Mathieu Renzo

Collaborators: S. E. de Mink, Y. Götberg, E. Zapartas, R. Farmer, P. Marchant, B. Paxton
Late mass loss

BBH-merger EM counterpart \Rightarrow mass loss needs to be close to 2nd core-collapse

Observational evidence

- Flash spectroscopy of SNe
 - e.g., Khazov et al. 2016

- narrow-lined SNe (Ibn & IIn)
 - e.g., Filippenko 1997,
 - Smith 2016

- CSM-powered SLSNe
 - e.g., Chevalier & Fransson 1994,
 - Smith 2007

- SN-impostors
 - e.g., Smith et al. 2008

- ...
Late mass loss

BBH-merger EM counterpart ⇒ mass loss needs to be close to 2nd core-collapse

Observational evidence

- Flash spectroscopy of SNe
 - e.g., Khazov \textit{et al.} 2016

- narrow-lined SNe (Ibn & IIn)
 - e.g., Filippenko 1997, Smith 2016

- CSM-powered SLSNe
 - e.g., Chevalier & Fransson 1994, Smith 2007

- SN-impostors
 - e.g., Smith \textit{et al.} 2008

- ...

Theoretical ideas

- Wave driven mass loss
 - e.g., Shiode & Quataert 2014, Fuller \textit{et al.} 2017

- Pulsational pair instability + Core collapse
 - e.g., Barkat \textit{et al.} 1967, Chatzopoulos & Wheeler 2012, Woosley 2017

- ...

-...
Different behaviors with M_{ZAMS} and/or M_{He}

\[\text{IMF}(M) \propto M^{-2.3}\]

- M_{He} governs the fate, determines M_{BH}

- cf. Woosley 2017
Evolution during (P)PISN
Radiation dominated:

\[P_{\text{tot}} \sim P_{\text{rad}} \]

\[M_{\text{He}} \gtrsim 32 \, M_{\odot} \]

(Woosley 2017)
1. Pair production
\(\gamma\gamma \rightarrow e^+e^- \)

Preliminary calculations with MESA

- \(M_{\text{He}} = 46 \, M_\odot, \, Z = 0.001 \)
- \(\Gamma_1 < 4/3 \)
- \(\langle E_\gamma \rangle > E_{\text{Fermi}}^{\pm} \)
- \(\langle E_\gamma \rangle < 2m_e c^2 \)
- \(\rho \, [\text{g cm}^{-3}] \)
- \(T \, [\text{K}] \)
1. Pair production
\[\gamma \gamma \rightarrow e^+ e^- \]

2. Softening of EOS triggers collapse
\[\Gamma_1 < \frac{4}{3} \]
1. Pair production
 \(\gamma \gamma \rightarrow e^+ e^- \)

2. Softening of EOS triggers collapse
 \(\Gamma_1 < \frac{4}{3} \)

3. Explosive (oxygen) ignition
1. Pair production \(\gamma \gamma \rightarrow e^+ e^- \)

2. Softening of EOS triggers collapse \(\Gamma_1 < \frac{4}{3} \)

3. Explosive (oxygen) ignition

4a. Pulse with mass ejection

4b. PISN: complete disruption
1. Pair production
\[\gamma \gamma \rightarrow e^+ e^- \]

2. Softening of EOS triggers collapse
\[\Gamma_1 < \frac{4}{3} \]

3. Explosive (oxygen) ignition

4a. Pulse with mass ejection

4b. PISN: complete disruption

5. \(\nu \)-cooling and contraction

6. Entropy loss and fuel depletion stabilize the core

7. BH
Example: $M_{\text{He}} = 46 \, M_\odot$, $Z = 0.001$, no envelope
Discussion

Can PPISN provide the mass around the BBH?

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Timed shortly before BH formation</td>
<td>✗ Can possibly unbind the binary;</td>
</tr>
<tr>
<td>✓ Sufficient amount of mass;</td>
<td>✗ $v_{\text{ejecta}} \gtrsim 10^3 - 10^4 \text{ km s}^{-1}$;</td>
</tr>
<tr>
<td>✓ Can increase eccentricity \Rightarrow decrease τ_{GW};</td>
<td>✗ Still have to survive τ_{GW}.</td>
</tr>
<tr>
<td>✓ ...</td>
<td>✗ ...</td>
</tr>
</tbody>
</table>
Discussion

Can PPISN provide the mass around the BBH?

Pros

- Timed shortly before BH formation
- Sufficient amount of mass;
- Can increase eccentricity ⇒ decrease τ_{GW};
- ...

Cons

- Can possibly unbind the binary;
- $v_{\text{ejecta}} \gtrsim 10^3 - 10^4$ km s$^{-1}$;
- Still have to survive τ_{GW}.
- ...

Bonus:

- Naturally produces BHs of $\sim 30 M_\odot$
- Can modify the BH mass function (2nd mass gap)

Correlation between M_{BH} and EM signal?