Massive Stars Mass Loss

Mathieu Renzo
Advisors: S. N. Shore, C. D. Ott
Mass Loss - Why is it important ...

... for the stellar structure?
- Evolutionary timescale
- Final fate (BH, NS or WD?)
- Structure (CSM) and appearance (WR)

... for the environment?
- chemical and dynamical evolution of Galaxies
- trigger star formation
- blow bubbles
Mass Loss - Possible Driving Mechanisms

Metal Line Driving

Winds

Dynamical Instabilities

LBVs, Episodic Mass Loss, Super-Eddington winds

Binary interactions

Roche Lobe Overflows

Figure: η Car, false colors, from wikipedia.
Parametric models with large uncertainties (clumpiness, non-wind mass loss) encapsulated in efficiency factor:

\[\dot{M}(L, \text{Teff}, Z, R, M, ...) \]
\[\downarrow \]
\[\eta \dot{M}(L, \text{Teff}, Z, R, M, ...) \]

Figure: From Smith 2014, ARA&A, 52, 487S
Grid of Z_\odot stellar models:

- Initial mass:

 \[M_{\text{ZAMS}} = \{15, 20, 25, 30, 35\} \, M_\odot; \]

- Efficiency:

 \[\eta = \{1, \frac{1}{3}, \frac{1}{10}\} ; \]

- Different combinations of wind mass loss rates for “hot”, “cool” and WR stars:

Example: 25 M_{\odot}, Z_{\odot} from ZAMS to O depletion

\[\log_{10} \left(\frac{t_{\text{O depl}} - t}{\text{yr}} \right) \]
Example: 25 M_\odot, Z_\odot from ZAMS to O depletion
Mass Loss - Conclusions

- Mass loss is important both for the stellar structures and their environment;
- Several mass loss mechanisms, hard to implement in stellar evolution codes;
- Large theoretical and observational uncertainties on the mass loss rate \dot{M};
- Effects of these uncertainties unexplored in a systematic way.

Thank you for your attention.