larger influence on the final mass than the wind algorithm;
- Early (“hot phase”) mass loss influences the further evolution;
- \dot{M} is more uncertain when it is higher (RSG phase);
- Different algorithmic representations of stellar winds \Rightarrow Qualitatively different evolutionary tracks;
- Small number (8) of WR stars, none with $\eta < 1$ \Rightarrow Other mass loss mechanism(s) to form WR?
Outline

Introduction

• Importance of Massive Stars
• How do they lose mass?

Stellar Winds

• Outline of the Theory
• Methods
• Results: Amplitude of the Uncertainty
• Results: Blue Loops in $15M_\odot$ models

Impulsive Mass Loss Events

• Motivations for This Study
• Methods
• Results: Wind + Impulsive Mass Loss
• Results: pre-SN Stripped Structures

Conclusions
Why Impulsive Mass Loss?

Observational Evidence:
- LBVs
- Progenitors of H-poor core collapse SNe (∼30%)
- Dense CSM for Type IIn SNe

Theory: Dynamical Events ⇒ MESA not ready
- Pulsational Instabilities
- Roche Lobe Overflow in binaries
- Catastrophic Eruption(s)

\[\Delta M_{\text{wind}} \ll \Delta M_{\text{impulsive}} (?) \]
The Stripping Process

Remove mass in steps of $1 M_\odot$, $\max\{\Delta M_{\text{impulsive}}\} = 7 M_\odot$.

Blue line: unstripped

$M = 15 M_\odot$, $Z = Z_\odot$

Red dot: $T_{\text{eff}} = 10^4$ [K]; Yellow Triangle: $R \geq R_{\text{max}}/2 = 375 R_\odot$; Cyan Diamond: Maximum Extent Convective Envelope.
$t(\text{MCE}) - t(\text{mSGB}) \sim 10^4 \text{ [yr]} \ll 14.13 \times 10^6 \text{ [yr]}$
Stripped series on the HR diagram

Evolutionary tracks depend only on $\Delta M_{\text{impulsive}}$
Evolution toward Higher T_{eff}

Impulsive $+$ wind mass loss drives blueward evolution
Comparison of three progenitor grids

- mSGB
- hMR
- MCE

- 1 M_\odot stripped
- 2 M_\odot stripped
- 3 M_\odot stripped
- 4 M_\odot stripped
- 5 M_\odot stripped
- 6 M_\odot stripped
- 7 M_\odot stripped

Figure: Morozova et al. – eprint arXiv:1505.06746
Outline

Introduction
- Importance of Massive Stars
- How do they lose mass?

Stellar Winds
- Outline of the Theory
- Methods
- Results: Amplitude of the Uncertainty
- Results: Blue Loops in $15M_\odot$ models

Impulsive Mass Loss Events
- Motivations for This Study
- Methods
- Results: Wind + Impulsive Mass Loss
- Results: pre-SN Stripped Structures

Conclusions
Conclusions

- Large systematic uncertainties in massive star mass loss rates
- Different algorithms \Rightarrow Qualitatively different evolutionary tracks
- Uncertainty increases at higher M_{ZAMS} and η

- Combined impulsive + wind mass loss drives blueward evolution
- Does impulsive mass loss have an effect on the “Explodability” of the star?

Thank you for your attention.
Figure Credits

Roughly in order of appearance. Some figure where modified. Figure not listed are from myself. Click for original link.

- 30 Doradus (Tarantula Nebula)
- Observative HR
- Crab Nebula
- Orion
- Reionization Epoch
- Bubble Nebula
- SN1987A
- CCSN entropy rendering
- SN observations
- η Car
- Betelgeuse
- Mass Loss Rate plot
- AG car
- Type Ib SN
- WR 124
- WR spectra
- P Cygni (34 Cyg)
Roche Lobe Overflow

Mass Transfer in Binaries
\[
L_{\text{Edd}} \overset{\text{def}}{=} \frac{4\pi GM(R)c}{\kappa(r)},
\]

\[
\frac{dP_{\text{gas}}}{dr} = \frac{dP_{\text{rad}}}{dr} \left[\frac{L_{\text{Edd}}}{L_{\text{rad}}} - 1 \right]
\]

\[
M_{\text{ZAMS}} \gtrsim 20 M_\odot \Rightarrow \text{insufficient } F_{\text{conv}}^{\text{MLT}}
\]

\[\nabla T - \nabla_{\text{ad}} \rightarrow \alpha \nabla f \nabla (\nabla T - \nabla_{\text{ad}})\]

\[\alpha \nabla \equiv \alpha \nabla (\beta, \Gamma_{\text{Edd}}), \quad f \nabla \ll 1\]

Figure: From Paxton et al. 2013, ApJS, 208, 5p
Wind Observational Diagnostics

- P Cygni line profiles
- Optical and near UV lines (e.g. H\(\alpha\))
- Radio and IR continuum excess
- IR spectrum of molecules (e.g. CO)
- Maser lines (for low density winds)

Assumptions commonly needed:

- Velocity structure: \(v(r) \simeq \left(1 - \frac{r}{R_*}\right)^\beta\) with \(\beta \simeq 1\)
- Chemical composition and ionization fraction
- Spherical symmetry: \(\dot{M} = 4\pi r^2 \rho v(r)\)
- Steadiness and (often) homogeneity

\(\dot{M}\) derived from fit of (a few) spectral lines.
No theoretical guarantees coefficients are constant.
Wolf-Rayet Stars

Observational Definition:

Based on spectral features indicating a Strong Wind:
- Hydrogen Depletion (≠ Lack of Hydrogen)
- Broad Emission Lines
- Steep Velocity Gradients

Sub-categories: WN, WC, WO, WNL, etc.

Computational Definition (MESA):
- \(X_s < 0.4 \)

Impossible to distinguish sub-categories without spectra!
Evolution of a Massive Star in one Slide

\[\log_{10}(L/L_\odot) \]

\[\log_{10}(T_{\text{eff}}/[K]) \]

- \[M = 15M_\odot, \quad Z = Z_\odot \]

- \[\Delta t_{\text{MS}} \sim 1.3 \cdot 10^8 \text{ yr} \]
- \[\Delta t_{\text{OC}} \sim 7.9 \cdot 10^5 \text{ yr} \]
- \[\Delta t_{\text{SGB}} \sim 1.8 \cdot 10^5 \text{ yr} \]
- \[\Delta t_{\text{RSG}} \sim 1.2 \cdot 10^7 \text{ yr} \]

Vink et al., de Jager et al.
Evolution of a Massive Star in one Slide

Vink et al., de Jager et al.

OC $\Delta t_{OC} \sim 7.9 \cdot 10^5$ yr

$M = 15M_\odot$, $Z = Z_\odot$

$\Delta t_{RSG} \sim 1.2 \cdot 10^7$ yr

$\Delta t_{MS} \sim 1.3 \cdot 10^8$ yr

Δt_{RSG}

Δt_{OC}

OC

SGB

Radiative

Convective

$\log_{10}(L/L_\odot)$

$M [M_\odot]$
Evolution of a Massive Star in one Slide

- Back

$M = 15M_\odot$, $Z = Z_\odot$

$\Delta t_{\text{MS}} \sim 1.3 \cdot 10^8$ yr

$\Delta t_{\text{OC}} \sim 7.9 \cdot 10^5$ yr

$\Delta t_{\text{SGB}} \sim 1.8 \cdot 10^5$ yr

$\Delta t_{\text{RSG}} \sim 1.2 \cdot 10^7$ yr

Vink et al., de Jager et al.
Evolution of a Massive Star in one Slide

- Back

\[\log_{10}(T_{\text{eff}}/[K]) \]

\[\log_{10}(L/L_{\odot}) \]

\[M = 15 M_{\odot}, \quad Z = Z_{\odot} \]

\[\Delta t_{\text{MS}} \sim 1.3 \cdot 10^8 \text{ yr} \]

\[\Delta t_{\text{OC}} \sim 7.9 \cdot 10^5 \text{ yr} \]

\[\Delta t_{\text{SGB}} \sim 1.8 \cdot 10^5 \text{ yr} \]

\[\Delta t_{\text{RSG}} \sim 1.2 \cdot 10^7 \text{ yr} \]

Vink et al., de Jager et al.
P Cygni Line Profiles

- Blue shifted Absorption Component
- Red shifted Emission Component
- Broadening from scattering into the line of sight

\[\dot{M} = 4\pi \rho v(r) \]

Assuming:
- Chemical composition
- Velocity Structure

the fit of the line profile gives \(\rho \)

Figure: 34 Cyg or P Cygni, first star to show the eponymous profile.
$R(t)$ for $15M_\odot$ Models during Blue Loops

![Graph showing the evolution of $R(t)$ for $15M_\odot$ models during Blue Loops. The graph includes multiple curves representing different models and initial conditions, with annotations indicating specific values and conditions.]
End of the hot evolutionary phase

Vink et al. only: \(T_{\text{jump}} \sim 25 \text{ [kK]} \) \Rightarrow \text{Fe}^{3+} \rightarrow \text{Fe}^{2+}
Stellar counts

- Cannot be compared to clusters or single populations
- Higher $\eta \Rightarrow$ lower $M \Rightarrow$ slower evolution
- Different cut-offs in L and T_{eff}
- Kudritzki et al. rate with $\eta = 1.0$ produces a loop in the HR diagram tracks, resulting in the over-population shown.
$M(t)$ for $M_{ZAMS} = 20M_\odot$ with MESA

$M_{ZAMS} = 20M_\odot$

- Vink et al., de Jager et al.
- Kudritzki et al., Nieuwenhuijzen et al.
- Kudritzki et al., de Jager et al.
- Vink et al., Nieuwenhuijzen et al.
- Kudritzki et al., van Loon et al.
- Vink et al., van Loon et al.

$\eta = 1.0$
$\eta = 0.33$
$\eta = 0.1$
$M(t)$ for $M_{ZAMS} = 25M_\odot$ with M_{TAMS}

- Vink et al., de Jager et al.
- Kudritzki et al., de Jager et al., Hamman et al.
- Kudritzki et al., Nieuwenhuijzen et al.
- Kudritzki et al., de Jager et al.
- Vink et al., Nieuwenhuijzen et al.
- Kudritzki et al., Nieuwenhuijzen et al., Hamman et al.
- Kudritzki et al., van Loon et al.
- Vink et al., van Loon et al.

- $\eta = 1.0$
- $\eta = 0.33$
- $\eta = 0.1$
$M(t)$ for $M_{\text{ZAMS}} = 30M_\odot$ with with MESA

- Vink et al., de Jager et al.
- Kudritzki et al., de Jager et al., Hamman et al.
- Kudritzki et al., Nieuwenhuijzen et al.
- Kudritzki et al., de Jager et al.
- Vink et al., Nieuwenhuijzen et al.
- Kudritzki et al., Nieuwenhuijzen et al., Hamman et al.
- Kudritzki et al., van Loon et al.
- Vink et al., van Loon et al.

$\eta = 1.0$

$\eta = 0.33$

$\eta = 0.1$